Fix a race with the clearing of p->p_session->s_ttyvp. NULL the pointer
[dragonfly.git] / sys / kern / vfs_subr.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
39 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40 * $DragonFly: src/sys/kern/vfs_subr.c,v 1.33 2004/06/15 00:30:53 dillon Exp $
41 */
42
43/*
44 * External virtual filesystem routines
45 */
46#include "opt_ddb.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/buf.h>
51#include <sys/conf.h>
52#include <sys/dirent.h>
53#include <sys/domain.h>
54#include <sys/eventhandler.h>
55#include <sys/fcntl.h>
56#include <sys/kernel.h>
57#include <sys/kthread.h>
58#include <sys/malloc.h>
59#include <sys/mbuf.h>
60#include <sys/mount.h>
61#include <sys/proc.h>
62#include <sys/namei.h>
63#include <sys/reboot.h>
64#include <sys/socket.h>
65#include <sys/stat.h>
66#include <sys/sysctl.h>
67#include <sys/syslog.h>
68#include <sys/vmmeter.h>
69#include <sys/vnode.h>
70
71#include <machine/limits.h>
72
73#include <vm/vm.h>
74#include <vm/vm_object.h>
75#include <vm/vm_extern.h>
76#include <vm/vm_kern.h>
77#include <vm/pmap.h>
78#include <vm/vm_map.h>
79#include <vm/vm_page.h>
80#include <vm/vm_pager.h>
81#include <vm/vnode_pager.h>
82#include <vm/vm_zone.h>
83
84#include <sys/buf2.h>
85#include <sys/thread2.h>
86
87static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
88
89static void insmntque (struct vnode *vp, struct mount *mp);
90static void vclean (struct vnode *vp, lwkt_tokref_t vlock,
91 int flags, struct thread *td);
92
93static unsigned long numvnodes;
94SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
95
96enum vtype iftovt_tab[16] = {
97 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
98 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
99};
100int vttoif_tab[9] = {
101 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
102 S_IFSOCK, S_IFIFO, S_IFMT,
103};
104
105static TAILQ_HEAD(freelst, vnode) vnode_free_list; /* vnode free list */
106
107static u_long wantfreevnodes = 25;
108SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW,
109 &wantfreevnodes, 0, "");
110static u_long freevnodes = 0;
111SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD,
112 &freevnodes, 0, "");
113
114static int reassignbufcalls;
115SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW,
116 &reassignbufcalls, 0, "");
117static int reassignbufloops;
118SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW,
119 &reassignbufloops, 0, "");
120static int reassignbufsortgood;
121SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW,
122 &reassignbufsortgood, 0, "");
123static int reassignbufsortbad;
124SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW,
125 &reassignbufsortbad, 0, "");
126static int reassignbufmethod = 1;
127SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW,
128 &reassignbufmethod, 0, "");
129
130#ifdef ENABLE_VFS_IOOPT
131int vfs_ioopt = 0;
132SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
133#endif
134
135struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist); /* mounted fs */
136struct lwkt_token mountlist_token;
137struct lwkt_token mntvnode_token;
138int nfs_mount_type = -1;
139static struct lwkt_token mntid_token;
140static struct lwkt_token vnode_free_list_token;
141static struct lwkt_token spechash_token;
142struct nfs_public nfs_pub; /* publicly exported FS */
143static vm_zone_t vnode_zone;
144
145/*
146 * The workitem queue.
147 */
148#define SYNCER_MAXDELAY 32
149static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */
150time_t syncdelay = 30; /* max time to delay syncing data */
151SYSCTL_INT(_kern, OID_AUTO, syncdelay, CTLFLAG_RW,
152 &syncdelay, 0, "VFS data synchronization delay");
153time_t filedelay = 30; /* time to delay syncing files */
154SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW,
155 &filedelay, 0, "File synchronization delay");
156time_t dirdelay = 29; /* time to delay syncing directories */
157SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW,
158 &dirdelay, 0, "Directory synchronization delay");
159time_t metadelay = 28; /* time to delay syncing metadata */
160SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW,
161 &metadelay, 0, "VFS metadata synchronization delay");
162static int rushjob; /* number of slots to run ASAP */
163static int stat_rush_requests; /* number of times I/O speeded up */
164SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW,
165 &stat_rush_requests, 0, "");
166
167static int syncer_delayno = 0;
168static long syncer_mask;
169LIST_HEAD(synclist, vnode);
170static struct synclist *syncer_workitem_pending;
171
172int desiredvnodes;
173SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
174 &desiredvnodes, 0, "Maximum number of vnodes");
175static int minvnodes;
176SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
177 &minvnodes, 0, "Minimum number of vnodes");
178static int vnlru_nowhere = 0;
179SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
180 &vnlru_nowhere, 0,
181 "Number of times the vnlru process ran without success");
182
183static void vfs_free_addrlist (struct netexport *nep);
184static int vfs_free_netcred (struct radix_node *rn, void *w);
185static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
186 struct export_args *argp);
187
188#define VSHOULDFREE(vp) \
189 (!((vp)->v_flag & (VFREE|VDOOMED)) && \
190 !(vp)->v_holdcnt && !(vp)->v_usecount && \
191 (!(vp)->v_object || \
192 !((vp)->v_object->ref_count || (vp)->v_object->resident_page_count)))
193
194#define VMIGHTFREE(vp) \
195 (((vp)->v_flag & (VFREE|VDOOMED|VXLOCK)) == 0 && \
196 cache_leaf_test(vp) == 0 && (vp)->v_usecount == 0)
197
198#define VSHOULDBUSY(vp) \
199 (((vp)->v_flag & VFREE) && \
200 ((vp)->v_holdcnt || (vp)->v_usecount))
201
202static void vbusy(struct vnode *vp);
203static void vfree(struct vnode *vp);
204static void vmaybefree(struct vnode *vp);
205
206extern int dev_ref_debug;
207
208/*
209 * NOTE: the vnode interlock must be held on call.
