kernel/vfs: Remove some unused variables.
[dragonfly.git] / sys / vfs / devfs / devfs_vnops.c
... / ...
CommitLineData
1/*
2 * (MPSAFE)
3 *
4 * Copyright (c) 2009 The DragonFly Project. All rights reserved.
5 *
6 * This code is derived from software contributed to The DragonFly Project
7 * by Alex Hornung <ahornung@gmail.com>
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/time.h>
39#include <sys/kernel.h>
40#include <sys/lock.h>
41#include <sys/fcntl.h>
42#include <sys/proc.h>
43#include <sys/priv.h>
44#include <sys/signalvar.h>
45#include <sys/vnode.h>
46#include <sys/uio.h>
47#include <sys/mount.h>
48#include <sys/file.h>
49#include <sys/fcntl.h>
50#include <sys/namei.h>
51#include <sys/dirent.h>
52#include <sys/malloc.h>
53#include <sys/stat.h>
54#include <sys/reg.h>
55#include <vm/vm_pager.h>
56#include <vm/vm_zone.h>
57#include <vm/vm_object.h>
58#include <sys/filio.h>
59#include <sys/ttycom.h>
60#include <sys/tty.h>
61#include <sys/diskslice.h>
62#include <sys/sysctl.h>
63#include <sys/devfs.h>
64#include <sys/pioctl.h>
65#include <vfs/fifofs/fifo.h>
66
67#include <machine/limits.h>
68
69#include <sys/buf2.h>
70#include <sys/sysref2.h>
71#include <sys/mplock2.h>
72#include <vm/vm_page2.h>
73
74MALLOC_DECLARE(M_DEVFS);
75#define DEVFS_BADOP (void *)devfs_vop_badop
76
77static int devfs_vop_badop(struct vop_generic_args *);
78static int devfs_vop_access(struct vop_access_args *);
79static int devfs_vop_inactive(struct vop_inactive_args *);
80static int devfs_vop_reclaim(struct vop_reclaim_args *);
81static int devfs_vop_readdir(struct vop_readdir_args *);
82static int devfs_vop_getattr(struct vop_getattr_args *);
83static int devfs_vop_setattr(struct vop_setattr_args *);
84static int devfs_vop_readlink(struct vop_readlink_args *);
85static int devfs_vop_print(struct vop_print_args *);
86
87static int devfs_vop_nresolve(struct vop_nresolve_args *);
88static int devfs_vop_nlookupdotdot(struct vop_nlookupdotdot_args *);
89static int devfs_vop_nmkdir(struct vop_nmkdir_args *);
90static int devfs_vop_nsymlink(struct vop_nsymlink_args *);
91static int devfs_vop_nrmdir(struct vop_nrmdir_args *);
92static int devfs_vop_nremove(struct vop_nremove_args *);
93
94static int devfs_spec_open(struct vop_open_args *);
95static int devfs_spec_close(struct vop_close_args *);
96static int devfs_spec_fsync(struct vop_fsync_args *);
97
98static int devfs_spec_read(struct vop_read_args *);
99static int devfs_spec_write(struct vop_write_args *);
100static int devfs_spec_ioctl(struct vop_ioctl_args *);
101static int devfs_spec_kqfilter(struct vop_kqfilter_args *);
102static int devfs_spec_strategy(struct vop_strategy_args *);
103static void devfs_spec_strategy_done(struct bio *);
104static int devfs_spec_freeblks(struct vop_freeblks_args *);
105static int devfs_spec_bmap(struct vop_bmap_args *);
106static int devfs_spec_advlock(struct vop_advlock_args *);
107static void devfs_spec_getpages_iodone(struct bio *);
108static int devfs_spec_getpages(struct vop_getpages_args *);
109
110static int devfs_fo_close(struct file *);
111static int devfs_fo_read(struct file *, struct uio *, struct ucred *, int);
112static int devfs_fo_write(struct file *, struct uio *, struct ucred *, int);
113static int devfs_fo_stat(struct file *, struct stat *, struct ucred *);
114static int devfs_fo_kqfilter(struct file *, struct knote *);
115static int devfs_fo_ioctl(struct file *, u_long, caddr_t,
116 struct ucred *, struct sysmsg *);
117static __inline int sequential_heuristic(struct uio *, struct file *);
118
119extern struct lock devfs_lock;
120
121/*
122 * devfs vnode operations for regular files. All vnode ops are MPSAFE.
123 */
124struct vop_ops devfs_vnode_norm_vops = {
125 .vop_default = vop_defaultop,
126 .vop_access = devfs_vop_access,
127 .vop_advlock = DEVFS_BADOP,
128 .vop_bmap = DEVFS_BADOP,
129 .vop_close = vop_stdclose,
130 .vop_getattr = devfs_vop_getattr,
131 .vop_inactive = devfs_vop_inactive,
132 .vop_ncreate = DEVFS_BADOP,
133 .vop_nresolve = devfs_vop_nresolve,
134 .vop_nlookupdotdot = devfs_vop_nlookupdotdot,
135 .vop_nlink = DEVFS_BADOP,
136 .vop_nmkdir = devfs_vop_nmkdir,
137 .vop_nmknod = DEVFS_BADOP,
138 .vop_nremove = devfs_vop_nremove,
139 .vop_nrename = DEVFS_BADOP,
140 .vop_nrmdir = devfs_vop_nrmdir,
141 .vop_nsymlink = devfs_vop_nsymlink,
142 .vop_open = vop_stdopen,
143 .vop_pathconf = vop_stdpathconf,
144 .vop_print = devfs_vop_print,
145 .vop_read = DEVFS_BADOP,
146 .vop_readdir = devfs_vop_readdir,
147 .vop_readlink = devfs_vop_readlink,
148 .vop_reclaim = devfs_vop_reclaim,
149 .vop_setattr = devfs_vop_setattr,
150 .vop_write = DEVFS_BADOP,
151 .vop_ioctl = DEVFS_BADOP
152};
153
154/*
155 * devfs vnode operations for character devices. All vnode ops are MPSAFE.
156 */
157struct vop_ops devfs_vnode_dev_vops = {
158 .vop_default = vop_defaultop,
159 .vop_access = devfs_vop_access,
160 .vop_advlock = devfs_spec_advlock,
161 .vop_bmap = devfs_spec_bmap,
162 .vop_close = devfs_spec_close,
163 .vop_freeblks = devfs_spec_freeblks,
164 .vop_fsync = devfs_spec_fsync,
165 .vop_getattr = devfs_vop_getattr,
166 .vop_getpages = devfs_spec_getpages,
167 .vop_inactive = devfs_vop_inactive,
168 .vop_open = devfs_spec_open,
169 .vop_pathconf = vop_stdpathconf,
170 .vop_print = devfs_vop_print,
171 .vop_kqfilter = devfs_spec_kqfilter,
172 .vop_read = devfs_spec_read,
173 .vop_readdir = DEVFS_BADOP,
174 .vop_readlink = DEVFS_BADOP,
175 .vop_reclaim = devfs_vop_reclaim,
176 .vop_setattr = devfs_vop_setattr,
177 .vop_strategy = devfs_spec_strategy,
178 .vop_write = devfs_spec_write,
179 .vop_ioctl = devfs_spec_ioctl
180};
181
182/*
183 * devfs file pointer operations. All fileops are MPSAFE.
184 */
185struct vop_ops *devfs_vnode_dev_vops_p = &devfs_vnode_dev_vops;
186
187struct fileops devfs_dev_fileops = {
188 .fo_read = devfs_fo_read,
189 .fo_write = devfs_fo_write,
190 .fo_ioctl = devfs_fo_ioctl,
191 .fo_kqfilter = devfs_fo_kqfilter,
192 .fo_stat = devfs_fo_stat,
193 .fo_close = devfs_fo_close,
194 .fo_shutdown = nofo_shutdown
195};
196
197/*
198 * These two functions are possibly temporary hacks for devices (aka
199 * the pty code) which want to control the node attributes themselves.
200 *
201 * XXX we may ultimately desire to simply remove the uid/gid/mode
202 * from the node entirely.
203 *
204 * MPSAFE - sorta. Theoretically the overwrite can compete since they
205 * are loading from the same fields.
