kernel: Make SMP support default (and non-optional).
[dragonfly.git] / sys / vm / vm_page.c
... / ...
CommitLineData
1/*
2 * (MPSAFE)
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
35 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
36 */
37
38/*
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 */
64/*
65 * Resident memory management module. The module manipulates 'VM pages'.
66 * A VM page is the core building block for memory management.
67 */
68
69#include <sys/param.h>
70#include <sys/systm.h>
71#include <sys/malloc.h>
72#include <sys/proc.h>
73#include <sys/vmmeter.h>
74#include <sys/vnode.h>
75#include <sys/kernel.h>
76#include <sys/alist.h>
77#include <sys/sysctl.h>
78
79#include <vm/vm.h>
80#include <vm/vm_param.h>
81#include <sys/lock.h>
82#include <vm/vm_kern.h>
83#include <vm/pmap.h>
84#include <vm/vm_map.h>
85#include <vm/vm_object.h>
86#include <vm/vm_page.h>
87#include <vm/vm_pageout.h>
88#include <vm/vm_pager.h>
89#include <vm/vm_extern.h>
90#include <vm/swap_pager.h>
91
92#include <machine/inttypes.h>
93#include <machine/md_var.h>
94
95#include <vm/vm_page2.h>
96#include <sys/spinlock2.h>
97
98#define VMACTION_HSIZE 256
99#define VMACTION_HMASK (VMACTION_HSIZE - 1)
100
101static void vm_page_queue_init(void);
102static void vm_page_free_wakeup(void);
103static vm_page_t vm_page_select_cache(u_short pg_color);
104static vm_page_t _vm_page_list_find2(int basequeue, int index);
105static void _vm_page_deactivate_locked(vm_page_t m, int athead);
106
107/*
108 * Array of tailq lists
109 */
110__cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
111
112LIST_HEAD(vm_page_action_list, vm_page_action);
113struct vm_page_action_list action_list[VMACTION_HSIZE];
114static volatile int vm_pages_waiting;
115
116static struct alist vm_contig_alist;
117static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
118static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin);
119
120static u_long vm_dma_reserved = 0;
121TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
122SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
123 "Memory reserved for DMA");
124SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
125 &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
126
127static int vm_contig_verbose = 0;
128TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
129
130RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
131 vm_pindex_t, pindex);
132
133static void
134vm_page_queue_init(void)
135{
136 int i;
137
138 for (i = 0; i < PQ_L2_SIZE; i++)
139 vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
140 for (i = 0; i < PQ_L2_SIZE; i++)
141 vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
142 for (i = 0; i < PQ_L2_SIZE; i++)
143 vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count;
144 for (i = 0; i < PQ_L2_SIZE; i++)
145 vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count;
146 for (i = 0; i < PQ_L2_SIZE; i++)
147 vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count;
148 /* PQ_NONE has no queue */
149
150 for (i = 0; i < PQ_COUNT; i++) {
151 TAILQ_INIT(&vm_page_queues[i].pl);
152 spin_init(&vm_page_queues[i].spin);
153 }
154
155 for (i = 0; i < VMACTION_HSIZE; i++)
156 LIST_INIT(&action_list[i]);
157}
158
159/*
160 * note: place in initialized data section? Is this necessary?
161 */
162long first_page = 0;
163int vm_page_array_size = 0;
164int vm_page_zero_count = 0;
165vm_page_t vm_page_array = NULL;
166vm_paddr_t vm_low_phys_reserved;
167
168/*
169 * (low level boot)
170 *
171 * Sets the page size, perhaps based upon the memory size.
172 * Must be called before any use of page-size dependent functions.
173 */
174void
175vm_set_page_size(void)
176{
177 if (vmstats.v_page_size == 0)
178 vmstats.v_page_size = PAGE_SIZE;
179 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
180 panic("vm_set_page_size: page size not a power of two");
181}
182
183/*
184 * (low level boot)
185 *
186 * Add a new page to the freelist for use by the system. New pages
187 * are added to both the head and tail of the associated free page
188 * queue in a bottom-up fashion, so both zero'd and non-zero'd page
189 * requests pull 'recent' adds (higher physical addresses) first.
190 *
191 * Beware that the page zeroing daemon will also be running soon after
192 * boot, moving pages from the head to the tail of the PQ_FREE queues.
193 *
194 * Must be called in a critical section.
195 */
196static void
197vm_add_new_page(vm_paddr_t pa)
198{
199 struct vpgqueues *vpq;
200 vm_page_t m;
201
202 m = PHYS_TO_VM_PAGE(pa);
203 m->phys_addr = pa;
204 m->flags = 0;
205 m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
206 /*
207 * Twist for cpu localization in addition to page coloring, so
208 * different cpus selecting by m->queue get different page colors.
209 */
210 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK;
211 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK;
212 /*
213 * Reserve a certain number of contiguous low memory pages for
214 * contigmalloc() to use.
215 */
216 if (pa < vm_low_phys_reserved) {
217 atomic_add_int(&vmstats.v_page_count, 1);
218 atomic_add_int(&vmstats.v_dma_pages, 1);
219 m->queue = PQ_NONE;
220 m->wire_count = 1;
221 atomic_add_int(&vmstats.v_wire_count, 1);
222 alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
223 return;
224 }
225
226 /*
227 * General page
228 */
229 m->queue = m->pc + PQ_FREE;
230 KKASSERT(m->dirty == 0);
231
232 atomic_add_int(&vmstats.v_page_count, 1);
233 atomic_add_int(&vmstats.v_free_count, 1);
234 vpq = &vm_page_queues[m->queue];
235 if ((vpq->flipflop & 15) == 0) {
236 pmap_zero_page(VM_PAGE_TO_PHYS(m));
237 m->flags |= PG_ZERO;
238 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
239 atomic_add_int(&vm_page_zero_count, 1);
240 } else {
241 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
242 }
243 ++vpq->flipflop;
244 ++vpq->lcnt;
245}
246
247/*
248 * (low level boot)
249 *
250 * Initializes the resident memory module.
251 *
252 * Preallocates memory for critical VM structures and arrays prior to
253 * kernel_map becoming available.
254 *
255 * Memory is allocated from (virtual2_start, virtual2_end) if available,
256 * otherwise memory is allocated from (virtual_start, virtual_end).
257 *
258 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
259 * large enough to hold vm_page_array & other structures for machines with
260 * large amounts of ram, so we want to use virtual2* when available.
261 */
262void
263vm_page_startup(void)
264{
265 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
266 vm_offset_t mapped;
267 vm_size_t npages;
268 vm_paddr_t page_range;
269 vm_paddr_t new_end;
270 int i;
271 vm_paddr_t pa;
272 int nblocks;
273 vm_paddr_t last_pa;
274 vm_paddr_t end;
275 vm_paddr_t biggestone, biggestsize;
276 vm_paddr_t total;
277
278 total = 0;
279 biggestsize = 0;
280 biggestone = 0;
281 nblocks = 0;
282 vaddr = round_page(vaddr);
283
284 for (i = 0; phys_avail[i + 1]; i += 2) {
285 phys_avail[i] = round_page64(phys_avail[i]);
286 phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
287 }
288
289 for (i = 0; phys_avail[i + 1]; i += 2) {
290 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
291
292 if (size > biggestsize) {
293 biggestone = i;
294 biggestsize = size;
295 }
296 ++nblocks;
297 total += size;
298 }
299
300 end = phys_avail[biggestone+1];
301 end = trunc_page(end);
302
303 /*
304 * Initialize the queue headers for the free queue, the active queue
305 * and the inactive queue.
306 */
307 vm_page_queue_init();
308
309#if !defined(_KERNEL_VIRTUAL)
310 /*
311 * VKERNELs don't support minidumps and as such don't need
312 * vm_page_dump
313 *
314 * Allocate a bitmap to indicate that a random physical page
315 * needs to be included in a minidump.
316 *
317 * The amd64 port needs this to indicate which direct map pages
318 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
319 *
320 * However, i386 still needs this workspace internally within the
321 * minidump code. In theory, they are not needed on i386, but are
322 * included should the sf_buf code decide to use them.
323 */
324 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
325 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
326 end -= vm_page_dump_size;
327 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
328 VM_PROT_READ | VM_PROT_WRITE);
329 bzero((void *)vm_page_dump, vm_page_dump_size);
330#endif
331 /*
332 * Compute the number of pages of memory that will be available for
333 * use (taking into account the overhead of a page structure per
334 * page).
335 */
336 first_page = phys_avail[0] / PAGE_SIZE;
337 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
338 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
339
340#ifndef _KERNEL_VIRTUAL
341 /*
342 * (only applies to real kernels)
343 *
344 * Initialize the contiguous reserve map. We initially reserve up
345 * to 1/4 available physical memory or 65536 pages (~256MB), whichever
346 * is lower.
347 *
348 * Once device initialization is complete we return most of the
349 * reserved memory back to the normal page queues but leave some
350 * in reserve for things like usb attachments.
351 */
352 vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
353 if (vm_low_phys_reserved > total / 4)
354 vm_low_phys_reserved = total / 4;
355 if (vm_dma_reserved == 0) {
356 vm_dma_reserved = 16 * 1024 * 1024; /* 16MB */
357 if (vm_dma_reserved > total / 16)
358 vm_dma_reserved = total / 16;
359 }
360#endif
361 alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
362 ALIST_RECORDS_65536);
363
364 /*
365 * Initialize the mem entry structures now, and put them in the free
366 * queue.
367 */
368 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
369 mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
370 vm_page_array = (vm_page_t)mapped;
371
372#if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
373 /*
374 * since pmap_map on amd64 returns stuff out of a direct-map region,
375 * we have to manually add these pages to the minidump tracking so
376 * that they can be dumped, including the vm_page_array.
377 */
378 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
379 dump_add_page(pa);
380#endif
381
382 /*
383 * Clear all of the page structures
384 */
385 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
386 vm_page_array_size = page_range;
387
388 /*
389 * Construct the free queue(s) in ascending order (by physical
390 * address) so that the first 16MB of physical memory is allocated
391 * last rather than first. On large-memory machines, this avoids
392 * the exhaustion of low physical memory before isa_dmainit has run.
393 */
394 vmstats.v_page_count = 0;
395 vmstats.v_free_count = 0;
396 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
397 pa = phys_avail[i];
398 if (i == biggestone)
399 last_pa = new_end;
400 else
401 last_pa = phys_avail[i + 1];
402 while (pa < last_pa && npages-- > 0) {
403 vm_add_new_page(pa);
404 pa += PAGE_SIZE;
405 }
406 }
407 if (virtual2_start)
408 virtual2_start = vaddr;
409 else
410 virtual_start = vaddr;
411}
412
413/*
414 * We tended to reserve a ton of memory for contigmalloc(). Now that most
415 * drivers have initialized we want to return most the remaining free
416 * reserve back to the VM page queues so they can be used for normal
417 * allocations.
418 *
419 * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
420 */
421static void
422vm_page_startup_finish(void *dummy __unused)
423{
424 alist_blk_t blk;
425 alist_blk_t rblk;
426 alist_blk_t count;
427 alist_blk_t xcount;
428 alist_blk_t bfree;
429 vm_page_t m;
430
431 spin_lock(&vm_contig_spin);
432 for (;;) {
433 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
434 if (bfree <= vm_dma_reserved / PAGE_SIZE)
435 break;
436 if (count == 0)
437 break;
438
439 /*
440 * Figure out how much of the initial reserve we have to
441 * free in order to reach our target.
