kernel - Fix exit races which can lead to a corrupt p_children list
[dragonfly.git] / sys / kern / kern_exit.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94
39 * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
40 * $DragonFly: src/sys/kern/kern_exit.c,v 1.91 2008/05/18 20:02:02 nth Exp $
41 */
42
43#include "opt_compat.h"
44#include "opt_ktrace.h"
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/sysproto.h>
49#include <sys/kernel.h>
50#include <sys/malloc.h>
51#include <sys/proc.h>
52#include <sys/ktrace.h>
53#include <sys/pioctl.h>
54#include <sys/tty.h>
55#include <sys/wait.h>
56#include <sys/vnode.h>
57#include <sys/resourcevar.h>
58#include <sys/signalvar.h>
59#include <sys/taskqueue.h>
60#include <sys/ptrace.h>
61#include <sys/acct.h> /* for acct_process() function prototype */
62#include <sys/filedesc.h>
63#include <sys/shm.h>
64#include <sys/sem.h>
65#include <sys/jail.h>
66#include <sys/kern_syscall.h>
67#include <sys/upcall.h>
68#include <sys/caps.h>
69#include <sys/unistd.h>
70#include <sys/eventhandler.h>
71#include <sys/dsched.h>
72
73#include <vm/vm.h>
74#include <vm/vm_param.h>
75#include <sys/lock.h>
76#include <vm/pmap.h>
77#include <vm/vm_map.h>
78#include <vm/vm_extern.h>
79#include <sys/user.h>
80
81#include <sys/refcount.h>
82#include <sys/thread2.h>
83#include <sys/sysref2.h>
84#include <sys/mplock2.h>
85
86static void reaplwps(void *context, int dummy);
87static void reaplwp(struct lwp *lp);
88static void killlwps(struct lwp *lp);
89
90static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
91static MALLOC_DEFINE(M_ZOMBIE, "zombie", "zombie proc status");
92
93static struct lwkt_token deadlwp_token = LWKT_TOKEN_INITIALIZER(deadlwp_token);
94
95/*
96 * callout list for things to do at exit time
97 */
98struct exitlist {
99 exitlist_fn function;
100 TAILQ_ENTRY(exitlist) next;
101};
102
103TAILQ_HEAD(exit_list_head, exitlist);
104static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
105
106/*
107 * LWP reaper data
108 */
109struct task *deadlwp_task[MAXCPU];
110struct lwplist deadlwp_list[MAXCPU];
111
112/*
113 * exit --
114 * Death of process.
115 *
116 * SYS_EXIT_ARGS(int rval)
117 */
118int
119sys_exit(struct exit_args *uap)
120{
121 exit1(W_EXITCODE(uap->rval, 0));
122 /* NOTREACHED */
123}
124
125/*
126 * Extended exit --
127 * Death of a lwp or process with optional bells and whistles.
128 *
129 * MPALMOSTSAFE
130 */
131int
132sys_extexit(struct extexit_args *uap)
133{
134 struct proc *p = curproc;
135 int action, who;
136 int error;
137
138 action = EXTEXIT_ACTION(uap->how);
139 who = EXTEXIT_WHO(uap->how);
140
141 /* Check parameters before we might perform some action */
142 switch (who) {
143 case EXTEXIT_PROC:
144 case EXTEXIT_LWP:
145 break;
146 default:
147 return (EINVAL);
148 }
149
150 switch (action) {
151 case EXTEXIT_SIMPLE:
152 break;
153 case EXTEXIT_SETINT:
154 error = copyout(&uap->status, uap->addr, sizeof(uap->status));
155 if (error)
156 return (error);
157 break;
158 default:
159 return (EINVAL);
160 }
161
162 lwkt_gettoken(&p->p_token);
163
164 switch (who) {
165 case EXTEXIT_LWP:
166 /*
167 * Be sure only to perform a simple lwp exit if there is at
168 * least one more lwp in the proc, which will call exit1()
169 * later, otherwise the proc will be an UNDEAD and not even a
170 * SZOMB!
171 */
172 if (p->p_nthreads > 1) {
173 lwp_exit(0); /* called w/ p_token held */
174 /* NOT REACHED */
175 }
176 /* else last lwp in proc: do the real thing */
177 /* FALLTHROUGH */
178 default: /* to help gcc */
179 case EXTEXIT_PROC:
180 lwkt_reltoken(&p->p_token);
181 exit1(W_EXITCODE(uap->status, 0));
182 /* NOTREACHED */
183 }
184
185 /* NOTREACHED */
186 lwkt_reltoken(&p->p_token); /* safety */
187}
188
189/*
190 * Kill all lwps associated with the current process except the
191 * current lwp. Return an error if we race another thread trying to
192 * do the same thing and lose the race.
