mandoc(1): Update to 1.9.20.
[dragonfly.git] / usr.bin / mandoc / man_macro.c
... / ...
CommitLineData
1/* $Id: man_macro.c,v 1.42 2010/03/29 10:10:35 kristaps Exp $ */
2/*
3 * Copyright (c) 2008, 2009 Kristaps Dzonsons <kristaps@kth.se>
4 *
5 * Permission to use, copy, modify, and distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17#include <assert.h>
18#include <ctype.h>
19#include <stdlib.h>
20#include <string.h>
21
22#include "libman.h"
23
24enum rew {
25 REW_REWIND,
26 REW_NOHALT,
27 REW_HALT
28};
29
30static int blk_close(MACRO_PROT_ARGS);
31static int blk_dotted(MACRO_PROT_ARGS);
32static int blk_exp(MACRO_PROT_ARGS);
33static int blk_imp(MACRO_PROT_ARGS);
34static int in_line_eoln(MACRO_PROT_ARGS);
35
36static int rew_scope(enum man_type,
37 struct man *, enum mant);
38static enum rew rew_dohalt(enum mant, enum man_type,
39 const struct man_node *);
40static enum rew rew_block(enum mant, enum man_type,
41 const struct man_node *);
42static int rew_warn(struct man *,
43 struct man_node *, enum merr);
44
45const struct man_macro __man_macros[MAN_MAX] = {
46 { in_line_eoln, MAN_NSCOPED }, /* br */
47 { in_line_eoln, 0 }, /* TH */
48 { blk_imp, MAN_SCOPED }, /* SH */
49 { blk_imp, MAN_SCOPED }, /* SS */
50 { blk_imp, MAN_SCOPED | MAN_FSCOPED }, /* TP */
51 { blk_imp, 0 }, /* LP */
52 { blk_imp, 0 }, /* PP */
53 { blk_imp, 0 }, /* P */
54 { blk_imp, 0 }, /* IP */
55 { blk_imp, 0 }, /* HP */
56 { in_line_eoln, MAN_SCOPED }, /* SM */
57 { in_line_eoln, MAN_SCOPED }, /* SB */
58 { in_line_eoln, 0 }, /* BI */
59 { in_line_eoln, 0 }, /* IB */
60 { in_line_eoln, 0 }, /* BR */
61 { in_line_eoln, 0 }, /* RB */
62 { in_line_eoln, MAN_SCOPED }, /* R */
63 { in_line_eoln, MAN_SCOPED }, /* B */
64 { in_line_eoln, MAN_SCOPED }, /* I */
65 { in_line_eoln, 0 }, /* IR */
66 { in_line_eoln, 0 }, /* RI */
67 { in_line_eoln, MAN_NSCOPED }, /* na */
68 { in_line_eoln, 0 }, /* i */
69 { in_line_eoln, MAN_NSCOPED }, /* sp */
70 { in_line_eoln, 0 }, /* nf */
71 { in_line_eoln, 0 }, /* fi */
72 { in_line_eoln, 0 }, /* r */
73 { blk_close, 0 }, /* RE */
74 { blk_exp, MAN_EXPLICIT }, /* RS */
75 { in_line_eoln, 0 }, /* DT */
76 { in_line_eoln, 0 }, /* UC */
77 { in_line_eoln, 0 }, /* PD */
78 { in_line_eoln, MAN_NSCOPED }, /* Sp */
79 { in_line_eoln, 0 }, /* Vb */
80 { in_line_eoln, 0 }, /* Ve */
81 { blk_exp, MAN_EXPLICIT | MAN_NOCLOSE}, /* de */
82 { blk_exp, MAN_EXPLICIT | MAN_NOCLOSE}, /* dei */
83 { blk_exp, MAN_EXPLICIT | MAN_NOCLOSE}, /* am */
84 { blk_exp, MAN_EXPLICIT | MAN_NOCLOSE}, /* ami */
85 { blk_exp, MAN_EXPLICIT | MAN_NOCLOSE}, /* ig */
86 { blk_dotted, 0 }, /* . */
87};
88
89const struct man_macro * const man_macros = __man_macros;
90
91
92/*
93 * Warn when "n" is an explicit non-roff macro.