442 */
443 bfree -= vm_dma_reserved / PAGE_SIZE;
444 if (count > bfree) {
445 blk += count - bfree;
446 count = bfree;
447 }
448
449 /*
450 * Calculate the nearest power of 2 <= count.
451 */
452 for (xcount = 1; xcount <= count; xcount <<= 1)
453 ;
454 xcount >>= 1;
455 blk += count - xcount;
456 count = xcount;
457
458 /*
459 * Allocate the pages from the alist, then free them to
460 * the normal VM page queues.
461 *
462 * Pages allocated from the alist are wired. We have to
463 * busy, unwire, and free them. We must also adjust
464 * vm_low_phys_reserved before freeing any pages to prevent
465 * confusion.
466 */
467 rblk = alist_alloc(&vm_contig_alist, blk, count);
468 if (rblk != blk) {
469 kprintf("vm_page_startup_finish: Unable to return "
470 "dma space @0x%08x/%d -> 0x%08x\n",
471 blk, count, rblk);
472 break;
473 }
474 atomic_add_int(&vmstats.v_dma_pages, -count);
475 spin_unlock(&vm_contig_spin);
476
477 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
478 vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
479 while (count) {
480 vm_page_busy_wait(m, FALSE, "cpgfr");
481 vm_page_unwire(m, 0);
482 vm_page_free(m);
483 --count;
484 ++m;
485 }
486 spin_lock(&vm_contig_spin);
487 }
488 spin_unlock(&vm_contig_spin);
489
490 /*
491 * Print out how much DMA space drivers have already allocated and
492 * how much is left over.
493 */
494 kprintf("DMA space used: %jdk, remaining available: %jdk\n",
495 (intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
496 (PAGE_SIZE / 1024),
497 (intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
498}
499SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
500 vm_page_startup_finish, NULL)
501
502
503/*
504 * Scan comparison function for Red-Black tree scans. An inclusive
505 * (start,end) is expected. Other fields are not used.
506 */
507int
508rb_vm_page_scancmp(struct vm_page *p, void *data)
509{
510 struct rb_vm_page_scan_info *info = data;
511
512 if (p->pindex < info->start_pindex)
513 return(-1);
514 if (p->pindex > info->end_pindex)
515 return(1);
516 return(0);
517}
518
519int
520rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
521{
522 if (p1->pindex < p2->pindex)
523 return(-1);
524 if (p1->pindex > p2->pindex)
525 return(1);
526 return(0);
527}
528
529/*
530 * Each page queue has its own spin lock, which is fairly optimal for
531 * allocating and freeing pages at least.
532 *
533 * The caller must hold the vm_page_spin_lock() before locking a vm_page's
534 * queue spinlock via this function. Also note that m->queue cannot change
535 * unless both the page and queue are locked.
536 */
537static __inline
538void
539_vm_page_queue_spin_lock(vm_page_t m)
540{
541 u_short queue;
542
543 queue = m->queue;
544 if (queue != PQ_NONE) {
545 spin_lock(&vm_page_queues[queue].spin);
546 KKASSERT(queue == m->queue);
547 }
548}
549
550static __inline
551void
552_vm_page_queue_spin_unlock(vm_page_t m)
553{
554 u_short queue;
555
556 queue = m->queue;
557 cpu_ccfence();
558 if (queue != PQ_NONE)
559 spin_unlock(&vm_page_queues[queue].spin);
560}
561
562static __inline
563void
564_vm_page_queues_spin_lock(u_short queue)
565{
566 cpu_ccfence();
567 if (queue != PQ_NONE)
568 spin_lock(&vm_page_queues[queue].spin);
569}
570
571
572static __inline
573void
574_vm_page_queues_spin_unlock(u_short queue)
575{
576 cpu_ccfence();
577 if (queue != PQ_NONE)
578 spin_unlock(&vm_page_queues[queue].spin);
579}
580
581void
582vm_page_queue_spin_lock(vm_page_t m)
583{
584 _vm_page_queue_spin_lock(m);
585}
586
587void
588vm_page_queues_spin_lock(u_short queue)
589{
590 _vm_page_queues_spin_lock(queue);
591}
592
593void
594vm_page_queue_spin_unlock(vm_page_t m)
595{
596 _vm_page_queue_spin_unlock(m);
597}
598
599void
600vm_page_queues_spin_unlock(u_short queue)
601{
602 _vm_page_queues_spin_unlock(queue);
603}
604
605/*
606 * This locks the specified vm_page and its queue in the proper order
607 * (page first, then queue). The queue may change so the caller must
608 * recheck on return.
609 */
610static __inline
611void
612_vm_page_and_queue_spin_lock(vm_page_t m)
613{
614 vm_page_spin_lock(m);
615 _vm_page_queue_spin_lock(m);
616}
617
618static __inline
619void
620_vm_page_and_queue_spin_unlock(vm_page_t m)
621{
622 _vm_page_queues_spin_unlock(m->queue);
623 vm_page_spin_unlock(m);
624}
625
626void
627vm_page_and_queue_spin_unlock(vm_page_t m)
628{
629 _vm_page_and_queue_spin_unlock(m);
630}
631
632void
633vm_page_and_queue_spin_lock(vm_page_t m)
634{
635 _vm_page_and_queue_spin_lock(m);
636}
637
638/*
639 * Helper function removes vm_page from its current queue.
640 * Returns the base queue the page used to be on.
641 *
642 * The vm_page and the queue must be spinlocked.
643 * This function will unlock the queue but leave the page spinlocked.
644 */
645static __inline u_short
646_vm_page_rem_queue_spinlocked(vm_page_t m)
647{
648 struct vpgqueues *pq;
649 u_short queue;
650
651 queue = m->queue;
652 if (queue != PQ_NONE) {
653 pq = &vm_page_queues[queue];
654 TAILQ_REMOVE(&pq->pl, m, pageq);
655 atomic_add_int(pq->cnt, -1);
656 pq->lcnt--;
657 m->queue = PQ_NONE;
658 vm_page_queues_spin_unlock(queue);
659 if ((queue - m->pc) == PQ_FREE && (m->flags & PG_ZERO))
660 atomic_subtract_int(&vm_page_zero_count, 1);
661 if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
662 return (queue - m->pc);
663 }
664 return queue;
665}
666
667/*
668 * Helper function places the vm_page on the specified queue.
669 *
670 * The vm_page must be spinlocked.
671 * This function will return with both the page and the queue locked.
672 */
673static __inline void
674_vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
675{
676 struct vpgqueues *pq;
677
678 KKASSERT(m->queue == PQ_NONE);
679
680 if (queue != PQ_NONE) {
681 vm_page_queues_spin_lock(queue);
682 pq = &vm_page_queues[queue];
683 ++pq->lcnt;
684 atomic_add_int(pq->cnt, 1);
685 m->queue = queue;
686
687 /*
688 * Put zero'd pages on the end ( where we look for zero'd pages
689 * first ) and non-zerod pages at the head.
690 */
691 if (queue - m->pc == PQ_FREE) {
692 if (m->flags & PG_ZERO) {
693 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
694 atomic_add_int(&vm_page_zero_count, 1);
695 } else {
696 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
697 }
698 } else if (athead) {
699 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
700 } else {
701 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
702 }
703 /* leave the queue spinlocked */
704 }
705}
706
707/*
708 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
709 * m->busy is zero. Returns TRUE if it had to sleep, FALSE if we
710 * did not. Only one sleep call will be made before returning.
711 *
712 * This function does NOT busy the page and on return the page is not
713 * guaranteed to be available.
714 */
715void
716vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
717{
718 u_int32_t flags;
719
720 for (;;) {
721 flags = m->flags;
722 cpu_ccfence();
723
724 if ((flags & PG_BUSY) == 0 &&
725 (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) {
726 break;
727 }
728 tsleep_interlock(m, 0);
729 if (atomic_cmpset_int(&m->flags, flags,
730 flags | PG_WANTED | PG_REFERENCED)) {
731 tsleep(m, PINTERLOCKED, msg, 0);
732 break;
733 }
734 }
735}
736
737/*
738 * Wait until PG_BUSY can be set, then set it. If also_m_busy is TRUE we
739 * also wait for m->busy to become 0 before setting PG_BUSY.
740 */
741void
742VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
743 int also_m_busy, const char *msg
744 VM_PAGE_DEBUG_ARGS)
745{
746 u_int32_t flags;
747
748 for (;;) {
749 flags = m->flags;
750 cpu_ccfence();
751 if (flags & PG_BUSY) {
752 tsleep_interlock(m, 0);
753 if (atomic_cmpset_int(&m->flags, flags,
754 flags | PG_WANTED | PG_REFERENCED)) {
755 tsleep(m, PINTERLOCKED, msg, 0);
756 }
757 } else if (also_m_busy && (flags & PG_SBUSY)) {
758 tsleep_interlock(m, 0);
759 if (atomic_cmpset_int(&m->flags, flags,
760 flags | PG_WANTED | PG_REFERENCED)) {
761 tsleep(m, PINTERLOCKED, msg, 0);
762 }
763 } else {
764 if (atomic_cmpset_int(&m->flags, flags,
765 flags | PG_BUSY)) {
766#ifdef VM_PAGE_DEBUG
767 m->busy_func = func;
768 m->busy_line = lineno;
769#endif
770 break;
771 }
772 }
773 }
774}
775
776/*
777 * Attempt to set PG_BUSY. If also_m_busy is TRUE we only succeed if m->busy
778 * is also 0.
779 *
780 * Returns non-zero on failure.
781 */
782int
783VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
784 VM_PAGE_DEBUG_ARGS)
785{
786 u_int32_t flags;
787
788 for (;;) {
789 flags = m->flags;
790 cpu_ccfence();
791 if (flags & PG_BUSY)
792 return TRUE;
793 if (also_m_busy && (flags & PG_SBUSY))
794 return TRUE;
795 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
796#ifdef VM_PAGE_DEBUG
797 m->busy_func = func;
798 m->busy_line = lineno;
799#endif
800 return FALSE;
801 }
802 }
803}
804
805/*
806 * Clear the PG_BUSY flag and return non-zero to indicate to the caller
807 * that a wakeup() should be performed.
808 *
809 * The vm_page must be spinlocked and will remain spinlocked on return.
810 * The related queue must NOT be spinlocked (which could deadlock us).
811 *
812 * (inline version)
813 */
814static __inline
815int
816_vm_page_wakeup(vm_page_t m)
817{
818 u_int32_t flags;
819
820 for (;;) {
821 flags = m->flags;
822 cpu_ccfence();
823 if (atomic_cmpset_int(&m->flags, flags,
824 flags & ~(PG_BUSY | PG_WANTED))) {
825 break;
826 }
827 }
828 return(flags & PG_WANTED);
829}
830
831/*
832 * Clear the PG_BUSY flag and wakeup anyone waiting for the page. This
833 * is typically the last call you make on a page before moving onto
834 * other things.
835 */
836void
837vm_page_wakeup(vm_page_t m)
838{
839 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
840 vm_page_spin_lock(m);
841 if (_vm_page_wakeup(m)) {
842 vm_page_spin_unlock(m);
843 wakeup(m);
844 } else {
845 vm_page_spin_unlock(m);
846 }
847}
848
849/*
850 * Holding a page keeps it from being reused. Other parts of the system
851 * can still disassociate the page from its current object and free it, or
852 * perform read or write I/O on it and/or otherwise manipulate the page,
853 * but if the page is held the VM system will leave the page and its data
854 * intact and not reuse the page for other purposes until the last hold
855 * reference is released. (see vm_page_wire() if you want to prevent the
856 * page from being disassociated from its object too).