193 *
194 * If forexec is non-zero the current thread and process flags are
195 * cleaned up so they can be reused.
196 *
197 * Caller must hold curproc->p_token
198 */
199int
200killalllwps(int forexec)
201{
202 struct lwp *lp = curthread->td_lwp;
203 struct proc *p = lp->lwp_proc;
204
205 /*
206 * Interlock against P_WEXIT. Only one of the process's thread
207 * is allowed to do the master exit.
208 */
209 if (p->p_flags & P_WEXIT)
210 return (EALREADY);
211 p->p_flags |= P_WEXIT;
212
213 /*
214 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs
215 */
216 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
217 if (p->p_nthreads > 1)
218 killlwps(lp);
219
220 /*
221 * If doing this for an exec, clean up the remaining thread
222 * (us) for continuing operation after all the other threads
223 * have been killed.
224 */
225 if (forexec) {
226 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
227 p->p_flags &= ~P_WEXIT;
228 }
229 return(0);
230}
231
232/*
233 * Kill all LWPs except the current one. Do not try to signal
234 * LWPs which have exited on their own or have already been
235 * signaled.
236 */
237static void
238killlwps(struct lwp *lp)
239{
240 struct proc *p = lp->lwp_proc;
241 struct lwp *tlp;
242
243 /*
244 * Kill the remaining LWPs. We must send the signal before setting
245 * LWP_MP_WEXIT. The setting of WEXIT is optional but helps reduce
246 * races. tlp must be held across the call as it might block and
247 * allow the target lwp to rip itself out from under our loop.
248 */
249 FOREACH_LWP_IN_PROC(tlp, p) {
250 LWPHOLD(tlp);
251 lwkt_gettoken(&tlp->lwp_token);
252 if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) {
253 lwpsignal(p, tlp, SIGKILL);
254 atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT);
255 }
256 lwkt_reltoken(&tlp->lwp_token);
257 LWPRELE(tlp);
258 }
259
260 /*
261 * Wait for everything to clear out.
262 */
263 while (p->p_nthreads > 1) {
264 tsleep(&p->p_nthreads, 0, "killlwps", 0);
265 }
266}
267
268/*
269 * Exit: deallocate address space and other resources, change proc state
270 * to zombie, and unlink proc from allproc and parent's lists. Save exit
271 * status and rusage for wait(). Check for child processes and orphan them.
272 */
273void
274exit1(int rv)
275{
276 struct thread *td = curthread;
277 struct proc *p = td->td_proc;
278 struct lwp *lp = td->td_lwp;
279 struct proc *q, *nq;
280 struct vmspace *vm;
281 struct vnode *vtmp;
282 struct exitlist *ep;
283 int error;
284
285 lwkt_gettoken(&p->p_token);
286
287 if (p->p_pid == 1) {
288 kprintf("init died (signal %d, exit %d)\n",
289 WTERMSIG(rv), WEXITSTATUS(rv));
290 panic("Going nowhere without my init!");
291 }
292 varsymset_clean(&p->p_varsymset);
293 lockuninit(&p->p_varsymset.vx_lock);
294
295 /*
296 * Kill all lwps associated with the current process, return an
297 * error if we race another thread trying to do the same thing
298 * and lose the race.
299 */
300 error = killalllwps(0);
301 if (error) {
302 lwp_exit(0);
303 /* NOT REACHED */
304 }
305
306 caps_exit(lp->lwp_thread);
307
308 /* are we a task leader? */
309 if (p == p->p_leader) {
310 struct kill_args killArgs;
311 killArgs.signum = SIGKILL;
312 q = p->p_peers;
313 while(q) {
314 killArgs.pid = q->p_pid;
315 /*
316 * The interface for kill is better
317 * than the internal signal
318 */
319 sys_kill(&killArgs);
320 nq = q;
321 q = q->p_peers;
322 }
323 while (p->p_peers)
324 tsleep((caddr_t)p, 0, "exit1", 0);
325 }
326
327#ifdef PGINPROF
328 vmsizmon();
329#endif
330 STOPEVENT(p, S_EXIT, rv);
331 p->p_flags |= P_POSTEXIT; /* stop procfs stepping */
332
333 /*
334 * Check if any loadable modules need anything done at process exit.
335 * e.g. SYSV IPC stuff
336 * XXX what if one of these generates an error?
337 */
338 p->p_xstat = rv;
339 EVENTHANDLER_INVOKE(process_exit, p);
340
341 /*
342 * XXX: imho, the eventhandler stuff is much cleaner than this.
343 * Maybe we should move everything to use eventhandler.