206 */
207static __inline void
208node_sync_dev_get(struct devfs_node *node)
209{
210 cdev_t dev;
211
212 if ((dev = node->d_dev) && (dev->si_flags & SI_OVERRIDE)) {
213 node->uid = dev->si_uid;
214 node->gid = dev->si_gid;
215 node->mode = dev->si_perms;
216 }
217}
218
219static __inline void
220node_sync_dev_set(struct devfs_node *node)
221{
222 cdev_t dev;
223
224 if ((dev = node->d_dev) && (dev->si_flags & SI_OVERRIDE)) {
225 dev->si_uid = node->uid;
226 dev->si_gid = node->gid;
227 dev->si_perms = node->mode;
228 }
229}
230
231/*
232 * generic entry point for unsupported operations
233 */
234static int
235devfs_vop_badop(struct vop_generic_args *ap)
236{
237 return (EIO);
238}
239
240
241static int
242devfs_vop_access(struct vop_access_args *ap)
243{
244 struct devfs_node *node = DEVFS_NODE(ap->a_vp);
245 int error;
246
247 if (!devfs_node_is_accessible(node))
248 return ENOENT;
249 node_sync_dev_get(node);
250 error = vop_helper_access(ap, node->uid, node->gid,
251 node->mode, node->flags);
252
253 return error;
254}
255
256
257static int
258devfs_vop_inactive(struct vop_inactive_args *ap)
259{
260 struct devfs_node *node = DEVFS_NODE(ap->a_vp);
261
262 if (node == NULL || (node->flags & DEVFS_NODE_LINKED) == 0)
263 vrecycle(ap->a_vp);
264 return 0;
265}
266
267
268static int
269devfs_vop_reclaim(struct vop_reclaim_args *ap)
270{
271 struct devfs_node *node;
272 struct vnode *vp;
273 int locked;
274
275 /*
276 * Check if it is locked already. if not, we acquire the devfs lock
277 */
278 if (!(lockstatus(&devfs_lock, curthread)) == LK_EXCLUSIVE) {
279 lockmgr(&devfs_lock, LK_EXCLUSIVE);
280 locked = 1;
281 } else {
282 locked = 0;
283 }
284
285 /*
286 * Get rid of the devfs_node if it is no longer linked into the
287 * topology.
288 */
289 vp = ap->a_vp;
290 if ((node = DEVFS_NODE(vp)) != NULL) {
291 node->v_node = NULL;
292 if ((node->flags & DEVFS_NODE_LINKED) == 0)
293 devfs_freep(node);
294 }
295
296 if (locked)
297 lockmgr(&devfs_lock, LK_RELEASE);
298
299 /*
300 * v_rdev needs to be properly released using v_release_rdev
301 * Make sure v_data is NULL as well.
302 */
303 vp->v_data = NULL;
304 v_release_rdev(vp);
305 return 0;
306}
307
308
309static int
310devfs_vop_readdir(struct vop_readdir_args *ap)
311{
312 struct devfs_node *dnode = DEVFS_NODE(ap->a_vp);
313 struct devfs_node *node;
314 int cookie_index;
315 int ncookies;
316 int error2;
317 int error;
318 int r;
319 off_t *cookies;
320 off_t saveoff;
321
322 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_readdir() called!\n");
323
324 if (ap->a_uio->uio_offset < 0 || ap->a_uio->uio_offset > INT_MAX)
325 return (EINVAL);
326 if ((error = vn_lock(ap->a_vp, LK_EXCLUSIVE | LK_RETRY)) != 0)
327 return (error);
328
329 if (!devfs_node_is_accessible(dnode)) {
330 vn_unlock(ap->a_vp);
331 return ENOENT;
332 }
333
334 lockmgr(&devfs_lock, LK_EXCLUSIVE);
335
336 saveoff = ap->a_uio->uio_offset;
337
338 if (ap->a_ncookies) {
339 ncookies = ap->a_uio->uio_resid / 16 + 1; /* Why / 16 ?? */
340 if (ncookies > 256)
341 ncookies = 256;
342 cookies = kmalloc(256 * sizeof(off_t), M_TEMP, M_WAITOK);
343 cookie_index = 0;
344 } else {
345 ncookies = -1;
346 cookies = NULL;
347 cookie_index = 0;
348 }
349
350 nanotime(&dnode->atime);
351
352 if (saveoff == 0) {
353 r = vop_write_dirent(&error, ap->a_uio, dnode->d_dir.d_ino,
354 DT_DIR, 1, ".");
355 if (r)
356 goto done;
357 if (cookies)
358 cookies[cookie_index] = saveoff;
359 saveoff++;
360 cookie_index++;
361 if (cookie_index == ncookies)
362 goto done;
363 }
364
365 if (saveoff == 1) {
366 if (dnode->parent) {
367 r = vop_write_dirent(&error, ap->a_uio,
368 dnode->parent->d_dir.d_ino,
369 DT_DIR, 2, "..");
370 } else {
371 r = vop_write_dirent(&error, ap->a_uio,
372 dnode->d_dir.d_ino,
373 DT_DIR, 2, "..");
374 }
375 if (r)
376 goto done;
377 if (cookies)
378 cookies[cookie_index] = saveoff;
379 saveoff++;
380 cookie_index++;
381 if (cookie_index == ncookies)
382 goto done;
383 }
384
385 TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
386 if ((node->flags & DEVFS_HIDDEN) ||
387 (node->flags & DEVFS_INVISIBLE)) {
388 continue;
389 }
390
391 /*
392 * If the node type is a valid devfs alias, then we make
393 * sure that the target isn't hidden. If it is, we don't
394 * show the link in the directory listing.
395 */
396 if ((node->node_type == Nlink) && (node->link_target != NULL) &&
397 (node->link_target->flags & DEVFS_HIDDEN))
398 continue;
399
400 if (node->cookie < saveoff)
401 continue;
402
403 saveoff = node->cookie;
404
405 error2 = vop_write_dirent(&error, ap->a_uio, node->d_dir.d_ino,
406 node->d_dir.d_type,
407 node->d_dir.d_namlen,
408 node->d_dir.d_name);
409
410 if (error2)
411 break;
412
413 saveoff++;
414
415 if (cookies)
416 cookies[cookie_index] = node->cookie;
417 ++cookie_index;
418 if (cookie_index == ncookies)
419 break;
420 }
421
422done:
423 lockmgr(&devfs_lock, LK_RELEASE);
424 vn_unlock(ap->a_vp);
425
426 ap->a_uio->uio_offset = saveoff;
427 if (error && cookie_index == 0) {
428 if (cookies) {
429 kfree(cookies, M_TEMP);
430 *ap->a_ncookies = 0;
431 *ap->a_cookies = NULL;
432 }
433 } else {
434 if (cookies) {
435 *ap->a_ncookies = cookie_index;
436 *ap->a_cookies = cookies;
437 }
438 }
439 return (error);
440}
441
442
443static int
444devfs_vop_nresolve(struct vop_nresolve_args *ap)
445{
446 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
447 struct devfs_node *node, *found = NULL;
448 struct namecache *ncp;
449 struct vnode *vp = NULL;
450 int error = 0;
451 int len;
452 int depth;
453
454 ncp = ap->a_nch->ncp;
455 len = ncp->nc_nlen;
456
457 if (!devfs_node_is_accessible(dnode))
458 return ENOENT;
459
460 lockmgr(&devfs_lock, LK_EXCLUSIVE);
461
462 if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir)) {
463 error = ENOENT;
464 cache_setvp(ap->a_nch, NULL);
465 goto out;
466 }
467
468 TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
469 if (len == node->d_dir.d_namlen) {
470 if (!memcmp(ncp->nc_name, node->d_dir.d_name, len)) {
471 found = node;
472 break;
473 }
474 }
475 }
476
477 if (found) {
478 depth = 0;
479 while ((found->node_type == Nlink) && (found->link_target)) {
480 if (depth >= 8) {
481 devfs_debug(DEVFS_DEBUG_SHOW, "Recursive link or depth >= 8");
482 break;
483 }
484
485 found = found->link_target;
486 ++depth;
487 }
488
489 if (!(found->flags & DEVFS_HIDDEN))
490 devfs_allocv(/*ap->a_dvp->v_mount, */ &vp, found);
491 }
492
493 if (vp == NULL) {
494 error = ENOENT;
495 cache_setvp(ap->a_nch, NULL);
496 goto out;
497
498 }
499 KKASSERT(vp);
500 vn_unlock(vp);
501 cache_setvp(ap->a_nch, vp);
502 vrele(vp);
503out:
504 lockmgr(&devfs_lock, LK_RELEASE);
505
506 return error;
507}
508
509
510static int
511devfs_vop_nlookupdotdot(struct vop_nlookupdotdot_args *ap)
512{
513 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
514
515 *ap->a_vpp = NULL;
516 if (!devfs_node_is_accessible(dnode))
517 return ENOENT;
518
519 lockmgr(&devfs_lock, LK_EXCLUSIVE);
520 if (dnode->parent != NULL) {
521 devfs_allocv(ap->a_vpp, dnode->parent);
522 vn_unlock(*ap->a_vpp);
523 }
524 lockmgr(&devfs_lock, LK_RELEASE);
525
526 return ((*ap->a_vpp == NULL) ? ENOENT : 0);
527}
528
529
530static int
531devfs_vop_getattr(struct vop_getattr_args *ap)
532{
533 struct devfs_node *node = DEVFS_NODE(ap->a_vp);
534 struct vattr *vap = ap->a_vap;
535 struct partinfo pinfo;
536 int error = 0;
537
538#if 0
539 if (!devfs_node_is_accessible(node))
540 return ENOENT;
541#endif
542 node_sync_dev_get(node);
543
544 lockmgr(&devfs_lock, LK_EXCLUSIVE);
545
546 /* start by zeroing out the attributes */
547 VATTR_NULL(vap);
548
549 /* next do all the common fields */
550 vap->va_type = ap->a_vp->v_type;
551 vap->va_mode = node->mode;
552 vap->va_fileid = DEVFS_NODE(ap->a_vp)->d_dir.d_ino ;
553 vap->va_flags = 0;
554 vap->va_blocksize = DEV_BSIZE;
555 vap->va_bytes = vap->va_size = 0;
556
557 vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
558
559 vap->va_atime = node->atime;
560 vap->va_mtime = node->mtime;
561 vap->va_ctime = node->ctime;
562
563 vap->va_nlink = 1; /* number of references to file */
564
565 vap->va_uid = node->uid;
566 vap->va_gid = node->gid;
567
568 vap->va_rmajor = 0;
569 vap->va_rminor = 0;
570
571 if ((node->node_type == Ndev) && node->d_dev) {
572 reference_dev(node->d_dev);
573 vap->va_rminor = node->d_dev->si_uminor;
574 release_dev(node->d_dev);
575 }
576
577 /* For a softlink the va_size is the length of the softlink */
578 if (node->symlink_name != 0) {
579 vap->va_bytes = vap->va_size = node->symlink_namelen;
580 }
581
582 /*
583 * For a disk-type device, va_size is the size of the underlying
584 * device, so that lseek() works properly.
