kernel -- vm locking: Add vm object locking to vm_object_referenced.
[dragonfly.git] / sys / vm / vm_object.c
CommitLineData
984263bc 1/*
6846fd23
MD
2 * (MPSAFE)
3 *
984263bc
MD
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
39 *
40 *
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 *
66 * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
17cde63e 67 * $DragonFly: src/sys/vm/vm_object.c,v 1.33 2008/05/09 07:24:48 dillon Exp $
984263bc
MD
68 */
69
70/*
71 * Virtual memory object module.
72 */
73
74#include <sys/param.h>
75#include <sys/systm.h>
76#include <sys/proc.h> /* for curproc, pageproc */
e32ad78d 77#include <sys/thread.h>
984263bc
MD
78#include <sys/vnode.h>
79#include <sys/vmmeter.h>
80#include <sys/mman.h>
81#include <sys/mount.h>
82#include <sys/kernel.h>
83#include <sys/sysctl.h>
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/pmap.h>
88#include <vm/vm_map.h>
89#include <vm/vm_object.h>
90#include <vm/vm_page.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_pager.h>
93#include <vm/swap_pager.h>
94#include <vm/vm_kern.h>
95#include <vm/vm_extern.h>
96#include <vm/vm_zone.h>
97
98#define EASY_SCAN_FACTOR 8
99
1f804340
MD
100static void vm_object_qcollapse(vm_object_t object);
101static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
102 int pagerflags);
984263bc
MD
103
104/*
105 * Virtual memory objects maintain the actual data
106 * associated with allocated virtual memory. A given
107 * page of memory exists within exactly one object.
108 *
109 * An object is only deallocated when all "references"
110 * are given up. Only one "reference" to a given
111 * region of an object should be writeable.
112 *
113 * Associated with each object is a list of all resident
114 * memory pages belonging to that object; this list is
115 * maintained by the "vm_page" module, and locked by the object's
116 * lock.
117 *
118 * Each object also records a "pager" routine which is
119 * used to retrieve (and store) pages to the proper backing
120 * storage. In addition, objects may be backed by other
121 * objects from which they were virtual-copied.
122 *
123 * The only items within the object structure which are
124 * modified after time of creation are:
125 * reference count locked by object's lock
126 * pager routine locked by object's lock
127 *
128 */
129
2de4f77e 130struct object_q vm_object_list; /* locked by vmobj_token */
c439ad8f
MD
131struct vm_object kernel_object;
132
2de4f77e 133static long vm_object_count; /* locked by vmobj_token */
984263bc
MD
134extern int vm_pageout_page_count;
135
136static long object_collapses;
137static long object_bypasses;
138static int next_index;
139static vm_zone_t obj_zone;
140static struct vm_zone obj_zone_store;
141static int object_hash_rand;
142#define VM_OBJECTS_INIT 256
143static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
144
6846fd23
MD
145/*
146 * Initialize a freshly allocated object
147 *
148 * Used only by vm_object_allocate() and zinitna().
149 *
150 * No requirements.
151 */
984263bc 152void
aecf2182 153_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
984263bc
MD
154{
155 int incr;
6846fd23 156
1f804340 157 RB_INIT(&object->rb_memq);
984263bc
MD
158 LIST_INIT(&object->shadow_head);
159
160 object->type = type;
161 object->size = size;
162 object->ref_count = 1;
163 object->flags = 0;
164 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
165 vm_object_set_flag(object, OBJ_ONEMAPPING);
166 object->paging_in_progress = 0;
167 object->resident_page_count = 0;
50a55c46 168 object->agg_pv_list_count = 0;
984263bc
MD
169 object->shadow_count = 0;
170 object->pg_color = next_index;
171 if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
172 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
173 else
174 incr = size;
175 next_index = (next_index + incr) & PQ_L2_MASK;
176 object->handle = NULL;
177 object->backing_object = NULL;
178 object->backing_object_offset = (vm_ooffset_t) 0;
179 /*
180 * Try to generate a number that will spread objects out in the
181 * hash table. We 'wipe' new objects across the hash in 128 page
182 * increments plus 1 more to offset it a little more by the time
183 * it wraps around.
184 */
185 object->hash_rand = object_hash_rand - 129;
186
187 object->generation++;
96adc753
MD
188 object->swblock_count = 0;
189 RB_INIT(&object->swblock_root);
70de66db 190 lwkt_token_init(&object->tok, "vmobjtk");
984263bc 191
2de4f77e 192 lwkt_gettoken(&vmobj_token);
984263bc
MD
193 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
194 vm_object_count++;
195 object_hash_rand = object->hash_rand;
2de4f77e 196 lwkt_reltoken(&vmobj_token);
984263bc
MD
197}
198
199/*
6846fd23 200 * Initialize the VM objects module.
984263bc 201 *
6846fd23 202 * Called from the low level boot code only.
984263bc
MD
203 */
204void
57e43348 205vm_object_init(void)
984263bc
MD
206{
207 TAILQ_INIT(&vm_object_list);
984263bc 208
e4846942 209 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
c439ad8f 210 &kernel_object);
984263bc
MD
211
212 obj_zone = &obj_zone_store;
213 zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
214 vm_objects_init, VM_OBJECTS_INIT);
215}
216
217void
57e43348 218vm_object_init2(void)
c97ef899
MD
219{
220 zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
984263bc
MD
221}
222
223/*
6846fd23 224 * Allocate and return a new object of the specified type and size.
984263bc 225 *
6846fd23 226 * No requirements.
984263bc 227 */
984263bc 228vm_object_t
aecf2182 229vm_object_allocate(objtype_t type, vm_pindex_t size)
984263bc
MD
230{
231 vm_object_t result;
232
233 result = (vm_object_t) zalloc(obj_zone);
234
235 _vm_object_allocate(type, size, result);
236
237 return (result);
238}
239
984263bc 240/*
6846fd23 241 * Add an additional reference to a vm_object.
984263bc 242 *
6846fd23 243 * Object passed by caller must be stable or caller must already
2de4f77e 244 * hold vmobj_token to avoid races.
984263bc
MD
245 */
246void
57e43348 247vm_object_reference(vm_object_t object)
984263bc 248{
ec9e0453
VS
249 lwkt_gettoken(&vmobj_token);
250 vm_object_reference_locked(object);
251 lwkt_reltoken(&vmobj_token);
2de4f77e 252}
984263bc 253
2de4f77e
MD
254void
255vm_object_reference_locked(vm_object_t object)
256{
257 if (object) {
258 ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
ec9e0453 259 vm_object_lock(object);
2de4f77e
MD
260 object->ref_count++;
261 if (object->type == OBJT_VNODE) {
262 vref(object->handle);
263 /* XXX what if the vnode is being destroyed? */
264 }
ec9e0453 265 vm_object_unlock(object);
984263bc
MD
266 }
267}
268
6846fd23
MD
269/*
270 * Dereference an object and its underlying vnode.
271 *
2de4f77e 272 * The caller must hold vmobj_token.
6846fd23 273 */
b33a2ac2 274static void
57e43348 275vm_object_vndeallocate(vm_object_t object)
984263bc
MD
276{
277 struct vnode *vp = (struct vnode *) object->handle;
278
279 KASSERT(object->type == OBJT_VNODE,
280 ("vm_object_vndeallocate: not a vnode object"));
281 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
2de4f77e 282 ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
984263bc
MD
283#ifdef INVARIANTS
284 if (object->ref_count == 0) {
285 vprint("vm_object_vndeallocate", vp);
286 panic("vm_object_vndeallocate: bad object reference count");
287 }
288#endif
289
290 object->ref_count--;
b33a2ac2 291 if (object->ref_count == 0)
2247fe02 292 vclrflags(vp, VTEXT);
984263bc
MD
293 vrele(vp);
294}
295
296/*
6846fd23
MD
297 * Release a reference to the specified object, gained either through a
298 * vm_object_allocate or a vm_object_reference call. When all references
299 * are gone, storage associated with this object may be relinquished.
984263bc
MD
300 */
301void
57e43348 302vm_object_deallocate(vm_object_t object)
984263bc 303{
2de4f77e
MD
304 lwkt_gettoken(&vmobj_token);
305 vm_object_deallocate_locked(object);
306 lwkt_reltoken(&vmobj_token);
307}
308
309void
310vm_object_deallocate_locked(vm_object_t object)
311{
984263bc
MD
312 vm_object_t temp;
313
2de4f77e 314 ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
6846fd23 315
984263bc 316 while (object != NULL) {
984263bc
MD
317 if (object->type == OBJT_VNODE) {
318 vm_object_vndeallocate(object);
6846fd23 319 break;
984263bc
MD
320 }
321
322 if (object->ref_count == 0) {
6846fd23
MD
323 panic("vm_object_deallocate: object deallocated "
324 "too many times: %d", object->type);
325 }
326 if (object->ref_count > 2) {
984263bc 327 object->ref_count--;
6846fd23 328 break;
984263bc
MD
329 }
330
331 /*
2de4f77e
MD
332 * We currently need the vm_token from this point on, and
333 * we must recheck ref_count after acquiring it.
