If a neighbor solictation or neighbor advertisement isn't from the
[dragonfly.git] / sys / netinet6 / in6.c
... / ...
CommitLineData
1/* $FreeBSD: src/sys/netinet6/in6.c,v 1.7.2.9 2002/04/28 05:40:26 suz Exp $ */
2/* $DragonFly: src/sys/netinet6/in6.c,v 1.30 2008/10/03 07:59:20 hasso Exp $ */
3/* $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ */
4
5/*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34/*
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)in.c 8.2 (Berkeley) 11/15/93
67 */
68
69#include "opt_inet.h"
70#include "opt_inet6.h"
71
72#include <sys/param.h>
73#include <sys/errno.h>
74#include <sys/malloc.h>
75#include <sys/socket.h>
76#include <sys/socketvar.h>
77#include <sys/sockio.h>
78#include <sys/systm.h>
79#include <sys/proc.h>
80#include <sys/time.h>
81#include <sys/kernel.h>
82#include <sys/syslog.h>
83#include <sys/thread2.h>
84
85#include <net/if.h>
86#include <net/if_types.h>
87#include <net/route.h>
88#include <net/if_dl.h>
89
90#include <netinet/in.h>
91#include <netinet/in_var.h>
92#include <netinet/if_ether.h>
93#include <netinet/in_systm.h>
94#include <netinet/ip.h>
95#include <netinet/in_pcb.h>
96
97#include <netinet/ip6.h>
98#include <netinet6/ip6_var.h>
99#include <netinet6/nd6.h>
100#include <netinet6/mld6_var.h>
101#include <netinet6/ip6_mroute.h>
102#include <netinet6/in6_ifattach.h>
103#include <netinet6/scope6_var.h>
104#include <netinet6/in6_pcb.h>
105#include <netinet6/in6_var.h>
106
107#include <net/net_osdep.h>
108
109/*
110 * Definitions of some costant IP6 addresses.
111 */
112const struct in6_addr kin6addr_any = IN6ADDR_ANY_INIT;
113const struct in6_addr kin6addr_loopback = IN6ADDR_LOOPBACK_INIT;
114const struct in6_addr kin6addr_nodelocal_allnodes =
115 IN6ADDR_NODELOCAL_ALLNODES_INIT;
116const struct in6_addr kin6addr_linklocal_allnodes =
117 IN6ADDR_LINKLOCAL_ALLNODES_INIT;
118const struct in6_addr kin6addr_linklocal_allrouters =
119 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
120
121const struct in6_addr in6mask0 = IN6MASK0;
122const struct in6_addr in6mask32 = IN6MASK32;
123const struct in6_addr in6mask64 = IN6MASK64;
124const struct in6_addr in6mask96 = IN6MASK96;
125const struct in6_addr in6mask128 = IN6MASK128;
126
127const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6,
128 0, 0, IN6ADDR_ANY_INIT, 0};
129
130static int in6_lifaddr_ioctl (struct socket *, u_long, caddr_t,
131 struct ifnet *, struct thread *);
132static int in6_ifinit (struct ifnet *, struct in6_ifaddr *,
133 struct sockaddr_in6 *, int);
134static void in6_unlink_ifa (struct in6_ifaddr *, struct ifnet *);
135static void in6_ifloop_request_callback(int, int, struct rt_addrinfo *, struct rtentry *, void *);
136
137struct in6_multihead in6_multihead; /* XXX BSS initialization */
138
139int (*faithprefix_p)(struct in6_addr *);
140
141/*
142 * Subroutine for in6_ifaddloop() and in6_ifremloop().
143 * This routine does actual work.
144 */
145static void
146in6_ifloop_request(int cmd, struct ifaddr *ifa)
147{
148 struct sockaddr_in6 all1_sa;
149 struct rt_addrinfo rtinfo;
150 int error;
151
152 bzero(&all1_sa, sizeof(all1_sa));
153 all1_sa.sin6_family = AF_INET6;
154 all1_sa.sin6_len = sizeof(struct sockaddr_in6);
155 all1_sa.sin6_addr = in6mask128;
156
157 /*
158 * We specify the address itself as the gateway, and set the
159 * RTF_LLINFO flag, so that the corresponding host route would have
160 * the flag, and thus applications that assume traditional behavior
161 * would be happy. Note that we assume the caller of the function
162 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest,
163 * which changes the outgoing interface to the loopback interface.
164 */
165 bzero(&rtinfo, sizeof(struct rt_addrinfo));
166 rtinfo.rti_info[RTAX_DST] = ifa->ifa_addr;
167 rtinfo.rti_info[RTAX_GATEWAY] = ifa->ifa_addr;
168 rtinfo.rti_info[RTAX_NETMASK] = (struct sockaddr *)&all1_sa;
169 rtinfo.rti_flags = RTF_UP|RTF_HOST|RTF_LLINFO;
170
171 error = rtrequest1_global(cmd, &rtinfo,
172 in6_ifloop_request_callback, ifa);
173 if (error != 0) {
174 log(LOG_ERR, "in6_ifloop_request: "
175 "%s operation failed for %s (errno=%d)\n",
176 cmd == RTM_ADD ? "ADD" : "DELETE",
177 ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr),
178 error);
179 }
180}
181
182static void
183in6_ifloop_request_callback(int cmd, int error, struct rt_addrinfo *rtinfo,
184 struct rtentry *rt, void *arg)
185{
186 struct ifaddr *ifa = arg;
187
188 if (error)
189 goto done;
190
191 /*
192 * Make sure rt_ifa be equal to IFA, the second argument of the
193 * function.
194 * We need this because when we refer to rt_ifa->ia6_flags in
195 * ip6_input, we assume that the rt_ifa points to the address instead
196 * of the loopback address.
197 */
198 if (cmd == RTM_ADD && rt && ifa != rt->rt_ifa) {
199 ++rt->rt_refcnt;
200 IFAFREE(rt->rt_ifa);
201 IFAREF(ifa);
202 rt->rt_ifa = ifa;
203 --rt->rt_refcnt;
204 }
205
206 /*
207 * Report the addition/removal of the address to the routing socket.
208 * XXX: since we called rtinit for a p2p interface with a destination,
209 * we end up reporting twice in such a case. Should we rather
210 * omit the second report?
211 */
212 if (rt) {
213 if (mycpuid == 0)
214 rt_newaddrmsg(cmd, ifa, error, rt);
215 if (cmd == RTM_DELETE) {
216 if (rt->rt_refcnt == 0) {
217 ++rt->rt_refcnt;
218 rtfree(rt);
219 }
220 }
221 }
222done:
223 /* no way to return any new error */
224 ;
225}
226
227/*
228 * Add ownaddr as loopback rtentry. We previously add the route only if
229 * necessary (ex. on a p2p link). However, since we now manage addresses
230 * separately from prefixes, we should always add the route. We can't
231 * rely on the cloning mechanism from the corresponding interface route
232 * any more.
233 */
234void
235in6_ifaddloop(struct ifaddr *ifa)
236{
237 struct rtentry *rt;
238
239 /* If there is no loopback entry, allocate one. */
240 rt = rtpurelookup(ifa->ifa_addr);
241 if (rt == NULL || !(rt->rt_flags & RTF_HOST) ||
242 !(rt->rt_ifp->if_flags & IFF_LOOPBACK))
243 in6_ifloop_request(RTM_ADD, ifa);
244 if (rt != NULL)
245 rt->rt_refcnt--;
246}
247
248/*
249 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
250 * if it exists.
251 */
252void
253in6_ifremloop(struct ifaddr *ifa)
254{
255 struct in6_ifaddr *ia;
256 struct rtentry *rt;
257 int ia_count = 0;
258
259 /*
260 * Some of BSD variants do not remove cloned routes
261 * from an interface direct route, when removing the direct route
262 * (see comments in net/net_osdep.h). Even for variants that do remove
263 * cloned routes, they could fail to remove the cloned routes when
264 * we handle multple addresses that share a common prefix.
265 * So, we should remove the route corresponding to the deleted address
266 * regardless of the result of in6_is_ifloop_auto().
267 */
268
269 /*
270 * Delete the entry only if exact one ifa exists. More than one ifa
271 * can exist if we assign a same single address to multiple
272 * (probably p2p) interfaces.
273 * XXX: we should avoid such a configuration in IPv6...
274 */
275 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
276 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) {
277 ia_count++;
278 if (ia_count > 1)
279 break;
280 }
281 }
282
283 if (ia_count == 1) {
284 /*
285 * Before deleting, check if a corresponding loopbacked host
286 * route surely exists. With this check, we can avoid to
287 * delete an interface direct route whose destination is same
288 * as the address being removed. This can happen when remofing
289 * a subnet-router anycast address on an interface attahced
290 * to a shared medium.
291 */
292 rt = rtpurelookup(ifa->ifa_addr);
293 if (rt != NULL && (rt->rt_flags & RTF_HOST) &&
294 (rt->rt_ifp->if_flags & IFF_LOOPBACK)) {
295 rt->rt_refcnt--;
296 in6_ifloop_request(RTM_DELETE, ifa);
297 }
298 }
299}
300
301int
302in6_ifindex2scopeid(int idx)
303{
304 struct ifnet *ifp;
305 struct sockaddr_in6 *sin6;
306 struct ifaddr_container *ifac;
307
308 if (idx < 0 || if_index < idx)
309 return -1;
310 ifp = ifindex2ifnet[idx];
311
312 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link)
313 {
314 struct ifaddr *ifa = ifac->ifa;
315
316 if (ifa->ifa_addr->sa_family != AF_INET6)
317 continue;
318 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr;
319 if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))
320 return sin6->sin6_scope_id & 0xffff;
321 }
322
323 return -1;
324}
325
326int
327in6_mask2len(struct in6_addr *mask, u_char *lim0)
328{
329 int x = 0, y;
330 u_char *lim = lim0, *p;
331
332 if (lim0 == NULL ||
333 lim0 - (u_char *)mask > sizeof(*mask)) /* ignore the scope_id part */
334 lim = (u_char *)mask + sizeof(*mask);
335 for (p = (u_char *)mask; p < lim; x++, p++) {
336 if (*p != 0xff)
337 break;
338 }
339 y = 0;
340 if (p < lim) {
341 for (y = 0; y < 8; y++) {
342 if ((*p & (0x80 >> y)) == 0)
343 break;
344 }
345 }
346
347 /*
348 * when the limit pointer is given, do a stricter check on the
349 * remaining bits.