94 */
95static int
96rew_warn(struct man *m, struct man_node *n, enum merr er)
97{
98
99 if (er == WERRMAX || MAN_BLOCK != n->type)
100 return(1);
101 if (MAN_VALID & n->flags)
102 return(1);
103 if ( ! (MAN_EXPLICIT & man_macros[n->tok].flags))
104 return(1);
105 if (MAN_NOCLOSE & man_macros[n->tok].flags)
106 return(1);
107 return(man_nwarn(m, n, er));
108}
109
110
111/*
112 * Rewind scope. If a code "er" != WERRMAX has been provided, it will
113 * be used if an explicit block scope is being closed out.
114 */
115int
116man_unscope(struct man *m, const struct man_node *n, enum merr er)
117{
118
119 assert(n);
120
121 /* LINTED */
122 while (m->last != n) {
123 if ( ! rew_warn(m, m->last, er))
124 return(0);
125 if ( ! man_valid_post(m))
126 return(0);
127 if ( ! man_action_post(m))
128 return(0);
129 m->last = m->last->parent;
130 assert(m->last);
131 }
132
133 if ( ! rew_warn(m, m->last, er))
134 return(0);
135 if ( ! man_valid_post(m))
136 return(0);
137 if ( ! man_action_post(m))
138 return(0);
139
140 m->next = MAN_ROOT == m->last->type ?
141 MAN_NEXT_CHILD : MAN_NEXT_SIBLING;
142
143 return(1);
144}
145
146
147static enum rew
148rew_block(enum mant ntok, enum man_type type, const struct man_node *n)
149{
150
151 if (MAN_BLOCK == type && ntok == n->parent->tok &&
152 MAN_BODY == n->parent->type)
153 return(REW_REWIND);
154 return(ntok == n->tok ? REW_HALT : REW_NOHALT);
155}
156
157
158/*
159 * There are three scope levels: scoped to the root (all), scoped to the
160 * section (all less sections), and scoped to subsections (all less
161 * sections and subsections).
162 */
163static enum rew
164rew_dohalt(enum mant tok, enum man_type type, const struct man_node *n)
165{
166 enum rew c;
167
168 /* We cannot progress beyond the root ever. */
169 if (MAN_ROOT == n->type)
170 return(REW_HALT);
171
172 assert(n->parent);
173
174 /* Normal nodes shouldn't go to the level of the root. */
175 if (MAN_ROOT == n->parent->type)
176 return(REW_REWIND);
177
178 /* Already-validated nodes should be closed out. */
179 if (MAN_VALID & n->flags)
180 return(REW_NOHALT);
181
182 /* First: rewind to ourselves. */
183 if (type == n->type && tok == n->tok)
184 return(REW_REWIND);
185
186 /*
187 * If we're a roff macro, then we can close out anything that
188 * stands between us and our parent context.
189 */
190 if (MAN_NOCLOSE & man_macros[tok].flags)
191 return(REW_NOHALT);
192
193 /*
194 * Don't clobber roff macros: this is a bit complicated. If the
195 * current macro is a roff macro, halt immediately and don't
196 * rewind. If it's not, and the parent is, then close out the
197 * current scope and halt at the parent.
198 */
199 if (MAN_NOCLOSE & man_macros[n->tok].flags)
200 return(REW_HALT);
201 if (MAN_NOCLOSE & man_macros[n->parent->tok].flags)
202 return(REW_REWIND);
203
204 /*
205 * Next follow the implicit scope-smashings as defined by man.7:
206 * section, sub-section, etc.
207 */
208
209 switch (tok) {
210 case (MAN_SH):
211 break;
212 case (MAN_SS):
213 /* Rewind to a section, if a block. */
214 if (REW_NOHALT != (c = rew_block(MAN_SH, type, n)))
215 return(c);
216 break;
217 case (MAN_RS):
218 /* Rewind to a subsection, if a block. */
219 if (REW_NOHALT != (c = rew_block(MAN_SS, type, n)))
220 return(c);
221 /* Rewind to a section, if a block. */
222 if (REW_NOHALT != (c = rew_block(MAN_SH, type, n)))
223 return(c);
224 break;
225 default:
226 /* Rewind to an offsetter, if a block. */
227 if (REW_NOHALT != (c = rew_block(MAN_RS, type, n)))
228 return(c);
229 /* Rewind to a subsection, if a block. */
230 if (REW_NOHALT != (c = rew_block(MAN_SS, type, n)))
231 return(c);
232 /* Rewind to a section, if a block. */
233 if (REW_NOHALT != (c = rew_block(MAN_SH, type, n)))
234 return(c);
235 break;
236 }
237
238 return(REW_NOHALT);
239}
240
241
242/*
243 * Rewinding entails ascending the parse tree until a coherent point,
244 * for example, the `SH' macro will close out any intervening `SS'
245 * scopes. When a scope is closed, it must be validated and actioned.
