Remove dtom(). dtom() is no longer supported (precursor requirement for
[dragonfly.git] / sys / kern / kern_time.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93
34 * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
35 * $DragonFly: src/sys/kern/kern_time.c,v 1.15 2004/04/10 20:55:23 dillon Exp $
36 */
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/buf.h>
41#include <sys/sysproto.h>
42#include <sys/resourcevar.h>
43#include <sys/signalvar.h>
44#include <sys/kernel.h>
45#include <sys/systm.h>
46#include <sys/sysent.h>
47#include <sys/sysunion.h>
48#include <sys/proc.h>
49#include <sys/time.h>
50#include <sys/vnode.h>
51#include <sys/sysctl.h>
52#include <vm/vm.h>
53#include <vm/vm_extern.h>
54#include <sys/msgport2.h>
55#include <sys/thread2.h>
56
57struct timezone tz;
58
59/*
60 * Time of day and interval timer support.
61 *
62 * These routines provide the kernel entry points to get and set
63 * the time-of-day and per-process interval timers. Subroutines
64 * here provide support for adding and subtracting timeval structures
65 * and decrementing interval timers, optionally reloading the interval
66 * timers when they expire.
67 */
68
69static int nanosleep1 (struct timespec *rqt,
70 struct timespec *rmt);
71static int settime (struct timeval *);
72static void timevalfix (struct timeval *);
73static void no_lease_updatetime (int);
74
75static int sleep_hard_us = 100;
76SYSCTL_INT(_kern, OID_AUTO, sleep_hard_us, CTLFLAG_RW, &sleep_hard_us, 0, "")
77
78static void
79no_lease_updatetime(deltat)
80 int deltat;
81{
82}
83
84void (*lease_updatetime) (int) = no_lease_updatetime;
85
86static int
87settime(tv)
88 struct timeval *tv;
89{
90 struct timeval delta, tv1, tv2;
91 static struct timeval maxtime, laststep;
92 struct timespec ts;
93
94 crit_enter();
95 microtime(&tv1);
96 delta = *tv;
97 timevalsub(&delta, &tv1);
98
99 /*
100 * If the system is secure, we do not allow the time to be
101 * set to a value earlier than 1 second less than the highest
102 * time we have yet seen. The worst a miscreant can do in
103 * this circumstance is "freeze" time. He couldn't go
104 * back to the past.
105 *
106 * We similarly do not allow the clock to be stepped more
107 * than one second, nor more than once per second. This allows
108 * a miscreant to make the clock march double-time, but no worse.
109 */
110 if (securelevel > 1) {
111 if (delta.tv_sec < 0 || delta.tv_usec < 0) {
112 /*
113 * Update maxtime to latest time we've seen.
114 */
115 if (tv1.tv_sec > maxtime.tv_sec)
116 maxtime = tv1;
117 tv2 = *tv;
118 timevalsub(&tv2, &maxtime);
119 if (tv2.tv_sec < -1) {
120 tv->tv_sec = maxtime.tv_sec - 1;
121 printf("Time adjustment clamped to -1 second\n");
122 }
123 } else {
124 if (tv1.tv_sec == laststep.tv_sec) {
125 crit_exit();
126 return (EPERM);
127 }
128 if (delta.tv_sec > 1) {
129 tv->tv_sec = tv1.tv_sec + 1;
130 printf("Time adjustment clamped to +1 second\n");
131 }
132 laststep = *tv;
133 }
134 }
135
136 ts.tv_sec = tv->tv_sec;
137 ts.tv_nsec = tv->tv_usec * 1000;
138 set_timeofday(&ts);
139 lease_updatetime(delta.tv_sec);
140 crit_exit();
141 resettodr();
142 return (0);
143}
144
145/* ARGSUSED */
146int
147clock_gettime(struct clock_gettime_args *uap)
148{
149 struct timespec ats;
150
151 if (SCARG(uap, clock_id) != CLOCK_REALTIME)
152 return (EINVAL);
153 nanotime(&ats);
154 return (copyout(&ats, SCARG(uap, tp), sizeof(ats)));
155}
156
157/* ARGSUSED */
158int
159clock_settime(struct clock_settime_args *uap)
160{
161 struct thread *td = curthread;
162 struct timeval atv;
163 struct timespec ats;
164 int error;
165
166 if ((error = suser(td)) != 0)
167 return (error);
168 if (SCARG(uap, clock_id) != CLOCK_REALTIME)
169 return (EINVAL);
170 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
171 return (error);
172 if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
173 return (EINVAL);
174 /* XXX Don't convert nsec->usec and back */
175 TIMESPEC_TO_TIMEVAL(&atv, &ats);
176 if ((error = settime(&atv)))
177 return (error);
178 return (0);
179}
180
181int
182clock_getres(struct clock_getres_args *uap)
183{
184 struct timespec ts;
185 int error;
186
187 if (SCARG(uap, clock_id) != CLOCK_REALTIME)
188 return (EINVAL);
189 error = 0;
190 if (SCARG(uap, tp)) {
191 ts.tv_sec = 0;
192 /*
193 * Round up the result of the division cheaply by adding 1.