585 */
586 if ((node->d_dev) && (dev_dflags(node->d_dev) & D_DISK)) {
587 bzero(&pinfo, sizeof(pinfo));
588 error = dev_dioctl(node->d_dev, DIOCGPART, (void *)&pinfo,
589 0, proc0.p_ucred, NULL);
590 if ((error == 0) && (pinfo.media_blksize != 0)) {
591 vap->va_size = pinfo.media_size;
592 } else {
593 vap->va_size = 0;
594 error = 0;
595 }
596 }
597
598 lockmgr(&devfs_lock, LK_RELEASE);
599
600 return (error);
601}
602
603
604static int
605devfs_vop_setattr(struct vop_setattr_args *ap)
606{
607 struct devfs_node *node = DEVFS_NODE(ap->a_vp);
608 struct vattr *vap;
609 uid_t cur_uid;
610 gid_t cur_gid;
611 mode_t cur_mode;
612 int error = 0;
613
614 if (!devfs_node_is_accessible(node))
615 return ENOENT;
616 node_sync_dev_get(node);
617
618 lockmgr(&devfs_lock, LK_EXCLUSIVE);
619
620 vap = ap->a_vap;
621
622 if ((vap->va_uid != (uid_t)VNOVAL) || (vap->va_gid != (gid_t)VNOVAL)) {
623 cur_uid = node->uid;
624 cur_gid = node->gid;
625 cur_mode = node->mode;
626 error = vop_helper_chown(ap->a_vp, vap->va_uid, vap->va_gid,
627 ap->a_cred, &cur_uid, &cur_gid, &cur_mode);
628 if (error)
629 goto out;
630
631 if (node->uid != cur_uid || node->gid != cur_gid) {
632 node->uid = cur_uid;
633 node->gid = cur_gid;
634 node->mode = cur_mode;
635 }
636 }
637
638 if (vap->va_mode != (mode_t)VNOVAL) {
639 cur_mode = node->mode;
640 error = vop_helper_chmod(ap->a_vp, vap->va_mode, ap->a_cred,
641 node->uid, node->gid, &cur_mode);
642 if (error == 0 && node->mode != cur_mode) {
643 node->mode = cur_mode;
644 }
645 }
646
647out:
648 node_sync_dev_set(node);
649 nanotime(&node->ctime);
650 lockmgr(&devfs_lock, LK_RELEASE);
651
652 return error;
653}
654
655
656static int
657devfs_vop_readlink(struct vop_readlink_args *ap)
658{
659 struct devfs_node *node = DEVFS_NODE(ap->a_vp);
660 int ret;
661
662 if (!devfs_node_is_accessible(node))
663 return ENOENT;
664
665 lockmgr(&devfs_lock, LK_EXCLUSIVE);
666 ret = uiomove(node->symlink_name, node->symlink_namelen, ap->a_uio);
667 lockmgr(&devfs_lock, LK_RELEASE);
668
669 return ret;
670}
671
672
673static int
674devfs_vop_print(struct vop_print_args *ap)
675{
676 return (0);
677}
678
679static int
680devfs_vop_nmkdir(struct vop_nmkdir_args *ap)
681{
682 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
683 struct devfs_node *node;
684
685 if (!devfs_node_is_accessible(dnode))
686 return ENOENT;
687
688 if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
689 goto out;
690
691 lockmgr(&devfs_lock, LK_EXCLUSIVE);
692 devfs_allocvp(ap->a_dvp->v_mount, ap->a_vpp, Ndir,
693 ap->a_nch->ncp->nc_name, dnode, NULL);
694
695 if (*ap->a_vpp) {
696 node = DEVFS_NODE(*ap->a_vpp);
697 node->flags |= DEVFS_USER_CREATED;
698 cache_setunresolved(ap->a_nch);
699 cache_setvp(ap->a_nch, *ap->a_vpp);
700 }
701 lockmgr(&devfs_lock, LK_RELEASE);
702out:
703 return ((*ap->a_vpp == NULL) ? ENOTDIR : 0);
704}
705
706static int
707devfs_vop_nsymlink(struct vop_nsymlink_args *ap)
708{
709 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
710 struct devfs_node *node;
711 size_t targetlen;
712
713 if (!devfs_node_is_accessible(dnode))
714 return ENOENT;
715
716 ap->a_vap->va_type = VLNK;
717
718 if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
719 goto out;
720
721 lockmgr(&devfs_lock, LK_EXCLUSIVE);
722 devfs_allocvp(ap->a_dvp->v_mount, ap->a_vpp, Nlink,
723 ap->a_nch->ncp->nc_name, dnode, NULL);
724
725 targetlen = strlen(ap->a_target);
726 if (*ap->a_vpp) {
727 node = DEVFS_NODE(*ap->a_vpp);
728 node->flags |= DEVFS_USER_CREATED;
729 node->symlink_namelen = targetlen;
730 node->symlink_name = kmalloc(targetlen + 1, M_DEVFS, M_WAITOK);
731 memcpy(node->symlink_name, ap->a_target, targetlen);
732 node->symlink_name[targetlen] = '\0';
733 cache_setunresolved(ap->a_nch);
734 cache_setvp(ap->a_nch, *ap->a_vpp);
735 }
736 lockmgr(&devfs_lock, LK_RELEASE);
737out:
738 return ((*ap->a_vpp == NULL) ? ENOTDIR : 0);
739}
740
741static int
742devfs_vop_nrmdir(struct vop_nrmdir_args *ap)
743{
744 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
745 struct devfs_node *node;
746 struct namecache *ncp;
747 int error = ENOENT;
748
749 ncp = ap->a_nch->ncp;
750
751 if (!devfs_node_is_accessible(dnode))
752 return ENOENT;
753
754 lockmgr(&devfs_lock, LK_EXCLUSIVE);
755
756 if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
757 goto out;
758
759 TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
760 if (ncp->nc_nlen != node->d_dir.d_namlen)
761 continue;
762 if (memcmp(ncp->nc_name, node->d_dir.d_name, ncp->nc_nlen))
763 continue;
764
765 /*
766 * only allow removal of user created dirs
767 */
768 if ((node->flags & DEVFS_USER_CREATED) == 0) {
769 error = EPERM;
770 goto out;
771 } else if (node->node_type != Ndir) {
772 error = ENOTDIR;
773 goto out;
774 } else if (node->nchildren > 2) {
775 error = ENOTEMPTY;
776 goto out;
777 } else {
778 if (node->v_node)
779 cache_inval_vp(node->v_node, CINV_DESTROY);
780 devfs_unlinkp(node);
781 error = 0;
782 break;
783 }
784 }
785
786 cache_unlink(ap->a_nch);
787out:
788 lockmgr(&devfs_lock, LK_RELEASE);
789 return error;
790}
791
792static int
793devfs_vop_nremove(struct vop_nremove_args *ap)
794{
795 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
796 struct devfs_node *node;
797 struct namecache *ncp;
798 int error = ENOENT;
799
800 ncp = ap->a_nch->ncp;
801
802 if (!devfs_node_is_accessible(dnode))
803 return ENOENT;
804
805 lockmgr(&devfs_lock, LK_EXCLUSIVE);
806
807 if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
808 goto out;
809
810 TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
811 if (ncp->nc_nlen != node->d_dir.d_namlen)
812 continue;
813 if (memcmp(ncp->nc_name, node->d_dir.d_name, ncp->nc_nlen))
814 continue;
815
816 /*
817 * only allow removal of user created stuff (e.g. symlinks)
818 */
819 if ((node->flags & DEVFS_USER_CREATED) == 0) {
820 error = EPERM;
821 goto out;
822 } else if (node->node_type == Ndir) {
823 error = EISDIR;
824 goto out;
825 } else {
826 if (node->v_node)
827 cache_inval_vp(node->v_node, CINV_DESTROY);
828 devfs_unlinkp(node);
829 error = 0;
830 break;
831 }
832 }
833
834 cache_unlink(ap->a_nch);
835out:
836 lockmgr(&devfs_lock, LK_RELEASE);
837 return error;
838}
839
840
841static int
842devfs_spec_open(struct vop_open_args *ap)
843{
844 struct vnode *vp = ap->a_vp;
845 struct vnode *orig_vp = NULL;
846 struct devfs_node *node = DEVFS_NODE(vp);
847 struct devfs_node *newnode;
848 cdev_t dev, ndev = NULL;
849 int error = 0;
850
851 if (node) {
852 if (node->d_dev == NULL)
853 return ENXIO;
854 if (!devfs_node_is_accessible(node))
855 return ENOENT;
856 }
857
858 if ((dev = vp->v_rdev) == NULL)
859 return ENXIO;
860
861 if (node && ap->a_fp) {
862 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_open: -1.1-\n");
863 lockmgr(&devfs_lock, LK_EXCLUSIVE);
864
865 ndev = devfs_clone(dev, node->d_dir.d_name, node->d_dir.d_namlen,
866 ap->a_mode, ap->a_cred);
867 if (ndev != NULL) {
868 newnode = devfs_create_device_node(
869 DEVFS_MNTDATA(vp->v_mount)->root_node,
870 ndev, NULL, NULL);
871 /* XXX: possibly destroy device if this happens */
872
873 if (newnode != NULL) {
874 dev = ndev;
875 devfs_link_dev(dev);
876
877 devfs_debug(DEVFS_DEBUG_DEBUG,
878 "parent here is: %s, node is: |%s|\n",
879 ((node->parent->node_type == Nroot) ?