210 */
211static __inline void
212vmaybefree(struct vnode *vp)
213{
214 if (VSHOULDFREE(vp))
215 vfree(vp);
216}
217
218/*
219 * Initialize the vnode management data structures.
220 */
221void
222vntblinit(void)
223{
224
225 /*
226 * Desired vnodes is a result of the physical page count
227 * and the size of kernel's heap. It scales in proportion
228 * to the amount of available physical memory. This can
229 * cause trouble on 64-bit and large memory platforms.
230 */
231 /* desiredvnodes = maxproc + vmstats.v_page_count / 4; */
232 desiredvnodes =
233 min(maxproc + vmstats.v_page_count /4,
234 2 * (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) /
235 (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
236
237 minvnodes = desiredvnodes / 4;
238 lwkt_token_init(&mountlist_token);
239 lwkt_token_init(&mntvnode_token);
240 lwkt_token_init(&mntid_token);
241 lwkt_token_init(&spechash_token);
242 TAILQ_INIT(&vnode_free_list);
243 lwkt_token_init(&vnode_free_list_token);
244 vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
245 /*
246 * Initialize the filesystem syncer.
247 */
248 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
249 &syncer_mask);
250 syncer_maxdelay = syncer_mask + 1;
251}
252
253/*
254 * Mark a mount point as busy. Used to synchronize access and to delay
255 * unmounting. Interlock is not released on failure.
256 */
257int
258vfs_busy(struct mount *mp, int flags,
259 lwkt_tokref_t interlkp, struct thread *td)
260{
261 int lkflags;
262
263 if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
264 if (flags & LK_NOWAIT)
265 return (ENOENT);
266 mp->mnt_kern_flag |= MNTK_MWAIT;
267 /*
268 * Since all busy locks are shared except the exclusive
269 * lock granted when unmounting, the only place that a
270 * wakeup needs to be done is at the release of the
271 * exclusive lock at the end of dounmount.
272 *
273 * note: interlkp is a serializer and thus can be safely
274 * held through any sleep
275 */
276 tsleep((caddr_t)mp, 0, "vfs_busy", 0);
277 return (ENOENT);
278 }
279 lkflags = LK_SHARED | LK_NOPAUSE;
280 if (interlkp)
281 lkflags |= LK_INTERLOCK;
282 if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td))
283 panic("vfs_busy: unexpected lock failure");
284 return (0);
285}
286
287/*
288 * Free a busy filesystem.
289 */
290void
291vfs_unbusy(struct mount *mp, struct thread *td)
292{
293 lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
294}
295
296/*
297 * Lookup a filesystem type, and if found allocate and initialize
298 * a mount structure for it.
299 *
300 * Devname is usually updated by mount(8) after booting.
301 */
302int
303vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
304{
305 struct thread *td = curthread; /* XXX */
306 struct vfsconf *vfsp;
307 struct mount *mp;
308
309 if (fstypename == NULL)
310 return (ENODEV);
311 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
312 if (!strcmp(vfsp->vfc_name, fstypename))
313 break;
314 if (vfsp == NULL)
315 return (ENODEV);
316 mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
317 bzero((char *)mp, (u_long)sizeof(struct mount));
318 lockinit(&mp->mnt_lock, 0, "vfslock", VLKTIMEOUT, LK_NOPAUSE);
319 vfs_busy(mp, LK_NOWAIT, NULL, td);
320 TAILQ_INIT(&mp->mnt_nvnodelist);
321 TAILQ_INIT(&mp->mnt_reservedvnlist);
322 mp->mnt_nvnodelistsize = 0;
323 mp->mnt_vfc = vfsp;
324 mp->mnt_op = vfsp->vfc_vfsops;
325 mp->mnt_flag = MNT_RDONLY;
326 mp->mnt_vnodecovered = NULLVP;
327 vfsp->vfc_refcount++;
328 mp->mnt_iosize_max = DFLTPHYS;
329 mp->mnt_stat.f_type = vfsp->vfc_typenum;
330 mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
331 strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
332 mp->mnt_stat.f_mntonname[0] = '/';
333 mp->mnt_stat.f_mntonname[1] = 0;
334 (void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
335 *mpp = mp;
336 return (0);
337}
338
339/*
340 * Lookup a mount point by filesystem identifier.