194 * Rounding up is especially important if rounding down
195 * would give 0. Perfect rounding is unimportant.
196 */
197 ts.tv_nsec = 1000000000 / cputimer_freq + 1;
198 error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
199 }
200 return (error);
201}
202
203/*
204 * nanosleep1()
205 *
206 * This is a general helper function for nanosleep() (aka sleep() aka
207 * usleep()).
208 *
209 * If there is less then one tick's worth of time left and
210 * we haven't done a yield, or the remaining microseconds is
211 * ridiculously low, do a yield. This avoids having
212 * to deal with systimer overheads when the system is under
213 * heavy loads. If we have done a yield already then use
214 * a systimer and an uninterruptable thread wait.
215 *
216 * If there is more then a tick's worth of time left,
217 * calculate the baseline ticks and use an interruptable
218 * tsleep, then handle the fine-grained delay on the next
219 * loop. This usually results in two sleeps occuring, a long one
220 * and a short one.
221 */
222static void
223ns1_systimer(systimer_t info)
224{
225 lwkt_schedule(info->data);
226}
227
228static int
229nanosleep1(struct timespec *rqt, struct timespec *rmt)
230{
231 static int nanowait;
232 struct timespec ts, ts2, ts3;
233 struct timeval tv;
234 int error;
235 int tried_yield;
236
237 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
238 return (EINVAL);
239 if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
240 return (0);
241 nanouptime(&ts);
242 timespecadd(&ts, rqt); /* ts = target timestamp compare */
243 TIMESPEC_TO_TIMEVAL(&tv, rqt); /* tv = sleep interval */
244 tried_yield = 0;
245
246 for (;;) {
247 int ticks;
248 struct systimer info;
249
250 ticks = tv.tv_usec / tick; /* approximate */
251
252 if (tv.tv_sec == 0 && ticks == 0) {
253 thread_t td = curthread;
254 if (tried_yield || tv.tv_usec < sleep_hard_us) {
255 tried_yield = 0;
256 uio_yield();
257 } else {
258 crit_enter_quick(td);
259 systimer_init_oneshot(&info, ns1_systimer,
260 td, tv.tv_usec);
261 lwkt_deschedule_self(td);
262 crit_exit_quick(td);
263 lwkt_switch();
264 systimer_del(&info); /* make sure it's gone */
265 }
266 error = iscaught(td->td_proc);
267 } else if (tv.tv_sec == 0) {
268 error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
269 } else {
270 ticks = tvtohz_low(&tv); /* also handles overflow */
271 error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
272 }
273 nanouptime(&ts2);
274 if (error && error != EWOULDBLOCK) {
275 if (error == ERESTART)
276 error = EINTR;
277 if (rmt != NULL) {
278 timespecsub(&ts, &ts2);
279 if (ts.tv_sec < 0)
280 timespecclear(&ts);
281 *rmt = ts;
282 }
283 return (error);
284 }
285 if (timespeccmp(&ts2, &ts, >=))
286 return (0);
287 ts3 = ts;
288 timespecsub(&ts3, &ts2);
289 TIMESPEC_TO_TIMEVAL(&tv, &ts3);
290 }
291}
292
293static void nanosleep_done(void *arg);
294static void nanosleep_copyout(union sysunion *sysun);
295
296/* ARGSUSED */
297int
298nanosleep(struct nanosleep_args *uap)
299{
300 int error;
301 struct sysmsg_sleep *smsleep = &uap->sysmsg.sm.sleep;
302
303 error = copyin(uap->rqtp, &smsleep->rqt, sizeof(smsleep->rqt));
304 if (error)
305 return (error);
306 /*
307 * YYY clean this up to always use the callout, note that an abort
308 * implementation should record the residual in the async case.
