Use vm_page_hold() instead of vm_page_wire() for exec's mapping of the first
[dragonfly.git] / sys / kern / uipc_socket2.c
CommitLineData
984263bc
MD
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
34 * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.17 2002/08/31 19:04:55 dwmalone Exp $
c1d0003c 35 * $DragonFly: src/sys/kern/uipc_socket2.c,v 1.9 2004/04/10 00:48:06 hsu Exp $
984263bc
MD
36 */
37
38#include "opt_param.h"
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/domain.h>
42#include <sys/file.h> /* for maxfiles */
43#include <sys/kernel.h>
44#include <sys/proc.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/protosw.h>
48#include <sys/resourcevar.h>
49#include <sys/stat.h>
50#include <sys/socket.h>
51#include <sys/socketvar.h>
52#include <sys/signalvar.h>
53#include <sys/sysctl.h>
54#include <sys/aio.h> /* for aio_swake proto */
55#include <sys/event.h>
56
c1d0003c
JH
57#include <sys/thread2.h>
58#include <sys/msgport2.h>
59
984263bc
MD
60int maxsockets;
61
62/*
63 * Primitive routines for operating on sockets and socket buffers
64 */
65
66u_long sb_max = SB_MAX;
67u_long sb_max_adj =
68 SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
69
70static u_long sb_efficiency = 8; /* parameter for sbreserve() */
71
72/*
73 * Procedures to manipulate state flags of socket
74 * and do appropriate wakeups. Normal sequence from the
75 * active (originating) side is that soisconnecting() is
76 * called during processing of connect() call,
77 * resulting in an eventual call to soisconnected() if/when the
78 * connection is established. When the connection is torn down
79 * soisdisconnecting() is called during processing of disconnect() call,
80 * and soisdisconnected() is called when the connection to the peer
81 * is totally severed. The semantics of these routines are such that
82 * connectionless protocols can call soisconnected() and soisdisconnected()
83 * only, bypassing the in-progress calls when setting up a ``connection''
84 * takes no time.
85 *
86 * From the passive side, a socket is created with
87 * two queues of sockets: so_incomp for connections in progress
88 * and so_comp for connections already made and awaiting user acceptance.
89 * As a protocol is preparing incoming connections, it creates a socket
90 * structure queued on so_incomp by calling sonewconn(). When the connection
91 * is established, soisconnected() is called, and transfers the
92 * socket structure to so_comp, making it available to accept().
93 *
94 * If a socket is closed with sockets on either
95 * so_incomp or so_comp, these sockets are dropped.
96 *
97 * If higher level protocols are implemented in
98 * the kernel, the wakeups done here will sometimes
99 * cause software-interrupt process scheduling.
100 */
101
102void
103soisconnecting(so)
1fd87d54 104 struct socket *so;
984263bc
MD
105{
106
107 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
108 so->so_state |= SS_ISCONNECTING;
109}
110
111void
112soisconnected(so)
113 struct socket *so;
114{
115 struct socket *head = so->so_head;
116
117 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
118 so->so_state |= SS_ISCONNECTED;
119 if (head && (so->so_state & SS_INCOMP)) {
120 if ((so->so_options & SO_ACCEPTFILTER) != 0) {
121 so->so_upcall = head->so_accf->so_accept_filter->accf_callback;
122 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
123 so->so_rcv.sb_flags |= SB_UPCALL;
124 so->so_options &= ~SO_ACCEPTFILTER;
125 so->so_upcall(so, so->so_upcallarg, 0);
126 return;
127 }
128 TAILQ_REMOVE(&head->so_incomp, so, so_list);
129 head->so_incqlen--;
130 so->so_state &= ~SS_INCOMP;
131 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
132 head->so_qlen++;
133 so->so_state |= SS_COMP;
134 sorwakeup(head);
135 wakeup_one(&head->so_timeo);
136 } else {
137 wakeup(&so->so_timeo);
138 sorwakeup(so);
139 sowwakeup(so);
140 }
141}
142
143void
144soisdisconnecting(so)
1fd87d54 145 struct socket *so;
984263bc
MD
146{
147
148 so->so_state &= ~SS_ISCONNECTING;
149 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
150 wakeup((caddr_t)&so->so_timeo);
151 sowwakeup(so);
152 sorwakeup(so);
153}
154
155void
156soisdisconnected(so)
1fd87d54 157 struct socket *so;
984263bc
MD
158{
159
160 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
161 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
162 wakeup((caddr_t)&so->so_timeo);
163 sbdrop(&so->so_snd, so->so_snd.sb_cc);
164 sowwakeup(so);
165 sorwakeup(so);
166}
167
168/*
169 * When an attempt at a new connection is noted on a socket
170 * which accepts connections, sonewconn is called. If the
171 * connection is possible (subject to space constraints, etc.)