880 "ROOT!" : node->parent->d_dir.d_name),
881 newnode->d_dir.d_name);
882 devfs_debug(DEVFS_DEBUG_DEBUG,
883 "test: %s\n",
884 ((struct devfs_node *)(TAILQ_LAST(DEVFS_DENODE_HEAD(node->parent), devfs_node_head)))->d_dir.d_name);
885
886 /*
887 * orig_vp is set to the original vp if we cloned.
888 */
889 /* node->flags |= DEVFS_CLONED; */
890 devfs_allocv(&vp, newnode);
891 orig_vp = ap->a_vp;
892 ap->a_vp = vp;
893 }
894 }
895 lockmgr(&devfs_lock, LK_RELEASE);
896 }
897
898 devfs_debug(DEVFS_DEBUG_DEBUG,
899 "devfs_spec_open() called on %s! \n",
900 dev->si_name);
901
902 /*
903 * Make this field valid before any I/O in ->d_open
904 */
905 if (!dev->si_iosize_max)
906 /* XXX: old DFLTPHYS == 64KB dependency */
907 dev->si_iosize_max = min(MAXPHYS,64*1024);
908
909 if (dev_dflags(dev) & D_TTY)
910 vsetflags(vp, VISTTY);
911
912 /*
913 * Open underlying device
914 */
915 vn_unlock(vp);
916 error = dev_dopen(dev, ap->a_mode, S_IFCHR, ap->a_cred);
917 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
918
919 /*
920 * Clean up any cloned vp if we error out.
921 */
922 if (error) {
923 if (orig_vp) {
924 vput(vp);
925 ap->a_vp = orig_vp;
926 /* orig_vp = NULL; */
927 }
928 return error;
929 }
930
931 /*
932 * This checks if the disk device is going to be opened for writing.
933 * It will be only allowed in the cases where securelevel permits it
934 * and it's not mounted R/W.
935 */
936 if ((dev_dflags(dev) & D_DISK) && (ap->a_mode & FWRITE) &&
937 (ap->a_cred != FSCRED)) {
938
939 /* Very secure mode. No open for writing allowed */
940 if (securelevel >= 2)
941 return EPERM;
942
943 /*
944 * If it is mounted R/W, do not allow to open for writing.
945 * In the case it's mounted read-only but securelevel
946 * is >= 1, then do not allow opening for writing either.
947 */
948 if (vfs_mountedon(vp)) {
949 if (!(dev->si_mountpoint->mnt_flag & MNT_RDONLY))
950 return EBUSY;
951 else if (securelevel >= 1)
952 return EPERM;
953 }
954 }
955
956 if (dev_dflags(dev) & D_TTY) {
957 if (dev->si_tty) {
958 struct tty *tp;
959 tp = dev->si_tty;
960 if (!tp->t_stop) {
961 devfs_debug(DEVFS_DEBUG_DEBUG,
962 "devfs: no t_stop\n");
963 tp->t_stop = nottystop;
964 }
965 }
966 }
967
968
969 if (vn_isdisk(vp, NULL)) {
970 if (!dev->si_bsize_phys)
971 dev->si_bsize_phys = DEV_BSIZE;
972 vinitvmio(vp, IDX_TO_OFF(INT_MAX), PAGE_SIZE, -1);
973 }
974
975 vop_stdopen(ap);
976#if 0
977 if (node)
978 nanotime(&node->atime);
979#endif
980
981 /*
982 * If we replaced the vp the vop_stdopen() call will have loaded
983 * it into fp->f_data and vref()d the vp, giving us two refs. So
984 * instead of just unlocking it here we have to vput() it.
985 */
986 if (orig_vp)
987 vput(vp);
988
989 /* Ugly pty magic, to make pty devices appear once they are opened */
990 if (node && (node->flags & DEVFS_PTY) == DEVFS_PTY)
991 node->flags &= ~DEVFS_INVISIBLE;
992
993 if (ap->a_fp) {
994 KKASSERT(ap->a_fp->f_type == DTYPE_VNODE);
995 KKASSERT((ap->a_fp->f_flag & FMASK) == (ap->a_mode & FMASK));
996 ap->a_fp->f_ops = &devfs_dev_fileops;
997 KKASSERT(ap->a_fp->f_data == (void *)vp);
998 }
999
1000 return 0;
1001}
1002
1003
1004static int
1005devfs_spec_close(struct vop_close_args *ap)
1006{
1007 struct devfs_node *node;
1008 struct proc *p = curproc;
1009 struct vnode *vp = ap->a_vp;
1010 cdev_t dev = vp->v_rdev;
1011 int error = 0;
1012 int needrelock;
1013
1014 if (dev)
1015 devfs_debug(DEVFS_DEBUG_DEBUG,
1016 "devfs_spec_close() called on %s! \n",
1017 dev->si_name);
1018 else
1019 devfs_debug(DEVFS_DEBUG_DEBUG,
1020 "devfs_spec_close() called, null vode!\n");
1021
1022 /*
1023 * A couple of hacks for devices and tty devices. The
1024 * vnode ref count cannot be used to figure out the
1025 * last close, but we can use v_opencount now that
1026 * revoke works properly.
1027 *
1028 * Detect the last close on a controlling terminal and clear
1029 * the session (half-close).
1030 */
1031 if (dev)
1032 reference_dev(dev);
1033
1034 if (p && vp->v_opencount <= 1 && vp == p->p_session->s_ttyvp) {
1035 p->p_session->s_ttyvp = NULL;
1036 vrele(vp);
1037 }
1038
1039 /*
1040 * Vnodes can be opened and closed multiple times. Do not really
1041 * close the device unless (1) it is being closed forcibly,
1042 * (2) the device wants to track closes, or (3) this is the last
1043 * vnode doing its last close on the device.
1044 *
1045 * XXX the VXLOCK (force close) case can leave vnodes referencing
1046 * a closed device. This might not occur now that our revoke is
1047 * fixed.
1048 */
1049 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_close() -1- \n");
1050 if (dev && ((vp->v_flag & VRECLAIMED) ||
1051 (dev_dflags(dev) & D_TRACKCLOSE) ||
1052 (vp->v_opencount == 1))) {
1053 /*
1054 * Ugly pty magic, to make pty devices disappear again once
1055 * they are closed.
1056 */
1057 node = DEVFS_NODE(ap->a_vp);
1058 if (node && (node->flags & DEVFS_PTY))
1059 node->flags |= DEVFS_INVISIBLE;
1060
1061 /*
1062 * Unlock around dev_dclose(), unless the vnode is
1063 * undergoing a vgone/reclaim (during umount).
1064 */
1065 needrelock = 0;
1066 if ((vp->v_flag & VRECLAIMED) == 0 && vn_islocked(vp)) {
1067 needrelock = 1;
1068 vn_unlock(vp);
1069 }
1070
1071 /*
1072 * WARNING! If the device destroys itself the devfs node
1073 * can disappear here.
1074 *
1075 * WARNING! vn_lock() will fail if the vp is in a VRECLAIM,
1076 * which can occur during umount.
1077 */
1078 error = dev_dclose(dev, ap->a_fflag, S_IFCHR);
1079 /* node is now stale */
1080
1081 if (needrelock) {
1082 if (vn_lock(vp, LK_EXCLUSIVE | LK_RETRY) != 0) {
1083 panic("devfs_spec_close: vnode %p "
1084 "unexpectedly could not be relocked",
1085 vp);
1086 }
1087 }
1088 } else {
1089 error = 0;
1090 }
1091 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_close() -2- \n");
1092
1093 /*
1094 * Track the actual opens and closes on the vnode. The last close
1095 * disassociates the rdev. If the rdev is already disassociated or
1096 * the opencount is already 0, the vnode might have been revoked
1097 * and no further opencount tracking occurs.