344 */
345 TAILQ_FOREACH(ep, &exit_list, next)
346 (*ep->function)(td);
347
348 if (p->p_flags & P_PROFIL)
349 stopprofclock(p);
350
351 SIGEMPTYSET(p->p_siglist);
352 SIGEMPTYSET(lp->lwp_siglist);
353 if (timevalisset(&p->p_realtimer.it_value))
354 callout_stop_sync(&p->p_ithandle);
355
356 /*
357 * Reset any sigio structures pointing to us as a result of
358 * F_SETOWN with our pid.
359 */
360 funsetownlst(&p->p_sigiolst);
361
362 /*
363 * Close open files and release open-file table.
364 * This may block!
365 */
366 fdfree(p, NULL);
367
368 if(p->p_leader->p_peers) {
369 q = p->p_leader;
370 while(q->p_peers != p)
371 q = q->p_peers;
372 q->p_peers = p->p_peers;
373 wakeup((caddr_t)p->p_leader);
374 }
375
376 /*
377 * XXX Shutdown SYSV semaphores
378 */
379 semexit(p);
380
381 KKASSERT(p->p_numposixlocks == 0);
382
383 /* The next two chunks should probably be moved to vmspace_exit. */
384 vm = p->p_vmspace;
385
386 /*
387 * Release upcalls associated with this process
388 */
389 if (vm->vm_upcalls)
390 upc_release(vm, lp);
391
392 /*
393 * Clean up data related to virtual kernel operation. Clean up
394 * any vkernel context related to the current lwp now so we can
395 * destroy p_vkernel.
396 */
397 if (p->p_vkernel) {
398 vkernel_lwp_exit(lp);
399 vkernel_exit(p);
400 }
401
402 /*
403 * Release user portion of address space.
404 * This releases references to vnodes,
405 * which could cause I/O if the file has been unlinked.
406 * Need to do this early enough that we can still sleep.
407 * Can't free the entire vmspace as the kernel stack
408 * may be mapped within that space also.
409 *
410 * Processes sharing the same vmspace may exit in one order, and
411 * get cleaned up by vmspace_exit() in a different order. The
412 * last exiting process to reach this point releases as much of
413 * the environment as it can, and the last process cleaned up
414 * by vmspace_exit() (which decrements exitingcnt) cleans up the
415 * remainder.
416 */
417 vmspace_exitbump(vm);
418 sysref_put(&vm->vm_sysref);
419
420 if (SESS_LEADER(p)) {
421 struct session *sp = p->p_session;
422
423 if (sp->s_ttyvp) {
424 /*
425 * We are the controlling process. Signal the
426 * foreground process group, drain the controlling
427 * terminal, and revoke access to the controlling
428 * terminal.
429 *
430 * NOTE: while waiting for the process group to exit
431 * it is possible that one of the processes in the
432 * group will revoke the tty, so the ttyclosesession()
433 * function will re-check sp->s_ttyvp.
434 */
435 if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
436 if (sp->s_ttyp->t_pgrp)
437 pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
438 ttywait(sp->s_ttyp);
439 ttyclosesession(sp, 1); /* also revoke */
440 }
441 /*
442 * Release the tty. If someone has it open via
443 * /dev/tty then close it (since they no longer can
444 * once we've NULL'd it out).
445 */
446 ttyclosesession(sp, 0);
447
448 /*
449 * s_ttyp is not zero'd; we use this to indicate
450 * that the session once had a controlling terminal.
451 * (for logging and informational purposes)
452 */
453 }
454 sp->s_leader = NULL;
455 }
456 fixjobc(p, p->p_pgrp, 0);
457 (void)acct_process(p);
458#ifdef KTRACE
459 /*
460 * release trace file
461 */
462 if (p->p_tracenode)
463 ktrdestroy(&p->p_tracenode);
464 p->p_traceflag = 0;
465#endif
466 /*
467 * Release reference to text vnode
468 */
469 if ((vtmp = p->p_textvp) != NULL) {
470 p->p_textvp = NULL;
471 vrele(vtmp);
472 }
473
474 /* Release namecache handle to text file */
475 if (p->p_textnch.ncp)
476 cache_drop(&p->p_textnch);
477
478 /*
479 * We have to handle PPWAIT here or proc_move_allproc_zombie()
480 * will block on the PHOLD() the parent is doing.
481 */
482 if (p->p_flags & P_PPWAIT) {
483 p->p_flags &= ~P_PPWAIT;
484 wakeup(p->p_pptr);
485 }
486
487 /*
488 * Move the process to the zombie list. This will block
489 * until the process p_lock count reaches 0. The process will
490 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
491 * which is called from cpu_proc_exit().