172 * then we allocate a new structure, propoerly linked into the
173 * data structure of the original socket, and return this.
174 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
175 */
176struct socket *
dadab5e9 177sonewconn(struct socket *head, int connstatus)
984263bc 178{
1fd87d54 179 struct socket *so;
e4700d00 180 struct pru_attach_info ai;
984263bc
MD
181
182 if (head->so_qlen > 3 * head->so_qlimit / 2)
183 return ((struct socket *)0);
184 so = soalloc(0);
185 if (so == NULL)
186 return ((struct socket *)0);
187 if ((head->so_options & SO_ACCEPTFILTER) != 0)
188 connstatus = 0;
189 so->so_head = head;
190 so->so_type = head->so_type;
191 so->so_options = head->so_options &~ SO_ACCEPTCONN;
192 so->so_linger = head->so_linger;
193 so->so_state = head->so_state | SS_NOFDREF;
194 so->so_proto = head->so_proto;
195 so->so_timeo = head->so_timeo;
dadab5e9 196 so->so_cred = crhold(head->so_cred);
e4700d00
JH
197 ai.sb_rlimit = NULL;
198 ai.p_ucred = NULL;
199 ai.fd_rdir = NULL; /* jail code cruft XXX JH */
200 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat, NULL) ||
9eeaa8a9 201 /* Directly call function since we're already at protocol level. */
e4700d00 202 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, &ai)) {
984263bc
MD
203 sodealloc(so);
204 return ((struct socket *)0);
205 }
206
207 if (connstatus) {
208 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
209 so->so_state |= SS_COMP;
210 head->so_qlen++;
211 } else {
212 if (head->so_incqlen > head->so_qlimit) {
213 struct socket *sp;
214 sp = TAILQ_FIRST(&head->so_incomp);
215 (void) soabort(sp);
216 }
217 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
218 so->so_state |= SS_INCOMP;
219 head->so_incqlen++;
220 }
221 if (connstatus) {
222 sorwakeup(head);
223 wakeup((caddr_t)&head->so_timeo);
224 so->so_state |= connstatus;
225 }
226 return (so);
227}
228
229/*
230 * Socantsendmore indicates that no more data will be sent on the
231 * socket; it would normally be applied to a socket when the user
232 * informs the system that no more data is to be sent, by the protocol
233 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
234 * will be received, and will normally be applied to the socket by a
235 * protocol when it detects that the peer will send no more data.
236 * Data queued for reading in the socket may yet be read.
237 */
238
239void
240socantsendmore(so)
241 struct socket *so;
242{
243
244 so->so_state |= SS_CANTSENDMORE;
245 sowwakeup(so);
246}
247
248void
249socantrcvmore(so)
250 struct socket *so;
251{
252
253 so->so_state |= SS_CANTRCVMORE;
254 sorwakeup(so);
255}
256
257/*
258 * Wait for data to arrive at/drain from a socket buffer.