350 */
351 if (p < lim) {
352 if (y != 0 && (*p & (0x00ff >> y)) != 0)
353 return (-1);
354 for (p = p + 1; p < lim; p++)
355 if (*p != 0)
356 return (-1);
357 }
358
359 return x * 8 + y;
360}
361
362void
363in6_len2mask(struct in6_addr *mask, int len)
364{
365 int i;
366
367 bzero(mask, sizeof(*mask));
368 for (i = 0; i < len / 8; i++)
369 mask->s6_addr8[i] = 0xff;
370 if (len % 8)
371 mask->s6_addr8[i] = (0xff00 >> (len % 8)) & 0xff;
372}
373
374#define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa))
375#define ia62ifa(ia6) (&((ia6)->ia_ifa))
376
377int
378in6_control(struct socket *so, u_long cmd, caddr_t data,
379 struct ifnet *ifp, struct thread *td)
380{
381 struct in6_ifreq *ifr = (struct in6_ifreq *)data;
382 struct in6_ifaddr *ia = NULL;
383 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data;
384 int privileged;
385 int error;
386
387 privileged = 0;
388 if (suser(td) == 0)
389 privileged++;
390
391 switch (cmd) {
392 case SIOCGETSGCNT_IN6:
393 case SIOCGETMIFCNT_IN6:
394 return (mrt6_ioctl(cmd, data));
395 }
396
397 if (ifp == NULL)
398 return (EOPNOTSUPP);
399
400 switch (cmd) {
401 case SIOCSNDFLUSH_IN6:
402 case SIOCSPFXFLUSH_IN6:
403 case SIOCSRTRFLUSH_IN6:
404 case SIOCSDEFIFACE_IN6:
405 case SIOCSIFINFO_FLAGS:
406 if (!privileged)
407 return (EPERM);
408 /* fall through */
409 case OSIOCGIFINFO_IN6:
410 case SIOCGIFINFO_IN6:
411 case SIOCGDRLST_IN6:
412 case SIOCGPRLST_IN6:
413 case SIOCGNBRINFO_IN6:
414 case SIOCGDEFIFACE_IN6:
415 return (nd6_ioctl(cmd, data, ifp));
416 }
417
418 switch (cmd) {
419 case SIOCSIFPREFIX_IN6:
420 case SIOCDIFPREFIX_IN6:
421 case SIOCAIFPREFIX_IN6:
422 case SIOCCIFPREFIX_IN6:
423 case SIOCSGIFPREFIX_IN6:
424 case SIOCGIFPREFIX_IN6:
425 log(LOG_NOTICE,
426 "prefix ioctls are now invalidated. "
427 "please use ifconfig.\n");
428 return (EOPNOTSUPP);
429 }
430
431 switch (cmd) {
432 case SIOCSSCOPE6:
433 if (!privileged)
434 return (EPERM);
435 return (scope6_set(ifp,
436 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id));
437 break;
438 case SIOCGSCOPE6:
439 return (scope6_get(ifp,
440 (struct scope6_id *)ifr->ifr_ifru.ifru_scope_id));
441 break;
442 case SIOCGSCOPE6DEF:
443 return (scope6_get_default((struct scope6_id *)
444 ifr->ifr_ifru.ifru_scope_id));
445 break;
446 }
447
448 switch (cmd) {
449 case SIOCALIFADDR:
450 case SIOCDLIFADDR:
451 if (!privileged)
452 return (EPERM);
453 /* fall through */
454 case SIOCGLIFADDR:
455 return in6_lifaddr_ioctl(so, cmd, data, ifp, td);
456 }
457
458 /*
459 * Find address for this interface, if it exists.
460 */
461 if (ifra->ifra_addr.sin6_family == AF_INET6) { /* XXX */
462 struct sockaddr_in6 *sa6 =
463 (struct sockaddr_in6 *)&ifra->ifra_addr;
464
465 if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) {
466 if (sa6->sin6_addr.s6_addr16[1] == 0) {
467 /* link ID is not embedded by the user */
468 sa6->sin6_addr.s6_addr16[1] =
469 htons(ifp->if_index);
470 } else if (sa6->sin6_addr.s6_addr16[1] !=
471 htons(ifp->if_index)) {
472 return (EINVAL); /* link ID contradicts */
473 }
474 if (sa6->sin6_scope_id) {
475 if (sa6->sin6_scope_id !=
476 (u_int32_t)ifp->if_index)
477 return (EINVAL);
478 sa6->sin6_scope_id = 0; /* XXX: good way? */
479 }
480 }
481 ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr);
482 }
483
484 switch (cmd) {
485 case SIOCSIFADDR_IN6:
486 case SIOCSIFDSTADDR_IN6:
487 case SIOCSIFNETMASK_IN6:
488 /*
489 * Since IPv6 allows a node to assign multiple addresses
490 * on a single interface, SIOCSIFxxx ioctls are not suitable
491 * and should be unused.
492 */
493 /* we decided to obsolete this command (20000704) */
494 return (EINVAL);
495
496 case SIOCDIFADDR_IN6:
497 /*
498 * for IPv4, we look for existing in_ifaddr here to allow
499 * "ifconfig if0 delete" to remove first IPv4 address on the
500 * interface. For IPv6, as the spec allow multiple interface
501 * address from the day one, we consider "remove the first one"
502 * semantics to be not preferable.
503 */
504 if (ia == NULL)
505 return (EADDRNOTAVAIL);
506 /* FALLTHROUGH */
507 case SIOCAIFADDR_IN6:
508 /*
509 * We always require users to specify a valid IPv6 address for
510 * the corresponding operation.
511 */
512 if (ifra->ifra_addr.sin6_family != AF_INET6 ||
513 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6))
514 return (EAFNOSUPPORT);
515 if (!privileged)
516 return (EPERM);
517
518 break;
519
520 case SIOCGIFADDR_IN6:
521 /* This interface is basically deprecated. use SIOCGIFCONF. */
522 /* fall through */
523 case SIOCGIFAFLAG_IN6:
524 case SIOCGIFNETMASK_IN6:
525 case SIOCGIFDSTADDR_IN6:
526 case SIOCGIFALIFETIME_IN6:
527 /* must think again about its semantics */
528 if (ia == NULL)
529 return (EADDRNOTAVAIL);
530 break;
531 case SIOCSIFALIFETIME_IN6:
532 {
533 struct in6_addrlifetime *lt;
534
535 if (!privileged)
536 return (EPERM);
537 if (ia == NULL)
538 return (EADDRNOTAVAIL);
539 /* sanity for overflow - beware unsigned */
540 lt = &ifr->ifr_ifru.ifru_lifetime;
541 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
542 && lt->ia6t_vltime + time_second < time_second) {
543 return EINVAL;
544 }
545 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
546 && lt->ia6t_pltime + time_second < time_second) {
547 return EINVAL;
548 }
549 break;
550 }
551 }
552
553 switch (cmd) {
554
555 case SIOCGIFADDR_IN6:
556 ifr->ifr_addr = ia->ia_addr;
557 break;
558
559 case SIOCGIFDSTADDR_IN6:
560 if (!(ifp->if_flags & IFF_POINTOPOINT))
561 return (EINVAL);
562 /*
563 * XXX: should we check if ifa_dstaddr is NULL and return
564 * an error?
565 */
566 ifr->ifr_dstaddr = ia->ia_dstaddr;
567 break;
568
569 case SIOCGIFNETMASK_IN6:
570 ifr->ifr_addr = ia->ia_prefixmask;
571 break;
572
573 case SIOCGIFAFLAG_IN6:
574 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
575 break;
576
577 case SIOCGIFSTAT_IN6:
578 if (ifp == NULL)
579 return EINVAL;
580 bzero(&ifr->ifr_ifru.ifru_stat,
581 sizeof(ifr->ifr_ifru.ifru_stat));
582 ifr->ifr_ifru.ifru_stat =
583 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat;
584 break;
585
586 case SIOCGIFSTAT_ICMP6:
587 bzero(&ifr->ifr_ifru.ifru_stat,
588 sizeof(ifr->ifr_ifru.ifru_icmp6stat));
589 ifr->ifr_ifru.ifru_icmp6stat =
590 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat;
591 break;
592
593 case SIOCGIFALIFETIME_IN6:
594 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
595 break;
596
597 case SIOCSIFALIFETIME_IN6:
598 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime;
599 /* for sanity */
600 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
601 ia->ia6_lifetime.ia6t_expire =
602 time_second + ia->ia6_lifetime.ia6t_vltime;
603 } else
604 ia->ia6_lifetime.ia6t_expire = 0;
605 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
606 ia->ia6_lifetime.ia6t_preferred =
607 time_second + ia->ia6_lifetime.ia6t_pltime;
608 } else
609 ia->ia6_lifetime.ia6t_preferred = 0;
610 break;
611
612 case SIOCAIFADDR_IN6:
613 {
614 int i, error = 0;
615 struct nd_prefix pr0, *pr;
616
617 /*
618 * first, make or update the interface address structure,
619 * and link it to the list.
620 */
621 if ((error = in6_update_ifa(ifp, ifra, ia)) != 0)
622 return (error);
623
624 /*
625 * then, make the prefix on-link on the interface.
626 * XXX: we'd rather create the prefix before the address, but
627 * we need at least one address to install the corresponding
628 * interface route, so we configure the address first.
629 */
630
631 /*
632 * convert mask to prefix length (prefixmask has already
633 * been validated in in6_update_ifa().
634 */
635 bzero(&pr0, sizeof(pr0));
636 pr0.ndpr_ifp = ifp;
637 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
638 NULL);
639 if (pr0.ndpr_plen == 128)
640 break; /* we don't need to install a host route. */
641 pr0.ndpr_prefix = ifra->ifra_addr;
642 pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr;
643 /* apply the mask for safety. */
644 for (i = 0; i < 4; i++) {
645 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
646 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
647 }
648 /*
649 * XXX: since we don't have an API to set prefix (not address)
650 * lifetimes, we just use the same lifetimes as addresses.
651 * The (temporarily) installed lifetimes can be overridden by
652 * later advertised RAs (when accept_rtadv is non 0), which is
653 * an intended behavior.
654 */
655 pr0.ndpr_raf_onlink = 1; /* should be configurable? */
656 pr0.ndpr_raf_auto =
657 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0);
658 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
659 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
660
661 /* add the prefix if there's one. */
662 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) {
663 /*
664 * nd6_prelist_add will install the corresponding
665 * interface route.
