Another instance of IF_LLSOCKADDR.
[dragonfly.git] / sys / kern / kern_clock.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.41 2005/06/01 17:43:42 dillon Exp $
74 */
75
76#include "opt_ntp.h"
77
78#include <sys/param.h>
79#include <sys/systm.h>
80#include <sys/callout.h>
81#include <sys/kernel.h>
82#include <sys/kinfo.h>
83#include <sys/proc.h>
84#include <sys/malloc.h>
85#include <sys/resourcevar.h>
86#include <sys/signalvar.h>
87#include <sys/timex.h>
88#include <sys/timepps.h>
89#include <vm/vm.h>
90#include <sys/lock.h>
91#include <vm/pmap.h>
92#include <vm/vm_map.h>
93#include <sys/sysctl.h>
94#include <sys/thread2.h>
95
96#include <machine/cpu.h>
97#include <machine/limits.h>
98#include <machine/smp.h>
99
100#ifdef GPROF
101#include <sys/gmon.h>
102#endif
103
104#ifdef DEVICE_POLLING
105extern void init_device_poll(void);
106extern void hardclock_device_poll(void);
107#endif /* DEVICE_POLLING */
108
109static void initclocks (void *dummy);
110SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
111
112/*
113 * Some of these don't belong here, but it's easiest to concentrate them.
114 * Note that cpu_time counts in microseconds, but most userland programs
115 * just compare relative times against the total by delta.
116 */
117struct kinfo_cputime cputime_percpu[MAXCPU];
118#ifdef SMP
119static int
120sysctl_cputime(SYSCTL_HANDLER_ARGS)
121{
122 int cpu, error = 0;
123 size_t size = sizeof(struct kinfo_cputime);
124
125 for (cpu = 0; cpu < ncpus; ++cpu) {
126 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
127 break;
128 }
129
130 return (error);
131}
132SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
133 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
134#else
135SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime,
136 "CPU time statistics");
137#endif
138
139/*
140 * boottime is used to calculate the 'real' uptime. Do not confuse this with
141 * microuptime(). microtime() is not drift compensated. The real uptime
142 * with compensation is nanotime() - bootime. boottime is recalculated
143 * whenever the real time is set based on the compensated elapsed time
144 * in seconds (gd->gd_time_seconds).
145 *
146 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
147 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
148 * the real time.
149 */
150struct timespec boottime; /* boot time (realtime) for reference only */
151time_t time_second; /* read-only 'passive' uptime in seconds */
152
153/*
154 * basetime is used to calculate the compensated real time of day. The
155 * basetime can be modified on a per-tick basis by the adjtime(),
156 * ntp_adjtime(), and sysctl-based time correction APIs.
157 *
158 * Note that frequency corrections can also be made by adjusting
159 * gd_cpuclock_base.
160 *
161 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is
162 * used on both SMP and UP systems to avoid MP races between cpu's and
163 * interrupt races on UP systems.
164 */
165#define BASETIME_ARYSIZE 16
166#define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1)
167static struct timespec basetime[BASETIME_ARYSIZE];
168static volatile int basetime_index;
169
170static int
171sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
172{
173 struct timespec *bt;
174 int error;
175
176 bt = &basetime[basetime_index];
177 error = SYSCTL_OUT(req, bt, sizeof(*bt));
178 return (error);
179}
180
181SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
182 &boottime, timespec, "System boottime");
183SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
184 sysctl_get_basetime, "S,timespec", "System basetime");
185
186static void hardclock(systimer_t info, struct intrframe *frame);
187static void statclock(systimer_t info, struct intrframe *frame);
188static void schedclock(systimer_t info, struct intrframe *frame);
189static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
190
191int ticks; /* system master ticks at hz */
192int clocks_running; /* tsleep/timeout clocks operational */
193int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */
194int64_t nsec_acc; /* accumulator */
195
196/* NTPD time correction fields */
197int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */
198int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */
199int64_t ntp_delta; /* one-time correction in nsec */
200int64_t ntp_big_delta = 1000000000;
201int32_t ntp_tick_delta; /* current adjustment rate */
202int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */
203time_t ntp_leap_second; /* time of next leap second */
204int ntp_leap_insert; /* whether to insert or remove a second */
205
206/*
207 * Finish initializing clock frequencies and start all clocks running.