259 */
260int
261sbwait(sb)
262 struct sockbuf *sb;
263{
264
265 sb->sb_flags |= SB_WAIT;
266 return (tsleep((caddr_t)&sb->sb_cc,
377d4740
MD
267 ((sb->sb_flags & SB_NOINTR) ? 0 : PCATCH),
268 "sbwait",
269 sb->sb_timeo));
984263bc
MD
270}
271
272/*
273 * Lock a sockbuf already known to be locked;
274 * return any error returned from sleep (EINTR).
275 */
276int
277sb_lock(sb)
1fd87d54 278 struct sockbuf *sb;
984263bc
MD
279{
280 int error;
281
282 while (sb->sb_flags & SB_LOCK) {
283 sb->sb_flags |= SB_WANT;
284 error = tsleep((caddr_t)&sb->sb_flags,
377d4740
MD
285 ((sb->sb_flags & SB_NOINTR) ? 0 : PCATCH),
286 "sblock", 0);
984263bc
MD
287 if (error)
288 return (error);
289 }
290 sb->sb_flags |= SB_LOCK;
291 return (0);
292}
293
294/*
295 * Wakeup processes waiting on a socket buffer.
296 * Do asynchronous notification via SIGIO
297 * if the socket has the SS_ASYNC flag set.
298 */
299void
300sowakeup(so, sb)
1fd87d54
RG
301 struct socket *so;
302 struct sockbuf *sb;
984263bc 303{
c1d0003c
JH
304 struct selinfo *selinfo = &sb->sb_sel;
305
306 selwakeup(selinfo);
984263bc
MD
307 sb->sb_flags &= ~SB_SEL;
308 if (sb->sb_flags & SB_WAIT) {
309 sb->sb_flags &= ~SB_WAIT;
310 wakeup((caddr_t)&sb->sb_cc);
311 }
312 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
313 pgsigio(so->so_sigio, SIGIO, 0);
314 if (sb->sb_flags & SB_UPCALL)
315 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
316 if (sb->sb_flags & SB_AIO)
317 aio_swake(so, sb);
c1d0003c
JH
318 KNOTE(&selinfo->si_note, 0);
319 if (sb->sb_flags & SB_MEVENT) {
320 struct netmsg_so_notify *msg, *nmsg;
321
322 TAILQ_FOREACH_MUTABLE(msg, &selinfo->si_mlist, nm_list, nmsg) {
323 if (msg->nm_predicate((struct netmsg *)msg)) {
324 struct lwkt_msg *lmsg = &msg->nm_lmsg;
325
326 lwkt_replymsg(lmsg, lmsg->ms_error);
327 TAILQ_REMOVE(&selinfo->si_mlist, msg, nm_list);
328 }
329 }
330
331 if (TAILQ_EMPTY(&sb->sb_sel.si_mlist))
332 sb->sb_flags &= ~SB_MEVENT;
333 }
984263bc
MD
334}
335
336/*
337 * Socket buffer (struct sockbuf) utility routines.
338 *
339 * Each socket contains two socket buffers: one for sending data and
340 * one for receiving data. Each buffer contains a queue of mbufs,
341 * information about the number of mbufs and amount of data in the
342 * queue, and other fields allowing select() statements and notification
343 * on data availability to be implemented.
344 *
345 * Data stored in a socket buffer is maintained as a list of records.
346 * Each record is a list of mbufs chained together with the m_next
347 * field. Records are chained together with the m_nextpkt field. The upper
348 * level routine soreceive() expects the following conventions to be
349 * observed when placing information in the receive buffer:
350 *
351 * 1. If the protocol requires each message be preceded by the sender's
352 * name, then a record containing that name must be present before
353 * any associated data (mbuf's must be of type MT_SONAME).
354 * 2. If the protocol supports the exchange of ``access rights'' (really
355 * just additional data associated with the message), and there are
356 * ``rights'' to be received, then a record containing this data
357 * should be present (mbuf's must be of type MT_RIGHTS).
358 * 3. If a name or rights record exists, then it must be followed by
359 * a data record, perhaps of zero length.