857 *
858 * The caller must still validate the contents of the page and, if necessary,
859 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
860 * before manipulating the page.
861 *
862 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
863 */
864void
865vm_page_hold(vm_page_t m)
866{
867 vm_page_spin_lock(m);
868 atomic_add_int(&m->hold_count, 1);
869 if (m->queue - m->pc == PQ_FREE) {
870 _vm_page_queue_spin_lock(m);
871 _vm_page_rem_queue_spinlocked(m);
872 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
873 _vm_page_queue_spin_unlock(m);
874 }
875 vm_page_spin_unlock(m);
876}
877
878/*
879 * The opposite of vm_page_hold(). A page can be freed while being held,
880 * which places it on the PQ_HOLD queue. If we are able to busy the page
881 * after the hold count drops to zero we will move the page to the
882 * appropriate PQ_FREE queue by calling vm_page_free_toq().
883 */
884void
885vm_page_unhold(vm_page_t m)
886{
887 vm_page_spin_lock(m);
888 atomic_add_int(&m->hold_count, -1);
889 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
890 _vm_page_queue_spin_lock(m);
891 _vm_page_rem_queue_spinlocked(m);
892 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
893 _vm_page_queue_spin_unlock(m);
894 }
895 vm_page_spin_unlock(m);
896}
897
898/*
899 * Inserts the given vm_page into the object and object list.
900 *
901 * The pagetables are not updated but will presumably fault the page
902 * in if necessary, or if a kernel page the caller will at some point
903 * enter the page into the kernel's pmap. We are not allowed to block
904 * here so we *can't* do this anyway.
905 *
906 * This routine may not block.
907 * This routine must be called with the vm_object held.
908 * This routine must be called with a critical section held.
909 *
910 * This routine returns TRUE if the page was inserted into the object
911 * successfully, and FALSE if the page already exists in the object.
912 */
913int
914vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
915{
916 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
917 if (m->object != NULL)
918 panic("vm_page_insert: already inserted");
919
920 object->generation++;
921
922 /*
923 * Record the object/offset pair in this page and add the
924 * pv_list_count of the page to the object.
925 *
926 * The vm_page spin lock is required for interactions with the pmap.
927 */
928 vm_page_spin_lock(m);
929 m->object = object;
930 m->pindex = pindex;
931 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
932 m->object = NULL;
933 m->pindex = 0;
934 vm_page_spin_unlock(m);
935 return FALSE;
936 }
937 object->resident_page_count++;
938 /* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */
939 vm_page_spin_unlock(m);
940
941 /*
942 * Since we are inserting a new and possibly dirty page,
943 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
944 */
945 if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE))
946 vm_object_set_writeable_dirty(object);
947
948 /*
949 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
950 */
951 swap_pager_page_inserted(m);
952 return TRUE;
953}
954
955/*
956 * Removes the given vm_page_t from the (object,index) table
957 *
958 * The underlying pmap entry (if any) is NOT removed here.
959 * This routine may not block.
960 *
961 * The page must be BUSY and will remain BUSY on return.
962 * No other requirements.
963 *
964 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave
965 * it busy.
966 */
967void
968vm_page_remove(vm_page_t m)
969{
970 vm_object_t object;
971
972 if (m->object == NULL) {
973 return;
974 }
975
976 if ((m->flags & PG_BUSY) == 0)
977 panic("vm_page_remove: page not busy");
978
979 object = m->object;
980
981 vm_object_hold(object);
982
983 /*
984 * Remove the page from the object and update the object.
985 *
986 * The vm_page spin lock is required for interactions with the pmap.
987 */
988 vm_page_spin_lock(m);
989 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
990 object->resident_page_count--;
991 /* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */
992 m->object = NULL;
993 vm_page_spin_unlock(m);
994
995 object->generation++;
996
997 vm_object_drop(object);
998}
999
1000/*
1001 * Locate and return the page at (object, pindex), or NULL if the
1002 * page could not be found.
1003 *
1004 * The caller must hold the vm_object token.
1005 */
1006vm_page_t
1007vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1008{
1009 vm_page_t m;
1010
1011 /*
1012 * Search the hash table for this object/offset pair
1013 */
1014 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1015 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1016 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1017 return(m);
1018}
1019
1020vm_page_t
1021VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1022 vm_pindex_t pindex,
1023 int also_m_busy, const char *msg
1024 VM_PAGE_DEBUG_ARGS)
1025{
1026 u_int32_t flags;
1027 vm_page_t m;
1028
1029 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1030 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1031 while (m) {
1032 KKASSERT(m->object == object && m->pindex == pindex);
1033 flags = m->flags;
1034 cpu_ccfence();
1035 if (flags & PG_BUSY) {
1036 tsleep_interlock(m, 0);
1037 if (atomic_cmpset_int(&m->flags, flags,
1038 flags | PG_WANTED | PG_REFERENCED)) {
1039 tsleep(m, PINTERLOCKED, msg, 0);
1040 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1041 pindex);
1042 }
1043 } else if (also_m_busy && (flags & PG_SBUSY)) {
1044 tsleep_interlock(m, 0);
1045 if (atomic_cmpset_int(&m->flags, flags,
1046 flags | PG_WANTED | PG_REFERENCED)) {
1047 tsleep(m, PINTERLOCKED, msg, 0);
1048 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1049 pindex);
1050 }
1051 } else if (atomic_cmpset_int(&m->flags, flags,
1052 flags | PG_BUSY)) {
1053#ifdef VM_PAGE_DEBUG
1054 m->busy_func = func;
1055 m->busy_line = lineno;
1056#endif
1057 break;
1058 }
1059 }
1060 return m;
1061}
1062
1063/*
1064 * Attempt to lookup and busy a page.
1065 *
1066 * Returns NULL if the page could not be found
1067 *
1068 * Returns a vm_page and error == TRUE if the page exists but could not
1069 * be busied.
1070 *
1071 * Returns a vm_page and error == FALSE on success.
1072 */
1073vm_page_t
1074VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1075 vm_pindex_t pindex,
1076 int also_m_busy, int *errorp
1077 VM_PAGE_DEBUG_ARGS)
1078{
1079 u_int32_t flags;
1080 vm_page_t m;
1081
1082 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1083 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1084 *errorp = FALSE;
1085 while (m) {
1086 KKASSERT(m->object == object && m->pindex == pindex);
1087 flags = m->flags;
1088 cpu_ccfence();
1089 if (flags & PG_BUSY) {
1090 *errorp = TRUE;
1091 break;
1092 }
1093 if (also_m_busy && (flags & PG_SBUSY)) {
1094 *errorp = TRUE;
1095 break;
1096 }
1097 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1098#ifdef VM_PAGE_DEBUG
1099 m->busy_func = func;
1100 m->busy_line = lineno;
1101#endif
1102 break;
1103 }
1104 }
1105 return m;
1106}
1107
1108/*
1109 * Caller must hold the related vm_object
1110 */
1111vm_page_t
1112vm_page_next(vm_page_t m)
1113{
1114 vm_page_t next;
1115
1116 next = vm_page_rb_tree_RB_NEXT(m);
1117 if (next && next->pindex != m->pindex + 1)
1118 next = NULL;
1119 return (next);
1120}
1121
1122/*
1123 * vm_page_rename()
1124 *
1125 * Move the given vm_page from its current object to the specified
1126 * target object/offset. The page must be busy and will remain so
1127 * on return.
1128 *
1129 * new_object must be held.
1130 * This routine might block. XXX ?
1131 *
1132 * NOTE: Swap associated with the page must be invalidated by the move. We
1133 * have to do this for several reasons: (1) we aren't freeing the
1134 * page, (2) we are dirtying the page, (3) the VM system is probably
1135 * moving the page from object A to B, and will then later move
1136 * the backing store from A to B and we can't have a conflict.
1137 *
1138 * NOTE: We *always* dirty the page. It is necessary both for the
1139 * fact that we moved it, and because we may be invalidating
1140 * swap. If the page is on the cache, we have to deactivate it
1141 * or vm_page_dirty() will panic. Dirty pages are not allowed
1142 * on the cache.
1143 */
1144void
1145vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1146{
1147 KKASSERT(m->flags & PG_BUSY);
1148 ASSERT_LWKT_TOKEN_HELD(vm_object_token(new_object));
1149 if (m->object) {
1150 ASSERT_LWKT_TOKEN_HELD(vm_object_token(m->object));
1151 vm_page_remove(m);
1152 }
1153 if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1154 panic("vm_page_rename: target exists (%p,%"PRIu64")",
1155 new_object, new_pindex);
1156 }
1157 if (m->queue - m->pc == PQ_CACHE)
1158 vm_page_deactivate(m);
1159 vm_page_dirty(m);
1160}
1161
1162/*
1163 * vm_page_unqueue() without any wakeup. This routine is used when a page
1164 * is being moved between queues or otherwise is to remain BUSYied by the
1165 * caller.
1166 *
1167 * This routine may not block.
1168 */
1169void
1170vm_page_unqueue_nowakeup(vm_page_t m)
1171{
1172 vm_page_and_queue_spin_lock(m);
1173 (void)_vm_page_rem_queue_spinlocked(m);
1174 vm_page_spin_unlock(m);
1175}
1176
1177/*
1178 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1179 * if necessary.
1180 *
1181 * This routine may not block.
1182 */
1183void
1184vm_page_unqueue(vm_page_t m)
1185{
1186 u_short queue;
1187
1188 vm_page_and_queue_spin_lock(m);
1189 queue = _vm_page_rem_queue_spinlocked(m);
1190 if (queue == PQ_FREE || queue == PQ_CACHE) {
1191 vm_page_spin_unlock(m);
1192 pagedaemon_wakeup();
1193 } else {
1194 vm_page_spin_unlock(m);
1195 }
1196}
1197
1198/*
1199 * vm_page_list_find()
1200 *
1201 * Find a page on the specified queue with color optimization.
1202 *
1203 * The page coloring optimization attempts to locate a page that does
1204 * not overload other nearby pages in the object in the cpu's L1 or L2
1205 * caches. We need this optimization because cpu caches tend to be
1206 * physical caches, while object spaces tend to be virtual.
1207 *
1208 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1209 * and the algorithm is adjusted to localize allocations on a per-core basis.
1210 * This is done by 'twisting' the colors.
1211 *
1212 * The page is returned spinlocked and removed from its queue (it will
1213 * be on PQ_NONE), or NULL. The page is not PG_BUSY'd. The caller
1214 * is responsible for dealing with the busy-page case (usually by
1215 * deactivating the page and looping).
1216 *
1217 * NOTE: This routine is carefully inlined. A non-inlined version
1218 * is available for outside callers but the only critical path is
1219 * from within this source file.
1220 *
1221 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1222 * represent stable storage, allowing us to order our locks vm_page
1223 * first, then queue.
1224 */
1225static __inline
1226vm_page_t
1227_vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1228{
1229 vm_page_t m;
1230
1231 for (;;) {
1232 if (prefer_zero)
1233 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
1234 else
1235 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1236 if (m == NULL) {
1237 m = _vm_page_list_find2(basequeue, index);
1238 return(m);
1239 }
1240 vm_page_and_queue_spin_lock(m);
1241 if (m->queue == basequeue + index) {
1242 _vm_page_rem_queue_spinlocked(m);
1243 /* vm_page_t spin held, no queue spin */
1244 break;
1245 }
1246 vm_page_and_queue_spin_unlock(m);
1247 }
1248 return(m);
1249}
1250
1251static vm_page_t
1252_vm_page_list_find2(int basequeue, int index)
1253{
1254 int i;
1255 vm_page_t m = NULL;
1256 struct vpgqueues *pq;
1257
1258 pq = &vm_page_queues[basequeue];
1259
1260 /*
1261 * Note that for the first loop, index+i and index-i wind up at the
1262 * same place. Even though this is not totally optimal, we've already
1263 * blown it by missing the cache case so we do not care.