666 */
667 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0)
668 return (error);
669 if (pr == NULL) {
670 log(LOG_ERR, "nd6_prelist_add succeeded but "
671 "no prefix\n");
672 return (EINVAL); /* XXX panic here? */
673 }
674 }
675 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr))
676 == NULL) {
677 /* XXX: this should not happen! */
678 log(LOG_ERR, "in6_control: addition succeeded, but"
679 " no ifaddr\n");
680 } else {
681 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) &&
682 ia->ia6_ndpr == NULL) { /* new autoconfed addr */
683 ia->ia6_ndpr = pr;
684 pr->ndpr_refcnt++;
685
686 /*
687 * If this is the first autoconf address from
688 * the prefix, create a temporary address
689 * as well (when specified).
690 */
691 if (ip6_use_tempaddr &&
692 pr->ndpr_refcnt == 1) {
693 int e;
694 if ((e = in6_tmpifadd(ia, 1)) != 0) {
695 log(LOG_NOTICE, "in6_control: "
696 "failed to create a "
697 "temporary address, "
698 "errno=%d\n",
699 e);
700 }
701 }
702 }
703
704 /*
705 * this might affect the status of autoconfigured
706 * addresses, that is, this address might make
707 * other addresses detached.
708 */
709 pfxlist_onlink_check();
710 }
711 if (error == 0 && ia)
712 EVENTHANDLER_INVOKE(ifaddr_event, ifp);
713 break;
714 }
715
716 case SIOCDIFADDR_IN6:
717 {
718 int i = 0;
719 struct nd_prefix pr0, *pr;
720
721 /*
722 * If the address being deleted is the only one that owns
723 * the corresponding prefix, expire the prefix as well.
724 * XXX: theoretically, we don't have to warry about such
725 * relationship, since we separate the address management
726 * and the prefix management. We do this, however, to provide
727 * as much backward compatibility as possible in terms of
728 * the ioctl operation.
729 */
730 bzero(&pr0, sizeof(pr0));
731 pr0.ndpr_ifp = ifp;
732 pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr,
733 NULL);
734 if (pr0.ndpr_plen == 128)
735 goto purgeaddr;
736 pr0.ndpr_prefix = ia->ia_addr;
737 pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr;
738 for (i = 0; i < 4; i++) {
739 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
740 ia->ia_prefixmask.sin6_addr.s6_addr32[i];
741 }
742 /*
743 * The logic of the following condition is a bit complicated.
744 * We expire the prefix when
745 * 1. the address obeys autoconfiguration and it is the
746 * only owner of the associated prefix, or
747 * 2. the address does not obey autoconf and there is no
748 * other owner of the prefix.
749 */
750 if ((pr = nd6_prefix_lookup(&pr0)) != NULL &&
751 (((ia->ia6_flags & IN6_IFF_AUTOCONF) &&
752 pr->ndpr_refcnt == 1) ||
753 (!(ia->ia6_flags & IN6_IFF_AUTOCONF) &&
754 pr->ndpr_refcnt == 0))) {
755 pr->ndpr_expire = 1; /* XXX: just for expiration */
756 }
757
758 purgeaddr:
759 in6_purgeaddr(&ia->ia_ifa);
760 EVENTHANDLER_INVOKE(ifaddr_event, ifp);
761 break;
762 }
763
764 default:
765 if (ifp == NULL || ifp->if_ioctl == 0)
766 return (EOPNOTSUPP);
767 lwkt_serialize_enter(ifp->if_serializer);
768 error = ifp->if_ioctl(ifp, cmd, data, td->td_proc->p_ucred);
769 lwkt_serialize_exit(ifp->if_serializer);
770 return (error);
771 }
772
773 return (0);
774}
775
776/*
777 * Update parameters of an IPv6 interface address.
778 * If necessary, a new entry is created and linked into address chains.
779 * This function is separated from in6_control().
780 * XXX: should this be performed under splnet()?
781 */
782int
783in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra,
784 struct in6_ifaddr *ia)
785{
786 int error = 0, hostIsNew = 0, plen = -1;
787 struct in6_ifaddr *oia;
788 struct sockaddr_in6 dst6;
789 struct in6_addrlifetime *lt;
790
791 /* Validate parameters */
792 if (ifp == NULL || ifra == NULL) /* this maybe redundant */
793 return (EINVAL);
794
795 /*
796 * The destination address for a p2p link must have a family
797 * of AF_UNSPEC or AF_INET6.
798 */
799 if ((ifp->if_flags & IFF_POINTOPOINT) &&
800 ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
801 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
802 return (EAFNOSUPPORT);
803 /*
804 * validate ifra_prefixmask. don't check sin6_family, netmask
805 * does not carry fields other than sin6_len.
806 */
807 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6))
808 return (EINVAL);
809 /*
810 * Because the IPv6 address architecture is classless, we require
811 * users to specify a (non 0) prefix length (mask) for a new address.
812 * We also require the prefix (when specified) mask is valid, and thus
813 * reject a non-consecutive mask.
814 */
815 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0)
816 return (EINVAL);
817 if (ifra->ifra_prefixmask.sin6_len != 0) {
818 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
819 (u_char *)&ifra->ifra_prefixmask +
820 ifra->ifra_prefixmask.sin6_len);
821 if (plen <= 0)
822 return (EINVAL);
823 }
824 else {
825 /*
826 * In this case, ia must not be NULL. We just use its prefix
827 * length.
828 */
829 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
830 }
831 /*
832 * If the destination address on a p2p interface is specified,
833 * and the address is a scoped one, validate/set the scope
834 * zone identifier.
835 */
836 dst6 = ifra->ifra_dstaddr;
837 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) &&
838 (dst6.sin6_family == AF_INET6)) {
839 int scopeid;
840
841 if ((error = in6_recoverscope(&dst6,
842 &ifra->ifra_dstaddr.sin6_addr,
843 ifp)) != 0)
844 return (error);
845 scopeid = in6_addr2scopeid(ifp, &dst6.sin6_addr);
846 if (dst6.sin6_scope_id == 0) /* user omit to specify the ID. */
847 dst6.sin6_scope_id = scopeid;
848 else if (dst6.sin6_scope_id != scopeid)
849 return (EINVAL); /* scope ID mismatch. */
850 if ((error = in6_embedscope(&dst6.sin6_addr, &dst6, NULL, NULL))
851 != 0)
852 return (error);
853 dst6.sin6_scope_id = 0; /* XXX */
854 }
855 /*
856 * The destination address can be specified only for a p2p or a
857 * loopback interface. If specified, the corresponding prefix length
858 * must be 128.
859 */
860 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) {
861 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
862 /* XXX: noisy message */
863 log(LOG_INFO, "in6_update_ifa: a destination can be "
864 "specified for a p2p or a loopback IF only\n");
865 return (EINVAL);
866 }
867 if (plen != 128) {
868 /*
869 * The following message seems noisy, but we dare to
870 * add it for diagnosis.
871 */
872 log(LOG_INFO, "in6_update_ifa: prefixlen must be 128 "
873 "when dstaddr is specified\n");
874 return (EINVAL);
875 }
876 }
877 /* lifetime consistency check */
878 lt = &ifra->ifra_lifetime;
879 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
880 && lt->ia6t_vltime + time_second < time_second) {
881 return EINVAL;
882 }
883 if (lt->ia6t_vltime == 0) {
884 /*
885 * the following log might be noisy, but this is a typical
886 * configuration mistake or a tool's bug.
887 */
888 log(LOG_INFO,
889 "in6_update_ifa: valid lifetime is 0 for %s\n",
890 ip6_sprintf(&ifra->ifra_addr.sin6_addr));
891 }
892 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
893 && lt->ia6t_pltime + time_second < time_second) {
894 return EINVAL;
895 }
896
897 /*
898 * If this is a new address, allocate a new ifaddr and link it
899 * into chains.
900 */
901 if (ia == NULL) {
902 hostIsNew = 1;
903 /*
904 * When in6_update_ifa() is called in a process of a received
905 * RA, it is called under splnet(). So, we should call malloc
906 * with M_NOWAIT.
907 */
908 ia = ifa_create(sizeof(*ia), M_NOWAIT);
909 if (ia == NULL)
910 return (ENOBUFS);
911 /* Initialize the address and masks */
912 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
913 ia->ia_addr.sin6_family = AF_INET6;
914 ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
915 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) {
916 /*
917 * XXX: some functions expect that ifa_dstaddr is not
918 * NULL for p2p interfaces.
919 */
920 ia->ia_ifa.ifa_dstaddr
921 = (struct sockaddr *)&ia->ia_dstaddr;
922 } else {
923 ia->ia_ifa.ifa_dstaddr = NULL;
924 }
925 ia->ia_ifa.ifa_netmask
926 = (struct sockaddr *)&ia->ia_prefixmask;
927
928 ia->ia_ifp = ifp;
929 if ((oia = in6_ifaddr) != NULL) {
930 for ( ; oia->ia_next; oia = oia->ia_next)
931 continue;
932 oia->ia_next = ia;
933 } else
934 in6_ifaddr = ia;
935
936 ifa_iflink(&ia->ia_ifa, ifp, 1);
937 }
938
939 /* set prefix mask */
940 if (ifra->ifra_prefixmask.sin6_len) {
941 /*
942 * We prohibit changing the prefix length of an existing
943 * address, because
944 * + such an operation should be rare in IPv6, and
945 * + the operation would confuse prefix management.
946 */
947 if (ia->ia_prefixmask.sin6_len &&
948 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) {
949 log(LOG_INFO, "in6_update_ifa: the prefix length of an"
950 " existing (%s) address should not be changed\n",
951 ip6_sprintf(&ia->ia_addr.sin6_addr));
952 error = EINVAL;
953 goto unlink;
954 }
955 ia->ia_prefixmask = ifra->ifra_prefixmask;
956 }
957
958 /*
959 * If a new destination address is specified, scrub the old one and
960 * install the new destination. Note that the interface must be
961 * p2p or loopback (see the check above.)