360 *
361 * Before using a new socket structure it is first necessary to reserve
362 * buffer space to the socket, by calling sbreserve(). This should commit
363 * some of the available buffer space in the system buffer pool for the
364 * socket (currently, it does nothing but enforce limits). The space
365 * should be released by calling sbrelease() when the socket is destroyed.
366 */
367
368int
e4700d00 369soreserve(struct socket *so, u_long sndcc, u_long rcvcc, struct rlimit *rl)
984263bc 370{
e4700d00 371 if (sbreserve(&so->so_snd, sndcc, so, rl) == 0)
984263bc 372 goto bad;
e4700d00 373 if (sbreserve(&so->so_rcv, rcvcc, so, rl) == 0)
984263bc
MD
374 goto bad2;
375 if (so->so_rcv.sb_lowat == 0)
376 so->so_rcv.sb_lowat = 1;
377 if (so->so_snd.sb_lowat == 0)
378 so->so_snd.sb_lowat = MCLBYTES;
379 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
380 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
381 return (0);
382bad2:
383 sbrelease(&so->so_snd, so);
384bad:
385 return (ENOBUFS);
386}
387
388static int
389sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
390{
391 int error = 0;
392 u_long old_sb_max = sb_max;
393
394 error = SYSCTL_OUT(req, arg1, sizeof(int));
395 if (error || !req->newptr)
396 return (error);
397 error = SYSCTL_IN(req, arg1, sizeof(int));
398 if (error)
399 return (error);
400 if (sb_max < MSIZE + MCLBYTES) {
401 sb_max = old_sb_max;
402 return (EINVAL);
403 }
404 sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
405 return (0);
406}
407
408/*
409 * Allot mbufs to a sockbuf.
410 * Attempt to scale mbmax so that mbcnt doesn't become limiting
411 * if buffering efficiency is near the normal case.
412 */
413int
e4700d00 414sbreserve(struct sockbuf *sb, u_long cc, struct socket *so, struct rlimit *rl)
984263bc
MD
415{
416
417 /*
e4700d00
JH
418 * rl will only be NULL when we're in an interrupt (eg, in tcp_input)
419 * or when called from netgraph (ie, ngd_attach)
984263bc
MD
420 */
421 if (cc > sb_max_adj)
422 return (0);
423 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
e4700d00 424 rl ? rl->rlim_cur : RLIM_INFINITY)) {
984263bc
MD
425 return (0);
426 }
427 sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
428 if (sb->sb_lowat > sb->sb_hiwat)
429 sb->sb_lowat = sb->sb_hiwat;
430 return (1);
431}
432
433/*
434 * Free mbufs held by a socket, and reserved mbuf space.
435 */
436void
437sbrelease(sb, so)
438 struct sockbuf *sb;
439 struct socket *so;
440{
441
442 sbflush(sb);
443 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
444 RLIM_INFINITY);
445 sb->sb_mbmax = 0;
446}
447
448/*
449 * Routines to add and remove
450 * data from an mbuf queue.
451 *
452 * The routines sbappend() or sbappendrecord() are normally called to
453 * append new mbufs to a socket buffer, after checking that adequate
454 * space is available, comparing the function sbspace() with the amount
455 * of data to be added. sbappendrecord() differs from sbappend() in
456 * that data supplied is treated as the beginning of a new record.
457 * To place a sender's address, optional access rights, and data in a
458 * socket receive buffer, sbappendaddr() should be used. To place
459 * access rights and data in a socket receive buffer, sbappendrights()
460 * should be used. In either case, the new data begins a new record.
461 * Note that unlike sbappend() and sbappendrecord(), these routines check
462 * for the caller that there will be enough space to store the data.
463 * Each fails if there is not enough space, or if it cannot find mbufs
464 * to store additional information in.
465 *
466 * Reliable protocols may use the socket send buffer to hold data
467 * awaiting acknowledgement. Data is normally copied from a socket
468 * send buffer in a protocol with m_copy for output to a peer,
469 * and then removing the data from the socket buffer with sbdrop()
470 * or sbdroprecord() when the data is acknowledged by the peer.