1264 */
1265 for (i = PQ_L2_SIZE / 2; i > 0; --i) {
1266 for (;;) {
1267 m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl);
1268 if (m) {
1269 _vm_page_and_queue_spin_lock(m);
1270 if (m->queue ==
1271 basequeue + ((index + i) & PQ_L2_MASK)) {
1272 _vm_page_rem_queue_spinlocked(m);
1273 return(m);
1274 }
1275 _vm_page_and_queue_spin_unlock(m);
1276 continue;
1277 }
1278 m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl);
1279 if (m) {
1280 _vm_page_and_queue_spin_lock(m);
1281 if (m->queue ==
1282 basequeue + ((index - i) & PQ_L2_MASK)) {
1283 _vm_page_rem_queue_spinlocked(m);
1284 return(m);
1285 }
1286 _vm_page_and_queue_spin_unlock(m);
1287 continue;
1288 }
1289 break; /* next i */
1290 }
1291 }
1292 return(m);
1293}
1294
1295/*
1296 * Returns a vm_page candidate for allocation. The page is not busied so
1297 * it can move around. The caller must busy the page (and typically
1298 * deactivate it if it cannot be busied!)
1299 *
1300 * Returns a spinlocked vm_page that has been removed from its queue.
1301 */
1302vm_page_t
1303vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1304{
1305 return(_vm_page_list_find(basequeue, index, prefer_zero));
1306}
1307
1308/*
1309 * Find a page on the cache queue with color optimization, remove it
1310 * from the queue, and busy it. The returned page will not be spinlocked.
1311 *
1312 * A candidate failure will be deactivated. Candidates can fail due to
1313 * being busied by someone else, in which case they will be deactivated.
1314 *
1315 * This routine may not block.
1316 *
1317 */
1318static vm_page_t
1319vm_page_select_cache(u_short pg_color)
1320{
1321 vm_page_t m;
1322
1323 for (;;) {
1324 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE);
1325 if (m == NULL)
1326 break;
1327 /*
1328 * (m) has been removed from its queue and spinlocked
1329 */
1330 if (vm_page_busy_try(m, TRUE)) {
1331 _vm_page_deactivate_locked(m, 0);
1332 vm_page_spin_unlock(m);
1333#ifdef INVARIANTS
1334 kprintf("Warning: busy page %p found in cache\n", m);
1335#endif
1336 } else {
1337 /*
1338 * We successfully busied the page
1339 */
1340 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1341 m->hold_count == 0 &&
1342 m->wire_count == 0 &&
1343 (m->dirty & m->valid) == 0) {
1344 vm_page_spin_unlock(m);
1345 pagedaemon_wakeup();
1346 return(m);
1347 }
1348
1349 /*
1350 * The page cannot be recycled, deactivate it.
1351 */
1352 _vm_page_deactivate_locked(m, 0);
1353 if (_vm_page_wakeup(m)) {
1354 vm_page_spin_unlock(m);
1355 wakeup(m);
1356 } else {
1357 vm_page_spin_unlock(m);
1358 }
1359 }
1360 }
1361 return (m);
1362}
1363
1364/*
1365 * Find a free or zero page, with specified preference. We attempt to
1366 * inline the nominal case and fall back to _vm_page_select_free()
1367 * otherwise. A busied page is removed from the queue and returned.
1368 *
1369 * This routine may not block.
1370 */
1371static __inline vm_page_t
1372vm_page_select_free(u_short pg_color, boolean_t prefer_zero)
1373{
1374 vm_page_t m;
1375
1376 for (;;) {
1377 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK,
1378 prefer_zero);
1379 if (m == NULL)
1380 break;
1381 if (vm_page_busy_try(m, TRUE)) {
1382 /*
1383 * Various mechanisms such as a pmap_collect can
1384 * result in a busy page on the free queue. We
1385 * have to move the page out of the way so we can
1386 * retry the allocation. If the other thread is not
1387 * allocating the page then m->valid will remain 0 and
1388 * the pageout daemon will free the page later on.
1389 *
1390 * Since we could not busy the page, however, we
1391 * cannot make assumptions as to whether the page
1392 * will be allocated by the other thread or not,
1393 * so all we can do is deactivate it to move it out
1394 * of the way. In particular, if the other thread
1395 * wires the page it may wind up on the inactive
1396 * queue and the pageout daemon will have to deal
1397 * with that case too.
1398 */
1399 _vm_page_deactivate_locked(m, 0);
1400 vm_page_spin_unlock(m);
1401#ifdef INVARIANTS
1402 kprintf("Warning: busy page %p found in cache\n", m);
1403#endif
1404 } else {
1405 /*
1406 * Theoretically if we are able to busy the page
1407 * atomic with the queue removal (using the vm_page
1408 * lock) nobody else should be able to mess with the
1409 * page before us.
1410 */
1411 KKASSERT((m->flags & (PG_UNMANAGED |
1412 PG_NEED_COMMIT)) == 0);
1413 KKASSERT(m->hold_count == 0);
1414 KKASSERT(m->wire_count == 0);
1415 vm_page_spin_unlock(m);
1416 pagedaemon_wakeup();
1417
1418 /* return busied and removed page */
1419 return(m);
1420 }
1421 }
1422 return(m);
1423}
1424
1425/*
1426 * This implements a per-cpu cache of free, zero'd, ready-to-go pages.
1427 * The idea is to populate this cache prior to acquiring any locks so
1428 * we don't wind up potentially zeroing VM pages (under heavy loads) while
1429 * holding potentialy contending locks.
1430 *
1431 * Note that we allocate the page uninserted into anything and use a pindex
1432 * of 0, the vm_page_alloc() will effectively add gd_cpuid so these
1433 * allocations should wind up being uncontended. However, we still want
1434 * to rove across PQ_L2_SIZE.
1435 */
1436void
1437vm_page_pcpu_cache(void)
1438{
1439#if 0
1440 globaldata_t gd = mycpu;
1441 vm_page_t m;
1442
1443 if (gd->gd_vmpg_count < GD_MINVMPG) {
1444 crit_enter_gd(gd);
1445 while (gd->gd_vmpg_count < GD_MAXVMPG) {
1446 m = vm_page_alloc(NULL, ticks & ~ncpus2_mask,
1447 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1448 VM_ALLOC_NULL_OK | VM_ALLOC_ZERO);
1449 if (gd->gd_vmpg_count < GD_MAXVMPG) {
1450 if ((m->flags & PG_ZERO) == 0) {
1451 pmap_zero_page(VM_PAGE_TO_PHYS(m));
1452 vm_page_flag_set(m, PG_ZERO);
1453 }
1454 gd->gd_vmpg_array[gd->gd_vmpg_count++] = m;
1455 } else {
1456 vm_page_free(m);
1457 }
1458 }
1459 crit_exit_gd(gd);
1460 }
1461#endif
1462}
1463
1464/*
1465 * vm_page_alloc()
1466 *
1467 * Allocate and return a memory cell associated with this VM object/offset
1468 * pair. If object is NULL an unassociated page will be allocated.
1469 *
1470 * The returned page will be busied and removed from its queues. This
1471 * routine can block and may return NULL if a race occurs and the page
1472 * is found to already exist at the specified (object, pindex).
1473 *
1474 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain
1475 * VM_ALLOC_QUICK like normal but cannot use cache
1476 * VM_ALLOC_SYSTEM greater free drain
1477 * VM_ALLOC_INTERRUPT allow free list to be completely drained
1478 * VM_ALLOC_ZERO advisory request for pre-zero'd page only
1479 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only
1480 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision
1481 * (see vm_page_grab())
1482 * VM_ALLOC_USE_GD ok to use per-gd cache
1483 *
1484 * The object must be held if not NULL
1485 * This routine may not block
1486 *
1487 * Additional special handling is required when called from an interrupt
1488 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache
1489 * in this case.
1490 */
1491vm_page_t
1492vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1493{
1494 globaldata_t gd = mycpu;
1495 vm_object_t obj;
1496 vm_page_t m;
1497 u_short pg_color;
1498
1499#if 0
1500 /*
1501 * Special per-cpu free VM page cache. The pages are pre-busied
1502 * and pre-zerod for us.
1503 */
1504 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1505 crit_enter_gd(gd);
1506 if (gd->gd_vmpg_count) {
1507 m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1508 crit_exit_gd(gd);
1509 goto done;
1510 }
1511 crit_exit_gd(gd);
1512 }
1513#endif
1514 m = NULL;
1515
1516 /*
1517 * Cpu twist - cpu localization algorithm
1518 */
1519 if (object) {
1520 pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask) +
1521 (object->pg_color & ~ncpus_fit_mask);
1522 } else {
1523 pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask);
1524 }
1525 KKASSERT(page_req &
1526 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1527 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1528
1529 /*
1530 * Certain system threads (pageout daemon, buf_daemon's) are
1531 * allowed to eat deeper into the free page list.
1532 */
1533 if (curthread->td_flags & TDF_SYSTHREAD)
1534 page_req |= VM_ALLOC_SYSTEM;
1535
1536loop:
1537 if (vmstats.v_free_count > vmstats.v_free_reserved ||
1538 ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
1539 ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
1540 vmstats.v_free_count > vmstats.v_interrupt_free_min)
1541 ) {
1542 /*
1543 * The free queue has sufficient free pages to take one out.
1544 */
1545 if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO))
1546 m = vm_page_select_free(pg_color, TRUE);
1547 else
1548 m = vm_page_select_free(pg_color, FALSE);
1549 } else if (page_req & VM_ALLOC_NORMAL) {
1550 /*
1551 * Allocatable from the cache (non-interrupt only). On
1552 * success, we must free the page and try again, thus
1553 * ensuring that vmstats.v_*_free_min counters are replenished.
1554 */
1555#ifdef INVARIANTS
1556 if (curthread->td_preempted) {
1557 kprintf("vm_page_alloc(): warning, attempt to allocate"
1558 " cache page from preempting interrupt\n");
1559 m = NULL;
1560 } else {
1561 m = vm_page_select_cache(pg_color);
1562 }
1563#else
1564 m = vm_page_select_cache(pg_color);
1565#endif
1566 /*
1567 * On success move the page into the free queue and loop.
1568 *
1569 * Only do this if we can safely acquire the vm_object lock,
1570 * because this is effectively a random page and the caller
1571 * might be holding the lock shared, we don't want to
1572 * deadlock.
1573 */
1574 if (m != NULL) {
1575 KASSERT(m->dirty == 0,
1576 ("Found dirty cache page %p", m));
1577 if ((obj = m->object) != NULL) {
1578 if (vm_object_hold_try(obj)) {
1579 vm_page_protect(m, VM_PROT_NONE);
1580 vm_page_free(m);
1581 /* m->object NULL here */
1582 vm_object_drop(obj);
1583 } else {
1584 vm_page_deactivate(m);
1585 vm_page_wakeup(m);
1586 }
1587 } else {
1588 vm_page_protect(m, VM_PROT_NONE);
1589 vm_page_free(m);
1590 }
1591 goto loop;
1592 }
1593
1594 /*
1595 * On failure return NULL
1596 */
1597#if defined(DIAGNOSTIC)
1598 if (vmstats.v_cache_count > 0)
1599 kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
1600#endif
1601 vm_pageout_deficit++;
1602 pagedaemon_wakeup();
1603 return (NULL);
1604 } else {
1605 /*
1606 * No pages available, wakeup the pageout daemon and give up.