492 */
493 proc_move_allproc_zombie(p);
494
495 /*
496 * Reparent all of this process's children to the init process.
497 * We must hold initproc->p_token in order to mess with
498 * initproc->p_children. We already hold p->p_token (to remove
499 * the children from our list).
500 */
501 q = LIST_FIRST(&p->p_children);
502 if (q) {
503 lwkt_gettoken(&initproc->p_token);
504 while ((q = LIST_FIRST(&p->p_children)) != NULL) {
505 PHOLD(q);
506 lwkt_gettoken(&q->p_token);
507 if (q != LIST_FIRST(&p->p_children)) {
508 lwkt_reltoken(&q->p_token);
509 PRELE(q);
510 continue;
511 }
512 LIST_REMOVE(q, p_sibling);
513 LIST_INSERT_HEAD(&initproc->p_children, q, p_sibling);
514 q->p_pptr = initproc;
515 q->p_sigparent = SIGCHLD;
516
517 /*
518 * Traced processes are killed
519 * since their existence means someone is screwing up.
520 */
521 if (q->p_flags & P_TRACED) {
522 q->p_flags &= ~P_TRACED;
523 ksignal(q, SIGKILL);
524 }
525 lwkt_reltoken(&q->p_token);
526 PRELE(q);
527 }
528 lwkt_reltoken(&initproc->p_token);
529 wakeup(initproc);
530 }
531
532 /*
533 * Save exit status and final rusage info, adding in child rusage
534 * info and self times.
535 */
536 calcru_proc(p, &p->p_ru);
537 ruadd(&p->p_ru, &p->p_cru);
538
539 /*
540 * notify interested parties of our demise.
541 */
542 KNOTE(&p->p_klist, NOTE_EXIT);
543
544 /*
545 * Notify parent that we're gone. If parent has the PS_NOCLDWAIT
546 * flag set, or if the handler is set to SIG_IGN, notify process 1
547 * instead (and hope it will handle this situation).
548 */
549 if (p->p_pptr->p_sigacts->ps_flag &
550 (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
551 struct proc *pp = p->p_pptr;
552
553 PHOLD(pp);
554 proc_reparent(p, initproc);
555
556 /*
557 * If this was the last child of our parent, notify
558 * parent, so in case he was wait(2)ing, he will
559 * continue. This function interlocks with pptr->p_token.
560 */
561 if (LIST_EMPTY(&pp->p_children))
562 wakeup((caddr_t)pp);
563 PRELE(pp);
564 }
565
566 /* lwkt_gettoken(&proc_token); */
567 q = p->p_pptr;
568 PHOLD(q);
569 if (p->p_sigparent && q != initproc) {
570 ksignal(q, p->p_sigparent);
571 } else {
572 ksignal(q, SIGCHLD);
573 }
574
575 p->p_flags &= ~P_TRACED;
576 wakeup(p->p_pptr);
577
578 PRELE(q);
579 /* lwkt_reltoken(&proc_token); */
580 /* NOTE: p->p_pptr can get ripped out */
581 /*
582 * cpu_exit is responsible for clearing curproc, since
583 * it is heavily integrated with the thread/switching sequence.
584 *
585 * Other substructures are freed from wait().
586 */
587 plimit_free(p);
588
589 /*
590 * Release the current user process designation on the process so
591 * the userland scheduler can work in someone else.
592 */
593 p->p_usched->release_curproc(lp);
594
595 /*
596 * Finally, call machine-dependent code to release as many of the
597 * lwp's resources as we can and halt execution of this thread.
598 */
599 lwp_exit(1);
600}
601
602/*
603 * Eventually called by every exiting LWP
604 *
605 * p->p_token must be held. mplock may be held and will be released.
606 */
607void
608lwp_exit(int masterexit)
609{
610 struct thread *td = curthread;
611 struct lwp *lp = td->td_lwp;
612 struct proc *p = lp->lwp_proc;
613 int dowake = 0;
614
615 /*
616 * lwp_exit() may be called without setting LWP_MP_WEXIT, so
617 * make sure it is set here.
618 */
619 ASSERT_LWKT_TOKEN_HELD(&p->p_token);
620 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
621
622 /*
623 * Clean up any virtualization
624 */
625 if (lp->lwp_vkernel)
626 vkernel_lwp_exit(lp);
627
628 /*
629 * Clean up select/poll support
630 */
631 kqueue_terminate(&lp->lwp_kqueue);
632
633 /*
634 * Clean up any syscall-cached ucred
635 */
636 if (td->td_ucred) {
637 crfree(td->td_ucred);
638 td->td_ucred = NULL;
639 }
640
641 /*
642 * Nobody actually wakes us when the lock
643 * count reaches zero, so just wait one tick.