471 */
472
473/*
474 * Append mbuf chain m to the last record in the
475 * socket buffer sb. The additional space associated
476 * the mbuf chain is recorded in sb. Empty mbufs are
477 * discarded and mbufs are compacted where possible.
478 */
479void
480sbappend(sb, m)
481 struct sockbuf *sb;
482 struct mbuf *m;
483{
1fd87d54 484 struct mbuf *n;
984263bc
MD
485
486 if (m == 0)
487 return;
488 n = sb->sb_mb;
489 if (n) {
490 while (n->m_nextpkt)
491 n = n->m_nextpkt;
492 do {
493 if (n->m_flags & M_EOR) {
494 sbappendrecord(sb, m); /* XXXXXX!!!! */
495 return;
496 }
497 } while (n->m_next && (n = n->m_next));
498 }
499 sbcompress(sb, m, n);
500}
501
502#ifdef SOCKBUF_DEBUG
503void
504sbcheck(sb)
1fd87d54 505 struct sockbuf *sb;
984263bc 506{
1fd87d54
RG
507 struct mbuf *m;
508 struct mbuf *n = 0;
509 u_long len = 0, mbcnt = 0;
984263bc
MD
510
511 for (m = sb->sb_mb; m; m = n) {
512 n = m->m_nextpkt;
513 for (; m; m = m->m_next) {
514 len += m->m_len;
515 mbcnt += MSIZE;
516 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
517 mbcnt += m->m_ext.ext_size;
518 }
519 }
520 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
521 printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
522 mbcnt, sb->sb_mbcnt);
523 panic("sbcheck");
524 }
525}
526#endif
527
528/*
529 * As above, except the mbuf chain
530 * begins a new record.
531 */
532void
533sbappendrecord(sb, m0)
1fd87d54
RG
534 struct sockbuf *sb;
535 struct mbuf *m0;
984263bc 536{
1fd87d54 537 struct mbuf *m;
984263bc
MD
538
539 if (m0 == 0)
540 return;
541 m = sb->sb_mb;
542 if (m)
543 while (m->m_nextpkt)
544 m = m->m_nextpkt;
545 /*
546 * Put the first mbuf on the queue.
547 * Note this permits zero length records.
548 */
549 sballoc(sb, m0);
550 if (m)
551 m->m_nextpkt = m0;
552 else
553 sb->sb_mb = m0;
554 m = m0->m_next;
555 m0->m_next = 0;
556 if (m && (m0->m_flags & M_EOR)) {
557 m0->m_flags &= ~M_EOR;
558 m->m_flags |= M_EOR;
559 }
560 sbcompress(sb, m, m0);
561}
562
563/*
564 * As above except that OOB data
565 * is inserted at the beginning of the sockbuf,
566 * but after any other OOB data.
567 */
568void
569sbinsertoob(sb, m0)
1fd87d54
RG
570 struct sockbuf *sb;
571 struct mbuf *m0;
984263bc 572{
1fd87d54
RG
573 struct mbuf *m;
574 struct mbuf **mp;
984263bc
MD
575
576 if (m0 == 0)
577 return;
578 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
579 m = *mp;
580 again:
581 switch (m->m_type) {
582
583 case MT_OOBDATA:
584 continue; /* WANT next train */
585
586 case MT_CONTROL:
587 m = m->m_next;
588 if (m)
589 goto again; /* inspect THIS train further */
590 }
591 break;
592 }
593 /*
594 * Put the first mbuf on the queue.
595 * Note this permits zero length records.
596 */
597 sballoc(sb, m0);
598 m0->m_nextpkt = *mp;
599 *mp = m0;
600 m = m0->m_next;
601 m0->m_next = 0;
602 if (m && (m0->m_flags & M_EOR)) {
603 m0->m_flags &= ~M_EOR;
604 m->m_flags |= M_EOR;
605 }
606 sbcompress(sb, m, m0);
607}
608
609/*
610 * Append address and data, and optionally, control (ancillary) data
611 * to the receive queue of a socket. If present,
612 * m0 must include a packet header with total length.