309 */
310 if (uap->sysmsg.lmsg.ms_flags & MSGF_ASYNC) {
311 quad_t ticks;
312
313 ticks = (quad_t)smsleep->rqt.tv_nsec * hz / 1000000000LL;
314 if (smsleep->rqt.tv_sec)
315 ticks += (quad_t)smsleep->rqt.tv_sec * hz;
316 if (ticks <= 0) {
317 if (ticks == 0)
318 error = 0;
319 else
320 error = EINVAL;
321 } else {
322 uap->sysmsg.copyout = nanosleep_copyout;
323 callout_init(&smsleep->timer);
324 callout_reset(&smsleep->timer, ticks, nanosleep_done, uap);
325 error = EASYNC;
326 }
327 } else {
328 /*
329 * Old synchronous sleep code, copyout the residual if
330 * nanosleep was interrupted.
331 */
332 error = nanosleep1(&smsleep->rqt, &smsleep->rmt);
333 if (error && SCARG(uap, rmtp))
334 error = copyout(&smsleep->rmt, SCARG(uap, rmtp), sizeof(smsleep->rmt));
335 }
336 return (error);
337}
338
339/*
340 * Asynch completion for the nanosleep() syscall. This function may be
341 * called from any context and cannot legally access the originating
342 * thread, proc, or its user space.
343 *
344 * YYY change the callout interface API so we can simply assign the replymsg
345 * function to it directly.
346 */
347static void
348nanosleep_done(void *arg)
349{
350 struct nanosleep_args *uap = arg;
351
352 lwkt_replymsg(&uap->sysmsg.lmsg, 0);
353}
354
355/*
356 * Asynch return for the nanosleep() syscall, called in the context of the
357 * originating thread when it pulls the message off the reply port. This
358 * function is responsible for any copyouts to userland. Kernel threads
359 * which do their own internal system calls will not usually call the return
360 * function.
361 */
362static void
363nanosleep_copyout(union sysunion *sysun)
364{
365 struct nanosleep_args *uap = &sysun->nanosleep;
366 struct sysmsg_sleep *smsleep = &uap->sysmsg.sm.sleep;
367
368 if (sysun->lmsg.ms_error && uap->rmtp) {
369 sysun->lmsg.ms_error =
370 copyout(&smsleep->rmt, uap->rmtp, sizeof(smsleep->rmt));
371 }
372}
373
374/* ARGSUSED */
375int
376gettimeofday(struct gettimeofday_args *uap)
377{
378 struct timeval atv;
379 int error = 0;
380
381 if (uap->tp) {
382 microtime(&atv);
383 if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
384 sizeof (atv))))
385 return (error);
386 }
387 if (uap->tzp)
388 error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
389 sizeof (tz));
390 return (error);
391}
392
393/* ARGSUSED */
394int
395settimeofday(struct settimeofday_args *uap)
396{
397 struct thread *td = curthread;
398 struct timeval atv;
399 struct timezone atz;
400 int error;
401
402 if ((error = suser(td)))
403 return (error);
404 /* Verify all parameters before changing time. */
405 if (uap->tv) {
406 if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
407 sizeof(atv))))
408 return (error);
409 if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
410 return (EINVAL);
411 }
412 if (uap->tzp &&
413 (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
414 return (error);
415 if (uap->tv && (error = settime(&atv)))
416 return (error);
417 if (uap->tzp)
418 tz = atz;
419 return (0);
420}
421
422int tickdelta; /* current clock skew, us. per tick */
423long timedelta; /* unapplied time correction, us. */
424static long bigadj = 1000000; /* use 10x skew above bigadj us. */
425
426/* ARGSUSED */
427int
428adjtime(struct adjtime_args *uap)
429{
430 struct thread *td = curthread;
431 struct timeval atv;
432 long ndelta, ntickdelta, odelta;
433 int error;
434
435 if ((error = suser(td)))
436 return (error);
437 if ((error =
438 copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval))))
439 return (error);
440
441 /*
442 * Compute the total correction and the rate at which to apply it.