246 */
247static int
248rew_scope(enum man_type type, struct man *m, enum mant tok)
249{
250 struct man_node *n;
251 enum rew c;
252
253 /* LINTED */
254 for (n = m->last; n; n = n->parent) {
255 /*
256 * Whether we should stop immediately (REW_HALT), stop
257 * and rewind until this point (REW_REWIND), or keep
258 * rewinding (REW_NOHALT).
259 */
260 c = rew_dohalt(tok, type, n);
261 if (REW_HALT == c)
262 return(1);
263 if (REW_REWIND == c)
264 break;
265 }
266
267 /*
268 * Rewind until the current point. Warn if we're a roff
269 * instruction that's mowing over explicit scopes.
270 */
271 assert(n);
272 if (MAN_NOCLOSE & man_macros[tok].flags)
273 return(man_unscope(m, n, WROFFSCOPE));
274
275 return(man_unscope(m, n, WERRMAX));
276}
277
278
279/*
280 * Closure for dotted macros (de, dei, am, ami, ign). This must handle
281 * any of these as the parent node, so it needs special handling.
282 * Beyond this, it's the same as blk_close().
283 */
284/* ARGSUSED */
285int
286blk_dotted(MACRO_PROT_ARGS)
287{
288 enum mant ntok;
289 struct man_node *nn;
290
291 /* Check for any of the following parents... */
292
293 for (nn = m->last->parent; nn; nn = nn->parent)
294 if (nn->tok == MAN_de || nn->tok == MAN_dei ||
295 nn->tok == MAN_am ||
296 nn->tok == MAN_ami ||
297 nn->tok == MAN_ig) {
298 ntok = nn->tok;
299 break;
300 }
301
302 if (NULL == nn) {
303 if ( ! man_pwarn(m, line, ppos, WNOSCOPE))
304 return(0);
305 return(1);
306 }
307
308 if ( ! rew_scope(MAN_BODY, m, ntok))
309 return(0);
310 if ( ! rew_scope(MAN_BLOCK, m, ntok))
311 return(0);
312
313 /*
314 * Restore flags set when we got here and also stipulate that we
315 * don't post-process the line when exiting the macro op
316 * function in man_pmacro(). See blk_exp().
317 */
318
319 m->flags = m->svflags | MAN_ILINE;
320 m->next = m->svnext;
321 return(1);
322}
323
324
325/*
326 * Close out a generic explicit macro.
327 */
328/* ARGSUSED */
329int
330blk_close(MACRO_PROT_ARGS)
331{
332 enum mant ntok;
333 const struct man_node *nn;
334
335 switch (tok) {
336 case (MAN_RE):
337 ntok = MAN_RS;
338 break;
339 default:
340 abort();
341 /* NOTREACHED */
342 }
343
344 for (nn = m->last->parent; nn; nn = nn->parent)
345 if (ntok == nn->tok)
346 break;
347
348 if (NULL == nn)
349 if ( ! man_pwarn(m, line, ppos, WNOSCOPE))
350 return(0);
351
352 if ( ! rew_scope(MAN_BODY, m, ntok))
353 return(0);
354 if ( ! rew_scope(MAN_BLOCK, m, ntok))
355 return(0);
356
357 return(1);
358}
359
360
361int
362blk_exp(MACRO_PROT_ARGS)
363{
364 int w, la;
365 char *p;
366
367 /*
368 * Close out prior scopes. "Regular" explicit macros cannot be
369 * nested, but we allow roff macros to be placed just about
370 * anywhere.
371 */
372
373 if ( ! (MAN_NOCLOSE & man_macros[tok].flags)) {
374 if ( ! rew_scope(MAN_BODY, m, tok))
375 return(0);
376 if ( ! rew_scope(MAN_BLOCK, m, tok))
377 return(0);
378 } else {
379 /*
380 * Save our state and next-scope indicator; we restore
381 * it when exiting from the roff instruction block. See
382 * blk_dotted().