208 */
209/* ARGSUSED*/
210static void
211initclocks(void *dummy)
212{
213 cpu_initclocks();
214#ifdef DEVICE_POLLING
215 init_device_poll();
216#endif
217 /*psratio = profhz / stathz;*/
218 initclocks_pcpu();
219 clocks_running = 1;
220}
221
222/*
223 * Called on a per-cpu basis
224 */
225void
226initclocks_pcpu(void)
227{
228 struct globaldata *gd = mycpu;
229
230 crit_enter();
231 if (gd->gd_cpuid == 0) {
232 gd->gd_time_seconds = 1;
233 gd->gd_cpuclock_base = sys_cputimer->count();
234 } else {
235 /* XXX */
236 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
237 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
238 }
239
240 /*
241 * Use a non-queued periodic systimer to prevent multiple ticks from
242 * building up if the sysclock jumps forward (8254 gets reset). The
243 * sysclock will never jump backwards. Our time sync is based on
244 * the actual sysclock, not the ticks count.
245 */
246 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz);
247 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz);
248 /* XXX correct the frequency for scheduler / estcpu tests */
249 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
250 NULL, ESTCPUFREQ);
251 crit_exit();
252}
253
254/*
255 * This sets the current real time of day. Timespecs are in seconds and
256 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
257 * instead we adjust basetime so basetime + gd_* results in the current
258 * time of day. This way the gd_* fields are guarenteed to represent
259 * a monotonically increasing 'uptime' value.
260 *
261 * When set_timeofday() is called from userland, the system call forces it
262 * onto cpu #0 since only cpu #0 can update basetime_index.
263 */
264void
265set_timeofday(struct timespec *ts)
266{
267 struct timespec *nbt;
268 int ni;
269
270 /*
271 * XXX SMP / non-atomic basetime updates
272 */
273 crit_enter();
274 ni = (basetime_index + 1) & BASETIME_ARYMASK;
275 nbt = &basetime[ni];
276 nanouptime(nbt);
277 nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
278 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
279 if (nbt->tv_nsec < 0) {
280 nbt->tv_nsec += 1000000000;
281 --nbt->tv_sec;
282 }
283
284 /*
285 * Note that basetime diverges from boottime as the clock drift is
286 * compensated for, so we cannot do away with boottime. When setting
287 * the absolute time of day the drift is 0 (for an instant) and we
288 * can simply assign boottime to basetime.
289 *
290 * Note that nanouptime() is based on gd_time_seconds which is drift
291 * compensated up to a point (it is guarenteed to remain monotonically
292 * increasing). gd_time_seconds is thus our best uptime guess and
293 * suitable for use in the boottime calculation. It is already taken
294 * into account in the basetime calculation above.
295 */
296 boottime.tv_sec = nbt->tv_sec;
297 ntp_delta = 0;
298
299 /*
300 * We now have a new basetime, update the index.
301 */
302 cpu_mb1();
303 basetime_index = ni;
304
305 crit_exit();
306}
307
308/*
309 * Each cpu has its own hardclock, but we only increments ticks and softticks
310 * on cpu #0.
311 *
312 * NOTE! systimer! the MP lock might not be held here. We can only safely
313 * manipulate objects owned by the current cpu.
314 */
315static void
316hardclock(systimer_t info, struct intrframe *frame)
317{
318 sysclock_t cputicks;
319 struct proc *p;
320 struct pstats *pstats;
321 struct globaldata *gd = mycpu;
322
323 /*
324 * Realtime updates are per-cpu. Note that timer corrections as
325 * returned by microtime() and friends make an additional adjustment
326 * using a system-wise 'basetime', but the running time is always
327 * taken from the per-cpu globaldata area. Since the same clock
328 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
329 * stay in synch.
330 *
331 * Note that we never allow info->time (aka gd->gd_hardclock.time)
332 * to reverse index gd_cpuclock_base, but that it is possible for
333 * it to temporarily get behind in the seconds if something in the
334 * system locks interrupts for a long period of time. Since periodic
335 * timers count events, though everything should resynch again
336 * immediately.
337 */
338 cputicks = info->time - gd->gd_cpuclock_base;
339 if (cputicks >= sys_cputimer->freq) {
340 ++gd->gd_time_seconds;
341 gd->gd_cpuclock_base += sys_cputimer->freq;
342 }
343
344 /*
345 * The system-wide ticks counter and NTP related timedelta/tickdelta
346 * adjustments only occur on cpu #0. NTP adjustments are accomplished
347 * by updating basetime.