1098 */
1099 if (dev)
1100 release_dev(dev);
1101 if (vp->v_opencount > 0)
1102 vop_stdclose(ap);
1103 return(error);
1104
1105}
1106
1107
1108static int
1109devfs_fo_close(struct file *fp)
1110{
1111 struct vnode *vp = (struct vnode *)fp->f_data;
1112 int error;
1113
1114 fp->f_ops = &badfileops;
1115 error = vn_close(vp, fp->f_flag);
1116
1117 return (error);
1118}
1119
1120
1121/*
1122 * Device-optimized file table vnode read routine.
1123 *
1124 * This bypasses the VOP table and talks directly to the device. Most
1125 * filesystems just route to specfs and can make this optimization.
1126 *
1127 * MPALMOSTSAFE - acquires mplock
1128 */
1129static int
1130devfs_fo_read(struct file *fp, struct uio *uio,
1131 struct ucred *cred, int flags)
1132{
1133 struct devfs_node *node;
1134 struct vnode *vp;
1135 int ioflag;
1136 int error;
1137 cdev_t dev;
1138
1139 KASSERT(uio->uio_td == curthread,
1140 ("uio_td %p is not td %p", uio->uio_td, curthread));
1141
1142 if (uio->uio_resid == 0)
1143 return 0;
1144
1145 vp = (struct vnode *)fp->f_data;
1146 if (vp == NULL || vp->v_type == VBAD)
1147 return EBADF;
1148
1149 node = DEVFS_NODE(vp);
1150
1151 if ((dev = vp->v_rdev) == NULL)
1152 return EBADF;
1153
1154 reference_dev(dev);
1155
1156 if ((flags & O_FOFFSET) == 0)
1157 uio->uio_offset = fp->f_offset;
1158
1159 ioflag = 0;
1160 if (flags & O_FBLOCKING) {
1161 /* ioflag &= ~IO_NDELAY; */
1162 } else if (flags & O_FNONBLOCKING) {
1163 ioflag |= IO_NDELAY;
1164 } else if (fp->f_flag & FNONBLOCK) {
1165 ioflag |= IO_NDELAY;
1166 }
1167 if (flags & O_FBUFFERED) {
1168 /* ioflag &= ~IO_DIRECT; */
1169 } else if (flags & O_FUNBUFFERED) {
1170 ioflag |= IO_DIRECT;
1171 } else if (fp->f_flag & O_DIRECT) {
1172 ioflag |= IO_DIRECT;
1173 }
1174 ioflag |= sequential_heuristic(uio, fp);
1175
1176 error = dev_dread(dev, uio, ioflag);
1177
1178 release_dev(dev);
1179 if (node)
1180 nanotime(&node->atime);
1181 if ((flags & O_FOFFSET) == 0)
1182 fp->f_offset = uio->uio_offset;
1183 fp->f_nextoff = uio->uio_offset;
1184
1185 return (error);
1186}
1187
1188
1189static int
1190devfs_fo_write(struct file *fp, struct uio *uio,
1191 struct ucred *cred, int flags)
1192{
1193 struct devfs_node *node;
1194 struct vnode *vp;
1195 int ioflag;
1196 int error;
1197 cdev_t dev;
1198
1199 KASSERT(uio->uio_td == curthread,
1200 ("uio_td %p is not p %p", uio->uio_td, curthread));
1201
1202 vp = (struct vnode *)fp->f_data;
1203 if (vp == NULL || vp->v_type == VBAD)
1204 return EBADF;
1205
1206 node = DEVFS_NODE(vp);
1207
1208 if (vp->v_type == VREG)
1209 bwillwrite(uio->uio_resid);
1210
1211 vp = (struct vnode *)fp->f_data;
1212
1213 if ((dev = vp->v_rdev) == NULL)
1214 return EBADF;
1215
1216 reference_dev(dev);
1217
1218 if ((flags & O_FOFFSET) == 0)
1219 uio->uio_offset = fp->f_offset;
1220
1221 ioflag = IO_UNIT;
1222 if (vp->v_type == VREG &&
1223 ((fp->f_flag & O_APPEND) || (flags & O_FAPPEND))) {
1224 ioflag |= IO_APPEND;
1225 }
1226
1227 if (flags & O_FBLOCKING) {
1228 /* ioflag &= ~IO_NDELAY; */
1229 } else if (flags & O_FNONBLOCKING) {
1230 ioflag |= IO_NDELAY;
1231 } else if (fp->f_flag & FNONBLOCK) {
1232 ioflag |= IO_NDELAY;
1233 }
1234 if (flags & O_FBUFFERED) {
1235 /* ioflag &= ~IO_DIRECT; */
1236 } else if (flags & O_FUNBUFFERED) {
1237 ioflag |= IO_DIRECT;
1238 } else if (fp->f_flag & O_DIRECT) {
1239 ioflag |= IO_DIRECT;
1240 }
1241 if (flags & O_FASYNCWRITE) {
1242 /* ioflag &= ~IO_SYNC; */
1243 } else if (flags & O_FSYNCWRITE) {
1244 ioflag |= IO_SYNC;
1245 } else if (fp->f_flag & O_FSYNC) {
1246 ioflag |= IO_SYNC;
1247 }
1248
1249 if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS))
1250 ioflag |= IO_SYNC;
1251 ioflag |= sequential_heuristic(uio, fp);
1252
1253 error = dev_dwrite(dev, uio, ioflag);
1254
1255 release_dev(dev);
1256 if (node) {
1257 nanotime(&node->atime);
1258 nanotime(&node->mtime);
1259 }
1260
1261 if ((flags & O_FOFFSET) == 0)
1262 fp->f_offset = uio->uio_offset;
1263 fp->f_nextoff = uio->uio_offset;
1264
1265 return (error);
1266}
1267
1268
1269static int
1270devfs_fo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
1271{
1272 struct vnode *vp;
1273 struct vattr vattr;
1274 struct vattr *vap;
1275 u_short mode;
1276 cdev_t dev;
1277 int error;
1278
1279 vp = (struct vnode *)fp->f_data;
1280 if (vp == NULL || vp->v_type == VBAD)
1281 return EBADF;
1282
1283 error = vn_stat(vp, sb, cred);
1284 if (error)
1285 return (error);
1286
1287 vap = &vattr;
1288 error = VOP_GETATTR(vp, vap);
1289 if (error)
1290 return (error);
1291
1292 /*
1293 * Zero the spare stat fields
1294 */
1295 sb->st_lspare = 0;
1296 sb->st_qspare1 = 0;
1297 sb->st_qspare2 = 0;
1298
1299 /*
1300 * Copy from vattr table ... or not in case it's a cloned device
1301 */
1302 if (vap->va_fsid != VNOVAL)
1303 sb->st_dev = vap->va_fsid;
1304 else
1305 sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1306
1307 sb->st_ino = vap->va_fileid;
1308
1309 mode = vap->va_mode;
1310 mode |= S_IFCHR;
1311 sb->st_mode = mode;
1312
1313 if (vap->va_nlink > (nlink_t)-1)
1314 sb->st_nlink = (nlink_t)-1;
1315 else
1316 sb->st_nlink = vap->va_nlink;
1317
1318 sb->st_uid = vap->va_uid;
1319 sb->st_gid = vap->va_gid;
1320 sb->st_rdev = dev2udev(DEVFS_NODE(vp)->d_dev);
1321 sb->st_size = vap->va_bytes;
1322 sb->st_atimespec = vap->va_atime;
1323 sb->st_mtimespec = vap->va_mtime;
1324 sb->st_ctimespec = vap->va_ctime;
1325
1326 /*
1327 * A VCHR and VBLK device may track the last access and last modified
1328 * time independantly of the filesystem. This is particularly true
1329 * because device read and write calls may bypass the filesystem.
1330 */
1331 if (vp->v_type == VCHR || vp->v_type == VBLK) {
1332 dev = vp->v_rdev;
1333 if (dev != NULL) {
1334 if (dev->si_lastread) {
1335 sb->st_atimespec.tv_sec = dev->si_lastread;
1336 sb->st_atimespec.tv_nsec = 0;
1337 }
1338 if (dev->si_lastwrite) {
1339 sb->st_atimespec.tv_sec = dev->si_lastwrite;
1340 sb->st_atimespec.tv_nsec = 0;
1341 }
1342 }
1343 }
1344
1345 /*
1346 * According to www.opengroup.org, the meaning of st_blksize is
1347 * "a filesystem-specific preferred I/O block size for this
1348 * object. In some filesystem types, this may vary from file
1349 * to file"
1350 * Default to PAGE_SIZE after much discussion.