334 */
335 lwkt_gettoken(&vm_token);
336
337 if (object->ref_count > 2) {
338 object->ref_count--;
339 lwkt_reltoken(&vm_token);
340 break;
341 }
342
343 /*
984263bc
MD
344 * Here on ref_count of one or two, which are special cases for
345 * objects.
346 */
347 if ((object->ref_count == 2) && (object->shadow_count == 0)) {
348 vm_object_set_flag(object, OBJ_ONEMAPPING);
349 object->ref_count--;
2de4f77e 350 lwkt_reltoken(&vm_token);
6846fd23
MD
351 break;
352 }
353 if ((object->ref_count == 2) && (object->shadow_count == 1)) {
984263bc
MD
354 object->ref_count--;
355 if ((object->handle == NULL) &&
356 (object->type == OBJT_DEFAULT ||
357 object->type == OBJT_SWAP)) {
358 vm_object_t robject;
359
360 robject = LIST_FIRST(&object->shadow_head);
361 KASSERT(robject != NULL,
6846fd23
MD
362 ("vm_object_deallocate: ref_count: "
363 "%d, shadow_count: %d",
364 object->ref_count,
365 object->shadow_count));
366
984263bc
MD
367 if ((robject->handle == NULL) &&
368 (robject->type == OBJT_DEFAULT ||
369 robject->type == OBJT_SWAP)) {
370
371 robject->ref_count++;
372
373 while (
374 robject->paging_in_progress ||
375 object->paging_in_progress
376 ) {
377 vm_object_pip_sleep(robject, "objde1");
378 vm_object_pip_sleep(object, "objde2");
379 }
380
381 if (robject->ref_count == 1) {
382 robject->ref_count--;
383 object = robject;
384 goto doterm;
385 }
386
387 object = robject;
388 vm_object_collapse(object);
2de4f77e 389 lwkt_reltoken(&vm_token);
984263bc
MD
390 continue;
391 }
392 }
2de4f77e 393 lwkt_reltoken(&vm_token);
6846fd23 394 break;
984263bc
MD
395 }
396
6846fd23
MD
397 /*
398 * Normal dereferencing path
399 */
400 object->ref_count--;
2de4f77e
MD
401 if (object->ref_count != 0) {
402 lwkt_reltoken(&vm_token);
6846fd23 403 break;
2de4f77e 404 }
6846fd23
MD
405
406 /*
407 * Termination path
408 */
984263bc 409doterm:
984263bc
MD
410 temp = object->backing_object;
411 if (temp) {
412 LIST_REMOVE(object, shadow_list);
413 temp->shadow_count--;
984263bc
MD
414 temp->generation++;
415 object->backing_object = NULL;
416 }
2de4f77e 417 lwkt_reltoken(&vm_token);
984263bc
MD
418
419 /*
420 * Don't double-terminate, we could be in a termination
421 * recursion due to the terminate having to sync data
422 * to disk.
423 */
424 if ((object->flags & OBJ_DEAD) == 0)
425 vm_object_terminate(object);
426 object = temp;
427 }
428}
429
430/*
6846fd23
MD
431 * Destroy the specified object, freeing up related resources.
432 *
433 * The object must have zero references.
984263bc 434 *
2de4f77e 435 * The caller must be holding vmobj_token and properly interlock with
6846fd23 436 * OBJ_DEAD.
984263bc 437 */
1f804340
MD
438static int vm_object_terminate_callback(vm_page_t p, void *data);
439
984263bc 440void
57e43348 441vm_object_terminate(vm_object_t object)
984263bc 442{
984263bc 443 /*
2de4f77e
MD
444 * Make sure no one uses us. Once we set OBJ_DEAD we should be
445 * able to safely block.
984263bc 446 */
2de4f77e
MD
447 KKASSERT((object->flags & OBJ_DEAD) == 0);
448 ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
984263bc
MD
449 vm_object_set_flag(object, OBJ_DEAD);
450
451 /*
2de4f77e 452 * Wait for the pageout daemon to be done with the object
984263bc
MD
453 */
454 vm_object_pip_wait(object, "objtrm");
455
456 KASSERT(!object->paging_in_progress,
457 ("vm_object_terminate: pageout in progress"));
458
459 /*
460 * Clean and free the pages, as appropriate. All references to the
461 * object are gone, so we don't need to lock it.
462 */
463 if (object->type == OBJT_VNODE) {
464 struct vnode *vp;
465
466 /*
984263bc
MD
467 * Clean pages and flush buffers.
468 */
469 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
470
471 vp = (struct vnode *) object->handle;
87de5057 472 vinvalbuf(vp, V_SAVE, 0, 0);
984263bc
MD
473 }
474
475 /*
476 * Wait for any I/O to complete, after which there had better not
477 * be any references left on the object.
478 */
479 vm_object_pip_wait(object, "objtrm");
480
2de4f77e
MD
481 if (object->ref_count != 0) {
482 panic("vm_object_terminate: object with references, "
483 "ref_count=%d", object->ref_count);
484 }
984263bc
MD
485
486 /*
487 * Now free any remaining pages. For internal objects, this also
488 * removes them from paging queues. Don't free wired pages, just
489 * remove them from the object.
490 */
2de4f77e 491 lwkt_gettoken(&vm_token);
1f804340
MD
492 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
493 vm_object_terminate_callback, NULL);
2de4f77e 494 lwkt_reltoken(&vm_token);
984263bc
MD
495
496 /*
497 * Let the pager know object is dead.
498 */
499 vm_pager_deallocate(object);
500
501 /*
502 * Remove the object from the global object list.
2de4f77e
MD
503 *
504 * (we are holding vmobj_token)
984263bc 505 */
984263bc 506 TAILQ_REMOVE(&vm_object_list, object, object_list);
fad57d0e 507 vm_object_count--;
9e12ff11 508 vm_object_dead_wakeup(object);
2de4f77e
MD
509
510 if (object->ref_count != 0) {
511 panic("vm_object_terminate2: object with references, "
512 "ref_count=%d", object->ref_count);
513 }
984263bc
MD
514
515 /*
516 * Free the space for the object.
517 */
518 zfree(obj_zone, object);
519}
520
6846fd23
MD
521/*
522 * The caller must hold vm_token.
523 */
1f804340
MD
524static int
525vm_object_terminate_callback(vm_page_t p, void *data __unused)
526{
527 if (p->busy || (p->flags & PG_BUSY))
528 panic("vm_object_terminate: freeing busy page %p", p);
529 if (p->wire_count == 0) {
530 vm_page_busy(p);
531 vm_page_free(p);
532 mycpu->gd_cnt.v_pfree++;
533 } else {
c4ba48c4
MD
534 if (p->queue != PQ_NONE)
535 kprintf("vm_object_terminate: Warning: Encountered wired page %p on queue %d\n", p, p->queue);
1f804340
MD
536 vm_page_busy(p);
537 vm_page_remove(p);
538 vm_page_wakeup(p);
539 }
540 return(0);
541}
542
984263bc 543/*
9e12ff11
MD
544 * The object is dead but still has an object<->pager association. Sleep
545 * and return. The caller typically retests the association in a loop.
6846fd23 546 *
2de4f77e 547 * Must be called with the vmobj_token held.
9e12ff11
MD
548 */
549void
550vm_object_dead_sleep(vm_object_t object, const char *wmesg)
551{
2de4f77e 552 ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
9e12ff11
MD
553 if (object->handle) {
554 vm_object_set_flag(object, OBJ_DEADWNT);
555 tsleep(object, 0, wmesg, 0);
2de4f77e 556 /* object may be invalid after this point */
9e12ff11 557 }
9e12ff11
MD
558}
559
560/*
561 * Wakeup anyone waiting for the object<->pager disassociation on
562 * a dead object.
6846fd23 563 *
2de4f77e 564 * Must be called with the vmobj_token held.
9e12ff11
MD
565 */
566void
567vm_object_dead_wakeup(vm_object_t object)
568{
2de4f77e 569 ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
9e12ff11
MD
570 if (object->flags & OBJ_DEADWNT) {
571 vm_object_clear_flag(object, OBJ_DEADWNT);
572 wakeup(object);
573 }
574}
575
576/*
6846fd23
MD
577 * Clean all dirty pages in the specified range of object. Leaves page
578 * on whatever queue it is currently on. If NOSYNC is set then do not
579 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
580 * leaving the object dirty.