962 */
963 if (dst6.sin6_family == AF_INET6 &&
964 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr,
965 &ia->ia_dstaddr.sin6_addr)) {
966 int e;
967
968 if ((ia->ia_flags & IFA_ROUTE) &&
969 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
970 != 0) {
971 log(LOG_ERR, "in6_update_ifa: failed to remove "
972 "a route to the old destination: %s\n",
973 ip6_sprintf(&ia->ia_addr.sin6_addr));
974 /* proceed anyway... */
975 }
976 else
977 ia->ia_flags &= ~IFA_ROUTE;
978 ia->ia_dstaddr = dst6;
979 }
980
981 /* reset the interface and routing table appropriately. */
982 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0)
983 goto unlink;
984
985 /*
986 * Beyond this point, we should call in6_purgeaddr upon an error,
987 * not just go to unlink.
988 */
989
990#if 0 /* disable this mechanism for now */
991 /* update prefix list */
992 if (hostIsNew &&
993 (ifra->ifra_flags & IN6_IFF_NOPFX) == 0) { /* XXX */
994 int iilen;
995
996 iilen = (sizeof(ia->ia_prefixmask.sin6_addr) << 3) - plen;
997 if ((error = in6_prefix_add_ifid(iilen, ia)) != 0) {
998 in6_purgeaddr((struct ifaddr *)ia);
999 return (error);
1000 }
1001 }
1002#endif
1003
1004 if (ifp->if_flags & IFF_MULTICAST) {
1005 struct sockaddr_in6 mltaddr, mltmask;
1006 struct in6_multi *in6m;
1007
1008 if (hostIsNew) {
1009 /*
1010 * join solicited multicast addr for new host id
1011 */
1012 struct in6_addr llsol;
1013 bzero(&llsol, sizeof(struct in6_addr));
1014 llsol.s6_addr16[0] = htons(0xff02);
1015 llsol.s6_addr16[1] = htons(ifp->if_index);
1016 llsol.s6_addr32[1] = 0;
1017 llsol.s6_addr32[2] = htonl(1);
1018 llsol.s6_addr32[3] =
1019 ifra->ifra_addr.sin6_addr.s6_addr32[3];
1020 llsol.s6_addr8[12] = 0xff;
1021 in6_addmulti(&llsol, ifp, &error);
1022 if (error != 0) {
1023 log(LOG_WARNING,
1024 "in6_update_ifa: addmulti failed for "
1025 "%s on %s (errno=%d)\n",
1026 ip6_sprintf(&llsol), if_name(ifp),
1027 error);
1028 in6_purgeaddr((struct ifaddr *)ia);
1029 return (error);
1030 }
1031 }
1032
1033 bzero(&mltmask, sizeof(mltmask));
1034 mltmask.sin6_len = sizeof(struct sockaddr_in6);
1035 mltmask.sin6_family = AF_INET6;
1036 mltmask.sin6_addr = in6mask32;
1037
1038 /*
1039 * join link-local all-nodes address
1040 */
1041 bzero(&mltaddr, sizeof(mltaddr));
1042 mltaddr.sin6_len = sizeof(struct sockaddr_in6);
1043 mltaddr.sin6_family = AF_INET6;
1044 mltaddr.sin6_addr = kin6addr_linklocal_allnodes;
1045 mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
1046
1047 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m);
1048 if (in6m == NULL) {
1049 rtrequest_global(RTM_ADD,
1050 (struct sockaddr *)&mltaddr,
1051 (struct sockaddr *)&ia->ia_addr,
1052 (struct sockaddr *)&mltmask,
1053 RTF_UP|RTF_CLONING); /* xxx */
1054 in6_addmulti(&mltaddr.sin6_addr, ifp, &error);
1055 if (error != 0) {
1056 log(LOG_WARNING,
1057 "in6_update_ifa: addmulti failed for "
1058 "%s on %s (errno=%d)\n",
1059 ip6_sprintf(&mltaddr.sin6_addr),
1060 if_name(ifp), error);
1061 }
1062 }
1063
1064 /*
1065 * join node information group address
1066 */
1067#define hostnamelen strlen(hostname)
1068 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr)
1069 == 0) {
1070 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m);
1071 if (in6m == NULL && ia != NULL) {
1072 in6_addmulti(&mltaddr.sin6_addr, ifp, &error);
1073 if (error != 0) {
1074 log(LOG_WARNING, "in6_update_ifa: "
1075 "addmulti failed for "
1076 "%s on %s (errno=%d)\n",
1077 ip6_sprintf(&mltaddr.sin6_addr),
1078 if_name(ifp), error);
1079 }
1080 }
1081 }
1082#undef hostnamelen
1083
1084 /*
1085 * join node-local all-nodes address, on loopback.
1086 * XXX: since "node-local" is obsoleted by interface-local,
1087 * we have to join the group on every interface with
1088 * some interface-boundary restriction.
1089 */
1090 if (ifp->if_flags & IFF_LOOPBACK) {
1091 struct in6_ifaddr *ia_loop;
1092
1093 struct in6_addr loop6 = kin6addr_loopback;
1094 ia_loop = in6ifa_ifpwithaddr(ifp, &loop6);
1095
1096 mltaddr.sin6_addr = kin6addr_nodelocal_allnodes;
1097
1098 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m);
1099 if (in6m == NULL && ia_loop != NULL) {
1100 rtrequest_global(RTM_ADD,
1101 (struct sockaddr *)&mltaddr,
1102 (struct sockaddr *)&ia_loop->ia_addr,
1103 (struct sockaddr *)&mltmask,
1104 RTF_UP);
1105 in6_addmulti(&mltaddr.sin6_addr, ifp, &error);
1106 if (error != 0) {
1107 log(LOG_WARNING, "in6_update_ifa: "
1108 "addmulti failed for %s on %s "
1109 "(errno=%d)\n",
1110 ip6_sprintf(&mltaddr.sin6_addr),
1111 if_name(ifp), error);
1112 }
1113 }
1114 }
1115 }
1116
1117 ia->ia6_flags = ifra->ifra_flags;
1118 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /*safety*/
1119 ia->ia6_flags &= ~IN6_IFF_NODAD; /* Mobile IPv6 */
1120
1121 ia->ia6_lifetime = ifra->ifra_lifetime;
1122 /* for sanity */
1123 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
1124 ia->ia6_lifetime.ia6t_expire =
1125 time_second + ia->ia6_lifetime.ia6t_vltime;
1126 } else
1127 ia->ia6_lifetime.ia6t_expire = 0;
1128 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
1129 ia->ia6_lifetime.ia6t_preferred =
1130 time_second + ia->ia6_lifetime.ia6t_pltime;
1131 } else
1132 ia->ia6_lifetime.ia6t_preferred = 0;
1133
1134 /*
1135 * Perform DAD, if needed.
1136 * XXX It may be of use, if we can administratively
1137 * disable DAD.
1138 */
1139 if (in6if_do_dad(ifp) && !(ifra->ifra_flags & IN6_IFF_NODAD)) {
1140 ia->ia6_flags |= IN6_IFF_TENTATIVE;
1141 nd6_dad_start((struct ifaddr *)ia, NULL);
1142 }
1143
1144 return (error);
1145
1146unlink:
1147 /*
1148 * XXX: if a change of an existing address failed, keep the entry
1149 * anyway.
1150 */
1151 if (hostIsNew)
1152 in6_unlink_ifa(ia, ifp);
1153 return (error);
1154}
1155
1156void
1157in6_purgeaddr(struct ifaddr *ifa)
1158{
1159 struct ifnet *ifp = ifa->ifa_ifp;
1160 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa;
1161
1162 /* stop DAD processing */
1163 nd6_dad_stop(ifa);
1164
1165 /*
1166 * delete route to the destination of the address being purged.
1167 * The interface must be p2p or loopback in this case.
1168 */
1169 if ((ia->ia_flags & IFA_ROUTE) && ia->ia_dstaddr.sin6_len != 0) {
1170 int e;
1171
1172 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
1173 != 0) {
1174 log(LOG_ERR, "in6_purgeaddr: failed to remove "
1175 "a route to the p2p destination: %s on %s, "
1176 "errno=%d\n",
1177 ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp),
1178 e);
1179 /* proceed anyway... */
1180 }
1181 else
1182 ia->ia_flags &= ~IFA_ROUTE;
1183 }
1184
1185 /* Remove ownaddr's loopback rtentry, if it exists. */
1186 in6_ifremloop(&(ia->ia_ifa));
1187
1188 if (ifp->if_flags & IFF_MULTICAST) {
1189 /*
1190 * delete solicited multicast addr for deleting host id
1191 */
1192 struct in6_multi *in6m;
1193 struct in6_addr llsol;
1194 bzero(&llsol, sizeof(struct in6_addr));
1195 llsol.s6_addr16[0] = htons(0xff02);
1196 llsol.s6_addr16[1] = htons(ifp->if_index);
1197 llsol.s6_addr32[1] = 0;
1198 llsol.s6_addr32[2] = htonl(1);
1199 llsol.s6_addr32[3] =
1200 ia->ia_addr.sin6_addr.s6_addr32[3];
1201 llsol.s6_addr8[12] = 0xff;
1202
1203 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1204 if (in6m)
1205 in6_delmulti(in6m);
1206 }
1207
1208 in6_unlink_ifa(ia, ifp);
1209}
1210
1211static void
1212in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp)
1213{
1214 int plen, iilen;
1215 struct in6_ifaddr *oia;
1216
1217 crit_enter();
1218
1219 ifa_ifunlink(&ia->ia_ifa, ifp);
1220
1221 oia = ia;
1222 if (oia == (ia = in6_ifaddr))
1223 in6_ifaddr = ia->ia_next;
1224 else {
1225 while (ia->ia_next && (ia->ia_next != oia))
1226 ia = ia->ia_next;
1227 if (ia->ia_next)
1228 ia->ia_next = oia->ia_next;
1229 else {
1230 /* search failed */
1231 kprintf("Couldn't unlink in6_ifaddr from in6_ifaddr\n");
1232 }
1233 }
1234
1235 if (oia->ia6_ifpr) { /* check for safety */
1236 plen = in6_mask2len(&oia->ia_prefixmask.sin6_addr, NULL);
1237 iilen = (sizeof(oia->ia_prefixmask.sin6_addr) << 3) - plen;
1238 in6_prefix_remove_ifid(iilen, oia);
1239 }
1240
1241 /*
1242 * When an autoconfigured address is being removed, release the
1243 * reference to the base prefix. Also, since the release might
1244 * affect the status of other (detached) addresses, call
1245 * pfxlist_onlink_check().