1351 */
1352
1353 sb->st_blksize = PAGE_SIZE;
1354
1355 sb->st_flags = vap->va_flags;
1356
1357 error = priv_check_cred(cred, PRIV_VFS_GENERATION, 0);
1358 if (error)
1359 sb->st_gen = 0;
1360 else
1361 sb->st_gen = (u_int32_t)vap->va_gen;
1362
1363 sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1364
1365 return (0);
1366}
1367
1368
1369static int
1370devfs_fo_kqfilter(struct file *fp, struct knote *kn)
1371{
1372 struct vnode *vp;
1373 int error;
1374 cdev_t dev;
1375
1376 vp = (struct vnode *)fp->f_data;
1377 if (vp == NULL || vp->v_type == VBAD) {
1378 error = EBADF;
1379 goto done;
1380 }
1381 if ((dev = vp->v_rdev) == NULL) {
1382 error = EBADF;
1383 goto done;
1384 }
1385 reference_dev(dev);
1386
1387 error = dev_dkqfilter(dev, kn);
1388
1389 release_dev(dev);
1390
1391done:
1392 return (error);
1393}
1394
1395/*
1396 * MPALMOSTSAFE - acquires mplock
1397 */
1398static int
1399devfs_fo_ioctl(struct file *fp, u_long com, caddr_t data,
1400 struct ucred *ucred, struct sysmsg *msg)
1401{
1402#if 0
1403 struct devfs_node *node;
1404#endif
1405 struct vnode *vp;
1406 struct vnode *ovp;
1407 cdev_t dev;
1408 int error;
1409 struct fiodname_args *name_args;
1410 size_t namlen;
1411 const char *name;
1412
1413 vp = ((struct vnode *)fp->f_data);
1414
1415 if ((dev = vp->v_rdev) == NULL)
1416 return EBADF; /* device was revoked */
1417
1418 reference_dev(dev);
1419
1420#if 0
1421 node = DEVFS_NODE(vp);
1422#endif
1423
1424 devfs_debug(DEVFS_DEBUG_DEBUG,
1425 "devfs_fo_ioctl() called! for dev %s\n",
1426 dev->si_name);
1427
1428 if (com == FIODTYPE) {
1429 *(int *)data = dev_dflags(dev) & D_TYPEMASK;
1430 error = 0;
1431 goto out;
1432 } else if (com == FIODNAME) {
1433 name_args = (struct fiodname_args *)data;
1434 name = dev->si_name;
1435 namlen = strlen(name) + 1;
1436
1437 devfs_debug(DEVFS_DEBUG_DEBUG,
1438 "ioctl, got: FIODNAME for %s\n", name);
1439
1440 if (namlen <= name_args->len)
1441 error = copyout(dev->si_name, name_args->name, namlen);
1442 else
1443 error = EINVAL;
1444
1445 devfs_debug(DEVFS_DEBUG_DEBUG,
1446 "ioctl stuff: error: %d\n", error);
1447 goto out;
1448 }
1449
1450 error = dev_dioctl(dev, com, data, fp->f_flag, ucred, msg);
1451
1452#if 0
1453 if (node) {
1454 nanotime(&node->atime);
1455 nanotime(&node->mtime);
1456 }
1457#endif
1458 if (com == TIOCSCTTY) {
1459 devfs_debug(DEVFS_DEBUG_DEBUG,
1460 "devfs_fo_ioctl: got TIOCSCTTY on %s\n",
1461 dev->si_name);
1462 }
1463 if (error == 0 && com == TIOCSCTTY) {
1464 struct proc *p = curthread->td_proc;
1465 struct session *sess;
1466
1467 devfs_debug(DEVFS_DEBUG_DEBUG,
1468 "devfs_fo_ioctl: dealing with TIOCSCTTY on %s\n",
1469 dev->si_name);
1470 if (p == NULL) {
1471 error = ENOTTY;
1472 goto out;
1473 }
1474 sess = p->p_session;
1475
1476 /*
1477 * Do nothing if reassigning same control tty
1478 */
1479 if (sess->s_ttyvp == vp) {
1480 error = 0;
1481 goto out;
1482 }
1483
1484 /*
1485 * Get rid of reference to old control tty
1486 */
1487 ovp = sess->s_ttyvp;
1488 vref(vp);
1489 sess->s_ttyvp = vp;
1490 if (ovp)
1491 vrele(ovp);
1492 }
1493
1494out:
1495 release_dev(dev);
1496 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_fo_ioctl() finished! \n");
1497 return (error);
1498}
1499
1500
1501static int
1502devfs_spec_fsync(struct vop_fsync_args *ap)
1503{
1504 struct vnode *vp = ap->a_vp;
1505 int error;
1506
1507 if (!vn_isdisk(vp, NULL))
1508 return (0);
1509
1510 /*
1511 * Flush all dirty buffers associated with a block device.
1512 */
1513 error = vfsync(vp, ap->a_waitfor, 10000, NULL, NULL);
1514 return (error);
1515}
1516
1517static int
1518devfs_spec_read(struct vop_read_args *ap)
1519{
1520 struct devfs_node *node;
1521 struct vnode *vp;
1522 struct uio *uio;
1523 cdev_t dev;
1524 int error;
1525
1526 vp = ap->a_vp;
1527 dev = vp->v_rdev;
1528 uio = ap->a_uio;
1529 node = DEVFS_NODE(vp);
1530
1531 if (dev == NULL) /* device was revoked */
1532 return (EBADF);
1533 if (uio->uio_resid == 0)
1534 return (0);
1535
1536 vn_unlock(vp);
1537 error = dev_dread(dev, uio, ap->a_ioflag);
1538 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1539
1540 if (node)
1541 nanotime(&node->atime);
1542
1543 return (error);
1544}
1545
1546/*
1547 * Vnode op for write
1548 *
1549 * spec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1550 * struct ucred *a_cred)
1551 */
1552static int
1553devfs_spec_write(struct vop_write_args *ap)
1554{
1555 struct devfs_node *node;
1556 struct vnode *vp;
1557 struct uio *uio;
1558 cdev_t dev;
1559 int error;
1560
1561 vp = ap->a_vp;
1562 dev = vp->v_rdev;
1563 uio = ap->a_uio;
1564 node = DEVFS_NODE(vp);
1565
1566 KKASSERT(uio->uio_segflg != UIO_NOCOPY);
1567
1568 if (dev == NULL) /* device was revoked */
1569 return (EBADF);
1570
1571 vn_unlock(vp);
1572 error = dev_dwrite(dev, uio, ap->a_ioflag);
1573 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1574
1575 if (node) {
1576 nanotime(&node->atime);
1577 nanotime(&node->mtime);
1578 }
1579
1580 return (error);
1581}
1582
1583/*
1584 * Device ioctl operation.
1585 *
1586 * spec_ioctl(struct vnode *a_vp, int a_command, caddr_t a_data,
1587 * int a_fflag, struct ucred *a_cred, struct sysmsg *msg)
1588 */
1589static int
1590devfs_spec_ioctl(struct vop_ioctl_args *ap)
1591{
1592 struct vnode *vp = ap->a_vp;
1593#if 0
1594 struct devfs_node *node;
1595#endif
1596 cdev_t dev;
1597
1598 if ((dev = vp->v_rdev) == NULL)
1599 return (EBADF); /* device was revoked */
1600#if 0
1601 node = DEVFS_NODE(vp);
1602
1603 if (node) {
1604 nanotime(&node->atime);
1605 nanotime(&node->mtime);
1606 }
1607#endif
1608
1609 return (dev_dioctl(dev, ap->a_command, ap->a_data, ap->a_fflag,
1610 ap->a_cred, ap->a_sysmsg));
1611}
1612
1613/*
1614 * spec_kqfilter(struct vnode *a_vp, struct knote *a_kn)
1615 */
1616/* ARGSUSED */
1617static int
1618devfs_spec_kqfilter(struct vop_kqfilter_args *ap)
1619{
1620 struct vnode *vp = ap->a_vp;
1621#if 0
1622 struct devfs_node *node;
1623#endif
1624 cdev_t dev;
1625
1626 if ((dev = vp->v_rdev) == NULL)
1627 return (EBADF); /* device was revoked (EBADF) */
1628#if 0
1629 node = DEVFS_NODE(vp);
1630
1631 if (node)
1632 nanotime(&node->atime);
1633#endif
1634
1635 return (dev_dkqfilter(dev, ap->a_kn));
1636}
1637
1638/*
1639 * Convert a vnode strategy call into a device strategy call. Vnode strategy
1640 * calls are not limited to device DMA limits so we have to deal with the
1641 * case.
1642 *
1643 * spec_strategy(struct vnode *a_vp, struct bio *a_bio)
1644 */
1645static int
1646devfs_spec_strategy(struct vop_strategy_args *ap)
1647{
1648 struct bio *bio = ap->a_bio;
1649 struct buf *bp = bio->bio_buf;
1650 struct buf *nbp;
1651 struct vnode *vp;
1652 struct mount *mp;
1653 int chunksize;
1654 int maxiosize;
1655
1656 if (bp->b_cmd != BUF_CMD_READ && LIST_FIRST(&bp->b_dep) != NULL)
1657 buf_start(bp);
1658
1659 /*
1660 * Collect statistics on synchronous and asynchronous read
1661 * and write counts for disks that have associated filesystems.