984263bc 581 *
6846fd23
MD
582 * When stuffing pages asynchronously, allow clustering. XXX we need a
583 * synchronous clustering mode implementation.
984263bc 584 *
6846fd23 585 * Odd semantics: if start == end, we clean everything.
984263bc 586 *
6846fd23 587 * The object must be locked? XXX
984263bc 588 */
1f804340
MD
589static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
590static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
984263bc
MD
591
592void
57e43348 593vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1f804340 594 int flags)
984263bc 595{
1f804340 596 struct rb_vm_page_scan_info info;
984263bc 597 struct vnode *vp;
1f804340 598 int wholescan;
984263bc
MD
599 int pagerflags;
600 int curgeneration;
601
6846fd23 602 lwkt_gettoken(&vm_token);
984263bc 603 if (object->type != OBJT_VNODE ||
6846fd23
MD
604 (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
605 lwkt_reltoken(&vm_token);
984263bc 606 return;
6846fd23 607 }
984263bc 608
1f804340
MD
609 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
610 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
984263bc
MD
611 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
612
613 vp = object->handle;
614
1f804340
MD
615 /*
616 * Interlock other major object operations. This allows us to
617 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
618 */
619 crit_enter();
984263bc
MD
620 vm_object_set_flag(object, OBJ_CLEANING);
621
622 /*
623 * Handle 'entire object' case
624 */
1f804340 625 info.start_pindex = start;
984263bc 626 if (end == 0) {
1f804340 627 info.end_pindex = object->size - 1;
984263bc 628 } else {
1f804340 629 info.end_pindex = end - 1;
984263bc 630 }
1f804340
MD
631 wholescan = (start == 0 && info.end_pindex == object->size - 1);
632 info.limit = flags;
633 info.pagerflags = pagerflags;
634 info.object = object;
984263bc
MD
635
636 /*
1f804340
MD
637 * If cleaning the entire object do a pass to mark the pages read-only.
638 * If everything worked out ok, clear OBJ_WRITEABLE and
639 * OBJ_MIGHTBEDIRTY.
984263bc 640 */
1f804340
MD
641 if (wholescan) {
642 info.error = 0;
643 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
644 vm_object_page_clean_pass1, &info);
645 if (info.error == 0) {
646 vm_object_clear_flag(object,
647 OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
648 if (object->type == OBJT_VNODE &&
649 (vp = (struct vnode *)object->handle) != NULL) {
650 if (vp->v_flag & VOBJDIRTY)
651 vclrflags(vp, VOBJDIRTY);
984263bc 652 }
984263bc 653 }
984263bc
MD
654 }
655
656 /*
1f804340 657 * Do a pass to clean all the dirty pages we find.
984263bc 658 */
1f804340
MD
659 do {
660 info.error = 0;
661 curgeneration = object->generation;
662 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
663 vm_object_page_clean_pass2, &info);
664 } while (info.error || curgeneration != object->generation);
984263bc 665
1f804340 666 vm_object_clear_flag(object, OBJ_CLEANING);
5fd012e0 667 crit_exit();
6846fd23 668 lwkt_reltoken(&vm_token);
1f804340 669}
984263bc 670
6846fd23
MD
671/*
672 * The caller must hold vm_token.
673 */
1f804340
MD
674static
675int
676vm_object_page_clean_pass1(struct vm_page *p, void *data)
677{
678 struct rb_vm_page_scan_info *info = data;
984263bc 679
1f804340
MD
680 vm_page_flag_set(p, PG_CLEANCHK);
681 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
682 info->error = 1;
683 else
17cde63e 684 vm_page_protect(p, VM_PROT_READ); /* must not block */
1f804340
MD
685 return(0);
686}
687
6846fd23
MD
688/*
689 * The caller must hold vm_token.
690 */
1f804340
MD
691static
692int
693vm_object_page_clean_pass2(struct vm_page *p, void *data)
694{
695 struct rb_vm_page_scan_info *info = data;
696 int n;
984263bc 697
06ecca5a 698 /*
1f804340
MD
699 * Do not mess with pages that were inserted after we started
700 * the cleaning pass.
06ecca5a 701 */
1f804340
MD
702 if ((p->flags & PG_CLEANCHK) == 0)
703 return(0);
984263bc 704
1f804340
MD
705 /*
706 * Before wasting time traversing the pmaps, check for trivial
707 * cases where the page cannot be dirty.
708 */
709 if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
710 KKASSERT((p->dirty & p->valid) == 0);
711 return(0);
712 }
984263bc 713
1f804340
MD
714 /*
715 * Check whether the page is dirty or not. The page has been set
716 * to be read-only so the check will not race a user dirtying the
717 * page.
718 */
719 vm_page_test_dirty(p);
720 if ((p->dirty & p->valid) == 0) {
721 vm_page_flag_clear(p, PG_CLEANCHK);
722 return(0);
723 }
984263bc 724
1f804340
MD
725 /*
726 * If we have been asked to skip nosync pages and this is a
727 * nosync page, skip it. Note that the object flags were
728 * not cleared in this case (because pass1 will have returned an
729 * error), so we do not have to set them.
730 */
731 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
732 vm_page_flag_clear(p, PG_CLEANCHK);
733 return(0);
984263bc
MD
734 }
735
1f804340
MD
736 /*
737 * Flush as many pages as we can. PG_CLEANCHK will be cleared on
738 * the pages that get successfully flushed. Set info->error if
739 * we raced an object modification.
740 */
741 n = vm_object_page_collect_flush(info->object, p, info->pagerflags);
742 if (n == 0)
743 info->error = 1;
744 return(0);
984263bc
MD
745}
746
06ecca5a 747/*
6846fd23
MD
748 * Collect the specified page and nearby pages and flush them out.
749 * The number of pages flushed is returned.
06ecca5a 750 *
6846fd23 751 * The caller must hold vm_token.
06ecca5a 752 */
984263bc 753static int
1f804340 754vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
984263bc
MD
755{
756 int runlen;
984263bc
MD
757 int maxf;
758 int chkb;
759 int maxb;
760 int i;
1f804340 761 int curgeneration;
984263bc
MD
762 vm_pindex_t pi;
763 vm_page_t maf[vm_pageout_page_count];
764 vm_page_t mab[vm_pageout_page_count];
765 vm_page_t ma[vm_pageout_page_count];
766
1f804340
MD
767 curgeneration = object->generation;
768
984263bc
MD
769 pi = p->pindex;
770 while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
771 if (object->generation != curgeneration) {
984263bc
MD
772 return(0);
773 }
774 }
1f804340 775 KKASSERT(p->object == object && p->pindex == pi);
984263bc
MD
776
777 maxf = 0;
778 for(i = 1; i < vm_pageout_page_count; i++) {
779 vm_page_t tp;
780
781 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
782 if ((tp->flags & PG_BUSY) ||
783 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
784 (tp->flags & PG_CLEANCHK) == 0) ||
785 (tp->busy != 0))
786 break;
787 if((tp->queue - tp->pc) == PQ_CACHE) {
788 vm_page_flag_clear(tp, PG_CLEANCHK);
789 break;
790 }
791 vm_page_test_dirty(tp);
792 if ((tp->dirty & tp->valid) == 0) {
793 vm_page_flag_clear(tp, PG_CLEANCHK);
794 break;
795 }
796 maf[ i - 1 ] = tp;
797 maxf++;
798 continue;
799 }
800 break;
801 }
802
803 maxb = 0;
804 chkb = vm_pageout_page_count - maxf;
805 if (chkb) {
806 for(i = 1; i < chkb;i++) {
807 vm_page_t tp;
808
809 if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
810 if ((tp->flags & PG_BUSY) ||
811 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
812 (tp->flags & PG_CLEANCHK) == 0) ||
813 (tp->busy != 0))
814 break;
815 if((tp->queue - tp->pc) == PQ_CACHE) {
816 vm_page_flag_clear(tp, PG_CLEANCHK);
817 break;
818 }
819 vm_page_test_dirty(tp);
820 if ((tp->dirty & tp->valid) == 0) {
821 vm_page_flag_clear(tp, PG_CLEANCHK);
822 break;
823 }
824 mab[ i - 1 ] = tp;
825 maxb++;
826 continue;
827 }
828 break;
829 }
830 }
831
832 for(i = 0; i < maxb; i++) {
833 int index = (maxb - i) - 1;
834 ma[index] = mab[i];
835 vm_page_flag_clear(ma[index], PG_CLEANCHK);
836 }
837 vm_page_flag_clear(p, PG_CLEANCHK);
838 ma[maxb] = p;
839 for(i = 0; i < maxf; i++) {
840 int index = (maxb + i) + 1;
841 ma[index] = maf[i];
842 vm_page_flag_clear(ma[index], PG_CLEANCHK);
843 }
844 runlen = maxb + maxf + 1;
845
984263bc
MD
846 vm_pageout_flush(ma, runlen, pagerflags);
847 for (i = 0; i < runlen; i++) {
848 if (ma[i]->valid & ma[i]->dirty) {
849 vm_page_protect(ma[i], VM_PROT_READ);
850 vm_page_flag_set(ma[i], PG_CLEANCHK);
851
852 /*
853 * maxf will end up being the actual number of pages
854 * we wrote out contiguously, non-inclusive of the
855 * first page. We do not count look-behind pages.