1246 */
1247 if (oia->ia6_flags & IN6_IFF_AUTOCONF) {
1248 if (oia->ia6_ndpr == NULL) {
1249 log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address "
1250 "%p has no prefix\n", oia);
1251 } else {
1252 oia->ia6_ndpr->ndpr_refcnt--;
1253 oia->ia6_flags &= ~IN6_IFF_AUTOCONF;
1254 oia->ia6_ndpr = NULL;
1255 }
1256
1257 pfxlist_onlink_check();
1258 }
1259
1260 /*
1261 * release another refcnt for the link from in6_ifaddr.
1262 * Note that we should decrement the refcnt at least once for all *BSD.
1263 */
1264 ifa_destroy(&oia->ia_ifa);
1265
1266 crit_exit();
1267}
1268
1269void
1270in6_purgeif(struct ifnet *ifp)
1271{
1272 struct ifaddr_container *ifac, *next;
1273
1274 TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
1275 ifa_link, next) {
1276 if (ifac->ifa->ifa_addr->sa_family != AF_INET6)
1277 continue;
1278 in6_purgeaddr(ifac->ifa);
1279 }
1280
1281 in6_ifdetach(ifp);
1282}
1283
1284/*
1285 * SIOC[GAD]LIFADDR.
1286 * SIOCGLIFADDR: get first address. (?)
1287 * SIOCGLIFADDR with IFLR_PREFIX:
1288 * get first address that matches the specified prefix.
1289 * SIOCALIFADDR: add the specified address.
1290 * SIOCALIFADDR with IFLR_PREFIX:
1291 * add the specified prefix, filling hostid part from
1292 * the first link-local address. prefixlen must be <= 64.
1293 * SIOCDLIFADDR: delete the specified address.
1294 * SIOCDLIFADDR with IFLR_PREFIX:
1295 * delete the first address that matches the specified prefix.
1296 * return values:
1297 * EINVAL on invalid parameters
1298 * EADDRNOTAVAIL on prefix match failed/specified address not found
1299 * other values may be returned from in6_ioctl()
1300 *
1301 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
1302 * this is to accomodate address naming scheme other than RFC2374,
1303 * in the future.
1304 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
1305 * address encoding scheme. (see figure on page 8)
1306 */
1307static int
1308in6_lifaddr_ioctl(struct socket *so, u_long cmd, caddr_t data,
1309 struct ifnet *ifp, struct thread *td)
1310{
1311 struct if_laddrreq *iflr = (struct if_laddrreq *)data;
1312 struct sockaddr *sa;
1313
1314 /* sanity checks */
1315 if (!data || !ifp) {
1316 panic("invalid argument to in6_lifaddr_ioctl");
1317 /*NOTRECHED*/
1318 }
1319
1320 switch (cmd) {
1321 case SIOCGLIFADDR:
1322 /* address must be specified on GET with IFLR_PREFIX */
1323 if (!(iflr->flags & IFLR_PREFIX))
1324 break;
1325 /* FALLTHROUGH */
1326 case SIOCALIFADDR:
1327 case SIOCDLIFADDR:
1328 /* address must be specified on ADD and DELETE */
1329 sa = (struct sockaddr *)&iflr->addr;
1330 if (sa->sa_family != AF_INET6)
1331 return EINVAL;
1332 if (sa->sa_len != sizeof(struct sockaddr_in6))
1333 return EINVAL;
1334 /* XXX need improvement */
1335 sa = (struct sockaddr *)&iflr->dstaddr;
1336 if (sa->sa_family && sa->sa_family != AF_INET6)
1337 return EINVAL;
1338 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
1339 return EINVAL;
1340 break;
1341 default: /* shouldn't happen */
1342#if 0
1343 panic("invalid cmd to in6_lifaddr_ioctl");
1344 /* NOTREACHED */
1345#else
1346 return EOPNOTSUPP;
1347#endif
1348 }
1349 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen)
1350 return EINVAL;
1351
1352 switch (cmd) {
1353 case SIOCALIFADDR:
1354 {
1355 struct in6_aliasreq ifra;
1356 struct in6_addr *hostid = NULL;
1357 int prefixlen;
1358
1359 if (iflr->flags & IFLR_PREFIX) {
1360 struct ifaddr *ifa;
1361 struct sockaddr_in6 *sin6;
1362
1363 /*
1364 * hostid is to fill in the hostid part of the
1365 * address. hostid points to the first link-local
1366 * address attached to the interface.
1367 */
1368 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0);
1369 if (!ifa)
1370 return EADDRNOTAVAIL;
1371 hostid = IFA_IN6(ifa);
1372
1373 /* prefixlen must be <= 64. */
1374 if (64 < iflr->prefixlen)
1375 return EINVAL;
1376 prefixlen = iflr->prefixlen;
1377
1378 /* hostid part must be zero. */
1379 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1380 if (sin6->sin6_addr.s6_addr32[2] != 0
1381 || sin6->sin6_addr.s6_addr32[3] != 0) {
1382 return EINVAL;
1383 }
1384 } else
1385 prefixlen = iflr->prefixlen;
1386
1387 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
1388 bzero(&ifra, sizeof(ifra));
1389 bcopy(iflr->iflr_name, ifra.ifra_name,
1390 sizeof(ifra.ifra_name));
1391
1392 bcopy(&iflr->addr, &ifra.ifra_addr,
1393 ((struct sockaddr *)&iflr->addr)->sa_len);
1394 if (hostid) {
1395 /* fill in hostid part */
1396 ifra.ifra_addr.sin6_addr.s6_addr32[2] =
1397 hostid->s6_addr32[2];
1398 ifra.ifra_addr.sin6_addr.s6_addr32[3] =
1399 hostid->s6_addr32[3];
1400 }
1401
1402 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/
1403 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
1404 ((struct sockaddr *)&iflr->dstaddr)->sa_len);
1405 if (hostid) {
1406 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
1407 hostid->s6_addr32[2];
1408 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
1409 hostid->s6_addr32[3];
1410 }
1411 }
1412
1413 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
1414 in6_len2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
1415
1416 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
1417 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td);
1418 }
1419 case SIOCGLIFADDR:
1420 case SIOCDLIFADDR:
1421 {
1422 struct ifaddr_container *ifac;
1423 struct in6_ifaddr *ia;
1424 struct in6_addr mask, candidate, match;
1425 struct sockaddr_in6 *sin6;
1426 int cmp;
1427
1428 bzero(&mask, sizeof(mask));
1429 if (iflr->flags & IFLR_PREFIX) {
1430 /* lookup a prefix rather than address. */
1431 in6_len2mask(&mask, iflr->prefixlen);
1432
1433 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1434 bcopy(&sin6->sin6_addr, &match, sizeof(match));
1435 match.s6_addr32[0] &= mask.s6_addr32[0];
1436 match.s6_addr32[1] &= mask.s6_addr32[1];
1437 match.s6_addr32[2] &= mask.s6_addr32[2];
1438 match.s6_addr32[3] &= mask.s6_addr32[3];
1439
1440 /* if you set extra bits, that's wrong */
1441 if (bcmp(&match, &sin6->sin6_addr, sizeof(match)))
1442 return EINVAL;
1443
1444 cmp = 1;
1445 } else {
1446 if (cmd == SIOCGLIFADDR) {
1447 /* on getting an address, take the 1st match */
1448 cmp = 0; /* XXX */
1449 } else {
1450 /* on deleting an address, do exact match */
1451 in6_len2mask(&mask, 128);
1452 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1453 bcopy(&sin6->sin6_addr, &match, sizeof(match));
1454
1455 cmp = 1;
1456 }
1457 }
1458
1459 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1460 struct ifaddr *ifa = ifac->ifa;
1461
1462 if (ifa->ifa_addr->sa_family != AF_INET6)
1463 continue;
1464 if (!cmp)
1465 break;
1466
1467 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate));
1468 /*
1469 * XXX: this is adhoc, but is necessary to allow
1470 * a user to specify fe80::/64 (not /10) for a
1471 * link-local address.
1472 */
1473 if (IN6_IS_ADDR_LINKLOCAL(&candidate))
1474 candidate.s6_addr16[1] = 0;
1475 candidate.s6_addr32[0] &= mask.s6_addr32[0];
1476 candidate.s6_addr32[1] &= mask.s6_addr32[1];
1477 candidate.s6_addr32[2] &= mask.s6_addr32[2];
1478 candidate.s6_addr32[3] &= mask.s6_addr32[3];
1479 if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
1480 break;
1481 }
1482 if (ifac == NULL)
1483 return EADDRNOTAVAIL;
1484 ia = ifa2ia6(ifac->ifa);
1485
1486 if (cmd == SIOCGLIFADDR) {
1487 struct sockaddr_in6 *s6;
1488
1489 /* fill in the if_laddrreq structure */
1490 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len);
1491 s6 = (struct sockaddr_in6 *)&iflr->addr;
1492 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) {
1493 s6->sin6_addr.s6_addr16[1] = 0;
1494 s6->sin6_scope_id =
1495 in6_addr2scopeid(ifp, &s6->sin6_addr);
1496 }
1497 if (ifp->if_flags & IFF_POINTOPOINT) {
1498 bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
1499 ia->ia_dstaddr.sin6_len);
1500 s6 = (struct sockaddr_in6 *)&iflr->dstaddr;
1501 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) {
1502 s6->sin6_addr.s6_addr16[1] = 0;
1503 s6->sin6_scope_id =
1504 in6_addr2scopeid(ifp,
1505 &s6->sin6_addr);
1506 }
1507 } else
1508 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
1509
1510 iflr->prefixlen =
1511 in6_mask2len(&ia->ia_prefixmask.sin6_addr,
1512 NULL);
1513
1514 iflr->flags = ia->ia6_flags; /* XXX */
1515
1516 return 0;
1517 } else {
1518 struct in6_aliasreq ifra;
1519
1520 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
1521 bzero(&ifra, sizeof(ifra));
1522 bcopy(iflr->iflr_name, ifra.ifra_name,
1523 sizeof(ifra.ifra_name));
1524
1525 bcopy(&ia->ia_addr, &ifra.ifra_addr,
1526 ia->ia_addr.sin6_len);
1527 if (ifp->if_flags & IFF_POINTOPOINT)
1528 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
1529 ia->ia_dstaddr.sin6_len);
1530 else
1531 bzero(&ifra.ifra_dstaddr,
1532 sizeof(ifra.ifra_dstaddr));
1533 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr,
1534 ia->ia_prefixmask.sin6_len);
1535
1536 ifra.ifra_flags = ia->ia6_flags;
1537 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra,
1538 ifp, td);
1539 }
1540 }
1541 }
1542
1543 return EOPNOTSUPP; /* just for safety */
1544}
1545
1546/*
1547 * Initialize an interface's intetnet6 address
1548 * and routing table entry.