1662 */
1663 vp = ap->a_vp;
1664 KKASSERT(vp->v_rdev != NULL); /* XXX */
1665 if (vn_isdisk(vp, NULL) && (mp = vp->v_rdev->si_mountpoint) != NULL) {
1666 if (bp->b_cmd == BUF_CMD_READ) {
1667 if (bp->b_flags & BIO_SYNC)
1668 mp->mnt_stat.f_syncreads++;
1669 else
1670 mp->mnt_stat.f_asyncreads++;
1671 } else {
1672 if (bp->b_flags & BIO_SYNC)
1673 mp->mnt_stat.f_syncwrites++;
1674 else
1675 mp->mnt_stat.f_asyncwrites++;
1676 }
1677 }
1678
1679 /*
1680 * Device iosize limitations only apply to read and write. Shortcut
1681 * the I/O if it fits.
1682 */
1683 if ((maxiosize = vp->v_rdev->si_iosize_max) == 0) {
1684 devfs_debug(DEVFS_DEBUG_DEBUG,
1685 "%s: si_iosize_max not set!\n",
1686 dev_dname(vp->v_rdev));
1687 maxiosize = MAXPHYS;
1688 }
1689#if SPEC_CHAIN_DEBUG & 2
1690 maxiosize = 4096;
1691#endif
1692 if (bp->b_bcount <= maxiosize ||
1693 (bp->b_cmd != BUF_CMD_READ && bp->b_cmd != BUF_CMD_WRITE)) {
1694 dev_dstrategy_chain(vp->v_rdev, bio);
1695 return (0);
1696 }
1697
1698 /*
1699 * Clone the buffer and set up an I/O chain to chunk up the I/O.
1700 */
1701 nbp = kmalloc(sizeof(*bp), M_DEVBUF, M_INTWAIT|M_ZERO);
1702 initbufbio(nbp);
1703 buf_dep_init(nbp);
1704 BUF_LOCK(nbp, LK_EXCLUSIVE);
1705 BUF_KERNPROC(nbp);
1706 nbp->b_vp = vp;
1707 nbp->b_flags = B_PAGING | (bp->b_flags & B_BNOCLIP);
1708 nbp->b_data = bp->b_data;
1709 nbp->b_bio1.bio_done = devfs_spec_strategy_done;
1710 nbp->b_bio1.bio_offset = bio->bio_offset;
1711 nbp->b_bio1.bio_caller_info1.ptr = bio;
1712
1713 /*
1714 * Start the first transfer
1715 */
1716 if (vn_isdisk(vp, NULL))
1717 chunksize = vp->v_rdev->si_bsize_phys;
1718 else
1719 chunksize = DEV_BSIZE;
1720 chunksize = maxiosize / chunksize * chunksize;
1721#if SPEC_CHAIN_DEBUG & 1
1722 devfs_debug(DEVFS_DEBUG_DEBUG,
1723 "spec_strategy chained I/O chunksize=%d\n",
1724 chunksize);
1725#endif
1726 nbp->b_cmd = bp->b_cmd;
1727 nbp->b_bcount = chunksize;
1728 nbp->b_bufsize = chunksize; /* used to detect a short I/O */
1729 nbp->b_bio1.bio_caller_info2.index = chunksize;
1730
1731#if SPEC_CHAIN_DEBUG & 1
1732 devfs_debug(DEVFS_DEBUG_DEBUG,
1733 "spec_strategy: chain %p offset %d/%d bcount %d\n",
1734 bp, 0, bp->b_bcount, nbp->b_bcount);
1735#endif
1736
1737 dev_dstrategy(vp->v_rdev, &nbp->b_bio1);
1738
1739 if (DEVFS_NODE(vp)) {
1740 nanotime(&DEVFS_NODE(vp)->atime);
1741 nanotime(&DEVFS_NODE(vp)->mtime);
1742 }
1743
1744 return (0);
1745}
1746
1747/*
1748 * Chunked up transfer completion routine - chain transfers until done
1749 *
1750 * NOTE: MPSAFE callback.
1751 */
1752static
1753void
1754devfs_spec_strategy_done(struct bio *nbio)
1755{
1756 struct buf *nbp = nbio->bio_buf;
1757 struct bio *bio = nbio->bio_caller_info1.ptr; /* original bio */
1758 struct buf *bp = bio->bio_buf; /* original bp */
1759 int chunksize = nbio->bio_caller_info2.index; /* chunking */
1760 int boffset = nbp->b_data - bp->b_data;
1761
1762 if (nbp->b_flags & B_ERROR) {
1763 /*
1764 * An error terminates the chain, propogate the error back
1765 * to the original bp
1766 */
1767 bp->b_flags |= B_ERROR;
1768 bp->b_error = nbp->b_error;
1769 bp->b_resid = bp->b_bcount - boffset +
1770 (nbp->b_bcount - nbp->b_resid);
1771#if SPEC_CHAIN_DEBUG & 1
1772 devfs_debug(DEVFS_DEBUG_DEBUG,
1773 "spec_strategy: chain %p error %d bcount %d/%d\n",
1774 bp, bp->b_error, bp->b_bcount,
1775 bp->b_bcount - bp->b_resid);
1776#endif
1777 } else if (nbp->b_resid) {
1778 /*
1779 * A short read or write terminates the chain
1780 */
1781 bp->b_error = nbp->b_error;
1782 bp->b_resid = bp->b_bcount - boffset +
1783 (nbp->b_bcount - nbp->b_resid);
1784#if SPEC_CHAIN_DEBUG & 1
1785 devfs_debug(DEVFS_DEBUG_DEBUG,
1786 "spec_strategy: chain %p short read(1) "
1787 "bcount %d/%d\n",
1788 bp, bp->b_bcount - bp->b_resid, bp->b_bcount);
1789#endif
1790 } else if (nbp->b_bcount != nbp->b_bufsize) {
1791 /*
1792 * A short read or write can also occur by truncating b_bcount
1793 */
1794#if SPEC_CHAIN_DEBUG & 1
1795 devfs_debug(DEVFS_DEBUG_DEBUG,
1796 "spec_strategy: chain %p short read(2) "
1797 "bcount %d/%d\n",
1798 bp, nbp->b_bcount + boffset, bp->b_bcount);
1799#endif
1800 bp->b_error = 0;
1801 bp->b_bcount = nbp->b_bcount + boffset;
1802 bp->b_resid = nbp->b_resid;
1803 } else if (nbp->b_bcount + boffset == bp->b_bcount) {
1804 /*
1805 * No more data terminates the chain
1806 */
1807#if SPEC_CHAIN_DEBUG & 1
1808 devfs_debug(DEVFS_DEBUG_DEBUG,
1809 "spec_strategy: chain %p finished bcount %d\n",
1810 bp, bp->b_bcount);
1811#endif
1812 bp->b_error = 0;
1813 bp->b_resid = 0;
1814 } else {
1815 /*
1816 * Continue the chain
1817 */
1818 boffset += nbp->b_bcount;
1819 nbp->b_data = bp->b_data + boffset;
1820 nbp->b_bcount = bp->b_bcount - boffset;
1821 if (nbp->b_bcount > chunksize)
1822 nbp->b_bcount = chunksize;
1823 nbp->b_bio1.bio_done = devfs_spec_strategy_done;
1824 nbp->b_bio1.bio_offset = bio->bio_offset + boffset;
1825
1826#if SPEC_CHAIN_DEBUG & 1
1827 devfs_debug(DEVFS_DEBUG_DEBUG,
1828 "spec_strategy: chain %p offset %d/%d bcount %d\n",
1829 bp, boffset, bp->b_bcount, nbp->b_bcount);
1830#endif
1831
1832 dev_dstrategy(nbp->b_vp->v_rdev, &nbp->b_bio1);
1833 return;
1834 }
1835
1836 /*
1837 * Fall through to here on termination. biodone(bp) and
1838 * clean up and free nbp.
1839 */
1840 biodone(bio);
1841 BUF_UNLOCK(nbp);
1842 uninitbufbio(nbp);
1843 kfree(nbp, M_DEVBUF);
1844}
1845
1846/*
1847 * spec_freeblks(struct vnode *a_vp, daddr_t a_addr, daddr_t a_length)
1848 */
1849static int
1850devfs_spec_freeblks(struct vop_freeblks_args *ap)
1851{
1852 struct buf *bp;
1853
1854 /*
1855 * XXX: This assumes that strategy does the deed right away.
1856 * XXX: this may not be TRTTD.
1857 */
1858 KKASSERT(ap->a_vp->v_rdev != NULL);
1859 if ((ap->a_vp->v_rdev->si_flags & SI_CANFREE) == 0)
1860 return (0);
1861 bp = geteblk(ap->a_length);
1862 bp->b_cmd = BUF_CMD_FREEBLKS;
1863 bp->b_bio1.bio_offset = ap->a_offset;
1864 bp->b_bcount = ap->a_length;
1865 dev_dstrategy(ap->a_vp->v_rdev, &bp->b_bio1);
1866 return (0);
1867}
1868
1869/*
1870 * Implement degenerate case where the block requested is the block
1871 * returned, and assume that the entire device is contiguous in regards
1872 * to the contiguous block range (runp and runb).