341 */
342struct mount *
343vfs_getvfs(fsid_t *fsid)
344{
345 struct mount *mp;
346 lwkt_tokref ilock;
347
348 lwkt_gettoken(&ilock, &mountlist_token);
349 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
350 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
351 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
352 break;
353 }
354 }
355 lwkt_reltoken(&ilock);
356 return (mp);
357}
358
359/*
360 * Get a new unique fsid. Try to make its val[0] unique, since this value
361 * will be used to create fake device numbers for stat(). Also try (but
362 * not so hard) make its val[0] unique mod 2^16, since some emulators only
363 * support 16-bit device numbers. We end up with unique val[0]'s for the
364 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
365 *
366 * Keep in mind that several mounts may be running in parallel. Starting
367 * the search one past where the previous search terminated is both a
368 * micro-optimization and a defense against returning the same fsid to
369 * different mounts.
370 */
371void
372vfs_getnewfsid(struct mount *mp)
373{
374 static u_int16_t mntid_base;
375 lwkt_tokref ilock;
376 fsid_t tfsid;
377 int mtype;
378
379 lwkt_gettoken(&ilock, &mntid_token);
380 mtype = mp->mnt_vfc->vfc_typenum;
381 tfsid.val[1] = mtype;
382 mtype = (mtype & 0xFF) << 24;
383 for (;;) {
384 tfsid.val[0] = makeudev(255,
385 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
386 mntid_base++;
387 if (vfs_getvfs(&tfsid) == NULL)
388 break;
389 }
390 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
391 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
392 lwkt_reltoken(&ilock);
393}
394
395/*
396 * Knob to control the precision of file timestamps:
397 *
398 * 0 = seconds only; nanoseconds zeroed.
399 * 1 = seconds and nanoseconds, accurate within 1/HZ.
400 * 2 = seconds and nanoseconds, truncated to microseconds.
401 * >=3 = seconds and nanoseconds, maximum precision.
402 */
403enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
404
405static int timestamp_precision = TSP_SEC;
406SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
407 &timestamp_precision, 0, "");
408
409/*
410 * Get a current timestamp.
411 */
412void
413vfs_timestamp(struct timespec *tsp)
414{
415 struct timeval tv;
416
417 switch (timestamp_precision) {
418 case TSP_SEC:
419 tsp->tv_sec = time_second;
420 tsp->tv_nsec = 0;
421 break;
422 case TSP_HZ:
423 getnanotime(tsp);
424 break;
425 case TSP_USEC:
426 microtime(&tv);
427 TIMEVAL_TO_TIMESPEC(&tv, tsp);
428 break;
429 case TSP_NSEC:
430 default:
431 nanotime(tsp);
432 break;
433 }
434}
435
436/*
437 * Set vnode attributes to VNOVAL
438 */
439void
440vattr_null(struct vattr *vap)
441{
442 vap->va_type = VNON;
443 vap->va_size = VNOVAL;
444 vap->va_bytes = VNOVAL;
445 vap->va_mode = VNOVAL;
446 vap->va_nlink = VNOVAL;
447 vap->va_uid = VNOVAL;
448 vap->va_gid = VNOVAL;
449 vap->va_fsid = VNOVAL;
450 vap->va_fileid = VNOVAL;
451 vap->va_blocksize = VNOVAL;
452 vap->va_rdev = VNOVAL;
453 vap->va_atime.tv_sec = VNOVAL;
454 vap->va_atime.tv_nsec = VNOVAL;
455 vap->va_mtime.tv_sec = VNOVAL;
456 vap->va_mtime.tv_nsec = VNOVAL;
457 vap->va_ctime.tv_sec = VNOVAL;
458 vap->va_ctime.tv_nsec = VNOVAL;
459 vap->va_flags = VNOVAL;
460 vap->va_gen = VNOVAL;
461 vap->va_vaflags = 0;
462}
463
464/*
465 * This routine is called when we have too many vnodes. It attempts
466 * to free <count> vnodes and will potentially free vnodes that still
467 * have VM backing store (VM backing store is typically the cause
468 * of a vnode blowout so we want to do this). Therefore, this operation
469 * is not considered cheap.
470 *
471 * A number of conditions may prevent a vnode from being reclaimed.
472 * the buffer cache may have references on the vnode, a directory
473 * vnode may still have references due to the namei cache representing
474 * underlying files, or the vnode may be in active use. It is not
475 * desireable to reuse such vnodes. These conditions may cause the
476 * number of vnodes to reach some minimum value regardless of what
477 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low.
478 */
479static int
480vlrureclaim(struct mount *mp)
481{
482 struct vnode *vp;
483 lwkt_tokref ilock;
484 lwkt_tokref vlock;
485 int done;
486 int trigger;
487 int usevnodes;
488 int count;
489
490 /*
491 * Calculate the trigger point, don't allow user
492 * screwups to blow us up. This prevents us from
493 * recycling vnodes with lots of resident pages. We
494 * aren't trying to free memory, we are trying to
495 * free vnodes.