1549 */
1550static int
1551in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia, struct sockaddr_in6 *sin6,
1552 int newhost)
1553{
1554 int error = 0, plen, ifacount = 0;
1555 struct ifaddr_container *ifac;
1556
1557 /*
1558 * Give the interface a chance to initialize
1559 * if this is its first address,
1560 * and to validate the address if necessary.
1561 */
1562 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1563 if (ifac->ifa->ifa_addr == NULL)
1564 continue; /* just for safety */
1565 if (ifac->ifa->ifa_addr->sa_family != AF_INET6)
1566 continue;
1567 ifacount++;
1568 }
1569
1570 lwkt_serialize_enter(ifp->if_serializer);
1571
1572 ia->ia_addr = *sin6;
1573
1574 if (ifacount <= 1 && ifp->if_ioctl &&
1575 (error = ifp->if_ioctl(ifp, SIOCSIFADDR, (caddr_t)ia,
1576 (struct ucred *)NULL))) {
1577 lwkt_serialize_exit(ifp->if_serializer);
1578 return (error);
1579 }
1580 lwkt_serialize_exit(ifp->if_serializer);
1581
1582 ia->ia_ifa.ifa_metric = ifp->if_metric;
1583
1584 /* we could do in(6)_socktrim here, but just omit it at this moment. */
1585
1586 /*
1587 * Special case:
1588 * If the destination address is specified for a point-to-point
1589 * interface, install a route to the destination as an interface
1590 * direct route.
1591 */
1592 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */
1593 if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) {
1594 if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD,
1595 RTF_UP | RTF_HOST)) != 0)
1596 return (error);
1597 ia->ia_flags |= IFA_ROUTE;
1598 }
1599 if (plen < 128) {
1600 /*
1601 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto().
1602 */
1603 ia->ia_ifa.ifa_flags |= RTF_CLONING;
1604 }
1605
1606 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */
1607 if (newhost) {
1608 /* set the rtrequest function to create llinfo */
1609 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
1610 in6_ifaddloop(&(ia->ia_ifa));
1611 }
1612
1613 return (error);
1614}
1615
1616struct in6_multi_mship *
1617in6_joingroup(struct ifnet *ifp, struct in6_addr *addr, int *errorp)
1618{
1619 struct in6_multi_mship *imm;
1620
1621 imm = kmalloc(sizeof(*imm), M_IPMADDR, M_NOWAIT);
1622 if (!imm) {
1623 *errorp = ENOBUFS;
1624 return NULL;
1625 }
1626 imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp);
1627 if (!imm->i6mm_maddr) {
1628 /* *errorp is alrady set */
1629 kfree(imm, M_IPMADDR);
1630 return NULL;
1631 }
1632 return imm;
1633}
1634
1635int
1636in6_leavegroup(struct in6_multi_mship *imm)
1637{
1638
1639 if (imm->i6mm_maddr)
1640 in6_delmulti(imm->i6mm_maddr);
1641 kfree(imm, M_IPMADDR);
1642 return 0;
1643}
1644
1645/*
1646 * Add an address to the list of IP6 multicast addresses for a
1647 * given interface.
1648 */
1649struct in6_multi *
1650in6_addmulti(struct in6_addr *maddr6, struct ifnet *ifp, int *errorp)
1651{
1652 struct in6_multi *in6m;
1653 struct sockaddr_in6 sin6;
1654 struct ifmultiaddr *ifma;
1655
1656 *errorp = 0;
1657
1658 crit_enter();
1659
1660 /*
1661 * Call generic routine to add membership or increment
1662 * refcount. It wants addresses in the form of a sockaddr,
1663 * so we build one here (being careful to zero the unused bytes).
1664 */
1665 bzero(&sin6, sizeof sin6);
1666 sin6.sin6_family = AF_INET6;
1667 sin6.sin6_len = sizeof sin6;
1668 sin6.sin6_addr = *maddr6;
1669 *errorp = if_addmulti(ifp, (struct sockaddr *)&sin6, &ifma);
1670 if (*errorp) {
1671 crit_exit();
1672 return 0;
1673 }
1674
1675 /*
1676 * If ifma->ifma_protospec is null, then if_addmulti() created
1677 * a new record. Otherwise, we are done.
1678 */
1679 if (ifma->ifma_protospec != 0) {
1680 crit_exit();
1681 return ifma->ifma_protospec;
1682 }
1683
1684 /* XXX - if_addmulti uses M_WAITOK. Can this really be called
1685 at interrupt time? If so, need to fix if_addmulti. XXX */
1686 in6m = (struct in6_multi *)kmalloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT);
1687 if (in6m == NULL) {
1688 crit_exit();
1689 return (NULL);
1690 }
1691
1692 bzero(in6m, sizeof *in6m);
1693 in6m->in6m_addr = *maddr6;
1694 in6m->in6m_ifp = ifp;
1695 in6m->in6m_ifma = ifma;
1696 ifma->ifma_protospec = in6m;
1697 LIST_INSERT_HEAD(&in6_multihead, in6m, in6m_entry);
1698
1699 /*
1700 * Let MLD6 know that we have joined a new IP6 multicast
1701 * group.
1702 */
1703 mld6_start_listening(in6m);
1704 crit_exit();
1705 return (in6m);
1706}
1707
1708/*
1709 * Delete a multicast address record.
1710 */
1711void
1712in6_delmulti(struct in6_multi *in6m)
1713{
1714 struct ifmultiaddr *ifma = in6m->in6m_ifma;
1715
1716 crit_enter();
1717
1718 if (ifma->ifma_refcount == 1) {
1719 /*
1720 * No remaining claims to this record; let MLD6 know
1721 * that we are leaving the multicast group.
1722 */
1723 mld6_stop_listening(in6m);
1724 ifma->ifma_protospec = 0;
1725 LIST_REMOVE(in6m, in6m_entry);
1726 kfree(in6m, M_IPMADDR);
1727 }
1728 /* XXX - should be separate API for when we have an ifma? */
1729 if_delmulti(ifma->ifma_ifp, ifma->ifma_addr);
1730 crit_exit();
1731}
1732
1733/*
1734 * Find an IPv6 interface link-local address specific to an interface.
1735 */
1736struct in6_ifaddr *
1737in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags)
1738{
1739 struct ifaddr_container *ifac;
1740
1741 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1742 struct ifaddr *ifa = ifac->ifa;
1743
1744 if (ifa->ifa_addr == NULL)
1745 continue; /* just for safety */
1746 if (ifa->ifa_addr->sa_family != AF_INET6)
1747 continue;
1748 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) {
1749 if ((((struct in6_ifaddr *)ifa)->ia6_flags &
1750 ignoreflags) != 0)
1751 continue;
1752 break;
1753 }
1754 }
1755 if (ifac != NULL)
1756 return ((struct in6_ifaddr *)(ifac->ifa));
1757 else
1758 return (NULL);
1759}
1760
1761
1762/*
1763 * find the internet address corresponding to a given interface and address.
1764 */
1765struct in6_ifaddr *
1766in6ifa_ifpwithaddr(struct ifnet *ifp, struct in6_addr *addr)
1767{
1768 struct ifaddr_container *ifac;
1769
1770 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1771 struct ifaddr *ifa = ifac->ifa;
1772
1773 if (ifa->ifa_addr == NULL)
1774 continue; /* just for safety */
1775 if (ifa->ifa_addr->sa_family != AF_INET6)
1776 continue;
1777 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
1778 break;
1779 }
1780 if (ifac != NULL)
1781 return ((struct in6_ifaddr *)(ifac->ifa));
1782 else
1783 return (NULL);
1784}
1785
1786/*
1787 * find the internet address on a given interface corresponding to a neighbor's
1788 * address.
1789 */
1790struct in6_ifaddr *
1791in6ifa_ifplocaladdr(const struct ifnet *ifp, const struct in6_addr *addr)
1792{
1793 struct ifaddr *ifa;
1794 struct in6_ifaddr *ia;
1795 struct ifaddr_container *ifac;
1796
1797 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1798 ifa = ifac->ifa;
1799
1800 if (ifa->ifa_addr == NULL)
1801 continue; /* just for safety */
1802 if (ifa->ifa_addr->sa_family != AF_INET6)
1803 continue;
1804 ia = (struct in6_ifaddr *)ifa;
1805 if (IN6_ARE_MASKED_ADDR_EQUAL(addr,
1806 &ia->ia_addr.sin6_addr,
1807 &ia->ia_prefixmask.sin6_addr))
1808 return ia;
1809 }
1810
1811 return NULL;
1812}
1813
1814/*
1815 * Convert IP6 address to printable (loggable) representation.
1816 */
1817static char digits[] = "0123456789abcdef";
1818static int ip6round = 0;
1819char *
1820ip6_sprintf(const struct in6_addr *addr)
1821{
1822 static char ip6buf[8][48];
1823 int i;
1824 char *cp;
1825 const u_short *a = (const u_short *)addr;
1826 const u_char *d;
1827 int dcolon = 0;
1828
1829 ip6round = (ip6round + 1) & 7;
1830 cp = ip6buf[ip6round];
1831
1832 for (i = 0; i < 8; i++) {
1833 if (dcolon == 1) {
1834 if (*a == 0) {
1835 if (i == 7)
1836 *cp++ = ':';
1837 a++;
1838 continue;
1839 } else
1840 dcolon = 2;
1841 }
1842 if (*a == 0) {
1843 if (dcolon == 0 && *(a + 1) == 0) {
1844 if (i == 0)
1845 *cp++ = ':';
1846 *cp++ = ':';
1847 dcolon = 1;
1848 } else {
1849 *cp++ = '0';
1850 *cp++ = ':';
1851 }
1852 a++;
1853 continue;
1854 }
1855 d = (const u_char *)a;
1856 *cp++ = digits[*d >> 4];
1857 *cp++ = digits[*d++ & 0xf];
1858 *cp++ = digits[*d >> 4];
1859 *cp++ = digits[*d & 0xf];
1860 *cp++ = ':';
1861 a++;
1862 }
1863 *--cp = 0;
1864 return (ip6buf[ip6round]);
1865}
1866
1867int
1868in6_localaddr(struct in6_addr *in6)
1869{
1870 struct in6_ifaddr *ia;
1871
1872 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
1873 return 1;
1874
1875 for (ia = in6_ifaddr; ia; ia = ia->ia_next)
1876 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
1877 &ia->ia_prefixmask.sin6_addr))
1878 return 1;
1879
1880 return (0);
1881}
1882
1883int
1884in6_is_addr_deprecated(struct sockaddr_in6 *sa6)
1885{
1886 struct in6_ifaddr *ia;
1887
1888 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
1889 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
1890 &sa6->sin6_addr) &&
1891 (ia->ia6_flags & IN6_IFF_DEPRECATED))
1892 return (1); /* true */
1893
1894 /* XXX: do we still have to go thru the rest of the list? */
1895 }
1896
1897 return (0); /* false */
1898}
1899
1900/*
1901 * return length of part which dst and src are equal
1902 * hard coding...