1873 *
1874 * spec_bmap(struct vnode *a_vp, off_t a_loffset,
1875 * off_t *a_doffsetp, int *a_runp, int *a_runb)
1876 */
1877static int
1878devfs_spec_bmap(struct vop_bmap_args *ap)
1879{
1880 if (ap->a_doffsetp != NULL)
1881 *ap->a_doffsetp = ap->a_loffset;
1882 if (ap->a_runp != NULL)
1883 *ap->a_runp = MAXBSIZE;
1884 if (ap->a_runb != NULL) {
1885 if (ap->a_loffset < MAXBSIZE)
1886 *ap->a_runb = (int)ap->a_loffset;
1887 else
1888 *ap->a_runb = MAXBSIZE;
1889 }
1890 return (0);
1891}
1892
1893
1894/*
1895 * Special device advisory byte-level locks.
1896 *
1897 * spec_advlock(struct vnode *a_vp, caddr_t a_id, int a_op,
1898 * struct flock *a_fl, int a_flags)
1899 */
1900/* ARGSUSED */
1901static int
1902devfs_spec_advlock(struct vop_advlock_args *ap)
1903{
1904 return ((ap->a_flags & F_POSIX) ? EINVAL : EOPNOTSUPP);
1905}
1906
1907/*
1908 * NOTE: MPSAFE callback.
1909 */
1910static void
1911devfs_spec_getpages_iodone(struct bio *bio)
1912{
1913 bio->bio_buf->b_cmd = BUF_CMD_DONE;
1914 wakeup(bio->bio_buf);
1915}
1916
1917/*
1918 * spec_getpages() - get pages associated with device vnode.
1919 *
1920 * Note that spec_read and spec_write do not use the buffer cache, so we
1921 * must fully implement getpages here.
1922 */
1923static int
1924devfs_spec_getpages(struct vop_getpages_args *ap)
1925{
1926 vm_offset_t kva;
1927 int error;
1928 int i, pcount, size;
1929 struct buf *bp;
1930 vm_page_t m;
1931 vm_ooffset_t offset;
1932 int toff, nextoff, nread;
1933 struct vnode *vp = ap->a_vp;
1934 int blksiz;
1935 int gotreqpage;
1936
1937 error = 0;
1938 pcount = round_page(ap->a_count) / PAGE_SIZE;
1939
1940 /*
1941 * Calculate the offset of the transfer and do sanity check.
1942 */
1943 offset = IDX_TO_OFF(ap->a_m[0]->pindex) + ap->a_offset;
1944
1945 /*
1946 * Round up physical size for real devices. We cannot round using
1947 * v_mount's block size data because v_mount has nothing to do with
1948 * the device. i.e. it's usually '/dev'. We need the physical block
1949 * size for the device itself.
1950 *
1951 * We can't use v_rdev->si_mountpoint because it only exists when the
1952 * block device is mounted. However, we can use v_rdev.
1953 */
1954 if (vn_isdisk(vp, NULL))
1955 blksiz = vp->v_rdev->si_bsize_phys;
1956 else
1957 blksiz = DEV_BSIZE;
1958
1959 size = (ap->a_count + blksiz - 1) & ~(blksiz - 1);
1960
1961 bp = getpbuf_kva(NULL);
1962 kva = (vm_offset_t)bp->b_data;
1963
1964 /*
1965 * Map the pages to be read into the kva.
1966 */
1967 pmap_qenter(kva, ap->a_m, pcount);
1968
1969 /* Build a minimal buffer header. */
1970 bp->b_cmd = BUF_CMD_READ;
1971 bp->b_bcount = size;
1972 bp->b_resid = 0;
1973 bsetrunningbufspace(bp, size);
1974
1975 bp->b_bio1.bio_offset = offset;
1976 bp->b_bio1.bio_done = devfs_spec_getpages_iodone;
1977
1978 mycpu->gd_cnt.v_vnodein++;
1979 mycpu->gd_cnt.v_vnodepgsin += pcount;
1980
1981 /* Do the input. */
1982 vn_strategy(ap->a_vp, &bp->b_bio1);
1983
1984 crit_enter();
1985
1986 /* We definitely need to be at splbio here. */
1987 while (bp->b_cmd != BUF_CMD_DONE)
1988 tsleep(bp, 0, "spread", 0);
1989
1990 crit_exit();
1991
1992 if (bp->b_flags & B_ERROR) {
1993 if (bp->b_error)
1994 error = bp->b_error;
1995 else
1996 error = EIO;
1997 }
1998
1999 /*
2000 * If EOF is encountered we must zero-extend the result in order
2001 * to ensure that the page does not contain garabge. When no
2002 * error occurs, an early EOF is indicated if b_bcount got truncated.
2003 * b_resid is relative to b_bcount and should be 0, but some devices
2004 * might indicate an EOF with b_resid instead of truncating b_bcount.
2005 */
2006 nread = bp->b_bcount - bp->b_resid;
2007 if (nread < ap->a_count)
2008 bzero((caddr_t)kva + nread, ap->a_count - nread);
2009 pmap_qremove(kva, pcount);
2010
2011 gotreqpage = 0;
2012 for (i = 0, toff = 0; i < pcount; i++, toff = nextoff) {
2013 nextoff = toff + PAGE_SIZE;
2014 m = ap->a_m[i];
2015
2016 m->flags &= ~PG_ZERO;
2017
2018 /*
2019 * NOTE: vm_page_undirty/clear_dirty etc do not clear the
2020 * pmap modified bit. pmap modified bit should have
2021 * already been cleared.
2022 */
2023 if (nextoff <= nread) {
2024 m->valid = VM_PAGE_BITS_ALL;
2025 vm_page_undirty(m);
2026 } else if (toff < nread) {
2027 /*
2028 * Since this is a VM request, we have to supply the
2029 * unaligned offset to allow vm_page_set_valid()
2030 * to zero sub-DEV_BSIZE'd portions of the page.
2031 */
2032 vm_page_set_valid(m, 0, nread - toff);
2033 vm_page_clear_dirty_end_nonincl(m, 0, nread - toff);
2034 } else {
2035 m->valid = 0;
2036 vm_page_undirty(m);
2037 }
2038
2039 if (i != ap->a_reqpage) {
2040 /*
2041 * Just in case someone was asking for this page we
2042 * now tell them that it is ok to use.
2043 */
2044 if (!error || (m->valid == VM_PAGE_BITS_ALL)) {
2045 if (m->valid) {
2046 if (m->flags & PG_REFERENCED) {
2047 vm_page_activate(m);
2048 } else {
2049 vm_page_deactivate(m);
2050 }
2051 vm_page_wakeup(m);
2052 } else {
2053 vm_page_free(m);
2054 }
2055 } else {
2056 vm_page_free(m);
2057 }
2058 } else if (m->valid) {
2059 gotreqpage = 1;
2060 /*
2061 * Since this is a VM request, we need to make the
2062 * entire page presentable by zeroing invalid sections.
2063 */
2064 if (m->valid != VM_PAGE_BITS_ALL)
2065 vm_page_zero_invalid(m, FALSE);
2066 }
2067 }
2068 if (!gotreqpage) {
2069 m = ap->a_m[ap->a_reqpage];
2070 devfs_debug(DEVFS_DEBUG_WARNING,
2071 "spec_getpages:(%s) I/O read failure: (error=%d) bp %p vp %p\n",
2072 devtoname(vp->v_rdev), error, bp, bp->b_vp);
2073 devfs_debug(DEVFS_DEBUG_WARNING,
2074 " size: %d, resid: %d, a_count: %d, valid: 0x%x\n",
2075 size, bp->b_resid, ap->a_count, m->valid);
2076 devfs_debug(DEVFS_DEBUG_WARNING,
2077 " nread: %d, reqpage: %d, pindex: %lu, pcount: %d\n",
2078 nread, ap->a_reqpage, (u_long)m->pindex, pcount);
2079 /*
2080 * Free the buffer header back to the swap buffer pool.
2081 */
2082 relpbuf(bp, NULL);
2083 return VM_PAGER_ERROR;
2084 }
2085 /*
2086 * Free the buffer header back to the swap buffer pool.
2087 */
2088 relpbuf(bp, NULL);
2089 if (DEVFS_NODE(ap->a_vp))
2090 nanotime(&DEVFS_NODE(ap->a_vp)->mtime);
2091 return VM_PAGER_OK;
2092}
2093
2094static __inline
2095int
2096sequential_heuristic(struct uio *uio, struct file *fp)
2097{
2098 /*
2099 * Sequential heuristic - detect sequential operation
2100 */
2101 if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
2102 uio->uio_offset == fp->f_nextoff) {
2103 /*
2104 * XXX we assume that the filesystem block size is
2105 * the default. Not true, but still gives us a pretty
2106 * good indicator of how sequential the read operations
2107 * are.
2108 */
2109 int tmpseq = fp->f_seqcount;
2110
2111 tmpseq += (uio->uio_resid + BKVASIZE - 1) / BKVASIZE;
2112 if (tmpseq > IO_SEQMAX)
2113 tmpseq = IO_SEQMAX;
2114 fp->f_seqcount = tmpseq;
2115 return(fp->f_seqcount << IO_SEQSHIFT);
2116 }
2117
2118 /*
2119 * Not sequential, quick draw-down of seqcount
2120 */
2121 if (fp->f_seqcount > 1)
2122 fp->f_seqcount = 1;
2123 else
2124 fp->f_seqcount = 0;
2125 return(0);
2126}