443 * Round the adjustment down to a whole multiple of the per-tick
444 * delta, so that after some number of incremental changes in
445 * hardclock(), tickdelta will become zero, lest the correction
446 * overshoot and start taking us away from the desired final time.
447 */
448 ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
449 if (ndelta > bigadj || ndelta < -bigadj)
450 ntickdelta = 10 * tickadj;
451 else
452 ntickdelta = tickadj;
453 if (ndelta % ntickdelta)
454 ndelta = ndelta / ntickdelta * ntickdelta;
455
456 /*
457 * To make hardclock()'s job easier, make the per-tick delta negative
458 * if we want time to run slower; then hardclock can simply compute
459 * tick + tickdelta, and subtract tickdelta from timedelta.
460 */
461 if (ndelta < 0)
462 ntickdelta = -ntickdelta;
463 /*
464 * XXX not MP safe , but will probably work anyway.
465 */
466 crit_enter();
467 odelta = timedelta;
468 timedelta = ndelta;
469 tickdelta = ntickdelta;
470 crit_exit();
471
472 if (uap->olddelta) {
473 atv.tv_sec = odelta / 1000000;
474 atv.tv_usec = odelta % 1000000;
475 (void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
476 sizeof(struct timeval));
477 }
478 return (0);
479}
480
481/*
482 * Get value of an interval timer. The process virtual and
483 * profiling virtual time timers are kept in the p_stats area, since
484 * they can be swapped out. These are kept internally in the
485 * way they are specified externally: in time until they expire.
486 *
487 * The real time interval timer is kept in the process table slot
488 * for the process, and its value (it_value) is kept as an
489 * absolute time rather than as a delta, so that it is easy to keep
490 * periodic real-time signals from drifting.
491 *
492 * Virtual time timers are processed in the hardclock() routine of
493 * kern_clock.c. The real time timer is processed by a timeout
494 * routine, called from the softclock() routine. Since a callout
495 * may be delayed in real time due to interrupt processing in the system,
496 * it is possible for the real time timeout routine (realitexpire, given below),
497 * to be delayed in real time past when it is supposed to occur. It
498 * does not suffice, therefore, to reload the real timer .it_value from the
499 * real time timers .it_interval. Rather, we compute the next time in
500 * absolute time the timer should go off.
501 */
502/* ARGSUSED */
503int
504getitimer(struct getitimer_args *uap)
505{
506 struct proc *p = curproc;
507 struct timeval ctv;
508 struct itimerval aitv;
509
510 if (uap->which > ITIMER_PROF)
511 return (EINVAL);
512 crit_enter();
513 if (uap->which == ITIMER_REAL) {
514 /*
515 * Convert from absolute to relative time in .it_value
516 * part of real time timer. If time for real time timer
517 * has passed return 0, else return difference between
518 * current time and time for the timer to go off.