644 */
645 while (lp->lwp_lock > 0)
646 tsleep(lp, 0, "lwpexit", 1);
647
648 /* Hand down resource usage to our proc */
649 ruadd(&p->p_ru, &lp->lwp_ru);
650
651 /*
652 * If we don't hold the process until the LWP is reaped wait*()
653 * may try to dispose of its vmspace before all the LWPs have
654 * actually terminated.
655 */
656 PHOLD(p);
657
658 /*
659 * Do any remaining work that might block on us. We should be
660 * coded such that further blocking is ok after decrementing
661 * p_nthreads but don't take the chance.
662 */
663 dsched_exit_thread(td);
664 biosched_done(curthread);
665
666 /*
667 * We have to use the reaper for all the LWPs except the one doing
668 * the master exit. The LWP doing the master exit can just be
669 * left on p_lwps and the process reaper will deal with it
670 * synchronously, which is much faster.
671 *
672 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
673 *
674 * The process is left held until the reaper calls lwp_dispose() on
675 * the lp (after calling lwp_wait()).
676 */
677 if (masterexit == 0) {
678 lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
679 --p->p_nthreads;
680 if (p->p_nthreads <= 1)
681 dowake = 1;
682 lwkt_gettoken(&deadlwp_token);
683 LIST_INSERT_HEAD(&deadlwp_list[mycpuid], lp, u.lwp_reap_entry);
684 taskqueue_enqueue(taskqueue_thread[mycpuid],
685 deadlwp_task[mycpuid]);
686 lwkt_reltoken(&deadlwp_token);
687 } else {
688 --p->p_nthreads;
689 if (p->p_nthreads <= 1)
690 dowake = 1;
691 }
692
693 /*
694 * Release p_token. Issue the wakeup() on p_nthreads if necessary,
695 * as late as possible to give us a chance to actually deschedule and
696 * switch away before another cpu core hits reaplwp().
697 */
698 lwkt_reltoken(&p->p_token);
699 if (dowake)
700 wakeup(&p->p_nthreads);
701 cpu_lwp_exit();
702}
703
704/*
705 * Wait until a lwp is completely dead. The final interlock in this drama
706 * is when TDF_EXITING is set in cpu_thread_exit() just before the final
707 * switchout.
708 *
709 * At the point TDF_EXITING is set a complete exit is accomplished when
710 * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear.
711 *
712 * Returns non-zero on success, and zero if the caller needs to retry
713 * the lwp_wait().
714 */
715static int
716lwp_wait(struct lwp *lp)
717{
718 struct thread *td = lp->lwp_thread;;
719
720 KKASSERT(lwkt_preempted_proc() != lp);
721
722 /*
723 * Wait until the lp has entered its low level exit and wait
724 * until other cores with refs on the lp (e.g. for ps or signaling)
725 * release them.
726 */
727 if (lp->lwp_lock > 0) {
728 tsleep(lp, 0, "lwpwait1", 1);
729 return(0);
730 }
731
732 /*
733 * Wait until the thread is no longer references and no longer
734 * runnable or preempted (i.e. finishes its low level exit).
735 */
736 if (td->td_refs) {
737 tsleep(td, 0, "lwpwait2", 1);
738 return(0);
739 }
740
741 /*
742 * The lwp's thread may still be in the middle
743 * of switching away, we can't rip its stack out from
744 * under it until TDF_EXITING is set and both
745 * TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
746 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
747 * will be cleared temporarily if a thread gets
748 * preempted.
749 *
750 * YYY no wakeup occurs, so we simply return failure
751 * and let the caller deal with sleeping and calling
752 * us again.
753 */
754 if ((td->td_flags & (TDF_RUNNING |
755 TDF_PREEMPT_LOCK |
756 TDF_EXITING)) != TDF_EXITING) {
757 tsleep(lp, 0, "lwpwait2", 1);
758 return (0);
759 }
760 KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0,
761 ("lwp_wait: td %p (%s) still on run or sleep queue",
762 td, td->td_comm));
763 return (1);
764}
765
766/*
767 * Release the resources associated with a lwp.
768 * The lwp must be completely dead.