1903 */
1904int
1905in6_matchlen(struct in6_addr *src, struct in6_addr *dst)
1906{
1907 int match = 0;
1908 u_char *s = (u_char *)src, *d = (u_char *)dst;
1909 u_char *lim = s + 16, r;
1910
1911 while (s < lim)
1912 if ((r = (*d++ ^ *s++)) != 0) {
1913 while (r < 128) {
1914 match++;
1915 r <<= 1;
1916 }
1917 break;
1918 } else
1919 match += 8;
1920 return match;
1921}
1922
1923/* XXX: to be scope conscious */
1924int
1925in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len)
1926{
1927 int bytelen, bitlen;
1928
1929 /* sanity check */
1930 if (0 > len || len > 128) {
1931 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
1932 len);
1933 return (0);
1934 }
1935
1936 bytelen = len / 8;
1937 bitlen = len % 8;
1938
1939 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
1940 return (0);
1941 if (p1->s6_addr[bytelen] >> (8 - bitlen) !=
1942 p2->s6_addr[bytelen] >> (8 - bitlen))
1943 return (0);
1944
1945 return (1);
1946}
1947
1948void
1949in6_prefixlen2mask(struct in6_addr *maskp, int len)
1950{
1951 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
1952 int bytelen, bitlen, i;
1953
1954 /* sanity check */
1955 if (0 > len || len > 128) {
1956 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
1957 len);
1958 return;
1959 }
1960
1961 bzero(maskp, sizeof(*maskp));
1962 bytelen = len / 8;
1963 bitlen = len % 8;
1964 for (i = 0; i < bytelen; i++)
1965 maskp->s6_addr[i] = 0xff;
1966 if (bitlen)
1967 maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
1968}
1969
1970/*
1971 * return the best address out of the same scope
1972 */
1973struct in6_ifaddr *
1974in6_ifawithscope(struct ifnet *oifp, struct in6_addr *dst)
1975{
1976 int dst_scope = in6_addrscope(dst), src_scope, best_scope = 0;
1977 int blen = -1;
1978 struct ifnet *ifp;
1979 struct in6_ifaddr *ifa_best = NULL;
1980
1981 if (oifp == NULL) {
1982#if 0
1983 kprintf("in6_ifawithscope: output interface is not specified\n");
1984#endif
1985 return (NULL);
1986 }
1987
1988 /*
1989 * We search for all addresses on all interfaces from the beginning.
1990 * Comparing an interface with the outgoing interface will be done
1991 * only at the final stage of tiebreaking.
1992 */
1993 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
1994 {
1995 struct ifaddr_container *ifac;
1996
1997 /*
1998 * We can never take an address that breaks the scope zone
1999 * of the destination.
2000 */
2001 if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst))
2002 continue;
2003
2004 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2005 int tlen = -1, dscopecmp, bscopecmp, matchcmp;
2006 struct ifaddr *ifa = ifac->ifa;
2007
2008 if (ifa->ifa_addr->sa_family != AF_INET6)
2009 continue;
2010
2011 src_scope = in6_addrscope(IFA_IN6(ifa));
2012
2013 /*
2014 * Don't use an address before completing DAD
2015 * nor a duplicated address.
2016 */
2017 if (((struct in6_ifaddr *)ifa)->ia6_flags &
2018 IN6_IFF_NOTREADY)
2019 continue;
2020
2021 /* XXX: is there any case to allow anycasts? */
2022 if (((struct in6_ifaddr *)ifa)->ia6_flags &
2023 IN6_IFF_ANYCAST)
2024 continue;
2025
2026 if (((struct in6_ifaddr *)ifa)->ia6_flags &
2027 IN6_IFF_DETACHED)
2028 continue;
2029
2030 /*
2031 * If this is the first address we find,
2032 * keep it anyway.
2033 */
2034 if (ifa_best == NULL)
2035 goto replace;
2036
2037 /*
2038 * ifa_best is never NULL beyond this line except
2039 * within the block labeled "replace".
2040 */
2041
2042 /*
2043 * If ifa_best has a smaller scope than dst and
2044 * the current address has a larger one than
2045 * (or equal to) dst, always replace ifa_best.
2046 * Also, if the current address has a smaller scope
2047 * than dst, ignore it unless ifa_best also has a
2048 * smaller scope.
2049 * Consequently, after the two if-clause below,
2050 * the followings must be satisfied:
2051 * (scope(src) < scope(dst) &&
2052 * scope(best) < scope(dst))
2053 * OR
2054 * (scope(best) >= scope(dst) &&
2055 * scope(src) >= scope(dst))
2056 */
2057 if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 &&
2058 IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0)
2059 goto replace; /* (A) */
2060 if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 &&
2061 IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0)
2062 continue; /* (B) */
2063
2064 /*
2065 * A deprecated address SHOULD NOT be used in new
2066 * communications if an alternate (non-deprecated)
2067 * address is available and has sufficient scope.
2068 * RFC 2462, Section 5.5.4.
2069 */
2070 if (((struct in6_ifaddr *)ifa)->ia6_flags &
2071 IN6_IFF_DEPRECATED) {
2072 /*
2073 * Ignore any deprecated addresses if
2074 * specified by configuration.
2075 */
2076 if (!ip6_use_deprecated)
2077 continue;
2078
2079 /*
2080 * If we have already found a non-deprecated
2081 * candidate, just ignore deprecated addresses.
2082 */
2083 if (!(ifa_best->ia6_flags & IN6_IFF_DEPRECATED))
2084 continue;
2085 }
2086
2087 /*
2088 * A non-deprecated address is always preferred
2089 * to a deprecated one regardless of scopes and
2090 * address matching (Note invariants ensured by the
2091 * conditions (A) and (B) above.)
2092 */
2093 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) &&
2094 !(((struct in6_ifaddr *)ifa)->ia6_flags &
2095 IN6_IFF_DEPRECATED))
2096 goto replace;
2097
2098 /*
2099 * When we use temporary addresses described in
2100 * RFC 3041, we prefer temporary addresses to
2101 * public autoconf addresses. Again, note the
2102 * invariants from (A) and (B). Also note that we
2103 * don't have any preference between static addresses
2104 * and autoconf addresses (despite of whether or not
2105 * the latter is temporary or public.)
2106 */
2107 if (ip6_use_tempaddr) {
2108 struct in6_ifaddr *ifat;
2109
2110 ifat = (struct in6_ifaddr *)ifa;
2111 if ((ifa_best->ia6_flags &
2112 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
2113 == IN6_IFF_AUTOCONF &&
2114 (ifat->ia6_flags &
2115 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
2116 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) {
2117 goto replace;
2118 }
2119 if ((ifa_best->ia6_flags &
2120 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
2121 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY) &&
2122 (ifat->ia6_flags &
2123 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
2124 == IN6_IFF_AUTOCONF) {
2125 continue;
2126 }
2127 }
2128
2129 /*
2130 * At this point, we have two cases:
2131 * 1. we are looking at a non-deprecated address,
2132 * and ifa_best is also non-deprecated.
2133 * 2. we are looking at a deprecated address,
2134 * and ifa_best is also deprecated.
2135 * Also, we do not have to consider a case where
2136 * the scope of if_best is larger(smaller) than dst and
2137 * the scope of the current address is smaller(larger)
2138 * than dst. Such a case has already been covered.
2139 * Tiebreaking is done according to the following
2140 * items:
2141 * - the scope comparison between the address and
2142 * dst (dscopecmp)
2143 * - the scope comparison between the address and
2144 * ifa_best (bscopecmp)
2145 * - if the address match dst longer than ifa_best
2146 * (matchcmp)
2147 * - if the address is on the outgoing I/F (outI/F)
2148 *
2149 * Roughly speaking, the selection policy is
2150 * - the most important item is scope. The same scope
2151 * is best. Then search for a larger scope.
2152 * Smaller scopes are the last resort.
2153 * - A deprecated address is chosen only when we have
2154 * no address that has an enough scope, but is
2155 * prefered to any addresses of smaller scopes
2156 * (this must be already done above.)
2157 * - addresses on the outgoing I/F are preferred to
2158 * ones on other interfaces if none of above
2159 * tiebreaks. In the table below, the column "bI"
2160 * means if the best_ifa is on the outgoing
2161 * interface, and the column "sI" means if the ifa
2162 * is on the outgoing interface.
2163 * - If there is no other reasons to choose one,
2164 * longest address match against dst is considered.
2165 *
2166 * The precise decision table is as follows:
2167 * dscopecmp bscopecmp match bI oI | replace?
2168 * N/A equal N/A Y N | No (1)
2169 * N/A equal N/A N Y | Yes (2)
2170 * N/A equal larger N/A | Yes (3)
2171 * N/A equal !larger N/A | No (4)
2172 * larger larger N/A N/A | No (5)
2173 * larger smaller N/A N/A | Yes (6)
2174 * smaller larger N/A N/A | Yes (7)
2175 * smaller smaller N/A N/A | No (8)
2176 * equal smaller N/A N/A | Yes (9)
2177 * equal larger (already done at A above)
2178 */
2179 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope);
2180 bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope);
2181
2182 if (bscopecmp == 0) {
2183 struct ifnet *bifp = ifa_best->ia_ifp;
2184
2185 if (bifp == oifp && ifp != oifp) /* (1) */
2186 continue;
2187 if (bifp != oifp && ifp == oifp) /* (2) */
2188 goto replace;
2189
2190 /*
2191 * Both bifp and ifp are on the outgoing
2192 * interface, or both two are on a different
2193 * interface from the outgoing I/F.