348 */
349 if (gd->gd_cpuid == 0) {
350 struct timespec *nbt;
351 struct timespec nts;
352 int leap;
353 int ni;
354
355 ++ticks;
356
357#ifdef DEVICE_POLLING
358 hardclock_device_poll(); /* mpsafe, short and quick */
359#endif /* DEVICE_POLLING */
360
361#if 0
362 if (tco->tc_poll_pps)
363 tco->tc_poll_pps(tco);
364#endif
365
366 /*
367 * Calculate the new basetime index. We are in a critical section
368 * on cpu #0 and can safely play with basetime_index. Start
369 * with the current basetime and then make adjustments.
370 */
371 ni = (basetime_index + 1) & BASETIME_ARYMASK;
372 nbt = &basetime[ni];
373 *nbt = basetime[basetime_index];
374
375 /*
376 * Apply adjtime corrections. (adjtime() API)
377 *
378 * adjtime() only runs on cpu #0 so our critical section is
379 * sufficient to access these variables.
380 */
381 if (ntp_delta != 0) {
382 nbt->tv_nsec += ntp_tick_delta;
383 ntp_delta -= ntp_tick_delta;
384 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
385 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
386 ntp_tick_delta = ntp_delta;
387 }
388 }
389
390 /*
391 * Apply permanent frequency corrections. (sysctl API)
392 */
393 if (ntp_tick_permanent != 0) {
394 ntp_tick_acc += ntp_tick_permanent;
395 if (ntp_tick_acc >= (1LL << 32)) {
396 nbt->tv_nsec += ntp_tick_acc >> 32;
397 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
398 } else if (ntp_tick_acc <= -(1LL << 32)) {
399 /* Negate ntp_tick_acc to avoid shifting the sign bit. */
400 nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
401 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
402 }
403 }
404
405 if (nbt->tv_nsec >= 1000000000) {
406 nbt->tv_sec++;
407 nbt->tv_nsec -= 1000000000;
408 } else if (nbt->tv_nsec < 0) {
409 nbt->tv_sec--;
410 nbt->tv_nsec += 1000000000;
411 }
412
413 /*
414 * Another per-tick compensation. (for ntp_adjtime() API)
415 */
416 if (nsec_adj != 0) {
417 nsec_acc += nsec_adj;
418 if (nsec_acc >= 0x100000000LL) {
419 nbt->tv_nsec += nsec_acc >> 32;
420 nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
421 } else if (nsec_acc <= -0x100000000LL) {
422 nbt->tv_nsec -= -nsec_acc >> 32;
423 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
424 }
425 if (nbt->tv_nsec >= 1000000000) {
426 nbt->tv_nsec -= 1000000000;
427 ++nbt->tv_sec;
428 } else if (nbt->tv_nsec < 0) {
429 nbt->tv_nsec += 1000000000;
430 --nbt->tv_sec;
431 }
432 }
433
434 /************************************************************
435 * LEAP SECOND CORRECTION *
436 ************************************************************
437 *
438 * Taking into account all the corrections made above, figure
439 * out the new real time. If the seconds field has changed
440 * then apply any pending leap-second corrections.
441 */
442 getnanotime_nbt(nbt, &nts);
443
444 if (time_second != nts.tv_sec) {
445 /*
446 * Apply leap second (sysctl API). Adjust nts for changes
447 * so we do not have to call getnanotime_nbt again.
448 */
449 if (ntp_leap_second) {
450 if (ntp_leap_second == nts.tv_sec) {
451 if (ntp_leap_insert) {
452 nbt->tv_sec++;
453 nts.tv_sec++;
454 } else {
455 nbt->tv_sec--;
456 nts.tv_sec--;
457 }
458 ntp_leap_second--;
459 }
460 }
461
462 /*
463 * Apply leap second (ntp_adjtime() API), calculate a new
464 * nsec_adj field. ntp_update_second() returns nsec_adj
465 * as a per-second value but we need it as a per-tick value.
466 */
467 leap = ntp_update_second(time_second, &nsec_adj);
468 nsec_adj /= hz;
469 nbt->tv_sec += leap;
470 nts.tv_sec += leap;
471
472 /*
473 * Update the time_second 'approximate time' global.
474 */
475 time_second = nts.tv_sec;
476 }
477
478 /*
479 * Finally, our new basetime is ready to go live!