496 */
497 usevnodes = desiredvnodes;
498 if (usevnodes <= 0)
499 usevnodes = 1;
500 trigger = vmstats.v_page_count * 2 / usevnodes;
501
502 done = 0;
503 lwkt_gettoken(&ilock, &mntvnode_token);
504 count = mp->mnt_nvnodelistsize / 10 + 1;
505 while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
506 /*
507 * __VNODESCAN__
508 *
509 * The VP will stick around while we hold mntvnode_token,
510 * at least until we block, so we can safely do an initial
511 * check. But we have to check again after obtaining
512 * the vnode interlock. vp->v_interlock points to stable
513 * storage so it's ok if the vp gets ripped out from
514 * under us while we are blocked.
515 */
516 if (vp->v_type == VNON ||
517 vp->v_type == VBAD ||
518 !VMIGHTFREE(vp) || /* critical path opt */
519 (vp->v_object &&
520 vp->v_object->resident_page_count >= trigger)
521 ) {
522 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
523 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist,vp, v_nmntvnodes);
524 --count;
525 continue;
526 }
527
528 /*
529 * Get the interlock, delay moving the node to the tail so
530 * we don't race against new additions to the mountlist.
531 */
532 lwkt_gettoken(&vlock, vp->v_interlock);
533 if (TAILQ_FIRST(&mp->mnt_nvnodelist) != vp) {
534 lwkt_reltoken(&vlock);
535 continue;
536 }
537 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
538 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist,vp, v_nmntvnodes);
539
540 /*
541 * Must check again
542 */
543 if (vp->v_type == VNON ||
544 vp->v_type == VBAD ||
545 !VMIGHTFREE(vp) || /* critical path opt */
546 (vp->v_object &&
547 vp->v_object->resident_page_count >= trigger)
548 ) {
549 lwkt_reltoken(&vlock);
550 --count;
551 continue;
552 }
553 vgonel(vp, &vlock, curthread);
554 ++done;
555 --count;
556 }
557 lwkt_reltoken(&ilock);
558 return done;
559}
560
561/*
562 * Attempt to recycle vnodes in a context that is always safe to block.
563 * Calling vlrurecycle() from the bowels of file system code has some
564 * interesting deadlock problems.
565 */
566static struct thread *vnlruthread;
567static int vnlruproc_sig;
568
569static void
570vnlru_proc(void)
571{
572 struct mount *mp, *nmp;
573 lwkt_tokref ilock;
574 int s;
575 int done;
576 struct thread *td = curthread;
577
578 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
579 SHUTDOWN_PRI_FIRST);
580
581 s = splbio();
582 for (;;) {
583 kproc_suspend_loop();
584 if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
585 vnlruproc_sig = 0;
586 wakeup(&vnlruproc_sig);
587 tsleep(td, 0, "vlruwt", hz);
588 continue;
589 }
590 done = 0;
591 lwkt_gettoken(&ilock, &mountlist_token);
592 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
593 if (vfs_busy(mp, LK_NOWAIT, &ilock, td)) {
594 nmp = TAILQ_NEXT(mp, mnt_list);
595 continue;
596 }
597 done += vlrureclaim(mp);
598 lwkt_gettokref(&ilock);
599 nmp = TAILQ_NEXT(mp, mnt_list);
600 vfs_unbusy(mp, td);
601 }
602 lwkt_reltoken(&ilock);
603 if (done == 0) {
604 vnlru_nowhere++;
605 tsleep(td, 0, "vlrup", hz * 3);
606 }
607 }
608 splx(s);
609}
610
611static struct kproc_desc vnlru_kp = {
612 "vnlru",
613 vnlru_proc,
614 &vnlruthread
615};
616SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
617
618/*
619 * Routines having to do with the management of the vnode table.
620 */
621extern vop_t **dead_vnodeop_p;
622
623/*
624 * Return the next vnode from the free list.
625 */
626int
627getnewvnode(enum vtagtype tag, struct mount *mp,
628 vop_t **vops, struct vnode **vpp)
629{
630 int s;
631 struct thread *td = curthread; /* XXX */
632 struct vnode *vp = NULL;
633 struct vnode *xvp;
634 vm_object_t object;
635 lwkt_tokref ilock;
636 lwkt_tokref vlock;
637
638 s = splbio();
639
640 /*
641 * Try to reuse vnodes if we hit the max. This situation only
642 * occurs in certain large-memory (2G+) situations. We cannot
643 * attempt to directly reclaim vnodes due to nasty recursion
644 * problems.
645 */
646 while (numvnodes - freevnodes > desiredvnodes) {
647 if (vnlruproc_sig == 0) {
648 vnlruproc_sig = 1; /* avoid unnecessary wakeups */
649 wakeup(vnlruthread);
650 }
651 tsleep(&vnlruproc_sig, 0, "vlruwk", hz);
652 }
653
654
655 /*
656 * Attempt to reuse a vnode already on the free list, allocating
657 * a new vnode if we can't find one or if we have not reached a
658 * good minimum for good LRU performance.