2194 * now we need address matching against dst
2195 * for tiebreaking.
2196 */
2197 tlen = in6_matchlen(IFA_IN6(ifa), dst);
2198 matchcmp = tlen - blen;
2199 if (matchcmp > 0) /* (3) */
2200 goto replace;
2201 continue; /* (4) */
2202 }
2203 if (dscopecmp > 0) {
2204 if (bscopecmp > 0) /* (5) */
2205 continue;
2206 goto replace; /* (6) */
2207 }
2208 if (dscopecmp < 0) {
2209 if (bscopecmp > 0) /* (7) */
2210 goto replace;
2211 continue; /* (8) */
2212 }
2213
2214 /* now dscopecmp must be 0 */
2215 if (bscopecmp < 0)
2216 goto replace; /* (9) */
2217
2218 replace:
2219 ifa_best = (struct in6_ifaddr *)ifa;
2220 blen = tlen >= 0 ? tlen :
2221 in6_matchlen(IFA_IN6(ifa), dst);
2222 best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr);
2223 }
2224 }
2225
2226 /* count statistics for future improvements */
2227 if (ifa_best == NULL)
2228 ip6stat.ip6s_sources_none++;
2229 else {
2230 if (oifp == ifa_best->ia_ifp)
2231 ip6stat.ip6s_sources_sameif[best_scope]++;
2232 else
2233 ip6stat.ip6s_sources_otherif[best_scope]++;
2234
2235 if (best_scope == dst_scope)
2236 ip6stat.ip6s_sources_samescope[best_scope]++;
2237 else
2238 ip6stat.ip6s_sources_otherscope[best_scope]++;
2239
2240 if (ifa_best->ia6_flags & IN6_IFF_DEPRECATED)
2241 ip6stat.ip6s_sources_deprecated[best_scope]++;
2242 }
2243
2244 return (ifa_best);
2245}
2246
2247/*
2248 * return the best address out of the same scope. if no address was
2249 * found, return the first valid address from designated IF.
2250 */
2251struct in6_ifaddr *
2252in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst)
2253{
2254 int dst_scope = in6_addrscope(dst), blen = -1, tlen;
2255 struct ifaddr_container *ifac;
2256 struct in6_ifaddr *besta = 0;
2257 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */
2258
2259 dep[0] = dep[1] = NULL;
2260
2261 /*
2262 * We first look for addresses in the same scope.
2263 * If there is one, return it.
2264 * If two or more, return one which matches the dst longest.
2265 * If none, return one of global addresses assigned other ifs.
2266 */
2267 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2268 struct ifaddr *ifa = ifac->ifa;
2269
2270 if (ifa->ifa_addr->sa_family != AF_INET6)
2271 continue;
2272 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2273 continue; /* XXX: is there any case to allow anycast? */
2274 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2275 continue; /* don't use this interface */
2276 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2277 continue;
2278 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2279 if (ip6_use_deprecated)
2280 dep[0] = (struct in6_ifaddr *)ifa;
2281 continue;
2282 }
2283
2284 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
2285 /*
2286 * call in6_matchlen() as few as possible
2287 */
2288 if (besta) {
2289 if (blen == -1)
2290 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst);
2291 tlen = in6_matchlen(IFA_IN6(ifa), dst);
2292 if (tlen > blen) {
2293 blen = tlen;
2294 besta = (struct in6_ifaddr *)ifa;
2295 }
2296 } else
2297 besta = (struct in6_ifaddr *)ifa;
2298 }
2299 }
2300 if (besta)
2301 return (besta);
2302
2303 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2304 struct ifaddr *ifa = ifac->ifa;
2305
2306 if (ifa->ifa_addr->sa_family != AF_INET6)
2307 continue;
2308 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2309 continue; /* XXX: is there any case to allow anycast? */
2310 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2311 continue; /* don't use this interface */
2312 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2313 continue;
2314 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2315 if (ip6_use_deprecated)
2316 dep[1] = (struct in6_ifaddr *)ifa;
2317 continue;
2318 }
2319
2320 return (struct in6_ifaddr *)ifa;
2321 }
2322
2323 /* use the last-resort values, that are, deprecated addresses */
2324 if (dep[0])
2325 return dep[0];
2326 if (dep[1])
2327 return dep[1];
2328
2329 return NULL;
2330}
2331
2332/*
2333 * perform DAD when interface becomes IFF_UP.
2334 */
2335void
2336in6_if_up(struct ifnet *ifp)
2337{
2338 struct ifaddr_container *ifac;
2339 struct in6_ifaddr *ia;
2340 int dad_delay; /* delay ticks before DAD output */
2341
2342 /*
2343 * special cases, like 6to4, are handled in in6_ifattach
2344 */
2345 in6_ifattach(ifp, NULL);
2346
2347 dad_delay = 0;
2348 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2349 struct ifaddr *ifa = ifac->ifa;
2350
2351 if (ifa->ifa_addr->sa_family != AF_INET6)
2352 continue;
2353 ia = (struct in6_ifaddr *)ifa;
2354 if (ia->ia6_flags & IN6_IFF_TENTATIVE)
2355 nd6_dad_start(ifa, &dad_delay);
2356 }
2357}
2358
2359int
2360in6if_do_dad(struct ifnet *ifp)
2361{
2362 if (ifp->if_flags & IFF_LOOPBACK)
2363 return (0);
2364
2365 switch (ifp->if_type) {
2366#ifdef IFT_DUMMY
2367 case IFT_DUMMY:
2368#endif
2369 case IFT_FAITH:
2370 /*
2371 * These interfaces do not have the IFF_LOOPBACK flag,
2372 * but loop packets back. We do not have to do DAD on such
2373 * interfaces. We should even omit it, because loop-backed
2374 * NS would confuse the DAD procedure.
2375 */
2376 return (0);
2377 default:
2378 /*
2379 * Our DAD routine requires the interface up and running.
2380 * However, some interfaces can be up before the RUNNING
2381 * status. Additionaly, users may try to assign addresses
2382 * before the interface becomes up (or running).
2383 * We simply skip DAD in such a case as a work around.
2384 * XXX: we should rather mark "tentative" on such addresses,
2385 * and do DAD after the interface becomes ready.
2386 */
2387 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
2388 (IFF_UP|IFF_RUNNING))
2389 return (0);
2390
2391 return (1);
2392 }
2393}
2394
2395/*
2396 * Calculate max IPv6 MTU through all the interfaces and store it
2397 * to in6_maxmtu.
2398 */
2399void
2400in6_setmaxmtu(void)
2401{
2402 unsigned long maxmtu = 0;
2403 struct ifnet *ifp;
2404
2405 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
2406 {
2407 if (!(ifp->if_flags & IFF_LOOPBACK) &&
2408 ND_IFINFO(ifp)->linkmtu > maxmtu)
2409 maxmtu = ND_IFINFO(ifp)->linkmtu;
2410 }
2411 if (maxmtu) /* update only when maxmtu is positive */
2412 in6_maxmtu = maxmtu;
2413}
2414
2415void *
2416in6_domifattach(struct ifnet *ifp)
2417{
2418 struct in6_ifextra *ext;
2419
2420 ext = (struct in6_ifextra *)kmalloc(sizeof(*ext), M_IFADDR, M_WAITOK);
2421 bzero(ext, sizeof(*ext));
2422
2423 ext->in6_ifstat = (struct in6_ifstat *)kmalloc(sizeof(struct in6_ifstat),
2424 M_IFADDR, M_WAITOK);
2425 bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat));
2426
2427 ext->icmp6_ifstat =
2428 (struct icmp6_ifstat *)kmalloc(sizeof(struct icmp6_ifstat),
2429 M_IFADDR, M_WAITOK);
2430 bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat));
2431
2432 ext->nd_ifinfo = nd6_ifattach(ifp);
2433 ext->scope6_id = scope6_ifattach(ifp);
2434 return ext;
2435}
2436
2437void
2438in6_domifdetach(struct ifnet *ifp, void *aux)
2439{
2440 struct in6_ifextra *ext = (struct in6_ifextra *)aux;
2441 scope6_ifdetach(ext->scope6_id);
2442 nd6_ifdetach(ext->nd_ifinfo);
2443 kfree(ext->in6_ifstat, M_IFADDR);
2444 kfree(ext->icmp6_ifstat, M_IFADDR);
2445 kfree(ext, M_IFADDR);
2446}
2447
2448/*
2449 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be
2450 * v4 mapped addr or v4 compat addr
2451 */
2452void
2453in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2454{
2455 bzero(sin, sizeof(*sin));
2456 sin->sin_len = sizeof(struct sockaddr_in);
2457 sin->sin_family = AF_INET;
2458 sin->sin_port = sin6->sin6_port;
2459 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3];
2460}
2461
2462/* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */
2463void
2464in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2465{
2466 bzero(sin6, sizeof(*sin6));
2467 sin6->sin6_len = sizeof(struct sockaddr_in6);
2468 sin6->sin6_family = AF_INET6;
2469 sin6->sin6_port = sin->sin_port;
2470 sin6->sin6_addr.s6_addr32[0] = 0;
2471 sin6->sin6_addr.s6_addr32[1] = 0;
2472 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
2473 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr;
2474}
2475
2476/* Convert sockaddr_in6 into sockaddr_in. */
2477void
2478in6_sin6_2_sin_in_sock(struct sockaddr *nam)
2479{
2480 struct sockaddr_in *sin_p;
2481 struct sockaddr_in6 sin6;
2482
2483 /*
2484 * Save original sockaddr_in6 addr and convert it
2485 * to sockaddr_in.
2486 */
2487 sin6 = *(struct sockaddr_in6 *)nam;
2488 sin_p = (struct sockaddr_in *)nam;
2489 in6_sin6_2_sin(sin_p, &sin6);
2490}
2491
2492/* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */
2493void
2494in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam)
2495{
2496 struct sockaddr_in *sin_p;
2497 struct sockaddr_in6 *sin6_p;
2498
2499 MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME,
2500 M_WAITOK);
2501 sin_p = (struct sockaddr_in *)*nam;
2502 in6_sin_2_v4mapsin6(sin_p, sin6_p);
2503 FREE(*nam, M_SONAME);
2504 *nam = (struct sockaddr *)sin6_p;
2505}