480 */
481 cpu_mb1();
482 basetime_index = ni;
483 }
484
485 /*
486 * softticks are handled for all cpus
487 */
488 hardclock_softtick(gd);
489
490 /*
491 * ITimer handling is per-tick, per-cpu. I don't think psignal()
492 * is mpsafe on curproc, so XXX get the mplock.
493 */
494 if ((p = curproc) != NULL && try_mplock()) {
495 pstats = p->p_stats;
496 if (frame && CLKF_USERMODE(frame) &&
497 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
498 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
499 psignal(p, SIGVTALRM);
500 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
501 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
502 psignal(p, SIGPROF);
503 rel_mplock();
504 }
505 setdelayed();
506}
507
508/*
509 * The statistics clock typically runs at a 125Hz rate, and is intended
510 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
511 *
512 * NOTE! systimer! the MP lock might not be held here. We can only safely
513 * manipulate objects owned by the current cpu.
514 *
515 * The stats clock is responsible for grabbing a profiling sample.
516 * Most of the statistics are only used by user-level statistics programs.
517 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
518 * p->p_estcpu.
519 *
520 * Like the other clocks, the stat clock is called from what is effectively
521 * a fast interrupt, so the context should be the thread/process that got
522 * interrupted.
523 */
524static void
525statclock(systimer_t info, struct intrframe *frame)
526{
527#ifdef GPROF
528 struct gmonparam *g;
529 int i;
530#endif
531 thread_t td;
532 struct proc *p;
533 int bump;
534 struct timeval tv;
535 struct timeval *stv;
536
537 /*
538 * How big was our timeslice relative to the last time?
539 */
540 microuptime(&tv); /* mpsafe */
541 stv = &mycpu->gd_stattv;
542 if (stv->tv_sec == 0) {
543 bump = 1;
544 } else {
545 bump = tv.tv_usec - stv->tv_usec +
546 (tv.tv_sec - stv->tv_sec) * 1000000;
547 if (bump < 0)
548 bump = 0;
549 if (bump > 1000000)
550 bump = 1000000;
551 }
552 *stv = tv;
553
554 td = curthread;
555 p = td->td_proc;
556
557 if (frame && CLKF_USERMODE(frame)) {
558 /*
559 * Came from userland, handle user time and deal with
560 * possible process.
561 */
562 if (p && (p->p_flag & P_PROFIL))
563 addupc_intr(p, CLKF_PC(frame), 1);
564 td->td_uticks += bump;
565
566 /*
567 * Charge the time as appropriate
568 */
569 if (p && p->p_nice > NZERO)
570 cpu_time.cp_nice += bump;
571 else
572 cpu_time.cp_user += bump;
573 } else {
574#ifdef GPROF
575 /*
576 * Kernel statistics are just like addupc_intr, only easier.
577 */
578 g = &_gmonparam;
579 if (g->state == GMON_PROF_ON && frame) {
580 i = CLKF_PC(frame) - g->lowpc;
581 if (i < g->textsize) {
582 i /= HISTFRACTION * sizeof(*g->kcount);
583 g->kcount[i]++;
584 }
585 }
586#endif
587 /*
588 * Came from kernel mode, so we were:
589 * - handling an interrupt,
590 * - doing syscall or trap work on behalf of the current
591 * user process, or
592 * - spinning in the idle loop.
593 * Whichever it is, charge the time as appropriate.
594 * Note that we charge interrupts to the current process,
595 * regardless of whether they are ``for'' that process,
596 * so that we know how much of its real time was spent
597 * in ``non-process'' (i.e., interrupt) work.
598 *
599 * XXX assume system if frame is NULL. A NULL frame
600 * can occur if ipi processing is done from an splx().
601 */
602 if (frame && CLKF_INTR(frame))
603 td->td_iticks += bump;
604 else
605 td->td_sticks += bump;
606
607 if (frame && CLKF_INTR(frame)) {
608 cpu_time.cp_intr += bump;
609 } else {
610 if (td == &mycpu->gd_idlethread)
611 cpu_time.cp_idle += bump;
612 else
613 cpu_time.cp_sys += bump;
614 }
615 }
616}
617
618/*
619 * The scheduler clock typically runs at a 20Hz rate. NOTE! systimer,
620 * the MP lock might not be held. We can safely manipulate parts of curproc
621 * but that's about it.