659 */
660 lwkt_gettoken(&ilock, &vnode_free_list_token);
661 if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
662 int count;
663
664 for (count = 0; count < freevnodes; count++) {
665 /*
666 * __VNODESCAN__
667 *
668 * Pull the next vnode off the free list and do some
669 * sanity checks. Note that regardless of how we
670 * block, if freevnodes is non-zero there had better
671 * be something on the list.
672 */
673 vp = TAILQ_FIRST(&vnode_free_list);
674 if (vp == NULL)
675 panic("getnewvnode: free vnode isn't");
676
677 /*
678 * Move the vnode to the end of the list so other
679 * processes do not double-block trying to recycle
680 * the same vnode (as an optimization), then get
681 * the interlock.
682 */
683 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
684 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
685
686 /*
687 * Skip vnodes that are in the process of being
688 * held or referenced. Since the act of adding or
689 * removing a vnode on the freelist requires a token
690 * and may block, the ref count may be adjusted
691 * prior to its addition or removal.
692 */
693 if (VSHOULDBUSY(vp)) {
694 vp = NULL;
695 continue;
696 }
697
698
699 /*
700 * Obtain the vnode interlock and check that the
701 * vnode is still on the free list.
702 *
703 * This normally devolves into a degenerate case so
704 * it is optimal. Loop up if it isn't. Note that
705 * the vnode could be in the middle of being moved
706 * off the free list (the VSHOULDBUSY() check) and
707 * must be skipped if so.
708 */
709 lwkt_gettoken(&vlock, vp->v_interlock);
710 TAILQ_FOREACH_REVERSE(xvp, &vnode_free_list,
711 freelst, v_freelist) {
712 if (vp == xvp)
713 break;
714 }
715 if (vp != xvp || VSHOULDBUSY(vp)) {
716 vp = NULL;
717 continue;
718 }
719
720 /*
721 * We now safely own the vnode. If the vnode has
722 * an object do not recycle it if its VM object
723 * has resident pages or references.
724 */
725 if ((VOP_GETVOBJECT(vp, &object) == 0 &&
726 (object->resident_page_count || object->ref_count))
727 ) {
728 lwkt_reltoken(&vlock);
729 vp = NULL;
730 continue;
731 }
732
733 /*
734 * We can almost reuse this vnode. But we don't want
735 * to recycle it if the vnode has children in the
736 * namecache because that breaks the namecache's
737 * path element chain. (YYY use nc_refs for the
738 * check?)
739 */
740 KKASSERT(vp->v_flag & VFREE);
741 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
742
743 if (TAILQ_FIRST(&vp->v_namecache) == NULL ||
744 cache_leaf_test(vp) >= 0) {
745 /* ok, we can reuse this vnode */
746 break;
747 }
748 lwkt_reltoken(&vlock);
749 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
750 vp = NULL;
751 }
752 }
753
754 /*
755 * If vp is non-NULL we hold it's interlock.
756 */
757 if (vp) {
758 vp->v_flag |= VDOOMED;
759 vp->v_flag &= ~VFREE;
760 freevnodes--;
761 lwkt_reltoken(&ilock);
762 cache_purge(vp); /* YYY may block */
763 vp->v_lease = NULL;
764 if (vp->v_type != VBAD) {
765 vgonel(vp, &vlock, td);
766 } else {
767 lwkt_reltoken(&vlock);
768 }
769
770#ifdef INVARIANTS
771 {
772 int s;
773
774 if (vp->v_data)
775 panic("cleaned vnode isn't");
776 s = splbio();
777 if (vp->v_numoutput)
778 panic("Clean vnode has pending I/O's");
779 splx(s);
780 }
781#endif
782 vp->v_flag = 0;
783 vp->v_lastw = 0;
784 vp->v_lasta = 0;
785 vp->v_cstart = 0;
786 vp->v_clen = 0;
787 vp->v_socket = 0;
788 vp->v_writecount = 0; /* XXX */
789 } else {
790 lwkt_reltoken(&ilock);
791 vp = zalloc(vnode_zone);
792 bzero(vp, sizeof(*vp));
793 vp->v_interlock = lwkt_token_pool_get(vp);
794 lwkt_token_init(&vp->v_pollinfo.vpi_token);
795 cache_purge(vp);
796 TAILQ_INIT(&vp->v_namecache);
797 numvnodes++;
798 }
799
800 TAILQ_INIT(&vp->v_cleanblkhd);
801 TAILQ_INIT(&vp->v_dirtyblkhd);
802 vp->v_type = VNON;
803 vp->v_tag = tag;
804 vp->v_op = vops;
805 insmntque(vp, mp);
806 *vpp = vp;
807 vp->v_usecount = 1;
808 vp->v_data = 0;
809 splx(s);
810
811 vfs_object_create(vp, td);
812 return (0);
813}
814
815/*
816 * Move a vnode from one mount queue to another.