769 */
770void
771lwp_dispose(struct lwp *lp)
772{
773 struct thread *td = lp->lwp_thread;;
774
775 KKASSERT(lwkt_preempted_proc() != lp);
776 KKASSERT(td->td_refs == 0);
777 KKASSERT((td->td_flags & (TDF_RUNNING |
778 TDF_PREEMPT_LOCK |
779 TDF_EXITING)) == TDF_EXITING);
780
781 PRELE(lp->lwp_proc);
782 lp->lwp_proc = NULL;
783 if (td != NULL) {
784 td->td_proc = NULL;
785 td->td_lwp = NULL;
786 lp->lwp_thread = NULL;
787 lwkt_free_thread(td);
788 }
789 kfree(lp, M_LWP);
790}
791
792/*
793 * MPSAFE
794 */
795int
796sys_wait4(struct wait_args *uap)
797{
798 struct rusage rusage;
799 int error, status;
800
801 error = kern_wait(uap->pid, (uap->status ? &status : NULL),
802 uap->options, (uap->rusage ? &rusage : NULL),
803 &uap->sysmsg_result);
804
805 if (error == 0 && uap->status)
806 error = copyout(&status, uap->status, sizeof(*uap->status));
807 if (error == 0 && uap->rusage)
808 error = copyout(&rusage, uap->rusage, sizeof(*uap->rusage));
809 return (error);
810}
811
812/*
813 * wait1()
814 *
815 * wait_args(int pid, int *status, int options, struct rusage *rusage)
816 *
817 * MPALMOSTSAFE
818 */
819int
820kern_wait(pid_t pid, int *status, int options, struct rusage *rusage, int *res)
821{
822 struct thread *td = curthread;
823 struct lwp *lp;
824 struct proc *q = td->td_proc;
825 struct proc *p, *t;
826 struct pargs *pa;
827 struct sigacts *ps;
828 int nfound, error;
829
830 if (pid == 0)
831 pid = -q->p_pgid;
832 if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE))
833 return (EINVAL);
834
835 lwkt_gettoken(&q->p_token);
836loop:
837 /*
838 * All sorts of things can change due to blocking so we have to loop
839 * all the way back up here.
840 *
841 * The problem is that if a process group is stopped and the parent
842 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
843 * of the child and then stop itself when it tries to return from the
844 * system call. When the process group is resumed the parent will
845 * then get the STOP status even though the child has now resumed
846 * (a followup wait*() will get the CONT status).
847 *
848 * Previously the CONT would overwrite the STOP because the tstop
849 * was handled within tsleep(), and the parent would only see
850 * the CONT when both are stopped and continued together. This little
851 * two-line hack restores this effect.
852 */
853 while (q->p_stat == SSTOP)
854 tstop();
855
856 nfound = 0;
857
858 /*
859 * Loop on children.
860 *
861 * NOTE: We don't want to break q's p_token in the loop for the
862 * case where no children are found or we risk breaking the
863 * interlock between child and parent.
864 */
865 LIST_FOREACH(p, &q->p_children, p_sibling) {
866 if (pid != WAIT_ANY &&
867 p->p_pid != pid && p->p_pgid != -pid) {
868 continue;
869 }
870
871 /*
872 * This special case handles a kthread spawned by linux_clone
873 * (see linux_misc.c). The linux_wait4 and linux_waitpid
874 * functions need to be able to distinguish between waiting
875 * on a process and waiting on a thread. It is a thread if
876 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
877 * signifies we want to wait for threads and not processes.
878 */
879 if ((p->p_sigparent != SIGCHLD) ^
880 ((options & WLINUXCLONE) != 0)) {
881 continue;
882 }
883
884 nfound++;
885 if (p->p_stat == SZOMB) {
886 /*
887 * We may go into SZOMB with threads still present.
888 * We must wait for them to exit before we can reap
889 * the master thread, otherwise we may race reaping
890 * non-master threads.
891 *
892 * Only this routine can remove a process from
893 * the zombie list and destroy it, use PACQUIREZOMB()
894 * to serialize us and loop if it blocks (interlocked
895 * by the parent's q->p_token).
896 *
897 * WARNING! (p) can be invalid when PHOLDZOMB(p)
898 * returns non-zero. Be sure not to
899 * mess with it.
900 */
901 if (PHOLDZOMB(p))
902 goto loop;
903 lwkt_gettoken(&p->p_token);
904 if (p->p_pptr != q) {
905 lwkt_reltoken(&p->p_token);
906 PRELEZOMB(p);
907 goto loop;
908 }
909 while (p->p_nthreads > 0) {
910 tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
911 }
912
913 /*
914 * Reap any LWPs left in p->p_lwps. This is usually
915 * just the last LWP. This must be done before
916 * we loop on p_lock since the lwps hold a ref on
917 * it as a vmspace interlock.
918 *
919 * Once that is accomplished p_nthreads had better
920 * be zero.
921 */
922 while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
923 lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
924 reaplwp(lp);
925 }
926 KKASSERT(p->p_nthreads == 0);
927
928 /*
929 * Don't do anything really bad until all references
930 * to the process go away. This may include other
931 * LWPs which are still in the process of being
932 * reaped. We can't just pull the rug out from under
933 * them because they may still be using the VM space.