622 */
623static void
624schedclock(systimer_t info, struct intrframe *frame)
625{
626 struct proc *p;
627 struct pstats *pstats;
628 struct rusage *ru;
629 struct vmspace *vm;
630 long rss;
631
632 schedulerclock(NULL); /* mpsafe */
633 if ((p = curproc) != NULL) {
634 /* Update resource usage integrals and maximums. */
635 if ((pstats = p->p_stats) != NULL &&
636 (ru = &pstats->p_ru) != NULL &&
637 (vm = p->p_vmspace) != NULL) {
638 ru->ru_ixrss += pgtok(vm->vm_tsize);
639 ru->ru_idrss += pgtok(vm->vm_dsize);
640 ru->ru_isrss += pgtok(vm->vm_ssize);
641 rss = pgtok(vmspace_resident_count(vm));
642 if (ru->ru_maxrss < rss)
643 ru->ru_maxrss = rss;
644 }
645 }
646}
647
648/*
649 * Compute number of ticks for the specified amount of time. The
650 * return value is intended to be used in a clock interrupt timed
651 * operation and guarenteed to meet or exceed the requested time.
652 * If the representation overflows, return INT_MAX. The minimum return
653 * value is 1 ticks and the function will average the calculation up.
654 * If any value greater then 0 microseconds is supplied, a value
655 * of at least 2 will be returned to ensure that a near-term clock
656 * interrupt does not cause the timeout to occur (degenerately) early.
657 *
658 * Note that limit checks must take into account microseconds, which is
659 * done simply by using the smaller signed long maximum instead of
660 * the unsigned long maximum.
661 *
662 * If ints have 32 bits, then the maximum value for any timeout in
663 * 10ms ticks is 248 days.
664 */
665int
666tvtohz_high(struct timeval *tv)
667{
668 int ticks;
669 long sec, usec;
670
671 sec = tv->tv_sec;
672 usec = tv->tv_usec;
673 if (usec < 0) {
674 sec--;
675 usec += 1000000;
676 }
677 if (sec < 0) {
678#ifdef DIAGNOSTIC
679 if (usec > 0) {
680 sec++;
681 usec -= 1000000;
682 }
683 printf("tvotohz: negative time difference %ld sec %ld usec\n",
684 sec, usec);
685#endif
686 ticks = 1;
687 } else if (sec <= INT_MAX / hz) {
688 ticks = (int)(sec * hz +
689 ((u_long)usec + (tick - 1)) / tick) + 1;
690 } else {
691 ticks = INT_MAX;
692 }
693 return (ticks);
694}
695
696/*
697 * Compute number of ticks for the specified amount of time, erroring on
698 * the side of it being too low to ensure that sleeping the returned number
699 * of ticks will not result in a late return.
700 *
701 * The supplied timeval may not be negative and should be normalized. A
702 * return value of 0 is possible if the timeval converts to less then
703 * 1 tick.
704 *
705 * If ints have 32 bits, then the maximum value for any timeout in
706 * 10ms ticks is 248 days.
707 */
708int
709tvtohz_low(struct timeval *tv)
710{
711 int ticks;
712 long sec;
713
714 sec = tv->tv_sec;
715 if (sec <= INT_MAX / hz)
716 ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick);
717 else
718 ticks = INT_MAX;
719 return (ticks);
720}
721
722
723/*
724 * Start profiling on a process.
725 *
726 * Kernel profiling passes proc0 which never exits and hence
727 * keeps the profile clock running constantly.
728 */
729void
730startprofclock(struct proc *p)
731{
732 if ((p->p_flag & P_PROFIL) == 0) {
733 p->p_flag |= P_PROFIL;
734#if 0 /* XXX */
735 if (++profprocs == 1 && stathz != 0) {
736 s = splstatclock();
737 psdiv = psratio;
738 setstatclockrate(profhz);
739 splx(s);
740 }
741#endif
742 }
743}
744
745/*
746 * Stop profiling on a process.
747 */
748void
749stopprofclock(struct proc *p)
750{
751 if (p->p_flag & P_PROFIL) {
752 p->p_flag &= ~P_PROFIL;
753#if 0 /* XXX */
754 if (--profprocs == 0 && stathz != 0) {
755 s = splstatclock();
756 psdiv = 1;
757 setstatclockrate(stathz);
758 splx(s);
759 }
760#endif
761 }
762}
763
764/*
765 * Return information about system clocks.
766 */
767static int
768sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
769{
770 struct kinfo_clockinfo clkinfo;
771 /*
772 * Construct clockinfo structure.