817 */
818static void
819insmntque(struct vnode *vp, struct mount *mp)
820{
821 lwkt_tokref ilock;
822
823 lwkt_gettoken(&ilock, &mntvnode_token);
824 /*
825 * Delete from old mount point vnode list, if on one.
826 */
827 if (vp->v_mount != NULL) {
828 KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
829 ("bad mount point vnode list size"));
830 TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
831 vp->v_mount->mnt_nvnodelistsize--;
832 }
833 /*
834 * Insert into list of vnodes for the new mount point, if available.
835 */
836 if ((vp->v_mount = mp) == NULL) {
837 lwkt_reltoken(&ilock);
838 return;
839 }
840 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
841 mp->mnt_nvnodelistsize++;
842 lwkt_reltoken(&ilock);
843}
844
845/*
846 * Update outstanding I/O count and do wakeup if requested.
847 */
848void
849vwakeup(struct buf *bp)
850{
851 struct vnode *vp;
852
853 bp->b_flags &= ~B_WRITEINPROG;
854 if ((vp = bp->b_vp)) {
855 vp->v_numoutput--;
856 if (vp->v_numoutput < 0)
857 panic("vwakeup: neg numoutput");
858 if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
859 vp->v_flag &= ~VBWAIT;
860 wakeup((caddr_t) &vp->v_numoutput);
861 }
862 }
863}
864
865/*
866 * Flush out and invalidate all buffers associated with a vnode.
867 * Called with the underlying object locked.
868 */
869int
870vinvalbuf(struct vnode *vp, int flags, struct thread *td,
871 int slpflag, int slptimeo)
872{
873 struct buf *bp;
874 struct buf *nbp, *blist;
875 int s, error;
876 vm_object_t object;
877 lwkt_tokref vlock;
878
879 if (flags & V_SAVE) {
880 s = splbio();
881 while (vp->v_numoutput) {
882 vp->v_flag |= VBWAIT;
883 error = tsleep((caddr_t)&vp->v_numoutput,
884 slpflag, "vinvlbuf", slptimeo);
885 if (error) {
886 splx(s);
887 return (error);
888 }
889 }
890 if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
891 splx(s);
892 if ((error = VOP_FSYNC(vp, MNT_WAIT, td)) != 0)
893 return (error);
894 s = splbio();
895 if (vp->v_numoutput > 0 ||
896 !TAILQ_EMPTY(&vp->v_dirtyblkhd))
897 panic("vinvalbuf: dirty bufs");
898 }
899 splx(s);
900 }
901 s = splbio();
902 for (;;) {
903 blist = TAILQ_FIRST(&vp->v_cleanblkhd);
904 if (!blist)
905 blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
906 if (!blist)
907 break;
908
909 for (bp = blist; bp; bp = nbp) {
910 nbp = TAILQ_NEXT(bp, b_vnbufs);
911 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
912 error = BUF_TIMELOCK(bp,
913 LK_EXCLUSIVE | LK_SLEEPFAIL,
914 "vinvalbuf", slpflag, slptimeo);
915 if (error == ENOLCK)
916 break;
917 splx(s);
918 return (error);
919 }
920 /*
921 * XXX Since there are no node locks for NFS, I
922 * believe there is a slight chance that a delayed
923 * write will occur while sleeping just above, so
924 * check for it. Note that vfs_bio_awrite expects
925 * buffers to reside on a queue, while VOP_BWRITE and
926 * brelse do not.
927 */
928 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
929 (flags & V_SAVE)) {
930
931 if (bp->b_vp == vp) {
932 if (bp->b_flags & B_CLUSTEROK) {
933 BUF_UNLOCK(bp);
934 vfs_bio_awrite(bp);
935 } else {
936 bremfree(bp);
937 bp->b_flags |= B_ASYNC;
938 VOP_BWRITE(bp->b_vp, bp);
939 }
940 } else {
941 bremfree(bp);
942 (void) VOP_BWRITE(bp->b_vp, bp);
943 }
944 break;
945 }
946 bremfree(bp);
947 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
948 bp->b_flags &= ~B_ASYNC;
949 brelse(bp);
950 }
951 }
952
953 /*
954 * Wait for I/O to complete. XXX needs cleaning up. The vnode can
955 * have write I/O in-progress but if there is a VM object then the
956 * VM object can also have read-I/O in-progress.
957 */
958 do {
959 while (vp->v_numoutput > 0) {
960 vp->v_flag |= VBWAIT;
961 tsleep(&vp->v_numoutput, 0, "vnvlbv", 0);
962 }
963 if (VOP_GETVOBJECT(vp, &object) == 0) {
964 while (object->paging_in_progress)
965 vm_object_pip_sleep(object, "vnvlbx");
966 }
967 } while (vp->v_numoutput > 0);
968
969 splx(s);
970
971 /*
972 * Destroy the copy in the VM cache, too.