856 */
857 if (i >= maxb + 1 && (maxf > i - maxb - 1))
858 maxf = i - maxb - 1;
859 }
860 }
861 return(maxf + 1);
862}
863
984263bc
MD
864/*
865 * Same as vm_object_pmap_copy, except range checking really
866 * works, and is meant for small sections of an object.
867 *
868 * This code protects resident pages by making them read-only
869 * and is typically called on a fork or split when a page
870 * is converted to copy-on-write.
871 *
872 * NOTE: If the page is already at VM_PROT_NONE, calling
873 * vm_page_protect will have no effect.
874 */
984263bc 875void
57e43348 876vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
984263bc
MD
877{
878 vm_pindex_t idx;
879 vm_page_t p;
880
881 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
882 return;
883
06ecca5a
MD
884 /*
885 * spl protection needed to prevent races between the lookup,
886 * an interrupt unbusy/free, and our protect call.
887 */
5fd012e0 888 crit_enter();
6846fd23 889 lwkt_gettoken(&vm_token);
984263bc
MD
890 for (idx = start; idx < end; idx++) {
891 p = vm_page_lookup(object, idx);
892 if (p == NULL)
893 continue;
894 vm_page_protect(p, VM_PROT_READ);
895 }
6846fd23 896 lwkt_reltoken(&vm_token);
5fd012e0 897 crit_exit();
984263bc
MD
898}
899
900/*
6846fd23
MD
901 * Removes all physical pages in the specified object range from all
902 * physical maps.
984263bc 903 *
6846fd23 904 * The object must *not* be locked.
984263bc 905 */
1f804340
MD
906
907static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
908
984263bc 909void
57e43348 910vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
984263bc 911{
1f804340 912 struct rb_vm_page_scan_info info;
984263bc
MD
913
914 if (object == NULL)
915 return;
1f804340
MD
916 info.start_pindex = start;
917 info.end_pindex = end - 1;
6846fd23 918
5fd012e0 919 crit_enter();
6846fd23 920 lwkt_gettoken(&vm_token);
1f804340
MD
921 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
922 vm_object_pmap_remove_callback, &info);
923 if (start == 0 && end == object->size)
984263bc 924 vm_object_clear_flag(object, OBJ_WRITEABLE);
6846fd23 925 lwkt_reltoken(&vm_token);
1f804340
MD
926 crit_exit();
927}
928
6846fd23
MD
929/*
930 * The caller must hold vm_token.
931 */
1f804340
MD
932static int
933vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
934{
935 vm_page_protect(p, VM_PROT_NONE);
936 return(0);
984263bc
MD
937}
938
939/*
6846fd23 940 * Implements the madvise function at the object/page level.
984263bc 941 *
6846fd23 942 * MADV_WILLNEED (any object)
984263bc 943 *
6846fd23 944 * Activate the specified pages if they are resident.
984263bc 945 *
6846fd23 946 * MADV_DONTNEED (any object)
984263bc 947 *
6846fd23 948 * Deactivate the specified pages if they are resident.
984263bc 949 *
6846fd23 950 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
984263bc 951 *
6846fd23
MD
952 * Deactivate and clean the specified pages if they are
953 * resident. This permits the process to reuse the pages
954 * without faulting or the kernel to reclaim the pages
955 * without I/O.
984263bc 956 *
6846fd23 957 * No requirements.
984263bc
MD
958 */
959void
57e43348 960vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
984263bc
MD
961{
962 vm_pindex_t end, tpindex;
963 vm_object_t tobject;
964 vm_page_t m;
965
966 if (object == NULL)
967 return;
968
969 end = pindex + count;
970
6846fd23
MD
971 lwkt_gettoken(&vm_token);
972
984263bc
MD
973 /*
974 * Locate and adjust resident pages
975 */
984263bc
MD
976 for (; pindex < end; pindex += 1) {
977relookup:
978 tobject = object;
979 tpindex = pindex;
980shadowlookup:
981 /*
982 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
983 * and those pages must be OBJ_ONEMAPPING.
984 */
985 if (advise == MADV_FREE) {
986 if ((tobject->type != OBJT_DEFAULT &&
987 tobject->type != OBJT_SWAP) ||
988 (tobject->flags & OBJ_ONEMAPPING) == 0) {
989 continue;
990 }
991 }
992
06ecca5a
MD
993 /*
994 * spl protection is required to avoid a race between the
995 * lookup, an interrupt unbusy/free, and our busy check.
996 */
997
5fd012e0 998 crit_enter();
984263bc
MD
999 m = vm_page_lookup(tobject, tpindex);
1000
1001 if (m == NULL) {
1002 /*
1003 * There may be swap even if there is no backing page
1004 */
1005 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1006 swap_pager_freespace(tobject, tpindex, 1);
1007
1008 /*
1009 * next object
1010 */
5fd012e0 1011 crit_exit();
7cad6903 1012 if (tobject->backing_object == NULL)
984263bc
MD
1013 continue;
1014 tpindex += OFF_TO_IDX(tobject->backing_object_offset);
7cad6903 1015 tobject = tobject->backing_object;
984263bc
MD
1016 goto shadowlookup;
1017 }
1018
1019 /*
1020 * If the page is busy or not in a normal active state,
1021 * we skip it. If the page is not managed there are no
1022 * page queues to mess with. Things can break if we mess
1023 * with pages in any of the below states.
1024 */
1025 if (
1026 m->hold_count ||
1027 m->wire_count ||
1028 (m->flags & PG_UNMANAGED) ||
1029 m->valid != VM_PAGE_BITS_ALL
1030 ) {
5fd012e0 1031 crit_exit();
984263bc
MD
1032 continue;
1033 }
1034
06ecca5a 1035 if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
5fd012e0 1036 crit_exit();
984263bc 1037 goto relookup;
06ecca5a 1038 }
a491077e 1039 vm_page_busy(m);
5fd012e0 1040 crit_exit();
06ecca5a
MD
1041
1042 /*
1043 * Theoretically once a page is known not to be busy, an
1044 * interrupt cannot come along and rip it out from under us.
1045 */
984263bc
MD
1046
1047 if (advise == MADV_WILLNEED) {
1048 vm_page_activate(m);
1049 } else if (advise == MADV_DONTNEED) {
1050 vm_page_dontneed(m);
1051 } else if (advise == MADV_FREE) {
1052 /*
1053 * Mark the page clean. This will allow the page
1054 * to be freed up by the system. However, such pages
1055 * are often reused quickly by malloc()/free()
1056 * so we do not do anything that would cause
1057 * a page fault if we can help it.
1058 *
1059 * Specifically, we do not try to actually free
1060 * the page now nor do we try to put it in the
1061 * cache (which would cause a page fault on reuse).
1062 *
1063 * But we do make the page is freeable as we
1064 * can without actually taking the step of unmapping
1065 * it.
1066 */
1067 pmap_clear_modify(m);
1068 m->dirty = 0;
1069 m->act_count = 0;
1070 vm_page_dontneed(m);
1071 if (tobject->type == OBJT_SWAP)
1072 swap_pager_freespace(tobject, tpindex, 1);
1073 }
a491077e 1074 vm_page_wakeup(m);
984263bc 1075 }
6846fd23 1076 lwkt_reltoken(&vm_token);
984263bc
MD
1077}
1078
1079/*
6846fd23
MD
1080 * Create a new object which is backed by the specified existing object
1081 * range. The source object reference is deallocated.
984263bc 1082 *
6846fd23
MD
1083 * The new object and offset into that object are returned in the source
1084 * parameters.
984263bc 1085 *
6846fd23 1086 * No other requirements.
984263bc 1087 */
984263bc 1088void
6846fd23 1089vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length)
984263bc
MD
1090{
1091 vm_object_t source;
1092 vm_object_t result;
1093
1094 source = *object;
1095
1096 /*
1097 * Don't create the new object if the old object isn't shared.