773 */
774 clkinfo.ci_hz = hz;
775 clkinfo.ci_tick = tick;
776 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
777 clkinfo.ci_profhz = profhz;
778 clkinfo.ci_stathz = stathz ? stathz : hz;
779 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
780}
781
782SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
783 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
784
785/*
786 * We have eight functions for looking at the clock, four for
787 * microseconds and four for nanoseconds. For each there is fast
788 * but less precise version "get{nano|micro}[up]time" which will
789 * return a time which is up to 1/HZ previous to the call, whereas
790 * the raw version "{nano|micro}[up]time" will return a timestamp
791 * which is as precise as possible. The "up" variants return the
792 * time relative to system boot, these are well suited for time
793 * interval measurements.
794 *
795 * Each cpu independantly maintains the current time of day, so all
796 * we need to do to protect ourselves from changes is to do a loop
797 * check on the seconds field changing out from under us.
798 *
799 * The system timer maintains a 32 bit count and due to various issues
800 * it is possible for the calculated delta to occassionally exceed
801 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec
802 * multiplication can easily overflow, so we deal with the case. For
803 * uniformity we deal with the case in the usec case too.
804 */
805void
806getmicrouptime(struct timeval *tvp)
807{
808 struct globaldata *gd = mycpu;
809 sysclock_t delta;
810
811 do {
812 tvp->tv_sec = gd->gd_time_seconds;
813 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
814 } while (tvp->tv_sec != gd->gd_time_seconds);
815
816 if (delta >= sys_cputimer->freq) {
817 tvp->tv_sec += delta / sys_cputimer->freq;
818 delta %= sys_cputimer->freq;
819 }
820 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
821 if (tvp->tv_usec >= 1000000) {
822 tvp->tv_usec -= 1000000;
823 ++tvp->tv_sec;
824 }
825}
826
827void
828getnanouptime(struct timespec *tsp)
829{
830 struct globaldata *gd = mycpu;
831 sysclock_t delta;
832
833 do {
834 tsp->tv_sec = gd->gd_time_seconds;
835 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
836 } while (tsp->tv_sec != gd->gd_time_seconds);
837
838 if (delta >= sys_cputimer->freq) {
839 tsp->tv_sec += delta / sys_cputimer->freq;
840 delta %= sys_cputimer->freq;
841 }
842 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
843}
844
845void
846microuptime(struct timeval *tvp)
847{
848 struct globaldata *gd = mycpu;
849 sysclock_t delta;
850
851 do {
852 tvp->tv_sec = gd->gd_time_seconds;
853 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
854 } while (tvp->tv_sec != gd->gd_time_seconds);
855
856 if (delta >= sys_cputimer->freq) {
857 tvp->tv_sec += delta / sys_cputimer->freq;
858 delta %= sys_cputimer->freq;
859 }
860 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
861}
862
863void
864nanouptime(struct timespec *tsp)
865{
866 struct globaldata *gd = mycpu;
867 sysclock_t delta;
868
869 do {
870 tsp->tv_sec = gd->gd_time_seconds;
871 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
872 } while (tsp->tv_sec != gd->gd_time_seconds);
873
874 if (delta >= sys_cputimer->freq) {
875 tsp->tv_sec += delta / sys_cputimer->freq;
876 delta %= sys_cputimer->freq;
877 }
878 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
879}
880
881/*
882 * realtime routines
883 */
884
885void
886getmicrotime(struct timeval *tvp)
887{
888 struct globaldata *gd = mycpu;