383 */
384 m->svflags = m->flags;
385 m->svnext = m->next;
386
387 /* Make sure we drop any line modes. */
388 m->flags = 0;
389 }
390
391 if ( ! man_block_alloc(m, line, ppos, tok))
392 return(0);
393 if ( ! man_head_alloc(m, line, ppos, tok))
394 return(0);
395
396 for (;;) {
397 la = *pos;
398 w = man_args(m, line, pos, buf, &p);
399
400 if (-1 == w)
401 return(0);
402 if (0 == w)
403 break;
404
405 if ( ! man_word_alloc(m, line, la, p))
406 return(0);
407 }
408
409 assert(m);
410 assert(tok != MAN_MAX);
411
412 if ( ! rew_scope(MAN_HEAD, m, tok))
413 return(0);
414 return(man_body_alloc(m, line, ppos, tok));
415}
416
417
418
419/*
420 * Parse an implicit-block macro. These contain a MAN_HEAD and a
421 * MAN_BODY contained within a MAN_BLOCK. Rules for closing out other
422 * scopes, such as `SH' closing out an `SS', are defined in the rew
423 * routines.
424 */
425int
426blk_imp(MACRO_PROT_ARGS)
427{
428 int w, la;
429 char *p;
430 struct man_node *n;
431
432 /* Close out prior scopes. */
433
434 if ( ! rew_scope(MAN_BODY, m, tok))
435 return(0);
436 if ( ! rew_scope(MAN_BLOCK, m, tok))
437 return(0);
438
439 /* Allocate new block & head scope. */
440
441 if ( ! man_block_alloc(m, line, ppos, tok))
442 return(0);
443 if ( ! man_head_alloc(m, line, ppos, tok))
444 return(0);
445
446 n = m->last;
447
448 /* Add line arguments. */
449
450 for (;;) {
451 la = *pos;
452 w = man_args(m, line, pos, buf, &p);
453
454 if (-1 == w)
455 return(0);
456 if (0 == w)
457 break;
458
459 if ( ! man_word_alloc(m, line, la, p))
460 return(0);
461 }
462
463 /* Close out head and open body (unless MAN_SCOPE). */
464
465 if (MAN_SCOPED & man_macros[tok].flags) {
466 /* If we're forcing scope (`TP'), keep it open. */
467 if (MAN_FSCOPED & man_macros[tok].flags) {
468 m->flags |= MAN_BLINE;
469 return(1);
470 } else if (n == m->last) {
471 m->flags |= MAN_BLINE;
472 return(1);
473 }
474 }
475
476 if ( ! rew_scope(MAN_HEAD, m, tok))
477 return(0);
478 return(man_body_alloc(m, line, ppos, tok));
479}
480
481
482int
483in_line_eoln(MACRO_PROT_ARGS)
484{
485 int w, la;
486 char *p;
487 struct man_node *n;
488
489 if ( ! man_elem_alloc(m, line, ppos, tok))
490 return(0);
491
492 n = m->last;
493
494 for (;;) {
495 la = *pos;
496 w = man_args(m, line, pos, buf, &p);
497
498 if (-1 == w)
499 return(0);
500 if (0 == w)
501 break;
502 if ( ! man_word_alloc(m, line, la, p))
503 return(0);
504 }
505
506 /*
507 * If no arguments are specified and this is MAN_SCOPED (i.e.,
508 * next-line scoped), then set our mode to indicate that we're
509 * waiting for terms to load into our context.
510 */
511
512 if (n == m->last && MAN_SCOPED & man_macros[tok].flags) {
513 assert( ! (MAN_NSCOPED & man_macros[tok].flags));
514 m->flags |= MAN_ELINE;
515 return(1);
516 }
517
518 /* Set ignorable context, if applicable. */
519
520 if (MAN_NSCOPED & man_macros[tok].flags) {
521 assert( ! (MAN_SCOPED & man_macros[tok].flags));
522 m->flags |= MAN_ILINE;
523 }
524
525 /*
526 * Rewind our element scope. Note that when TH is pruned, we'll
527 * be back at the root, so make sure that we don't clobber as
528 * its sibling.
529 */
530
531 for ( ; m->last; m->last = m->last->parent) {
532 if (m->last == n)
533 break;
534 if (m->last->type == MAN_ROOT)
535 break;
536 if ( ! man_valid_post(m))
537 return(0);
538 if ( ! man_action_post(m))
539 return(0);
540 }
541
542 assert(m->last);
543
544 /*
545 * Same here regarding whether we're back at the root.
546 */
547
548 if (m->last->type != MAN_ROOT && ! man_valid_post(m))
549 return(0);
550 if (m->last->type != MAN_ROOT && ! man_action_post(m))
551 return(0);
552
553 m->next = MAN_ROOT == m->last->type ?
554 MAN_NEXT_CHILD : MAN_NEXT_SIBLING;
555
556 return(1);
557}
558
559
560int
561man_macroend(struct man *m)
562{
563
564 return(man_unscope(m, m->first, WEXITSCOPE));
565}