1098 */
6846fd23 1099 lwkt_gettoken(&vm_token);
984263bc
MD
1100
1101 if (source != NULL &&
1102 source->ref_count == 1 &&
1103 source->handle == NULL &&
1104 (source->type == OBJT_DEFAULT ||
6846fd23
MD
1105 source->type == OBJT_SWAP)) {
1106 lwkt_reltoken(&vm_token);
984263bc 1107 return;
6846fd23 1108 }
984263bc
MD
1109
1110 /*
1111 * Allocate a new object with the given length
1112 */
1113
1114 if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1115 panic("vm_object_shadow: no object for shadowing");
1116
1117 /*
1118 * The new object shadows the source object, adding a reference to it.
1119 * Our caller changes his reference to point to the new object,
1120 * removing a reference to the source object. Net result: no change
1121 * of reference count.
1122 *
1123 * Try to optimize the result object's page color when shadowing
1124 * in order to maintain page coloring consistency in the combined
1125 * shadowed object.
1126 */
1127 result->backing_object = source;
1128 if (source) {
1129 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1130 source->shadow_count++;
1131 source->generation++;
1132 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1133 }
1134
1135 /*
1136 * Store the offset into the source object, and fix up the offset into
1137 * the new object.
1138 */
984263bc 1139 result->backing_object_offset = *offset;
6846fd23 1140 lwkt_reltoken(&vm_token);
984263bc
MD
1141
1142 /*
1143 * Return the new things
1144 */
984263bc
MD
1145 *offset = 0;
1146 *object = result;
1147}
1148
1149#define OBSC_TEST_ALL_SHADOWED 0x0001
1150#define OBSC_COLLAPSE_NOWAIT 0x0002
1151#define OBSC_COLLAPSE_WAIT 0x0004
1152
1f804340
MD
1153static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1154
6846fd23
MD
1155/*
1156 * The caller must hold vm_token.
1157 */
984263bc
MD
1158static __inline int
1159vm_object_backing_scan(vm_object_t object, int op)
1160{
1f804340 1161 struct rb_vm_page_scan_info info;
984263bc 1162 vm_object_t backing_object;
984263bc 1163
5fd012e0 1164 crit_enter();
984263bc
MD
1165
1166 backing_object = object->backing_object;
1f804340 1167 info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
984263bc
MD
1168
1169 /*
1170 * Initial conditions
1171 */
1172
1173 if (op & OBSC_TEST_ALL_SHADOWED) {
1174 /*
1175 * We do not want to have to test for the existence of
1176 * swap pages in the backing object. XXX but with the
1177 * new swapper this would be pretty easy to do.
1178 *
1179 * XXX what about anonymous MAP_SHARED memory that hasn't
1180 * been ZFOD faulted yet? If we do not test for this, the
1181 * shadow test may succeed! XXX
1182 */
1183 if (backing_object->type != OBJT_DEFAULT) {
5fd012e0 1184 crit_exit();
984263bc
MD
1185 return(0);
1186 }
1187 }
1188 if (op & OBSC_COLLAPSE_WAIT) {
fad57d0e 1189 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
984263bc
MD
1190 vm_object_set_flag(backing_object, OBJ_DEAD);
1191 }
1192
1193 /*
1f804340
MD
1194 * Our scan. We have to retry if a negative error code is returned,
1195 * otherwise 0 or 1 will be returned in info.error. 0 Indicates that
1196 * the scan had to be stopped because the parent does not completely
1197 * shadow the child.
984263bc 1198 */
1f804340
MD
1199 info.object = object;
1200 info.backing_object = backing_object;
1201 info.limit = op;
1202 do {
1203 info.error = 1;
1204 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1205 vm_object_backing_scan_callback,
1206 &info);
1207 } while (info.error < 0);
1208 crit_exit();
1209 return(info.error);
1210}
984263bc 1211
6846fd23
MD
1212/*
1213 * The caller must hold vm_token.
1214 */
1f804340
MD
1215static int
1216vm_object_backing_scan_callback(vm_page_t p, void *data)
1217{
1218 struct rb_vm_page_scan_info *info = data;
1219 vm_object_t backing_object;
1220 vm_object_t object;
1221 vm_pindex_t new_pindex;
1222 vm_pindex_t backing_offset_index;
1223 int op;
984263bc 1224
1f804340
MD
1225 new_pindex = p->pindex - info->backing_offset_index;
1226 op = info->limit;
1227 object = info->object;
1228 backing_object = info->backing_object;
1229 backing_offset_index = info->backing_offset_index;
984263bc 1230
1f804340
MD
1231 if (op & OBSC_TEST_ALL_SHADOWED) {
1232 vm_page_t pp;
984263bc 1233
1f804340
MD
1234 /*
1235 * Ignore pages outside the parent object's range
1236 * and outside the parent object's mapping of the
1237 * backing object.
1238 *
1239 * note that we do not busy the backing object's
1240 * page.
1241 */
1242 if (
1243 p->pindex < backing_offset_index ||
1244 new_pindex >= object->size
1245 ) {
1246 return(0);
984263bc
MD
1247 }
1248
1249 /*
1f804340
MD
1250 * See if the parent has the page or if the parent's
1251 * object pager has the page. If the parent has the
1252 * page but the page is not valid, the parent's
1253 * object pager must have the page.
1254 *
1255 * If this fails, the parent does not completely shadow
1256 * the object and we might as well give up now.
984263bc
MD
1257 */
1258
1f804340 1259 pp = vm_page_lookup(object, new_pindex);
1b9d3514
MD
1260 if ((pp == NULL || pp->valid == 0) &&
1261 !vm_pager_has_page(object, new_pindex)
1f804340
MD
1262 ) {
1263 info->error = 0; /* problemo */
1264 return(-1); /* stop the scan */
1265 }
1266 }
984263bc 1267
1f804340
MD
1268 /*
1269 * Check for busy page
1270 */
984263bc 1271
1f804340
MD
1272 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1273 vm_page_t pp;
984263bc 1274
1f804340 1275 if (op & OBSC_COLLAPSE_NOWAIT) {
984263bc 1276 if (
1f804340
MD
1277 (p->flags & PG_BUSY) ||
1278 !p->valid ||
1279 p->hold_count ||
1280 p->wire_count ||
1281 p->busy
984263bc 1282 ) {
1f804340 1283 return(0);
984263bc 1284 }
1f804340
MD
1285 } else if (op & OBSC_COLLAPSE_WAIT) {
1286 if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
984263bc 1287 /*
1f804340
MD
1288 * If we slept, anything could have
1289 * happened. Ask that the scan be restarted.
984263bc 1290 *
1f804340
MD
1291 * Since the object is marked dead, the
1292 * backing offset should not have changed.
984263bc 1293 */
1f804340
MD
1294 info->error = -1;
1295 return(-1);
984263bc 1296 }
1f804340
MD
1297 }
1298
1299 /*
1300 * Busy the page
1301 */
1302 vm_page_busy(p);
984263bc 1303
1f804340
MD
1304 KASSERT(
1305 p->object == backing_object,
1306 ("vm_object_qcollapse(): object mismatch")
1307 );
1308
1309 /*
1310 * Destroy any associated swap
1311 */
8d292090
MD
1312 if (backing_object->type == OBJT_SWAP)
1313 swap_pager_freespace(backing_object, p->pindex, 1);
1f804340
MD
1314
1315 if (
1316 p->pindex < backing_offset_index ||
1317 new_pindex >= object->size
1318 ) {
984263bc 1319 /*
1f804340
MD
1320 * Page is out of the parent object's range, we
1321 * can simply destroy it.
984263bc 1322 */
1f804340
MD
1323 vm_page_protect(p, VM_PROT_NONE);
1324 vm_page_free(p);
1325 return(0);
1326 }
984263bc 1327
1f804340 1328 pp = vm_page_lookup(object, new_pindex);
1b9d3514 1329 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1f804340
MD
1330 /*
1331 * page already exists in parent OR swap exists
1332 * for this location in the parent. Destroy
1333 * the original page from the backing object.
1334 *
1335 * Leave the parent's page alone
1336 */
1337 vm_page_protect(p, VM_PROT_NONE);
1338 vm_page_free(p);
1339 return(0);
984263bc 1340 }
1f804340
MD
1341
1342 /*
1343 * Page does not exist in parent, rename the
1344 * page from the backing object to the main object.
1345 *
1346 * If the page was mapped to a process, it can remain
1347 * mapped through the rename.