1607 */
1608 vm_pageout_deficit++;
1609 pagedaemon_wakeup();
1610 return (NULL);
1611 }
1612
1613 /*
1614 * v_free_count can race so loop if we don't find the expected
1615 * page.
1616 */
1617 if (m == NULL)
1618 goto loop;
1619
1620 /*
1621 * Good page found. The page has already been busied for us and
1622 * removed from its queues.
1623 */
1624 KASSERT(m->dirty == 0,
1625 ("vm_page_alloc: free/cache page %p was dirty", m));
1626 KKASSERT(m->queue == PQ_NONE);
1627
1628#if 0
1629done:
1630#endif
1631 /*
1632 * Initialize the structure, inheriting some flags but clearing
1633 * all the rest. The page has already been busied for us.
1634 */
1635 vm_page_flag_clear(m, ~(PG_ZERO | PG_BUSY | PG_SBUSY));
1636 KKASSERT(m->wire_count == 0);
1637 KKASSERT(m->busy == 0);
1638 m->act_count = 0;
1639 m->valid = 0;
1640
1641 /*
1642 * Caller must be holding the object lock (asserted by
1643 * vm_page_insert()).
1644 *
1645 * NOTE: Inserting a page here does not insert it into any pmaps
1646 * (which could cause us to block allocating memory).
1647 *
1648 * NOTE: If no object an unassociated page is allocated, m->pindex
1649 * can be used by the caller for any purpose.
1650 */
1651 if (object) {
1652 if (vm_page_insert(m, object, pindex) == FALSE) {
1653 kprintf("PAGE RACE (%p:%d,%"PRIu64")\n",
1654 object, object->type, pindex);
1655 vm_page_free(m);
1656 m = NULL;
1657 if ((page_req & VM_ALLOC_NULL_OK) == 0)
1658 panic("PAGE RACE");
1659 }
1660 } else {
1661 m->pindex = pindex;
1662 }
1663
1664 /*
1665 * Don't wakeup too often - wakeup the pageout daemon when
1666 * we would be nearly out of memory.
1667 */
1668 pagedaemon_wakeup();
1669
1670 /*
1671 * A PG_BUSY page is returned.
1672 */
1673 return (m);
1674}
1675
1676/*
1677 * Attempt to allocate contiguous physical memory with the specified
1678 * requirements.
1679 */
1680vm_page_t
1681vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
1682 unsigned long alignment, unsigned long boundary,
1683 unsigned long size)
1684{
1685 alist_blk_t blk;
1686
1687 alignment >>= PAGE_SHIFT;
1688 if (alignment == 0)
1689 alignment = 1;
1690 boundary >>= PAGE_SHIFT;
1691 if (boundary == 0)
1692 boundary = 1;
1693 size = (size + PAGE_MASK) >> PAGE_SHIFT;
1694
1695 spin_lock(&vm_contig_spin);
1696 blk = alist_alloc(&vm_contig_alist, 0, size);
1697 if (blk == ALIST_BLOCK_NONE) {
1698 spin_unlock(&vm_contig_spin);
1699 if (bootverbose) {
1700 kprintf("vm_page_alloc_contig: %ldk nospace\n",
1701 (size + PAGE_MASK) * (PAGE_SIZE / 1024));
1702 }
1703 return(NULL);
1704 }
1705 if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
1706 alist_free(&vm_contig_alist, blk, size);
1707 spin_unlock(&vm_contig_spin);
1708 if (bootverbose) {
1709 kprintf("vm_page_alloc_contig: %ldk high "
1710 "%016jx failed\n",
1711 (size + PAGE_MASK) * (PAGE_SIZE / 1024),
1712 (intmax_t)high);
1713 }
1714 return(NULL);
1715 }
1716 spin_unlock(&vm_contig_spin);
1717 if (vm_contig_verbose) {
1718 kprintf("vm_page_alloc_contig: %016jx/%ldk\n",
1719 (intmax_t)(vm_paddr_t)blk << PAGE_SHIFT,
1720 (size + PAGE_MASK) * (PAGE_SIZE / 1024));
1721 }
1722 return (PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT));
1723}
1724
1725/*
1726 * Free contiguously allocated pages. The pages will be wired but not busy.
1727 * When freeing to the alist we leave them wired and not busy.
1728 */
1729void
1730vm_page_free_contig(vm_page_t m, unsigned long size)
1731{
1732 vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1733 vm_pindex_t start = pa >> PAGE_SHIFT;
1734 vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
1735
1736 if (vm_contig_verbose) {
1737 kprintf("vm_page_free_contig: %016jx/%ldk\n",
1738 (intmax_t)pa, size / 1024);
1739 }
1740 if (pa < vm_low_phys_reserved) {
1741 KKASSERT(pa + size <= vm_low_phys_reserved);
1742 spin_lock(&vm_contig_spin);
1743 alist_free(&vm_contig_alist, start, pages);
1744 spin_unlock(&vm_contig_spin);
1745 } else {
1746 while (pages) {
1747 vm_page_busy_wait(m, FALSE, "cpgfr");
1748 vm_page_unwire(m, 0);
1749 vm_page_free(m);
1750 --pages;
1751 ++m;
1752 }
1753
1754 }
1755}
1756
1757
1758/*
1759 * Wait for sufficient free memory for nominal heavy memory use kernel
1760 * operations.
1761 *
1762 * WARNING! Be sure never to call this in any vm_pageout code path, which
1763 * will trivially deadlock the system.
1764 */
1765void
1766vm_wait_nominal(void)
1767{
1768 while (vm_page_count_min(0))
1769 vm_wait(0);
1770}
1771
1772/*
1773 * Test if vm_wait_nominal() would block.
1774 */
1775int
1776vm_test_nominal(void)
1777{
1778 if (vm_page_count_min(0))
1779 return(1);
1780 return(0);
1781}
1782
1783/*
1784 * Block until free pages are available for allocation, called in various
1785 * places before memory allocations.
1786 *
1787 * The caller may loop if vm_page_count_min() == FALSE so we cannot be
1788 * more generous then that.
1789 */
1790void
1791vm_wait(int timo)
1792{
1793 /*
1794 * never wait forever
1795 */
1796 if (timo == 0)
1797 timo = hz;
1798 lwkt_gettoken(&vm_token);
1799
1800 if (curthread == pagethread) {
1801 /*
1802 * The pageout daemon itself needs pages, this is bad.
1803 */
1804 if (vm_page_count_min(0)) {
1805 vm_pageout_pages_needed = 1;
1806 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
1807 }
1808 } else {
1809 /*
1810 * Wakeup the pageout daemon if necessary and wait.
1811 */
1812 if (vm_page_count_target()) {
1813 if (vm_pages_needed == 0) {
1814 vm_pages_needed = 1;
1815 wakeup(&vm_pages_needed);
1816 }
1817 ++vm_pages_waiting; /* SMP race ok */
1818 tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
1819 }
1820 }
1821 lwkt_reltoken(&vm_token);
1822}
1823
1824/*
1825 * Block until free pages are available for allocation
1826 *
1827 * Called only from vm_fault so that processes page faulting can be
1828 * easily tracked.
1829 */
1830void
1831vm_waitpfault(void)
1832{
1833 /*
1834 * Wakeup the pageout daemon if necessary and wait.
1835 */
1836 if (vm_page_count_target()) {
1837 lwkt_gettoken(&vm_token);
1838 if (vm_page_count_target()) {
1839 if (vm_pages_needed == 0) {
1840 vm_pages_needed = 1;
1841 wakeup(&vm_pages_needed);
1842 }
1843 ++vm_pages_waiting; /* SMP race ok */
1844 tsleep(&vmstats.v_free_count, 0, "pfault", hz);
1845 }
1846 lwkt_reltoken(&vm_token);
1847 }
1848}
1849
1850/*
1851 * Put the specified page on the active list (if appropriate). Ensure
1852 * that act_count is at least ACT_INIT but do not otherwise mess with it.
1853 *
1854 * The caller should be holding the page busied ? XXX
1855 * This routine may not block.
1856 */
1857void
1858vm_page_activate(vm_page_t m)
1859{
1860 u_short oqueue;
1861
1862 vm_page_spin_lock(m);
1863 if (m->queue - m->pc != PQ_ACTIVE) {
1864 _vm_page_queue_spin_lock(m);
1865 oqueue = _vm_page_rem_queue_spinlocked(m);
1866 /* page is left spinlocked, queue is unlocked */
1867
1868 if (oqueue == PQ_CACHE)
1869 mycpu->gd_cnt.v_reactivated++;
1870 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1871 if (m->act_count < ACT_INIT)
1872 m->act_count = ACT_INIT;
1873 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
1874 }
1875 _vm_page_and_queue_spin_unlock(m);
1876 if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
1877 pagedaemon_wakeup();
1878 } else {
1879 if (m->act_count < ACT_INIT)
1880 m->act_count = ACT_INIT;
1881 vm_page_spin_unlock(m);
1882 }
1883}
1884
1885/*
1886 * Helper routine for vm_page_free_toq() and vm_page_cache(). This
1887 * routine is called when a page has been added to the cache or free
1888 * queues.
1889 *
1890 * This routine may not block.
1891 */
1892static __inline void
1893vm_page_free_wakeup(void)
1894{
1895 /*
1896 * If the pageout daemon itself needs pages, then tell it that
1897 * there are some free.
1898 */
1899 if (vm_pageout_pages_needed &&
1900 vmstats.v_cache_count + vmstats.v_free_count >=
1901 vmstats.v_pageout_free_min
1902 ) {
1903 wakeup(&vm_pageout_pages_needed);
1904 vm_pageout_pages_needed = 0;
1905 }
1906
1907 /*
1908 * Wakeup processes that are waiting on memory.
1909 *
1910 * NOTE: vm_paging_target() is the pageout daemon's target, while
1911 * vm_page_count_target() is somewhere inbetween. We want
1912 * to wake processes up prior to the pageout daemon reaching
1913 * its target to provide some hysteresis.
1914 */
1915 if (vm_pages_waiting) {
1916 if (!vm_page_count_target()) {
1917 /*
1918 * Plenty of pages are free, wakeup everyone.
1919 */
1920 vm_pages_waiting = 0;
1921 wakeup(&vmstats.v_free_count);
1922 ++mycpu->gd_cnt.v_ppwakeups;
1923 } else if (!vm_page_count_min(0)) {
1924 /*
1925 * Some pages are free, wakeup someone.
1926 */
1927 int wcount = vm_pages_waiting;
1928 if (wcount > 0)
1929 --wcount;
1930 vm_pages_waiting = wcount;
1931 wakeup_one(&vmstats.v_free_count);
1932 ++mycpu->gd_cnt.v_ppwakeups;
1933 }
1934 }
1935}
1936
1937/*
1938 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
1939 * it from its VM object.
1940 *
1941 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on
1942 * return (the page will have been freed).