613 * Returns 0 if no space in sockbuf or insufficient mbufs.
614 */
615int
616sbappendaddr(sb, asa, m0, control)
1fd87d54 617 struct sockbuf *sb;
984263bc
MD
618 struct sockaddr *asa;
619 struct mbuf *m0, *control;
620{
1fd87d54 621 struct mbuf *m, *n;
984263bc
MD
622 int space = asa->sa_len;
623
a8a35116
HP
624 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
625 panic("sbappendaddr");
626
984263bc
MD
627 if (m0)
628 space += m0->m_pkthdr.len;
629 for (n = control; n; n = n->m_next) {
630 space += n->m_len;
631 if (n->m_next == 0) /* keep pointer to last control buf */
632 break;
633 }
634 if (space > sbspace(sb))
635 return (0);
636 if (asa->sa_len > MLEN)
637 return (0);
638 MGET(m, M_DONTWAIT, MT_SONAME);
639 if (m == 0)
640 return (0);
641 m->m_len = asa->sa_len;
642 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
643 if (n)
644 n->m_next = m0; /* concatenate data to control */
645 else
646 control = m0;
647 m->m_next = control;
648 for (n = m; n; n = n->m_next)
649 sballoc(sb, n);
650 n = sb->sb_mb;
651 if (n) {
652 while (n->m_nextpkt)
653 n = n->m_nextpkt;
654 n->m_nextpkt = m;
655 } else
656 sb->sb_mb = m;
657 return (1);
658}
659
660int
661sbappendcontrol(sb, m0, control)
662 struct sockbuf *sb;
663 struct mbuf *control, *m0;
664{
1fd87d54 665 struct mbuf *m, *n;
984263bc
MD
666 int space = 0;
667
668 if (control == 0)
669 panic("sbappendcontrol");
670 for (m = control; ; m = m->m_next) {
671 space += m->m_len;
672 if (m->m_next == 0)
673 break;
674 }
675 n = m; /* save pointer to last control buffer */
676 for (m = m0; m; m = m->m_next)
677 space += m->m_len;
678 if (space > sbspace(sb))
679 return (0);
680 n->m_next = m0; /* concatenate data to control */
681 for (m = control; m; m = m->m_next)
682 sballoc(sb, m);
683 n = sb->sb_mb;
684 if (n) {
685 while (n->m_nextpkt)
686 n = n->m_nextpkt;
687 n->m_nextpkt = control;
688 } else
689 sb->sb_mb = control;
690 return (1);
691}
692
693/*
694 * Compress mbuf chain m into the socket
695 * buffer sb following mbuf n. If n
696 * is null, the buffer is presumed empty.
697 */
698void
699sbcompress(sb, m, n)
1fd87d54
RG
700 struct sockbuf *sb;
701 struct mbuf *m, *n;
984263bc 702{
1fd87d54
RG
703 int eor = 0;
704 struct mbuf *o;
984263bc
MD
705
706 while (m) {
707 eor |= m->m_flags & M_EOR;
708 if (m->m_len == 0 &&
709 (eor == 0 ||
710 (((o = m->m_next) || (o = n)) &&
711 o->m_type == m->m_type))) {
712 m = m_free(m);
713 continue;
714 }
715 if (n && (n->m_flags & M_EOR) == 0 &&
716 M_WRITABLE(n) &&
717 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
718 m->m_len <= M_TRAILINGSPACE(n) &&
719 n->m_type == m->m_type) {
720 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
721 (unsigned)m->m_len);
722 n->m_len += m->m_len;
723 sb->sb_cc += m->m_len;
724 m = m_free(m);
725 continue;
726 }
727 if (n)
728 n->m_next = m;
729 else
730 sb->sb_mb = m;
731 sballoc(sb, m);
732 n = m;
733 m->m_flags &= ~M_EOR;
734 m = m->m_next;
735 n->m_next = 0;
736 }
737 if (eor) {
738 if (n)
739 n->m_flags |= eor;
740 else
741 printf("semi-panic: sbcompress\n");
742 }
743}
744
745/*
746 * Free all mbufs in a sockbuf.