1348 */
1349 if ((p->queue - p->pc) == PQ_CACHE)
1350 vm_page_deactivate(p);
1351
1352 vm_page_rename(p, object, new_pindex);
1353 /* page automatically made dirty by rename */
984263bc 1354 }
1f804340 1355 return(0);
984263bc
MD
1356}
1357
984263bc 1358/*
6846fd23 1359 * This version of collapse allows the operation to occur earlier and
984263bc
MD
1360 * when paging_in_progress is true for an object... This is not a complete
1361 * operation, but should plug 99.9% of the rest of the leaks.
6846fd23 1362 *
2de4f77e
MD
1363 * The caller must hold vm_token and vmobj_token.
1364 * (only called from vm_object_collapse)
984263bc
MD
1365 */
1366static void
57e43348 1367vm_object_qcollapse(vm_object_t object)
984263bc
MD
1368{
1369 vm_object_t backing_object = object->backing_object;
1370
1371 if (backing_object->ref_count != 1)
1372 return;
1373
1374 backing_object->ref_count += 2;
1375
1376 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1377
1378 backing_object->ref_count -= 2;
1379}
1380
1381/*
6846fd23
MD
1382 * Collapse an object with the object backing it. Pages in the backing
1383 * object are moved into the parent, and the backing object is deallocated.
984263bc
MD
1384 */
1385void
57e43348 1386vm_object_collapse(vm_object_t object)
984263bc 1387{
2de4f77e
MD
1388 ASSERT_LWKT_TOKEN_HELD(&vm_token);
1389 ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
6846fd23 1390
984263bc
MD
1391 while (TRUE) {
1392 vm_object_t backing_object;
1393
1394 /*
1395 * Verify that the conditions are right for collapse:
1396 *
1397 * The object exists and the backing object exists.
1398 */
1399 if (object == NULL)
1400 break;
1401
1402 if ((backing_object = object->backing_object) == NULL)
1403 break;
1404
1405 /*
1406 * we check the backing object first, because it is most likely
1407 * not collapsable.
1408 */
1409 if (backing_object->handle != NULL ||
1410 (backing_object->type != OBJT_DEFAULT &&
1411 backing_object->type != OBJT_SWAP) ||
1412 (backing_object->flags & OBJ_DEAD) ||
1413 object->handle != NULL ||
1414 (object->type != OBJT_DEFAULT &&
1415 object->type != OBJT_SWAP) ||
1416 (object->flags & OBJ_DEAD)) {
1417 break;
1418 }
1419
1420 if (
1421 object->paging_in_progress != 0 ||
1422 backing_object->paging_in_progress != 0
1423 ) {
1424 vm_object_qcollapse(object);
1425 break;
1426 }
1427
1428 /*
1429 * We know that we can either collapse the backing object (if
1430 * the parent is the only reference to it) or (perhaps) have
1431 * the parent bypass the object if the parent happens to shadow
1432 * all the resident pages in the entire backing object.
1433 *
1434 * This is ignoring pager-backed pages such as swap pages.
1435 * vm_object_backing_scan fails the shadowing test in this
1436 * case.
1437 */
1438
1439 if (backing_object->ref_count == 1) {
1440 /*
1441 * If there is exactly one reference to the backing
1442 * object, we can collapse it into the parent.
1443 */
984263bc
MD
1444 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1445
1446 /*
1447 * Move the pager from backing_object to object.
1448 */
1449
1450 if (backing_object->type == OBJT_SWAP) {
1451 vm_object_pip_add(backing_object, 1);
1452
1453 /*
1454 * scrap the paging_offset junk and do a
1455 * discrete copy. This also removes major
1456 * assumptions about how the swap-pager
1457 * works from where it doesn't belong. The
1458 * new swapper is able to optimize the
1459 * destroy-source case.
1460 */
1461
1462 vm_object_pip_add(object, 1);
1463 swap_pager_copy(
1464 backing_object,
1465 object,
1466 OFF_TO_IDX(object->backing_object_offset), TRUE);
1467 vm_object_pip_wakeup(object);
1468
1469 vm_object_pip_wakeup(backing_object);
1470 }
1471 /*
1472 * Object now shadows whatever backing_object did.
1473 * Note that the reference to
1474 * backing_object->backing_object moves from within
1475 * backing_object to within object.
1476 */
1477
1478 LIST_REMOVE(object, shadow_list);
1479 object->backing_object->shadow_count--;
1480 object->backing_object->generation++;
1481 if (backing_object->backing_object) {
1482 LIST_REMOVE(backing_object, shadow_list);
1483 backing_object->backing_object->shadow_count--;
1484 backing_object->backing_object->generation++;
1485 }
1486 object->backing_object = backing_object->backing_object;
1487 if (object->backing_object) {
1488 LIST_INSERT_HEAD(
1489 &object->backing_object->shadow_head,
1490 object,
1491 shadow_list
1492 );
1493 object->backing_object->shadow_count++;
1494 object->backing_object->generation++;
1495 }
1496
1497 object->backing_object_offset +=
1498 backing_object->backing_object_offset;
1499
1500 /*
1501 * Discard backing_object.
1502 *
1503 * Since the backing object has no pages, no pager left,
1504 * and no object references within it, all that is
1505 * necessary is to dispose of it.
1506 */
1507
2de4f77e
MD
1508 KASSERT(backing_object->ref_count == 1,
1509 ("backing_object %p was somehow "
1510 "re-referenced during collapse!",
1511 backing_object));
1512 KASSERT(RB_EMPTY(&backing_object->rb_memq),
1513 ("backing_object %p somehow has left "
1514 "over pages during collapse!",
1515 backing_object));
1516
1517 /* (we are holding vmobj_token) */
6846fd23
MD
1518 TAILQ_REMOVE(&vm_object_list, backing_object,
1519 object_list);
984263bc
MD
1520 vm_object_count--;
1521
1522 zfree(obj_zone, backing_object);
1523
1524 object_collapses++;
1525 } else {
1526 vm_object_t new_backing_object;
1527
1528 /*
1529 * If we do not entirely shadow the backing object,
1530 * there is nothing we can do so we give up.
1531 */
1532
1533 if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1534 break;
1535 }
1536
1537 /*
1538 * Make the parent shadow the next object in the
1539 * chain. Deallocating backing_object will not remove
1540 * it, since its reference count is at least 2.
1541 */
1542
1543 LIST_REMOVE(object, shadow_list);
1544 backing_object->shadow_count--;
1545 backing_object->generation++;
1546
1547 new_backing_object = backing_object->backing_object;
1548 if ((object->backing_object = new_backing_object) != NULL) {
1549 vm_object_reference(new_backing_object);
1550 LIST_INSERT_HEAD(
1551 &new_backing_object->shadow_head,
1552 object,
1553 shadow_list
1554 );
1555 new_backing_object->shadow_count++;
1556 new_backing_object->generation++;
1557 object->backing_object_offset +=
1558 backing_object->backing_object_offset;
1559 }
1560
1561 /*
1562 * Drop the reference count on backing_object. Since
1563 * its ref_count was at least 2, it will not vanish;
1564 * so we don't need to call vm_object_deallocate, but
1565 * we do anyway.
1566 */
2de4f77e 1567 vm_object_deallocate_locked(backing_object);
984263bc
MD
1568 object_bypasses++;
1569 }
1570
1571 /*
1572 * Try again with this object's new backing object.
1573 */
1574 }
1575}
1576
1577/*
6846fd23
MD
1578 * Removes all physical pages in the specified object range from the
1579 * object's list of pages.
984263bc 1580 *
6846fd23 1581 * No requirements.
984263bc 1582 */
1f804340
MD
1583static int vm_object_page_remove_callback(vm_page_t p, void *data);
1584
984263bc 1585void
57e43348 1586vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1f804340 1587 boolean_t clean_only)
984263bc 1588{
1f804340 1589 struct rb_vm_page_scan_info info;
984263bc
MD
1590 int all;
1591
1f804340
MD
1592 /*
1593 * Degenerate cases and assertions
1594 */
6846fd23 1595 lwkt_gettoken(&vm_token);
b8158020
MD
1596 if (object == NULL ||
1597 (object->resident_page_count == 0 && object->swblock_count == 0)) {
6846fd23 1598 lwkt_reltoken(&vm_token);
984263bc 1599 return;
b8158020 1600 }
1f804340
MD
1601 KASSERT(object->type != OBJT_PHYS,
1602 ("attempt to remove pages from a physical object"));
984263bc 1603
1f804340
MD
1604 /*
1605 * Indicate that paging is occuring on the object
1606 */
1607 crit_enter();
1608 vm_object_pip_add(object, 1);
984263bc
MD
1609
1610 /*
1f804340
MD
1611 * Figure out the actual removal range and whether we are removing
1612 * the entire contents of the object or not. If removing the entire
1613 * contents, be sure to get all pages, even those that might be
1614 * beyond the end of the object.