973 */
974 lwkt_gettoken(&vlock, vp->v_interlock);
975 if (VOP_GETVOBJECT(vp, &object) == 0) {
976 vm_object_page_remove(object, 0, 0,
977 (flags & V_SAVE) ? TRUE : FALSE);
978 }
979 lwkt_reltoken(&vlock);
980
981 if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
982 panic("vinvalbuf: flush failed");
983 return (0);
984}
985
986/*
987 * Truncate a file's buffer and pages to a specified length. This
988 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
989 * sync activity.
990 */
991int
992vtruncbuf(struct vnode *vp, struct thread *td, off_t length, int blksize)
993{
994 struct buf *bp;
995 struct buf *nbp;
996 int s, anyfreed;
997 int trunclbn;
998
999 /*
1000 * Round up to the *next* lbn.
1001 */
1002 trunclbn = (length + blksize - 1) / blksize;
1003
1004 s = splbio();
1005restart:
1006 anyfreed = 1;
1007 for (;anyfreed;) {
1008 anyfreed = 0;
1009 for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
1010 nbp = TAILQ_NEXT(bp, b_vnbufs);
1011 if (bp->b_lblkno >= trunclbn) {
1012 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1013 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1014 goto restart;
1015 } else {
1016 bremfree(bp);
1017 bp->b_flags |= (B_INVAL | B_RELBUF);
1018 bp->b_flags &= ~B_ASYNC;
1019 brelse(bp);
1020 anyfreed = 1;
1021 }
1022 if (nbp &&
1023 (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1024 (nbp->b_vp != vp) ||
1025 (nbp->b_flags & B_DELWRI))) {
1026 goto restart;
1027 }
1028 }
1029 }
1030
1031 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1032 nbp = TAILQ_NEXT(bp, b_vnbufs);
1033 if (bp->b_lblkno >= trunclbn) {
1034 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1035 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1036 goto restart;
1037 } else {
1038 bremfree(bp);
1039 bp->b_flags |= (B_INVAL | B_RELBUF);
1040 bp->b_flags &= ~B_ASYNC;
1041 brelse(bp);
1042 anyfreed = 1;
1043 }
1044 if (nbp &&
1045 (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1046 (nbp->b_vp != vp) ||
1047 (nbp->b_flags & B_DELWRI) == 0)) {
1048 goto restart;
1049 }
1050 }
1051 }
1052 }
1053
1054 if (length > 0) {
1055restartsync:
1056 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1057 nbp = TAILQ_NEXT(bp, b_vnbufs);
1058 if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
1059 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1060 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1061 goto restart;
1062 } else {
1063 bremfree(bp);
1064 if (bp->b_vp == vp) {
1065 bp->b_flags |= B_ASYNC;
1066 } else {
1067 bp->b_flags &= ~B_ASYNC;
1068 }
1069 VOP_BWRITE(bp->b_vp, bp);
1070 }
1071 goto restartsync;
1072 }
1073
1074 }
1075 }
1076
1077 while (vp->v_numoutput > 0) {
1078 vp->v_flag |= VBWAIT;
1079 tsleep(&vp->v_numoutput, 0, "vbtrunc", 0);
1080 }
1081
1082 splx(s);
1083
1084 vnode_pager_setsize(vp, length);
1085
1086 return (0);
1087}
1088
1089/*
1090 * Associate a buffer with a vnode.
1091 */
1092void
1093bgetvp(struct vnode *vp, struct buf *bp)
1094{
1095 int s;
1096
1097 KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1098
1099 vhold(vp);
1100 bp->b_vp = vp;
1101 bp->b_dev = vn_todev(vp);
1102 /*
1103 * Insert onto list for new vnode.
1104 */
1105 s = splbio();
1106 bp->b_xflags |= BX_VNCLEAN;
1107 bp->b_xflags &= ~BX_VNDIRTY;
1108 TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
1109 splx(s);
1110}
1111
1112/*
1113 * Disassociate a buffer from a vnode.
1114 */
1115void
1116brelvp(struct buf *bp)
1117{
1118 struct vnode *vp;
1119 struct buflists *listheadp;
1120 int s;
1121
1122 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1123
1124 /*
1125 * Delete from old vnode list, if on one.
1126 */
1127 vp = bp->b_vp;
1128 s = splbio();
1129 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1130 if (bp->b_xflags & BX_VNDIRTY)
1131 listheadp = &vp->v_dirtyblkhd;
1132 else
1133 listheadp = &vp->v_cleanblkhd;
1134 TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1135 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1136 }
1137 if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1138 vp->v_flag &= ~VONWORKLST;
1139 LIST_REMOVE(vp, v_synclist);
1140 }
1141 splx(s);
1142 bp->b_vp = (struct vnode *) 0;
1143 vdrop(vp);
1144}
1145
1146/*
1147 * The workitem queue.
1148 *
1149 * It is useful to delay writes of file data and filesystem metadata
1150 * for tens of seconds so that quickly created and deleted files need
1151 * not waste disk bandwidth being created and removed. To realize this,
1152 * we append vnodes to a "workitem" queue. When running with a soft
1153 * updates implementation, most pending metadata dependencies should
1154 * not wait for more than a few seconds. Thus, mounted on block devices
1155 * are delayed only about a half the time that file data is delayed.