889 struct timespec *bt;
890 sysclock_t delta;
891
892 do {
893 tvp->tv_sec = gd->gd_time_seconds;
894 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
895 } while (tvp->tv_sec != gd->gd_time_seconds);
896
897 if (delta >= sys_cputimer->freq) {
898 tvp->tv_sec += delta / sys_cputimer->freq;
899 delta %= sys_cputimer->freq;
900 }
901 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
902
903 bt = &basetime[basetime_index];
904 tvp->tv_sec += bt->tv_sec;
905 tvp->tv_usec += bt->tv_nsec / 1000;
906 while (tvp->tv_usec >= 1000000) {
907 tvp->tv_usec -= 1000000;
908 ++tvp->tv_sec;
909 }
910}
911
912void
913getnanotime(struct timespec *tsp)
914{
915 struct globaldata *gd = mycpu;
916 struct timespec *bt;
917 sysclock_t delta;
918
919 do {
920 tsp->tv_sec = gd->gd_time_seconds;
921 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
922 } while (tsp->tv_sec != gd->gd_time_seconds);
923
924 if (delta >= sys_cputimer->freq) {
925 tsp->tv_sec += delta / sys_cputimer->freq;
926 delta %= sys_cputimer->freq;
927 }
928 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
929
930 bt = &basetime[basetime_index];
931 tsp->tv_sec += bt->tv_sec;
932 tsp->tv_nsec += bt->tv_nsec;
933 while (tsp->tv_nsec >= 1000000000) {
934 tsp->tv_nsec -= 1000000000;
935 ++tsp->tv_sec;
936 }
937}
938
939static void
940getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
941{
942 struct globaldata *gd = mycpu;
943 sysclock_t delta;
944
945 do {
946 tsp->tv_sec = gd->gd_time_seconds;
947 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
948 } while (tsp->tv_sec != gd->gd_time_seconds);
949
950 if (delta >= sys_cputimer->freq) {
951 tsp->tv_sec += delta / sys_cputimer->freq;
952 delta %= sys_cputimer->freq;
953 }
954 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
955
956 tsp->tv_sec += nbt->tv_sec;
957 tsp->tv_nsec += nbt->tv_nsec;
958 while (tsp->tv_nsec >= 1000000000) {
959 tsp->tv_nsec -= 1000000000;
960 ++tsp->tv_sec;
961 }
962}
963
964
965void
966microtime(struct timeval *tvp)
967{
968 struct globaldata *gd = mycpu;
969 struct timespec *bt;
970 sysclock_t delta;
971
972 do {
973 tvp->tv_sec = gd->gd_time_seconds;
974 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
975 } while (tvp->tv_sec != gd->gd_time_seconds);
976
977 if (delta >= sys_cputimer->freq) {
978 tvp->tv_sec += delta / sys_cputimer->freq;
979 delta %= sys_cputimer->freq;
980 }
981 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
982
983 bt = &basetime[basetime_index];
984 tvp->tv_sec += bt->tv_sec;
985 tvp->tv_usec += bt->tv_nsec / 1000;
986 while (tvp->tv_usec >= 1000000) {
987 tvp->tv_usec -= 1000000;
988 ++tvp->tv_sec;
989 }
990}
991
992void
993nanotime(struct timespec *tsp)
994{
995 struct globaldata *gd = mycpu;
996 struct timespec *bt;
997 sysclock_t delta;
998
999 do {
1000 tsp->tv_sec = gd->gd_time_seconds;
1001 delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1002 } while (tsp->tv_sec != gd->gd_time_seconds);
1003
1004 if (delta >= sys_cputimer->freq) {
1005 tsp->tv_sec += delta / sys_cputimer->freq;
1006 delta %= sys_cputimer->freq;
1007 }
1008 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1009
1010 bt = &basetime[basetime_index];
1011 tsp->tv_sec += bt->tv_sec;
1012 tsp->tv_nsec += bt->tv_nsec;
1013 while (tsp->tv_nsec >= 1000000000) {
1014 tsp->tv_nsec -= 1000000000;
1015 ++tsp->tv_sec;
1016 }
1017}
1018
1019/*
1020 * note: this is not exactly synchronized with real time. To do that we
1021 * would have to do what microtime does and check for a nanoseconds overflow.