747 * Check that all resources are reclaimed.
748 */
749void
750sbflush(sb)
1fd87d54 751 struct sockbuf *sb;
984263bc
MD
752{
753
754 if (sb->sb_flags & SB_LOCK)
755 panic("sbflush: locked");
756 while (sb->sb_mbcnt) {
757 /*
758 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
759 * we would loop forever. Panic instead.
760 */
761 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
762 break;
763 sbdrop(sb, (int)sb->sb_cc);
764 }
765 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
766 panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
767}
768
769/*
770 * Drop data from (the front of) a sockbuf.
771 */
772void
773sbdrop(sb, len)
1fd87d54
RG
774 struct sockbuf *sb;
775 int len;
984263bc 776{
1fd87d54 777 struct mbuf *m;
984263bc
MD
778 struct mbuf *next;
779
780 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
781 while (len > 0) {
782 if (m == 0) {
783 if (next == 0)
784 panic("sbdrop");
785 m = next;
786 next = m->m_nextpkt;
787 continue;
788 }
789 if (m->m_len > len) {
790 m->m_len -= len;
791 m->m_data += len;
792 sb->sb_cc -= len;
793 break;
794 }
795 len -= m->m_len;
796 sbfree(sb, m);
797 m = m_free(m);
798 }
799 while (m && m->m_len == 0) {
800 sbfree(sb, m);
801 m = m_free(m);
802 }
803 if (m) {
804 sb->sb_mb = m;
805 m->m_nextpkt = next;
806 } else
807 sb->sb_mb = next;
808}
809
810/*
811 * Drop a record off the front of a sockbuf
812 * and move the next record to the front.
813 */
814void
815sbdroprecord(sb)
1fd87d54 816 struct sockbuf *sb;
984263bc 817{
1fd87d54 818 struct mbuf *m;
984263bc
MD
819
820 m = sb->sb_mb;
821 if (m) {
822 sb->sb_mb = m->m_nextpkt;
823 do {
824 sbfree(sb, m);
825 m = m_free(m);
826 } while (m);
827 }
828}
829
830/*
831 * Create a "control" mbuf containing the specified data
832 * with the specified type for presentation on a socket buffer.
833 */
834struct mbuf *
835sbcreatecontrol(p, size, type, level)
836 caddr_t p;
1fd87d54 837 int size;
984263bc
MD
838 int type, level;
839{
1fd87d54 840 struct cmsghdr *cp;
984263bc
MD
841 struct mbuf *m;
842
843 if (CMSG_SPACE((u_int)size) > MCLBYTES)
844 return ((struct mbuf *) NULL);
845 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
846 return ((struct mbuf *) NULL);
847 if (CMSG_SPACE((u_int)size) > MLEN) {
848 MCLGET(m, M_DONTWAIT);
849 if ((m->m_flags & M_EXT) == 0) {
850 m_free(m);
851 return ((struct mbuf *) NULL);
852 }
853 }
854 cp = mtod(m, struct cmsghdr *);
855 m->m_len = 0;
856 KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
857 ("sbcreatecontrol: short mbuf"));
858 if (p != NULL)
859 (void)memcpy(CMSG_DATA(cp), p, size);
860 m->m_len = CMSG_SPACE(size);
861 cp->cmsg_len = CMSG_LEN(size);
862 cp->cmsg_level = level;
863 cp->cmsg_type = type;
864 return (m);
865}
866
867/*
868 * Some routines that return EOPNOTSUPP for entry points that are not
869 * supported by a protocol. Fill in as needed.