1943 */
1944void
1945vm_page_free_toq(vm_page_t m)
1946{
1947 mycpu->gd_cnt.v_tfree++;
1948 KKASSERT((m->flags & PG_MAPPED) == 0);
1949 KKASSERT(m->flags & PG_BUSY);
1950
1951 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1952 kprintf("vm_page_free: pindex(%lu), busy(%d), "
1953 "PG_BUSY(%d), hold(%d)\n",
1954 (u_long)m->pindex, m->busy,
1955 ((m->flags & PG_BUSY) ? 1 : 0), m->hold_count);
1956 if ((m->queue - m->pc) == PQ_FREE)
1957 panic("vm_page_free: freeing free page");
1958 else
1959 panic("vm_page_free: freeing busy page");
1960 }
1961
1962 /*
1963 * Remove from object, spinlock the page and its queues and
1964 * remove from any queue. No queue spinlock will be held
1965 * after this section (because the page was removed from any
1966 * queue).
1967 */
1968 vm_page_remove(m);
1969 vm_page_and_queue_spin_lock(m);
1970 _vm_page_rem_queue_spinlocked(m);
1971
1972 /*
1973 * No further management of fictitious pages occurs beyond object
1974 * and queue removal.
1975 */
1976 if ((m->flags & PG_FICTITIOUS) != 0) {
1977 vm_page_spin_unlock(m);
1978 vm_page_wakeup(m);
1979 return;
1980 }
1981
1982 m->valid = 0;
1983 vm_page_undirty(m);
1984
1985 if (m->wire_count != 0) {
1986 if (m->wire_count > 1) {
1987 panic(
1988 "vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1989 m->wire_count, (long)m->pindex);
1990 }
1991 panic("vm_page_free: freeing wired page");
1992 }
1993
1994 /*
1995 * Clear the UNMANAGED flag when freeing an unmanaged page.
1996 * Clear the NEED_COMMIT flag
1997 */
1998 if (m->flags & PG_UNMANAGED)
1999 vm_page_flag_clear(m, PG_UNMANAGED);
2000 if (m->flags & PG_NEED_COMMIT)
2001 vm_page_flag_clear(m, PG_NEED_COMMIT);
2002
2003 if (m->hold_count != 0) {
2004 vm_page_flag_clear(m, PG_ZERO);
2005 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2006 } else {
2007 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
2008 }
2009
2010 /*
2011 * This sequence allows us to clear PG_BUSY while still holding
2012 * its spin lock, which reduces contention vs allocators. We
2013 * must not leave the queue locked or _vm_page_wakeup() may
2014 * deadlock.
2015 */
2016 _vm_page_queue_spin_unlock(m);
2017 if (_vm_page_wakeup(m)) {
2018 vm_page_spin_unlock(m);
2019 wakeup(m);
2020 } else {
2021 vm_page_spin_unlock(m);
2022 }
2023 vm_page_free_wakeup();
2024}
2025
2026/*
2027 * vm_page_free_fromq_fast()
2028 *
2029 * Remove a non-zero page from one of the free queues; the page is removed for
2030 * zeroing, so do not issue a wakeup.
2031 */
2032vm_page_t
2033vm_page_free_fromq_fast(void)
2034{
2035 static int qi;
2036 vm_page_t m;
2037 int i;
2038
2039 for (i = 0; i < PQ_L2_SIZE; ++i) {
2040 m = vm_page_list_find(PQ_FREE, qi, FALSE);
2041 /* page is returned spinlocked and removed from its queue */
2042 if (m) {
2043 if (vm_page_busy_try(m, TRUE)) {
2044 /*
2045 * We were unable to busy the page, deactivate
2046 * it and loop.
2047 */
2048 _vm_page_deactivate_locked(m, 0);
2049 vm_page_spin_unlock(m);
2050 } else if (m->flags & PG_ZERO) {
2051 /*
2052 * The page is PG_ZERO, requeue it and loop
2053 */
2054 _vm_page_add_queue_spinlocked(m,
2055 PQ_FREE + m->pc,
2056 0);
2057 vm_page_queue_spin_unlock(m);
2058 if (_vm_page_wakeup(m)) {
2059 vm_page_spin_unlock(m);
2060 wakeup(m);
2061 } else {
2062 vm_page_spin_unlock(m);
2063 }
2064 } else {
2065 /*
2066 * The page is not PG_ZERO'd so return it.
2067 */
2068 vm_page_spin_unlock(m);
2069 KKASSERT((m->flags & (PG_UNMANAGED |
2070 PG_NEED_COMMIT)) == 0);
2071 KKASSERT(m->hold_count == 0);
2072 KKASSERT(m->wire_count == 0);
2073 break;
2074 }
2075 m = NULL;
2076 }
2077 qi = (qi + PQ_PRIME2) & PQ_L2_MASK;
2078 }
2079 return (m);
2080}
2081
2082/*
2083 * vm_page_unmanage()
2084 *
2085 * Prevent PV management from being done on the page. The page is
2086 * removed from the paging queues as if it were wired, and as a
2087 * consequence of no longer being managed the pageout daemon will not
2088 * touch it (since there is no way to locate the pte mappings for the
2089 * page). madvise() calls that mess with the pmap will also no longer
2090 * operate on the page.
2091 *
2092 * Beyond that the page is still reasonably 'normal'. Freeing the page
2093 * will clear the flag.
2094 *
2095 * This routine is used by OBJT_PHYS objects - objects using unswappable
2096 * physical memory as backing store rather then swap-backed memory and
2097 * will eventually be extended to support 4MB unmanaged physical
2098 * mappings.
2099 *
2100 * Caller must be holding the page busy.
2101 */
2102void
2103vm_page_unmanage(vm_page_t m)
2104{
2105 KKASSERT(m->flags & PG_BUSY);
2106 if ((m->flags & PG_UNMANAGED) == 0) {
2107 if (m->wire_count == 0)
2108 vm_page_unqueue(m);
2109 }
2110 vm_page_flag_set(m, PG_UNMANAGED);
2111}
2112
2113/*
2114 * Mark this page as wired down by yet another map, removing it from
2115 * paging queues as necessary.
2116 *
2117 * Caller must be holding the page busy.
2118 */
2119void
2120vm_page_wire(vm_page_t m)
2121{
2122 /*
2123 * Only bump the wire statistics if the page is not already wired,
2124 * and only unqueue the page if it is on some queue (if it is unmanaged
2125 * it is already off the queues). Don't do anything with fictitious
2126 * pages because they are always wired.
2127 */
2128 KKASSERT(m->flags & PG_BUSY);
2129 if ((m->flags & PG_FICTITIOUS) == 0) {
2130 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2131 if ((m->flags & PG_UNMANAGED) == 0)
2132 vm_page_unqueue(m);
2133 atomic_add_int(&vmstats.v_wire_count, 1);
2134 }
2135 KASSERT(m->wire_count != 0,
2136 ("vm_page_wire: wire_count overflow m=%p", m));
2137 }
2138}
2139
2140/*
2141 * Release one wiring of this page, potentially enabling it to be paged again.
2142 *
2143 * Many pages placed on the inactive queue should actually go
2144 * into the cache, but it is difficult to figure out which. What
2145 * we do instead, if the inactive target is well met, is to put
2146 * clean pages at the head of the inactive queue instead of the tail.
2147 * This will cause them to be moved to the cache more quickly and
2148 * if not actively re-referenced, freed more quickly. If we just
2149 * stick these pages at the end of the inactive queue, heavy filesystem
2150 * meta-data accesses can cause an unnecessary paging load on memory bound
2151 * processes. This optimization causes one-time-use metadata to be
2152 * reused more quickly.
2153 *
2154 * Pages marked PG_NEED_COMMIT are always activated and never placed on
2155 * the inactive queue. This helps the pageout daemon determine memory
2156 * pressure and act on out-of-memory situations more quickly.
2157 *
2158 * BUT, if we are in a low-memory situation we have no choice but to
2159 * put clean pages on the cache queue.
2160 *
2161 * A number of routines use vm_page_unwire() to guarantee that the page
2162 * will go into either the inactive or active queues, and will NEVER
2163 * be placed in the cache - for example, just after dirtying a page.
2164 * dirty pages in the cache are not allowed.
2165 *
2166 * The page queues must be locked.
2167 * This routine may not block.
2168 */
2169void
2170vm_page_unwire(vm_page_t m, int activate)
2171{
2172 KKASSERT(m->flags & PG_BUSY);
2173 if (m->flags & PG_FICTITIOUS) {
2174 /* do nothing */
2175 } else if (m->wire_count <= 0) {
2176 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2177 } else {
2178 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2179 atomic_add_int(&vmstats.v_wire_count, -1);
2180 if (m->flags & PG_UNMANAGED) {
2181 ;
2182 } else if (activate || (m->flags & PG_NEED_COMMIT)) {
2183 vm_page_spin_lock(m);
2184 _vm_page_add_queue_spinlocked(m,
2185 PQ_ACTIVE + m->pc, 0);
2186 _vm_page_and_queue_spin_unlock(m);
2187 } else {
2188 vm_page_spin_lock(m);
2189 vm_page_flag_clear(m, PG_WINATCFLS);
2190 _vm_page_add_queue_spinlocked(m,
2191 PQ_INACTIVE + m->pc, 0);
2192 ++vm_swapcache_inactive_heuristic;
2193 _vm_page_and_queue_spin_unlock(m);
2194 }
2195 }
2196 }
2197}
2198
2199/*
2200 * Move the specified page to the inactive queue. If the page has
2201 * any associated swap, the swap is deallocated.
2202 *
2203 * Normally athead is 0 resulting in LRU operation. athead is set
2204 * to 1 if we want this page to be 'as if it were placed in the cache',
2205 * except without unmapping it from the process address space.
2206 *
2207 * vm_page's spinlock must be held on entry and will remain held on return.
2208 * This routine may not block.
2209 */
2210static void
2211_vm_page_deactivate_locked(vm_page_t m, int athead)
2212{
2213 u_short oqueue;
2214
2215 /*
2216 * Ignore if already inactive.
2217 */
2218 if (m->queue - m->pc == PQ_INACTIVE)
2219 return;
2220 _vm_page_queue_spin_lock(m);
2221 oqueue = _vm_page_rem_queue_spinlocked(m);
2222
2223 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2224 if (oqueue == PQ_CACHE)
2225 mycpu->gd_cnt.v_reactivated++;
2226 vm_page_flag_clear(m, PG_WINATCFLS);
2227 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2228 if (athead == 0)
2229 ++vm_swapcache_inactive_heuristic;
2230 }
2231 _vm_page_queue_spin_unlock(m);
2232 /* leaves vm_page spinlocked */
2233}
2234
2235/*
2236 * Attempt to deactivate a page.
2237 *
2238 * No requirements.
2239 */
2240void
2241vm_page_deactivate(vm_page_t m)
2242{
2243 vm_page_spin_lock(m);
2244 _vm_page_deactivate_locked(m, 0);
2245 vm_page_spin_unlock(m);
2246}
2247
2248void
2249vm_page_deactivate_locked(vm_page_t m)
2250{
2251 _vm_page_deactivate_locked(m, 0);
2252}
2253
2254/*
2255 * Attempt to move a page to PQ_CACHE.
2256 *
2257 * Returns 0 on failure, 1 on success
2258 *
2259 * The page should NOT be busied by the caller. This function will validate
2260 * whether the page can be safely moved to the cache.
2261 */
2262int
2263vm_page_try_to_cache(vm_page_t m)
2264{
2265 vm_page_spin_lock(m);
2266 if (vm_page_busy_try(m, TRUE)) {
2267 vm_page_spin_unlock(m);
2268 return(0);
2269 }
2270 if (m->dirty || m->hold_count || m->wire_count ||
2271 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2272 if (_vm_page_wakeup(m)) {
2273 vm_page_spin_unlock(m);
2274 wakeup(m);
2275 } else {
2276 vm_page_spin_unlock(m);
2277 }
2278 return(0);
2279 }
2280 vm_page_spin_unlock(m);
2281
2282 /*
2283 * Page busied by us and no longer spinlocked. Dirty pages cannot
2284 * be moved to the cache.