934 *
935 * Certain kernel facilities such as /proc will also
936 * put a hold on the process for short periods of
937 * time.
938 */
939 PRELE(p);
940 PSTALL(p, "reap3", 0);
941
942 /* Take care of our return values. */
943 *res = p->p_pid;
944 p->p_usched->heuristic_exiting(td->td_lwp, p);
945
946 if (status)
947 *status = p->p_xstat;
948 if (rusage)
949 *rusage = p->p_ru;
950 /*
951 * If we got the child via a ptrace 'attach',
952 * we need to give it back to the old parent.
953 */
954 if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
955 PHOLD(p);
956 p->p_oppid = 0;
957 proc_reparent(p, t);
958 ksignal(t, SIGCHLD);
959 wakeup((caddr_t)t);
960 error = 0;
961 PRELE(t);
962 lwkt_reltoken(&p->p_token);
963 PRELEZOMB(p);
964 goto done;
965 }
966
967 /*
968 * Unlink the proc from its process group so that
969 * the following operations won't lead to an
970 * inconsistent state for processes running down
971 * the zombie list.
972 */
973 proc_remove_zombie(p);
974 lwkt_reltoken(&p->p_token);
975 leavepgrp(p);
976
977 p->p_xstat = 0;
978 ruadd(&q->p_cru, &p->p_ru);
979
980 /*
981 * Decrement the count of procs running with this uid.
982 */
983 chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
984
985 /*
986 * Free up credentials.
987 */
988 crfree(p->p_ucred);
989 p->p_ucred = NULL;
990
991 /*
992 * Remove unused arguments
993 */
994 pa = p->p_args;
995 p->p_args = NULL;
996 if (pa && refcount_release(&pa->ar_ref)) {
997 kfree(pa, M_PARGS);
998 pa = NULL;
999 }
1000
1001 ps = p->p_sigacts;
1002 p->p_sigacts = NULL;
1003 if (ps && refcount_release(&ps->ps_refcnt)) {
1004 kfree(ps, M_SUBPROC);
1005 ps = NULL;
1006 }
1007
1008 /*
1009 * Our exitingcount was incremented when the process
1010 * became a zombie, now that the process has been
1011 * removed from (almost) all lists we should be able
1012 * to safely destroy its vmspace. Wait for any current
1013 * holders to go away (so the vmspace remains stable),
1014 * then scrap it.
1015 */
1016 PSTALL(p, "reap4", 0);
1017 vmspace_exitfree(p);
1018 PSTALL(p, "reap5", 0);
1019
1020 /*
1021 * NOTE: We have to officially release ZOMB in order
1022 * to ensure that a racing thread in kern_wait()
1023 * which blocked on ZOMB is woken up.
1024 */
1025 PHOLD(p);
1026 PRELEZOMB(p);
1027 kfree(p, M_PROC);
1028 atomic_add_int(&nprocs, -1);
1029 error = 0;
1030 goto done;
1031 }
1032 if (p->p_stat == SSTOP && (p->p_flags & P_WAITED) == 0 &&
1033 ((p->p_flags & P_TRACED) || (options & WUNTRACED))) {
1034 PHOLD(p);
1035 lwkt_gettoken(&p->p_token);
1036 if (p->p_pptr != q) {
1037 lwkt_reltoken(&p->p_token);
1038 PRELE(p);
1039 goto loop;
1040 }
1041 if (p->p_stat != SSTOP ||
1042 (p->p_flags & P_WAITED) != 0 ||
1043 ((p->p_flags & P_TRACED) == 0 &&
1044 (options & WUNTRACED) == 0)) {
1045 lwkt_reltoken(&p->p_token);
1046 PRELE(p);
1047 goto loop;
1048 }
1049
1050 p->p_flags |= P_WAITED;
1051
1052 *res = p->p_pid;
1053 p->p_usched->heuristic_exiting(td->td_lwp, p);
1054 if (status)
1055 *status = W_STOPCODE(p->p_xstat);
1056 /* Zero rusage so we get something consistent. */
1057 if (rusage)
1058 bzero(rusage, sizeof(*rusage));
1059 error = 0;
1060 lwkt_reltoken(&p->p_token);
1061 PRELE(p);
1062 goto done;
1063 }
1064 if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) {
1065 PHOLD(p);
1066 lwkt_gettoken(&p->p_token);
1067 if (p->p_pptr != q) {
1068 lwkt_reltoken(&p->p_token);
1069 PRELE(p);
1070 goto loop;
1071 }
1072 if ((p->p_flags & P_CONTINUED) == 0) {
1073 lwkt_reltoken(&p->p_token);
1074 PRELE(p);
1075 goto loop;
1076 }
1077
1078 *res = p->p_pid;
1079 p->p_usched->heuristic_exiting(td->td_lwp, p);
1080 p->p_flags &= ~P_CONTINUED;
1081
1082 if (status)
1083 *status = SIGCONT;
1084 error = 0;
1085 lwkt_reltoken(&p->p_token);
1086 PRELE(p);
1087 goto done;
1088 }
1089 }
1090 if (nfound == 0) {
1091 error = ECHILD;
1092 goto done;
1093 }
1094 if (options & WNOHANG) {
1095 *res = 0;
1096 error = 0;
1097 goto done;
1098 }
1099
1100 /*
1101 * Wait for signal - interlocked using q->p_token.