984263bc 1615 */
1f804340
MD
1616 info.start_pindex = start;
1617 if (end == 0)
1618 info.end_pindex = (vm_pindex_t)-1;
1619 else
1620 info.end_pindex = end - 1;
1621 info.limit = clean_only;
1622 all = (start == 0 && info.end_pindex >= object->size - 1);
984263bc 1623
06ecca5a 1624 /*
1f804340 1625 * Loop until we are sure we have gotten them all.
06ecca5a 1626 */
1f804340
MD
1627 do {
1628 info.error = 0;
1629 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1630 vm_object_page_remove_callback, &info);
1631 } while (info.error);
984263bc 1632
1f804340 1633 /*
5ac04117
MD
1634 * Remove any related swap if throwing away pages, or for
1635 * non-swap objects (the swap is a clean copy in that case).
8d292090 1636 */
5ac04117 1637 if (object->type != OBJT_SWAP || clean_only == FALSE) {
8d292090
MD
1638 if (all)
1639 swap_pager_freespace_all(object);
1640 else
1641 swap_pager_freespace(object, info.start_pindex,
1642 info.end_pindex - info.start_pindex + 1);
1643 }
1644
1645 /*
1f804340
MD
1646 * Cleanup
1647 */
1648 vm_object_pip_wakeup(object);
1649 crit_exit();
6846fd23 1650 lwkt_reltoken(&vm_token);
1f804340 1651}
984263bc 1652
6846fd23
MD
1653/*
1654 * The caller must hold vm_token.
1655 */
1f804340
MD
1656static int
1657vm_object_page_remove_callback(vm_page_t p, void *data)
1658{
1659 struct rb_vm_page_scan_info *info = data;
984263bc 1660
1f804340
MD
1661 /*
1662 * Wired pages cannot be destroyed, but they can be invalidated
1663 * and we do so if clean_only (limit) is not set.
1c9602b3
MD
1664 *
1665 * WARNING! The page may be wired due to being part of a buffer
1666 * cache buffer, and the buffer might be marked B_CACHE.
1667 * This is fine as part of a truncation but VFSs must be
1668 * sure to fix the buffer up when re-extending the file.
1f804340
MD
1669 */
1670 if (p->wire_count != 0) {
1671 vm_page_protect(p, VM_PROT_NONE);
1672 if (info->limit == 0)
1673 p->valid = 0;
1674 return(0);
1675 }
984263bc 1676
1f804340
MD
1677 /*
1678 * The busy flags are only cleared at
1679 * interrupt -- minimize the spl transitions
1680 */
984263bc 1681
1f804340
MD
1682 if (vm_page_sleep_busy(p, TRUE, "vmopar")) {
1683 info->error = 1;
1684 return(0);
1685 }
984263bc 1686
1f804340
MD
1687 /*
1688 * limit is our clean_only flag. If set and the page is dirty, do
d309a59d 1689 * not free it. If set and the page is being held by someone, do
1f804340
MD
1690 * not free it.
1691 */
1692 if (info->limit && p->valid) {
1693 vm_page_test_dirty(p);
1694 if (p->valid & p->dirty)
1695 return(0);
d309a59d
MD
1696 if (p->hold_count)
1697 return(0);
984263bc 1698 }
1f804340
MD
1699
1700 /*
1701 * Destroy the page
1702 */
1703 vm_page_busy(p);
1704 vm_page_protect(p, VM_PROT_NONE);
1705 vm_page_free(p);
1706 return(0);
984263bc
MD
1707}
1708
1709/*
6846fd23
MD
1710 * Coalesces two objects backing up adjoining regions of memory into a
1711 * single object.
984263bc 1712 *
6846fd23 1713 * returns TRUE if objects were combined.
984263bc 1714 *
6846fd23
MD
1715 * NOTE: Only works at the moment if the second object is NULL -
1716 * if it's not, which object do we lock first?
984263bc 1717 *
6846fd23
MD
1718 * Parameters:
1719 * prev_object First object to coalesce
1720 * prev_offset Offset into prev_object
1721 * next_object Second object into coalesce
1722 * next_offset Offset into next_object
984263bc 1723 *
6846fd23
MD
1724 * prev_size Size of reference to prev_object
1725 * next_size Size of reference to next_object
984263bc 1726 *
6846fd23 1727 * The object must not be locked.
2de4f77e 1728 * The caller must hold vm_token and vmobj_token.
984263bc
MD
1729 */
1730boolean_t
57e43348 1731vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
8d292090 1732 vm_size_t prev_size, vm_size_t next_size)
984263bc
MD
1733{
1734 vm_pindex_t next_pindex;
1735
2de4f77e
MD
1736 ASSERT_LWKT_TOKEN_HELD(&vm_token);
1737 ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
1738
984263bc
MD
1739 if (prev_object == NULL) {
1740 return (TRUE);
1741 }
1742
70de66db 1743 vm_object_lock(prev_object);
984263bc
MD
1744 if (prev_object->type != OBJT_DEFAULT &&
1745 prev_object->type != OBJT_SWAP) {
70de66db 1746 vm_object_unlock(prev_object);
984263bc
MD
1747 return (FALSE);
1748 }
1749
1750 /*
1751 * Try to collapse the object first
1752 */
1753 vm_object_collapse(prev_object);
1754
1755 /*
1756 * Can't coalesce if: . more than one reference . paged out . shadows
1757 * another object . has a copy elsewhere (any of which mean that the
1758 * pages not mapped to prev_entry may be in use anyway)
1759 */
1760
70de66db
VS
1761 if (prev_object->backing_object != NULL) {
1762 vm_object_unlock(prev_object);
984263bc 1763 return (FALSE);
70de66db 1764 }
984263bc
MD
1765
1766 prev_size >>= PAGE_SHIFT;
1767 next_size >>= PAGE_SHIFT;
1768 next_pindex = prev_pindex + prev_size;
1769
1770 if ((prev_object->ref_count > 1) &&
1771 (prev_object->size != next_pindex)) {
70de66db 1772 vm_object_unlock(prev_object);
984263bc
MD
1773 return (FALSE);
1774 }
1775
1776 /*
1777 * Remove any pages that may still be in the object from a previous
1778 * deallocation.
1779 */
1780 if (next_pindex < prev_object->size) {
1781 vm_object_page_remove(prev_object,
1782 next_pindex,
1783 next_pindex + next_size, FALSE);
1784 if (prev_object->type == OBJT_SWAP)
1785 swap_pager_freespace(prev_object,
1786 next_pindex, next_size);
1787 }
1788
1789 /*
1790 * Extend the object if necessary.
1791 */
1792 if (next_pindex + next_size > prev_object->size)
1793 prev_object->size = next_pindex + next_size;
70de66db
VS
1794
1795 vm_object_unlock(prev_object);
984263bc
MD
1796 return (TRUE);
1797}
1798
6846fd23
MD
1799/*
1800 * Make the object writable and flag is being possibly dirty.
1801 *
1802 * No requirements.
1803 */
984263bc
MD
1804void
1805vm_object_set_writeable_dirty(vm_object_t object)
1806{
1807 struct vnode *vp;
1808
6846fd23 1809 lwkt_gettoken(&vm_token);
984263bc
MD
1810 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1811 if (object->type == OBJT_VNODE &&
1812 (vp = (struct vnode *)object->handle) != NULL) {
1813 if ((vp->v_flag & VOBJDIRTY) == 0) {
5fd012e0 1814 vsetflags(vp, VOBJDIRTY);
984263bc
MD
1815 }
1816 }
6846fd23 1817 lwkt_reltoken(&vm_token);
984263bc
MD
1818}
1819
e32ad78d
VS
1820void
1821vm_object_lock(vm_object_t object)
1822{
1823 lwkt_gettoken(&object->tok);
1824}
1825
1826void
1827vm_object_unlock(vm_object_t object)
1828{
1829 lwkt_reltoken(&object->tok);
1830}
1831
984263bc
MD
1832#include "opt_ddb.h"
1833#ifdef DDB
1834#include <sys/kernel.h>
1835
1836#include <sys/cons.h>
1837
1838#include <ddb/ddb.h>
1839
1388df65
RG
1840static int _vm_object_in_map (vm_map_t map, vm_object_t object,
1841 vm_map_entry_t entry);
1842static int vm_object_in_map (vm_object_t object);
984263bc 1843
6846fd23
MD
1844/*
1845 * The caller must hold vm_token.