2285 */
2286 vm_page_test_dirty(m);
2287 if (m->dirty) {
2288 vm_page_wakeup(m);
2289 return(0);
2290 }
2291 vm_page_cache(m);
2292 return(1);
2293}
2294
2295/*
2296 * Attempt to free the page. If we cannot free it, we do nothing.
2297 * 1 is returned on success, 0 on failure.
2298 *
2299 * No requirements.
2300 */
2301int
2302vm_page_try_to_free(vm_page_t m)
2303{
2304 vm_page_spin_lock(m);
2305 if (vm_page_busy_try(m, TRUE)) {
2306 vm_page_spin_unlock(m);
2307 return(0);
2308 }
2309
2310 /*
2311 * The page can be in any state, including already being on the free
2312 * queue. Check to see if it really can be freed.
2313 */
2314 if (m->dirty || /* can't free if it is dirty */
2315 m->hold_count || /* or held (XXX may be wrong) */
2316 m->wire_count || /* or wired */
2317 (m->flags & (PG_UNMANAGED | /* or unmanaged */
2318 PG_NEED_COMMIT)) || /* or needs a commit */
2319 m->queue - m->pc == PQ_FREE || /* already on PQ_FREE */
2320 m->queue - m->pc == PQ_HOLD) { /* already on PQ_HOLD */
2321 if (_vm_page_wakeup(m)) {
2322 vm_page_spin_unlock(m);
2323 wakeup(m);
2324 } else {
2325 vm_page_spin_unlock(m);
2326 }
2327 return(0);
2328 }
2329 vm_page_spin_unlock(m);
2330
2331 /*
2332 * We can probably free the page.
2333 *
2334 * Page busied by us and no longer spinlocked. Dirty pages will
2335 * not be freed by this function. We have to re-test the
2336 * dirty bit after cleaning out the pmaps.
2337 */
2338 vm_page_test_dirty(m);
2339 if (m->dirty) {
2340 vm_page_wakeup(m);
2341 return(0);
2342 }
2343 vm_page_protect(m, VM_PROT_NONE);
2344 if (m->dirty) {
2345 vm_page_wakeup(m);
2346 return(0);
2347 }
2348 vm_page_free(m);
2349 return(1);
2350}
2351
2352/*
2353 * vm_page_cache
2354 *
2355 * Put the specified page onto the page cache queue (if appropriate).
2356 *
2357 * The page must be busy, and this routine will release the busy and
2358 * possibly even free the page.
2359 */
2360void
2361vm_page_cache(vm_page_t m)
2362{
2363 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2364 m->busy || m->wire_count || m->hold_count) {
2365 kprintf("vm_page_cache: attempting to cache busy/held page\n");
2366 vm_page_wakeup(m);
2367 return;
2368 }
2369
2370 /*
2371 * Already in the cache (and thus not mapped)
2372 */
2373 if ((m->queue - m->pc) == PQ_CACHE) {
2374 KKASSERT((m->flags & PG_MAPPED) == 0);
2375 vm_page_wakeup(m);
2376 return;
2377 }
2378
2379 /*
2380 * Caller is required to test m->dirty, but note that the act of
2381 * removing the page from its maps can cause it to become dirty
2382 * on an SMP system due to another cpu running in usermode.
2383 */
2384 if (m->dirty) {
2385 panic("vm_page_cache: caching a dirty page, pindex: %ld",
2386 (long)m->pindex);
2387 }
2388
2389 /*
2390 * Remove all pmaps and indicate that the page is not
2391 * writeable or mapped. Our vm_page_protect() call may
2392 * have blocked (especially w/ VM_PROT_NONE), so recheck
2393 * everything.
2394 */
2395 vm_page_protect(m, VM_PROT_NONE);
2396 if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2397 m->busy || m->wire_count || m->hold_count) {
2398 vm_page_wakeup(m);
2399 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2400 vm_page_deactivate(m);
2401 vm_page_wakeup(m);
2402 } else {
2403 _vm_page_and_queue_spin_lock(m);
2404 _vm_page_rem_queue_spinlocked(m);
2405 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2406 _vm_page_queue_spin_unlock(m);
2407 if (_vm_page_wakeup(m)) {
2408 vm_page_spin_unlock(m);
2409 wakeup(m);
2410 } else {
2411 vm_page_spin_unlock(m);
2412 }
2413 vm_page_free_wakeup();
2414 }
2415}
2416
2417/*
2418 * vm_page_dontneed()
2419 *
2420 * Cache, deactivate, or do nothing as appropriate. This routine
2421 * is typically used by madvise() MADV_DONTNEED.
2422 *
2423 * Generally speaking we want to move the page into the cache so
2424 * it gets reused quickly. However, this can result in a silly syndrome
2425 * due to the page recycling too quickly. Small objects will not be
2426 * fully cached. On the otherhand, if we move the page to the inactive
2427 * queue we wind up with a problem whereby very large objects
2428 * unnecessarily blow away our inactive and cache queues.
2429 *
2430 * The solution is to move the pages based on a fixed weighting. We
2431 * either leave them alone, deactivate them, or move them to the cache,
2432 * where moving them to the cache has the highest weighting.
2433 * By forcing some pages into other queues we eventually force the
2434 * system to balance the queues, potentially recovering other unrelated
2435 * space from active. The idea is to not force this to happen too
2436 * often.
2437 *
2438 * The page must be busied.
2439 */
2440void
2441vm_page_dontneed(vm_page_t m)
2442{
2443 static int dnweight;
2444 int dnw;
2445 int head;
2446
2447 dnw = ++dnweight;
2448
2449 /*
2450 * occassionally leave the page alone
2451 */
2452 if ((dnw & 0x01F0) == 0 ||
2453 m->queue - m->pc == PQ_INACTIVE ||
2454 m->queue - m->pc == PQ_CACHE
2455 ) {
2456 if (m->act_count >= ACT_INIT)
2457 --m->act_count;
2458 return;
2459 }
2460
2461 /*
2462 * If vm_page_dontneed() is inactivating a page, it must clear
2463 * the referenced flag; otherwise the pagedaemon will see references
2464 * on the page in the inactive queue and reactivate it. Until the
2465 * page can move to the cache queue, madvise's job is not done.
2466 */
2467 vm_page_flag_clear(m, PG_REFERENCED);
2468 pmap_clear_reference(m);
2469
2470 if (m->dirty == 0)
2471 vm_page_test_dirty(m);
2472
2473 if (m->dirty || (dnw & 0x0070) == 0) {
2474 /*
2475 * Deactivate the page 3 times out of 32.
2476 */
2477 head = 0;
2478 } else {
2479 /*
2480 * Cache the page 28 times out of every 32. Note that
2481 * the page is deactivated instead of cached, but placed
2482 * at the head of the queue instead of the tail.
2483 */
2484 head = 1;
2485 }
2486 vm_page_spin_lock(m);
2487 _vm_page_deactivate_locked(m, head);
2488 vm_page_spin_unlock(m);
2489}
2490
2491/*
2492 * These routines manipulate the 'soft busy' count for a page. A soft busy
2493 * is almost like PG_BUSY except that it allows certain compatible operations
2494 * to occur on the page while it is busy. For example, a page undergoing a
2495 * write can still be mapped read-only.
2496 *
2497 * Because vm_pages can overlap buffers m->busy can be > 1. m->busy is only
2498 * adjusted while the vm_page is PG_BUSY so the flash will occur when the
2499 * busy bit is cleared.
2500 */
2501void
2502vm_page_io_start(vm_page_t m)
2503{
2504 KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!"));
2505 atomic_add_char(&m->busy, 1);
2506 vm_page_flag_set(m, PG_SBUSY);
2507}
2508
2509void
2510vm_page_io_finish(vm_page_t m)
2511{
2512 KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!"));
2513 atomic_subtract_char(&m->busy, 1);
2514 if (m->busy == 0)
2515 vm_page_flag_clear(m, PG_SBUSY);
2516}
2517
2518/*
2519 * Indicate that a clean VM page requires a filesystem commit and cannot
2520 * be reused. Used by tmpfs.
2521 */
2522void
2523vm_page_need_commit(vm_page_t m)
2524{
2525 vm_page_flag_set(m, PG_NEED_COMMIT);
2526}
2527
2528void
2529vm_page_clear_commit(vm_page_t m)
2530{
2531 vm_page_flag_clear(m, PG_NEED_COMMIT);
2532}
2533
2534/*
2535 * Grab a page, blocking if it is busy and allocating a page if necessary.
2536 * A busy page is returned or NULL. The page may or may not be valid and
2537 * might not be on a queue (the caller is responsible for the disposition of
2538 * the page).
2539 *
2540 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2541 * page will be zero'd and marked valid.
2542 *
2543 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2544 * valid even if it already exists.
2545 *
2546 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also
2547 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2548 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2549 *
2550 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2551 * always returned if we had blocked.
2552 *
2553 * This routine may not be called from an interrupt.
2554 *
2555 * PG_ZERO is *ALWAYS* cleared by this routine.
2556 *
2557 * No other requirements.
2558 */
2559vm_page_t
2560vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2561{
2562 vm_page_t m;
2563 int error;
2564
2565 KKASSERT(allocflags &
2566 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2567 vm_object_hold(object);
2568 for (;;) {
2569 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2570 if (error) {
2571 vm_page_sleep_busy(m, TRUE, "pgrbwt");
2572 if ((allocflags & VM_ALLOC_RETRY) == 0) {
2573 m = NULL;
2574 break;
2575 }
2576 /* retry */
2577 } else if (m == NULL) {
2578 if (allocflags & VM_ALLOC_RETRY)
2579 allocflags |= VM_ALLOC_NULL_OK;
2580 m = vm_page_alloc(object, pindex,
2581 allocflags & ~VM_ALLOC_RETRY);
2582 if (m)
2583 break;
2584 vm_wait(0);
2585 if ((allocflags & VM_ALLOC_RETRY) == 0)
2586 goto failed;
2587 } else {
2588 /* m found */
2589 break;
2590 }
2591 }
2592
2593 /*
2594 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2595 *
2596 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2597 * valid even if already valid.
2598 */
2599 if (m->valid == 0) {
2600 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2601 if ((m->flags & PG_ZERO) == 0)
2602 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2603 m->valid = VM_PAGE_BITS_ALL;
2604 }
2605 } else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2606 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2607 m->valid = VM_PAGE_BITS_ALL;
2608 }
2609 vm_page_flag_clear(m, PG_ZERO);
2610failed:
2611 vm_object_drop(object);
2612 return(m);
2613}
2614
2615/*
2616 * Mapping function for valid bits or for dirty bits in
2617 * a page. May not block.
2618 *
2619 * Inputs are required to range within a page.
2620 *
2621 * No requirements.
2622 * Non blocking.
2623 */
2624int
2625vm_page_bits(int base, int size)
2626{
2627 int first_bit;
2628 int last_bit;
2629
2630 KASSERT(
2631 base + size <= PAGE_SIZE,
2632 ("vm_page_bits: illegal base/size %d/%d", base, size)
2633 );
2634
2635 if (size == 0) /* handle degenerate case */
2636 return(0);
2637
2638 first_bit = base >> DEV_BSHIFT;
2639 last_bit = (base + size - 1) >> DEV_BSHIFT;
2640
2641 return ((2 << last_bit) - (1 << first_bit));
2642}
2643
2644/*
2645 * Sets portions of a page valid and clean. The arguments are expected
2646 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2647 * of any partial chunks touched by the range. The invalid portion of
2648 * such chunks will be zero'd.