519 */
520 aitv = p->p_realtimer;
521 if (timevalisset(&aitv.it_value)) {
522 getmicrouptime(&ctv);
523 if (timevalcmp(&aitv.it_value, &ctv, <))
524 timevalclear(&aitv.it_value);
525 else
526 timevalsub(&aitv.it_value, &ctv);
527 }
528 } else {
529 aitv = p->p_stats->p_timer[uap->which];
530 }
531 crit_exit();
532 return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
533 sizeof (struct itimerval)));
534}
535
536/* ARGSUSED */
537int
538setitimer(struct setitimer_args *uap)
539{
540 struct itimerval aitv;
541 struct timeval ctv;
542 struct itimerval *itvp;
543 struct proc *p = curproc;
544 int error;
545
546 if (uap->which > ITIMER_PROF)
547 return (EINVAL);
548 itvp = uap->itv;
549 if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
550 sizeof(struct itimerval))))
551 return (error);
552 if ((uap->itv = uap->oitv) &&
553 (error = getitimer((struct getitimer_args *)uap)))
554 return (error);
555 if (itvp == 0)
556 return (0);
557 if (itimerfix(&aitv.it_value))
558 return (EINVAL);
559 if (!timevalisset(&aitv.it_value))
560 timevalclear(&aitv.it_interval);
561 else if (itimerfix(&aitv.it_interval))
562 return (EINVAL);
563 crit_enter();
564 if (uap->which == ITIMER_REAL) {
565 if (timevalisset(&p->p_realtimer.it_value))
566 untimeout(realitexpire, (caddr_t)p, p->p_ithandle);
567 if (timevalisset(&aitv.it_value))
568 p->p_ithandle = timeout(realitexpire, (caddr_t)p,
569 tvtohz_high(&aitv.it_value));
570 getmicrouptime(&ctv);
571 timevaladd(&aitv.it_value, &ctv);
572 p->p_realtimer = aitv;
573 } else {
574 p->p_stats->p_timer[uap->which] = aitv;
575 }
576 crit_exit();
577 return (0);
578}
579
580/*
581 * Real interval timer expired:
582 * send process whose timer expired an alarm signal.
583 * If time is not set up to reload, then just return.
584 * Else compute next time timer should go off which is > current time.
585 * This is where delay in processing this timeout causes multiple
586 * SIGALRM calls to be compressed into one.
587 * tvtohz_high() always adds 1 to allow for the time until the next clock
588 * interrupt being strictly less than 1 clock tick, but we don't want
589 * that here since we want to appear to be in sync with the clock
590 * interrupt even when we're delayed.
591 */
592void
593realitexpire(arg)
594 void *arg;
595{
596 struct proc *p;
597 struct timeval ctv, ntv;
598
599 p = (struct proc *)arg;
600 psignal(p, SIGALRM);
601 if (!timevalisset(&p->p_realtimer.it_interval)) {
602 timevalclear(&p->p_realtimer.it_value);
603 return;
604 }
605 for (;;) {
606 crit_enter();
607 timevaladd(&p->p_realtimer.it_value,
608 &p->p_realtimer.it_interval);
609 getmicrouptime(&ctv);
610 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
611 ntv = p->p_realtimer.it_value;
612 timevalsub(&ntv, &ctv);
613 p->p_ithandle = timeout(realitexpire, (caddr_t)p,
614 tvtohz_low(&ntv));
615 crit_exit();
616 return;
617 }
618 crit_exit();
619 }
620}
621
622/*
623 * Check that a proposed value to load into the .it_value or
624 * .it_interval part of an interval timer is acceptable, and
625 * fix it to have at least minimal value (i.e. if it is less
626 * than the resolution of the clock, round it up.)
627 */
628int
629itimerfix(tv)
630 struct timeval *tv;
631{
632
633 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
634 tv->tv_usec < 0 || tv->tv_usec >= 1000000)
635 return (EINVAL);
636 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
637 tv->tv_usec = tick;
638 return (0);
639}
640
641/*
642 * Decrement an interval timer by a specified number
643 * of microseconds, which must be less than a second,
644 * i.e. < 1000000. If the timer expires, then reload
645 * it. In this case, carry over (usec - old value) to
646 * reduce the value reloaded into the timer so that
647 * the timer does not drift. This routine assumes
648 * that it is called in a context where the timers
649 * on which it is operating cannot change in value.