1846 */
984263bc 1847static int
57e43348 1848_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
984263bc
MD
1849{
1850 vm_map_t tmpm;
1851 vm_map_entry_t tmpe;
1852 vm_object_t obj;
1853 int entcount;
1854
1855 if (map == 0)
1856 return 0;
984263bc
MD
1857 if (entry == 0) {
1858 tmpe = map->header.next;
1859 entcount = map->nentries;
1860 while (entcount-- && (tmpe != &map->header)) {
1861 if( _vm_object_in_map(map, object, tmpe)) {
1862 return 1;
1863 }
1864 tmpe = tmpe->next;
1865 }
1b874851
MD
1866 return (0);
1867 }
1868 switch(entry->maptype) {
1869 case VM_MAPTYPE_SUBMAP:
984263bc
MD
1870 tmpm = entry->object.sub_map;
1871 tmpe = tmpm->header.next;
1872 entcount = tmpm->nentries;
1873 while (entcount-- && tmpe != &tmpm->header) {
1874 if( _vm_object_in_map(tmpm, object, tmpe)) {
1875 return 1;
1876 }
1877 tmpe = tmpe->next;
1878 }
1b874851
MD
1879 break;
1880 case VM_MAPTYPE_NORMAL:
1881 case VM_MAPTYPE_VPAGETABLE:
1882 obj = entry->object.vm_object;
1883 while (obj) {
1884 if (obj == object)
984263bc 1885 return 1;
1b874851
MD
1886 obj = obj->backing_object;
1887 }
1888 break;
1889 default:
1890 break;
984263bc
MD
1891 }
1892 return 0;
1893}
1894
8fa76237
MD
1895static int vm_object_in_map_callback(struct proc *p, void *data);
1896
1897struct vm_object_in_map_info {
1898 vm_object_t object;
1899 int rv;
1900};
1901
6846fd23
MD
1902/*
1903 * Debugging only
1904 */
984263bc 1905static int
57e43348 1906vm_object_in_map(vm_object_t object)
984263bc 1907{
8fa76237
MD
1908 struct vm_object_in_map_info info;
1909
1910 info.rv = 0;
1911 info.object = object;
1912
1913 allproc_scan(vm_object_in_map_callback, &info);
1914 if (info.rv)
1915 return 1;
e4846942 1916 if( _vm_object_in_map(&kernel_map, object, 0))
984263bc 1917 return 1;
e4846942 1918 if( _vm_object_in_map(&pager_map, object, 0))
984263bc 1919 return 1;
e4846942 1920 if( _vm_object_in_map(&buffer_map, object, 0))
984263bc 1921 return 1;
984263bc
MD
1922 return 0;
1923}
1924
6846fd23
MD
1925/*
1926 * Debugging only
1927 */
8fa76237
MD
1928static int
1929vm_object_in_map_callback(struct proc *p, void *data)
1930{
1931 struct vm_object_in_map_info *info = data;
1932
1933 if (p->p_vmspace) {
1934 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
1935 info->rv = 1;
1936 return -1;
1937 }
1938 }
1939 return (0);
1940}
1941
984263bc
MD
1942DB_SHOW_COMMAND(vmochk, vm_object_check)
1943{
1944 vm_object_t object;
1945
1946 /*
1947 * make sure that internal objs are in a map somewhere
1948 * and none have zero ref counts.
1949 */
1950 for (object = TAILQ_FIRST(&vm_object_list);
1951 object != NULL;
1952 object = TAILQ_NEXT(object, object_list)) {
00a3fdca
MD
1953 if (object->type == OBJT_MARKER)
1954 continue;
984263bc
MD
1955 if (object->handle == NULL &&
1956 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1957 if (object->ref_count == 0) {
1958 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1959 (long)object->size);
1960 }
1961 if (!vm_object_in_map(object)) {
1962 db_printf(
1963 "vmochk: internal obj is not in a map: "
1964 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1965 object->ref_count, (u_long)object->size,
1966 (u_long)object->size,
1967 (void *)object->backing_object);
1968 }
1969 }
1970 }
1971}
1972
1973/*
6846fd23 1974 * Debugging only
984263bc
MD
1975 */
1976DB_SHOW_COMMAND(object, vm_object_print_static)
1977{
1978 /* XXX convert args. */
1979 vm_object_t object = (vm_object_t)addr;
1980 boolean_t full = have_addr;
1981
1982 vm_page_t p;
1983
1984 /* XXX count is an (unused) arg. Avoid shadowing it. */
1985#define count was_count
1986
1987 int count;
1988
1989 if (object == NULL)
1990 return;
1991
1992 db_iprintf(
1993 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1994 object, (int)object->type, (u_long)object->size,
1995 object->resident_page_count, object->ref_count, object->flags);
1996 /*
1997 * XXX no %qd in kernel. Truncate object->backing_object_offset.
1998 */
1999 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2000 object->shadow_count,
2001 object->backing_object ? object->backing_object->ref_count : 0,
2002 object->backing_object, (long)object->backing_object_offset);
2003
2004 if (!full)
2005 return;
2006
2007 db_indent += 2;
2008 count = 0;
1f804340 2009 RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
984263bc
MD
2010 if (count == 0)
2011 db_iprintf("memory:=");
2012 else if (count == 6) {
2013 db_printf("\n");
2014 db_iprintf(" ...");
2015 count = 0;
2016 } else
2017 db_printf(",");
2018 count++;
2019
2020 db_printf("(off=0x%lx,page=0x%lx)",
2021 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2022 }
2023 if (count != 0)
2024 db_printf("\n");
2025 db_indent -= 2;
2026}
2027
2028/* XXX. */
2029#undef count
2030
6846fd23
MD
2031/*
2032 * XXX need this non-static entry for calling from vm_map_print.
2033 *
2034 * Debugging only
2035 */
984263bc 2036void
57e43348
MD
2037vm_object_print(/* db_expr_t */ long addr,
2038 boolean_t have_addr,
2039 /* db_expr_t */ long count,
2040 char *modif)
984263bc
MD
2041{
2042 vm_object_print_static(addr, have_addr, count, modif);
2043}
2044
6846fd23
MD
2045/*
2046 * Debugging only
2047 */
984263bc
MD
2048DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2049{
2050 vm_object_t object;
2051 int nl = 0;
2052 int c;
2053 for (object = TAILQ_FIRST(&vm_object_list);
2054 object != NULL;
2055 object = TAILQ_NEXT(object, object_list)) {
2056 vm_pindex_t idx, fidx;
2057 vm_pindex_t osize;
6ef943a3 2058 vm_paddr_t pa = -1, padiff;
984263bc
MD
2059 int rcount;
2060 vm_page_t m;
2061
00a3fdca
MD
2062 if (object->type == OBJT_MARKER)
2063 continue;
984263bc
MD
2064 db_printf("new object: %p\n", (void *)object);
2065 if ( nl > 18) {
2066 c = cngetc();
2067 if (c != ' ')
2068 return;
2069 nl = 0;
2070 }
2071 nl++;
2072 rcount = 0;
2073 fidx = 0;
2074 osize = object->size;
2075 if (osize > 128)
2076 osize = 128;
06ecca5a 2077 for (idx = 0; idx < osize; idx++) {
984263bc
MD
2078 m = vm_page_lookup(object, idx);
2079 if (m == NULL) {
2080 if (rcount) {
2081 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2082 (long)fidx, rcount, (long)pa);
2083 if ( nl > 18) {
2084 c = cngetc();
2085 if (c != ' ')
2086 return;
2087 nl = 0;
2088 }
2089 nl++;
2090 rcount = 0;
2091 }
2092 continue;
2093 }
2094
2095
2096 if (rcount &&
2097 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2098 ++rcount;
2099 continue;
2100 }
2101 if (rcount) {
2102 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2103 padiff >>= PAGE_SHIFT;
2104 padiff &= PQ_L2_MASK;
2105 if (padiff == 0) {
2106 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2107 ++rcount;
2108 continue;
2109 }
2110 db_printf(" index(%ld)run(%d)pa(0x%lx)",
2111 (long)fidx, rcount, (long)pa);
2112 db_printf("pd(%ld)\n", (long)padiff);
2113 if ( nl > 18) {
2114 c = cngetc();
2115 if (c != ' ')
2116 return;
2117 nl = 0;
2118 }
2119 nl++;
2120 }
2121 fidx = idx;
2122 pa = VM_PAGE_TO_PHYS(m);
2123 rcount = 1;
2124 }
2125 if (rcount) {
2126 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2127 (long)fidx, rcount, (long)pa);
2128 if ( nl > 18) {
2129 c = cngetc();
2130 if (c != ' ')
2131 return;
2132 nl = 0;
2133 }
2134 nl++;
2135 }
2136 }
2137}
2138#endif /* DDB */