2649 *
2650 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
2651 * align base to DEV_BSIZE so as not to mark clean a partially
2652 * truncated device block. Otherwise the dirty page status might be
2653 * lost.
2654 *
2655 * This routine may not block.
2656 *
2657 * (base + size) must be less then or equal to PAGE_SIZE.
2658 */
2659static void
2660_vm_page_zero_valid(vm_page_t m, int base, int size)
2661{
2662 int frag;
2663 int endoff;
2664
2665 if (size == 0) /* handle degenerate case */
2666 return;
2667
2668 /*
2669 * If the base is not DEV_BSIZE aligned and the valid
2670 * bit is clear, we have to zero out a portion of the
2671 * first block.
2672 */
2673
2674 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2675 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
2676 ) {
2677 pmap_zero_page_area(
2678 VM_PAGE_TO_PHYS(m),
2679 frag,
2680 base - frag
2681 );
2682 }
2683
2684 /*
2685 * If the ending offset is not DEV_BSIZE aligned and the
2686 * valid bit is clear, we have to zero out a portion of
2687 * the last block.
2688 */
2689
2690 endoff = base + size;
2691
2692 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2693 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
2694 ) {
2695 pmap_zero_page_area(
2696 VM_PAGE_TO_PHYS(m),
2697 endoff,
2698 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
2699 );
2700 }
2701}
2702
2703/*
2704 * Set valid, clear dirty bits. If validating the entire
2705 * page we can safely clear the pmap modify bit. We also
2706 * use this opportunity to clear the PG_NOSYNC flag. If a process
2707 * takes a write fault on a MAP_NOSYNC memory area the flag will
2708 * be set again.
2709 *
2710 * We set valid bits inclusive of any overlap, but we can only
2711 * clear dirty bits for DEV_BSIZE chunks that are fully within
2712 * the range.
2713 *
2714 * Page must be busied?
2715 * No other requirements.
2716 */
2717void
2718vm_page_set_valid(vm_page_t m, int base, int size)
2719{
2720 _vm_page_zero_valid(m, base, size);
2721 m->valid |= vm_page_bits(base, size);
2722}
2723
2724
2725/*
2726 * Set valid bits and clear dirty bits.
2727 *
2728 * NOTE: This function does not clear the pmap modified bit.
2729 * Also note that e.g. NFS may use a byte-granular base
2730 * and size.
2731 *
2732 * WARNING: Page must be busied? But vfs_clean_one_page() will call
2733 * this without necessarily busying the page (via bdwrite()).
2734 * So for now vm_token must also be held.
2735 *
2736 * No other requirements.
2737 */
2738void
2739vm_page_set_validclean(vm_page_t m, int base, int size)
2740{
2741 int pagebits;
2742
2743 _vm_page_zero_valid(m, base, size);
2744 pagebits = vm_page_bits(base, size);
2745 m->valid |= pagebits;
2746 m->dirty &= ~pagebits;
2747 if (base == 0 && size == PAGE_SIZE) {
2748 /*pmap_clear_modify(m);*/
2749 vm_page_flag_clear(m, PG_NOSYNC);
2750 }
2751}
2752
2753/*
2754 * Set valid & dirty. Used by buwrite()
2755 *
2756 * WARNING: Page must be busied? But vfs_dirty_one_page() will
2757 * call this function in buwrite() so for now vm_token must
2758 * be held.
2759 *
2760 * No other requirements.
2761 */
2762void
2763vm_page_set_validdirty(vm_page_t m, int base, int size)
2764{
2765 int pagebits;
2766
2767 pagebits = vm_page_bits(base, size);
2768 m->valid |= pagebits;
2769 m->dirty |= pagebits;
2770 if (m->object)
2771 vm_object_set_writeable_dirty(m->object);
2772}
2773
2774/*
2775 * Clear dirty bits.
2776 *
2777 * NOTE: This function does not clear the pmap modified bit.
2778 * Also note that e.g. NFS may use a byte-granular base
2779 * and size.
2780 *
2781 * Page must be busied?
2782 * No other requirements.
2783 */
2784void
2785vm_page_clear_dirty(vm_page_t m, int base, int size)
2786{
2787 m->dirty &= ~vm_page_bits(base, size);
2788 if (base == 0 && size == PAGE_SIZE) {
2789 /*pmap_clear_modify(m);*/
2790 vm_page_flag_clear(m, PG_NOSYNC);
2791 }
2792}
2793
2794/*
2795 * Make the page all-dirty.
2796 *
2797 * Also make sure the related object and vnode reflect the fact that the
2798 * object may now contain a dirty page.
2799 *
2800 * Page must be busied?
2801 * No other requirements.
2802 */
2803void
2804vm_page_dirty(vm_page_t m)
2805{
2806#ifdef INVARIANTS
2807 int pqtype = m->queue - m->pc;
2808#endif
2809 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
2810 ("vm_page_dirty: page in free/cache queue!"));
2811 if (m->dirty != VM_PAGE_BITS_ALL) {
2812 m->dirty = VM_PAGE_BITS_ALL;
2813 if (m->object)
2814 vm_object_set_writeable_dirty(m->object);
2815 }
2816}
2817
2818/*
2819 * Invalidates DEV_BSIZE'd chunks within a page. Both the
2820 * valid and dirty bits for the effected areas are cleared.
2821 *
2822 * Page must be busied?
2823 * Does not block.
2824 * No other requirements.
2825 */
2826void
2827vm_page_set_invalid(vm_page_t m, int base, int size)
2828{
2829 int bits;
2830
2831 bits = vm_page_bits(base, size);
2832 m->valid &= ~bits;
2833 m->dirty &= ~bits;
2834 m->object->generation++;
2835}
2836
2837/*
2838 * The kernel assumes that the invalid portions of a page contain
2839 * garbage, but such pages can be mapped into memory by user code.
2840 * When this occurs, we must zero out the non-valid portions of the
2841 * page so user code sees what it expects.
2842 *
2843 * Pages are most often semi-valid when the end of a file is mapped
2844 * into memory and the file's size is not page aligned.
2845 *
2846 * Page must be busied?
2847 * No other requirements.
2848 */
2849void
2850vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2851{
2852 int b;
2853 int i;
2854
2855 /*
2856 * Scan the valid bits looking for invalid sections that
2857 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
2858 * valid bit may be set ) have already been zerod by
2859 * vm_page_set_validclean().
2860 */
2861 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2862 if (i == (PAGE_SIZE / DEV_BSIZE) ||
2863 (m->valid & (1 << i))
2864 ) {
2865 if (i > b) {
2866 pmap_zero_page_area(
2867 VM_PAGE_TO_PHYS(m),
2868 b << DEV_BSHIFT,
2869 (i - b) << DEV_BSHIFT
2870 );
2871 }
2872 b = i + 1;
2873 }
2874 }
2875
2876 /*
2877 * setvalid is TRUE when we can safely set the zero'd areas
2878 * as being valid. We can do this if there are no cache consistency
2879 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
2880 */
2881 if (setvalid)
2882 m->valid = VM_PAGE_BITS_ALL;
2883}
2884
2885/*
2886 * Is a (partial) page valid? Note that the case where size == 0
2887 * will return FALSE in the degenerate case where the page is entirely
2888 * invalid, and TRUE otherwise.
2889 *
2890 * Does not block.
2891 * No other requirements.
2892 */
2893int
2894vm_page_is_valid(vm_page_t m, int base, int size)
2895{
2896 int bits = vm_page_bits(base, size);
2897
2898 if (m->valid && ((m->valid & bits) == bits))
2899 return 1;
2900 else
2901 return 0;
2902}
2903
2904/*
2905 * update dirty bits from pmap/mmu. May not block.
2906 *
2907 * Caller must hold the page busy
2908 */
2909void
2910vm_page_test_dirty(vm_page_t m)
2911{
2912 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
2913 vm_page_dirty(m);
2914 }
2915}
2916
2917/*
2918 * Register an action, associating it with its vm_page
2919 */
2920void
2921vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
2922{
2923 struct vm_page_action_list *list;
2924 int hv;
2925
2926 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
2927 list = &action_list[hv];
2928
2929 lwkt_gettoken(&vm_token);
2930 vm_page_flag_set(action->m, PG_ACTIONLIST);
2931 action->event = event;
2932 LIST_INSERT_HEAD(list, action, entry);
2933 lwkt_reltoken(&vm_token);
2934}
2935
2936/*
2937 * Unregister an action, disassociating it from its related vm_page
2938 */
2939void
2940vm_page_unregister_action(vm_page_action_t action)
2941{
2942 struct vm_page_action_list *list;
2943 int hv;
2944
2945 lwkt_gettoken(&vm_token);
2946 if (action->event != VMEVENT_NONE) {
2947 action->event = VMEVENT_NONE;
2948 LIST_REMOVE(action, entry);
2949
2950 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
2951 list = &action_list[hv];
2952 if (LIST_EMPTY(list))
2953 vm_page_flag_clear(action->m, PG_ACTIONLIST);
2954 }
2955 lwkt_reltoken(&vm_token);
2956}
2957
2958/*
2959 * Issue an event on a VM page. Corresponding action structures are
2960 * removed from the page's list and called.
2961 *
2962 * If the vm_page has no more pending action events we clear its
2963 * PG_ACTIONLIST flag.
2964 */
2965void
2966vm_page_event_internal(vm_page_t m, vm_page_event_t event)
2967{
2968 struct vm_page_action_list *list;
2969 struct vm_page_action *scan;
2970 struct vm_page_action *next;
2971 int hv;
2972 int all;
2973
2974 hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
2975 list = &action_list[hv];
2976 all = 1;
2977
2978 lwkt_gettoken(&vm_token);
2979 LIST_FOREACH_MUTABLE(scan, list, entry, next) {
2980 if (scan->m == m) {
2981 if (scan->event == event) {
2982 scan->event = VMEVENT_NONE;
2983 LIST_REMOVE(scan, entry);
2984 scan->func(m, scan);
2985 /* XXX */
2986 } else {
2987 all = 0;
2988 }
2989 }
2990 }
2991 if (all)
2992 vm_page_flag_clear(m, PG_ACTIONLIST);
2993 lwkt_reltoken(&vm_token);
2994}
2995
2996#include "opt_ddb.h"
2997#ifdef DDB
2998#include <sys/kernel.h>
2999
3000#include <ddb/ddb.h>
3001
3002DB_SHOW_COMMAND(page, vm_page_print_page_info)
3003{
3004 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
3005 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
3006 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
3007 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
3008 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
3009 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
3010 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
3011 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
3012 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
3013 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
3014}
3015
3016DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3017{
3018 int i;
3019 db_printf("PQ_FREE:");
3020 for(i=0;i<PQ_L2_SIZE;i++) {
3021 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3022 }
3023 db_printf("\n");
3024
3025 db_printf("PQ_CACHE:");
3026 for(i=0;i<PQ_L2_SIZE;i++) {
3027 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3028 }
3029 db_printf("\n");
3030
3031 db_printf("PQ_ACTIVE:");
3032 for(i=0;i<PQ_L2_SIZE;i++) {
3033 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3034 }
3035 db_printf("\n");
3036
3037 db_printf("PQ_INACTIVE:");
3038 for(i=0;i<PQ_L2_SIZE;i++) {
3039 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3040 }
3041 db_printf("\n");
3042}
3043#endif /* DDB */