1022 */
1023time_t
1024get_approximate_time_t(void)
1025{
1026 struct globaldata *gd = mycpu;
1027 struct timespec *bt;
1028
1029 bt = &basetime[basetime_index];
1030 return(gd->gd_time_seconds + bt->tv_sec);
1031}
1032
1033int
1034pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1035{
1036 pps_params_t *app;
1037 struct pps_fetch_args *fapi;
1038#ifdef PPS_SYNC
1039 struct pps_kcbind_args *kapi;
1040#endif
1041
1042 switch (cmd) {
1043 case PPS_IOC_CREATE:
1044 return (0);
1045 case PPS_IOC_DESTROY:
1046 return (0);
1047 case PPS_IOC_SETPARAMS:
1048 app = (pps_params_t *)data;
1049 if (app->mode & ~pps->ppscap)
1050 return (EINVAL);
1051 pps->ppsparam = *app;
1052 return (0);
1053 case PPS_IOC_GETPARAMS:
1054 app = (pps_params_t *)data;
1055 *app = pps->ppsparam;
1056 app->api_version = PPS_API_VERS_1;
1057 return (0);
1058 case PPS_IOC_GETCAP:
1059 *(int*)data = pps->ppscap;
1060 return (0);
1061 case PPS_IOC_FETCH:
1062 fapi = (struct pps_fetch_args *)data;
1063 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1064 return (EINVAL);
1065 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1066 return (EOPNOTSUPP);
1067 pps->ppsinfo.current_mode = pps->ppsparam.mode;
1068 fapi->pps_info_buf = pps->ppsinfo;
1069 return (0);
1070 case PPS_IOC_KCBIND:
1071#ifdef PPS_SYNC
1072 kapi = (struct pps_kcbind_args *)data;
1073 /* XXX Only root should be able to do this */
1074 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1075 return (EINVAL);
1076 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1077 return (EINVAL);
1078 if (kapi->edge & ~pps->ppscap)
1079 return (EINVAL);
1080 pps->kcmode = kapi->edge;
1081 return (0);
1082#else
1083 return (EOPNOTSUPP);
1084#endif
1085 default:
1086 return (ENOTTY);
1087 }
1088}
1089
1090void
1091pps_init(struct pps_state *pps)
1092{
1093 pps->ppscap |= PPS_TSFMT_TSPEC;
1094 if (pps->ppscap & PPS_CAPTUREASSERT)
1095 pps->ppscap |= PPS_OFFSETASSERT;
1096 if (pps->ppscap & PPS_CAPTURECLEAR)
1097 pps->ppscap |= PPS_OFFSETCLEAR;
1098}
1099
1100void
1101pps_event(struct pps_state *pps, sysclock_t count, int event)
1102{
1103 struct globaldata *gd;
1104 struct timespec *tsp;
1105 struct timespec *osp;
1106 struct timespec *bt;
1107 struct timespec ts;
1108 sysclock_t *pcount;
1109#ifdef PPS_SYNC
1110 sysclock_t tcount;
1111#endif
1112 sysclock_t delta;
1113 pps_seq_t *pseq;
1114 int foff;
1115 int fhard;
1116
1117 gd = mycpu;
1118
1119 /* Things would be easier with arrays... */
1120 if (event == PPS_CAPTUREASSERT) {
1121 tsp = &pps->ppsinfo.assert_timestamp;
1122 osp = &pps->ppsparam.assert_offset;
1123 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1124 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1125 pcount = &pps->ppscount[0];
1126 pseq = &pps->ppsinfo.assert_sequence;
1127 } else {
1128 tsp = &pps->ppsinfo.clear_timestamp;
1129 osp = &pps->ppsparam.clear_offset;
1130 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1131 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1132 pcount = &pps->ppscount[1];
1133 pseq = &pps->ppsinfo.clear_sequence;
1134 }
1135
1136 /* Nothing really happened */
1137 if (*pcount == count)
1138 return;
1139
1140 *pcount = count;
1141
1142 do {
1143 ts.tv_sec = gd->gd_time_seconds;
1144 delta = count - gd->gd_cpuclock_base;
1145 } while (ts.tv_sec != gd->gd_time_seconds);
1146
1147 if (delta >= sys_cputimer->freq) {
1148 ts.tv_sec += delta / sys_cputimer->freq;
1149 delta %= sys_cputimer->freq;
1150 }
1151 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1152 bt = &basetime[basetime_index];
1153 ts.tv_sec += bt->tv_sec;
1154 ts.tv_nsec += bt->tv_nsec;
1155 while (ts.tv_nsec >= 1000000000) {
1156 ts.tv_nsec -= 1000000000;
1157 ++ts.tv_sec;
1158 }
1159
1160 (*pseq)++;
1161 *tsp = ts;
1162
1163 if (foff) {
1164 timespecadd(tsp, osp);
1165 if (tsp->tv_nsec < 0) {
1166 tsp->tv_nsec += 1000000000;
1167 tsp->tv_sec -= 1;
1168 }
1169 }
1170#ifdef PPS_SYNC
1171 if (fhard) {
1172 /* magic, at its best... */
1173 tcount = count - pps->ppscount[2];
1174 pps->ppscount[2] = count;
1175 if (tcount >= sys_cputimer->freq) {
1176 delta = (1000000000 * (tcount / sys_cputimer->freq) +
1177 sys_cputimer->freq64_nsec *
1178 (tcount % sys_cputimer->freq)) >> 32;
1179 } else {
1180 delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1181 }
1182 hardpps(tsp, delta);
1183 }
1184#endif
1185}
1186