650 */
651int
652itimerdecr(itp, usec)
653 struct itimerval *itp;
654 int usec;
655{
656
657 if (itp->it_value.tv_usec < usec) {
658 if (itp->it_value.tv_sec == 0) {
659 /* expired, and already in next interval */
660 usec -= itp->it_value.tv_usec;
661 goto expire;
662 }
663 itp->it_value.tv_usec += 1000000;
664 itp->it_value.tv_sec--;
665 }
666 itp->it_value.tv_usec -= usec;
667 usec = 0;
668 if (timevalisset(&itp->it_value))
669 return (1);
670 /* expired, exactly at end of interval */
671expire:
672 if (timevalisset(&itp->it_interval)) {
673 itp->it_value = itp->it_interval;
674 itp->it_value.tv_usec -= usec;
675 if (itp->it_value.tv_usec < 0) {
676 itp->it_value.tv_usec += 1000000;
677 itp->it_value.tv_sec--;
678 }
679 } else
680 itp->it_value.tv_usec = 0; /* sec is already 0 */
681 return (0);
682}
683
684/*
685 * Add and subtract routines for timevals.
686 * N.B.: subtract routine doesn't deal with
687 * results which are before the beginning,
688 * it just gets very confused in this case.
689 * Caveat emptor.
690 */
691void
692timevaladd(t1, t2)
693 struct timeval *t1, *t2;
694{
695
696 t1->tv_sec += t2->tv_sec;
697 t1->tv_usec += t2->tv_usec;
698 timevalfix(t1);
699}
700
701void
702timevalsub(t1, t2)
703 struct timeval *t1, *t2;
704{
705
706 t1->tv_sec -= t2->tv_sec;
707 t1->tv_usec -= t2->tv_usec;
708 timevalfix(t1);
709}
710
711static void
712timevalfix(t1)
713 struct timeval *t1;
714{
715
716 if (t1->tv_usec < 0) {
717 t1->tv_sec--;
718 t1->tv_usec += 1000000;
719 }
720 if (t1->tv_usec >= 1000000) {
721 t1->tv_sec++;
722 t1->tv_usec -= 1000000;
723 }
724}
725
726/*
727 * ratecheck(): simple time-based rate-limit checking.
728 */
729int
730ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
731{
732 struct timeval tv, delta;
733 int rv = 0;
734
735 getmicrouptime(&tv); /* NB: 10ms precision */
736 delta = tv;
737 timevalsub(&delta, lasttime);
738
739 /*
740 * check for 0,0 is so that the message will be seen at least once,
741 * even if interval is huge.
742 */
743 if (timevalcmp(&delta, mininterval, >=) ||
744 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
745 *lasttime = tv;
746 rv = 1;
747 }
748
749 return (rv);
750}
751
752/*
753 * ppsratecheck(): packets (or events) per second limitation.
754 *
755 * Return 0 if the limit is to be enforced (e.g. the caller
756 * should drop a packet because of the rate limitation).
757 *
758 * maxpps of 0 always causes zero to be returned. maxpps of -1
759 * always causes 1 to be returned; this effectively defeats rate
760 * limiting.
761 *
762 * Note that we maintain the struct timeval for compatibility
763 * with other bsd systems. We reuse the storage and just monitor
764 * clock ticks for minimal overhead.
765 */
766int
767ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
768{
769 int now;
770
771 /*
772 * Reset the last time and counter if this is the first call
773 * or more than a second has passed since the last update of
774 * lasttime.
775 */
776 now = ticks;
777 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
778 lasttime->tv_sec = now;
779 *curpps = 1;
780 return (maxpps != 0);
781 } else {
782 (*curpps)++; /* NB: ignore potential overflow */
783 return (maxpps < 0 || *curpps < maxpps);
784 }
785}
786