1102 */
1103 error = tsleep(q, PCATCH, "wait", 0);
1104 if (error) {
1105done:
1106 lwkt_reltoken(&q->p_token);
1107 return (error);
1108 }
1109 goto loop;
1110}
1111
1112/*
1113 * Make process 'parent' the new parent of process 'child'.
1114 *
1115 * p_children/p_sibling requires the parent's token, and
1116 * changing pptr requires the child's token, so we have to
1117 * get three tokens to do this operation.
1118 */
1119void
1120proc_reparent(struct proc *child, struct proc *parent)
1121{
1122 struct proc *opp = child->p_pptr;
1123
1124 if (opp == parent)
1125 return;
1126 PHOLD(opp);
1127 PHOLD(parent);
1128 lwkt_gettoken(&opp->p_token);
1129 lwkt_gettoken(&child->p_token);
1130 lwkt_gettoken(&parent->p_token);
1131 KKASSERT(child->p_pptr == opp);
1132 LIST_REMOVE(child, p_sibling);
1133 LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1134 child->p_pptr = parent;
1135 lwkt_reltoken(&parent->p_token);
1136 lwkt_reltoken(&child->p_token);
1137 lwkt_reltoken(&opp->p_token);
1138 PRELE(parent);
1139 PRELE(opp);
1140}
1141
1142/*
1143 * The next two functions are to handle adding/deleting items on the
1144 * exit callout list
1145 *
1146 * at_exit():
1147 * Take the arguments given and put them onto the exit callout list,
1148 * However first make sure that it's not already there.
1149 * returns 0 on success.
1150 */
1151
1152int
1153at_exit(exitlist_fn function)
1154{
1155 struct exitlist *ep;
1156
1157#ifdef INVARIANTS
1158 /* Be noisy if the programmer has lost track of things */
1159 if (rm_at_exit(function))
1160 kprintf("WARNING: exit callout entry (%p) already present\n",
1161 function);
1162#endif
1163 ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1164 if (ep == NULL)
1165 return (ENOMEM);
1166 ep->function = function;
1167 TAILQ_INSERT_TAIL(&exit_list, ep, next);
1168 return (0);
1169}
1170
1171/*
1172 * Scan the exit callout list for the given item and remove it.
1173 * Returns the number of items removed (0 or 1)
1174 */
1175int
1176rm_at_exit(exitlist_fn function)
1177{
1178 struct exitlist *ep;
1179
1180 TAILQ_FOREACH(ep, &exit_list, next) {
1181 if (ep->function == function) {
1182 TAILQ_REMOVE(&exit_list, ep, next);
1183 kfree(ep, M_ATEXIT);
1184 return(1);
1185 }
1186 }
1187 return (0);
1188}
1189
1190/*
1191 * LWP reaper related code.
1192 */
1193static void
1194reaplwps(void *context, int dummy)
1195{
1196 struct lwplist *lwplist = context;
1197 struct lwp *lp;
1198
1199 lwkt_gettoken(&deadlwp_token);
1200 while ((lp = LIST_FIRST(lwplist))) {
1201 LIST_REMOVE(lp, u.lwp_reap_entry);
1202 reaplwp(lp);
1203 }
1204 lwkt_reltoken(&deadlwp_token);
1205}
1206
1207static void
1208reaplwp(struct lwp *lp)
1209{
1210 while (lwp_wait(lp) == 0)
1211 ;
1212 lwp_dispose(lp);
1213}
1214
1215static void
1216deadlwp_init(void)
1217{
1218 int cpu;
1219
1220 for (cpu = 0; cpu < ncpus; cpu++) {
1221 LIST_INIT(&deadlwp_list[cpu]);
1222 deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]),
1223 M_DEVBUF, M_WAITOK);
1224 TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1225 }
1226}
1227
1228SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);