870 */
871int
872pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
873{
874 return EOPNOTSUPP;
875}
876
877int
dadab5e9 878pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
984263bc
MD
879{
880 return EOPNOTSUPP;
881}
882
883int
884pru_connect2_notsupp(struct socket *so1, struct socket *so2)
885{
886 return EOPNOTSUPP;
887}
888
889int
890pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
dadab5e9 891 struct ifnet *ifp, struct thread *td)
984263bc
MD
892{
893 return EOPNOTSUPP;
894}
895
896int
dadab5e9 897pru_listen_notsupp(struct socket *so, struct thread *td)
984263bc
MD
898{
899 return EOPNOTSUPP;
900}
901
902int
903pru_rcvd_notsupp(struct socket *so, int flags)
904{
905 return EOPNOTSUPP;
906}
907
908int
909pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
910{
911 return EOPNOTSUPP;
912}
913
914/*
915 * This isn't really a ``null'' operation, but it's the default one
916 * and doesn't do anything destructive.
917 */
918int
919pru_sense_null(struct socket *so, struct stat *sb)
920{
921 sb->st_blksize = so->so_snd.sb_hiwat;
922 return 0;
923}
924
925/*
926 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
927 */
928struct sockaddr *
929dup_sockaddr(sa, canwait)
930 struct sockaddr *sa;
931 int canwait;
932{
933 struct sockaddr *sa2;
934
935 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
936 canwait ? M_WAITOK : M_NOWAIT);
937 if (sa2)
938 bcopy(sa, sa2, sa->sa_len);
939 return sa2;
940}
941
942/*
943 * Create an external-format (``xsocket'') structure using the information
944 * in the kernel-format socket structure pointed to by so. This is done
945 * to reduce the spew of irrelevant information over this interface,
946 * to isolate user code from changes in the kernel structure, and
947 * potentially to provide information-hiding if we decide that
948 * some of this information should be hidden from users.
949 */
950void
951sotoxsocket(struct socket *so, struct xsocket *xso)
952{
953 xso->xso_len = sizeof *xso;
954 xso->xso_so = so;
955 xso->so_type = so->so_type;
956 xso->so_options = so->so_options;
957 xso->so_linger = so->so_linger;
958 xso->so_state = so->so_state;
959 xso->so_pcb = so->so_pcb;
960 xso->xso_protocol = so->so_proto->pr_protocol;
961 xso->xso_family = so->so_proto->pr_domain->dom_family;
962 xso->so_qlen = so->so_qlen;
963 xso->so_incqlen = so->so_incqlen;
964 xso->so_qlimit = so->so_qlimit;
965 xso->so_timeo = so->so_timeo;
966 xso->so_error = so->so_error;
967 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
968 xso->so_oobmark = so->so_oobmark;
969 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
970 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
971 xso->so_uid = so->so_cred->cr_uid;
972}
973
974/*
975 * This does the same for sockbufs. Note that the xsockbuf structure,
976 * since it is always embedded in a socket, does not include a self
977 * pointer nor a length. We make this entry point public in case
978 * some other mechanism needs it.
979 */
980void
981sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
982{
983 xsb->sb_cc = sb->sb_cc;
984 xsb->sb_hiwat = sb->sb_hiwat;
985 xsb->sb_mbcnt = sb->sb_mbcnt;
986 xsb->sb_mbmax = sb->sb_mbmax;
987 xsb->sb_lowat = sb->sb_lowat;
988 xsb->sb_flags = sb->sb_flags;
989 xsb->sb_timeo = sb->sb_timeo;
990}
991
992/*
993 * Here is the definition of some of the basic objects in the kern.ipc
994 * branch of the MIB.
995 */
996SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
997
998/* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
999static int dummy;
1000SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
1001SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_INT|CTLFLAG_RW,
1002 &sb_max, 0, sysctl_handle_sb_max, "I", "Maximum socket buffer size");
1003SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
1004 &maxsockets, 0, "Maximum number of sockets avaliable");
1005SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1006 &sb_efficiency, 0, "");
1007
1008/*
1009 * Initialise maxsockets
1010 */
1011static void init_maxsockets(void *ignored)
1012{
1013 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
1014 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
1015}
1016SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);