1156 * Similarly, directory updates are more critical, so are only delayed
1157 * about a third the time that file data is delayed. Thus, there are
1158 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
1159 * one each second (driven off the filesystem syncer process). The
1160 * syncer_delayno variable indicates the next queue that is to be processed.
1161 * Items that need to be processed soon are placed in this queue:
1162 *
1163 * syncer_workitem_pending[syncer_delayno]
1164 *
1165 * A delay of fifteen seconds is done by placing the request fifteen
1166 * entries later in the queue:
1167 *
1168 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
1169 *
1170 */
1171
1172/*
1173 * Add an item to the syncer work queue.
1174 */
1175static void
1176vn_syncer_add_to_worklist(struct vnode *vp, int delay)
1177{
1178 int s, slot;
1179
1180 s = splbio();
1181
1182 if (vp->v_flag & VONWORKLST) {
1183 LIST_REMOVE(vp, v_synclist);
1184 }
1185
1186 if (delay > syncer_maxdelay - 2)
1187 delay = syncer_maxdelay - 2;
1188 slot = (syncer_delayno + delay) & syncer_mask;
1189
1190 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
1191 vp->v_flag |= VONWORKLST;
1192 splx(s);
1193}
1194
1195struct thread *updatethread;
1196static void sched_sync (void);
1197static struct kproc_desc up_kp = {
1198 "syncer",
1199 sched_sync,
1200 &updatethread
1201};
1202SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1203
1204/*
1205 * System filesystem synchronizer daemon.
1206 */
1207void
1208sched_sync(void)
1209{
1210 struct synclist *slp;
1211 struct vnode *vp;
1212 long starttime;
1213 int s;
1214 struct thread *td = curthread;
1215
1216 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
1217 SHUTDOWN_PRI_LAST);
1218
1219 for (;;) {
1220 kproc_suspend_loop();
1221
1222 starttime = time_second;
1223
1224 /*
1225 * Push files whose dirty time has expired. Be careful
1226 * of interrupt race on slp queue.
1227 */
1228 s = splbio();
1229 slp = &syncer_workitem_pending[syncer_delayno];
1230 syncer_delayno += 1;
1231 if (syncer_delayno == syncer_maxdelay)
1232 syncer_delayno = 0;
1233 splx(s);
1234
1235 while ((vp = LIST_FIRST(slp)) != NULL) {
1236 if (VOP_ISLOCKED(vp, NULL) == 0) {
1237 vn_lock(vp, NULL, LK_EXCLUSIVE | LK_RETRY, td);
1238 (void) VOP_FSYNC(vp, MNT_LAZY, td);
1239 VOP_UNLOCK(vp, NULL, 0, td);
1240 }
1241 s = splbio();
1242 if (LIST_FIRST(slp) == vp) {
1243 /*
1244 * Note: v_tag VT_VFS vps can remain on the
1245 * worklist too with no dirty blocks, but
1246 * since sync_fsync() moves it to a different
1247 * slot we are safe.
1248 */
1249 if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1250 !vn_isdisk(vp, NULL))
1251 panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1252 /*
1253 * Put us back on the worklist. The worklist
1254 * routine will remove us from our current
1255 * position and then add us back in at a later
1256 * position.
1257 */
1258 vn_syncer_add_to_worklist(vp, syncdelay);
1259 }
1260 splx(s);
1261 }
1262
1263 /*
1264 * Do soft update processing.
1265 */
1266 if (bioops.io_sync)
1267 (*bioops.io_sync)(NULL);
1268
1269 /*
1270 * The variable rushjob allows the kernel to speed up the
1271 * processing of the filesystem syncer process. A rushjob
1272 * value of N tells the filesystem syncer to process the next
1273 * N seconds worth of work on its queue ASAP. Currently rushjob
1274 * is used by the soft update code to speed up the filesystem
1275 * syncer process when the incore state is getting so far
1276 * ahead of the disk that the kernel memory pool is being
1277 * threatened with exhaustion.
1278 */
1279 if (rushjob > 0) {
1280 rushjob -= 1;
1281 continue;
1282 }
1283 /*
1284 * If it has taken us less than a second to process the
1285 * current work, then wait. Otherwise start right over
1286 * again. We can still lose time if any single round
1287 * takes more than two seconds, but it does not really
1288 * matter as we are just trying to generally pace the
1289 * filesystem activity.
1290 */
1291 if (time_second == starttime)
1292 tsleep(&lbolt, 0, "syncer", 0);
1293 }
1294}
1295
1296/*
1297 * Request the syncer daemon to speed up its work.
1298 * We never push it to speed up more than half of its
1299 * normal turn time, otherwise it could take over the cpu.
1300 *
1301 * YYY wchan field protected by the BGL.
1302 */
1303int
1304speedup_syncer(void)
1305{
1306 crit_enter();
1307 if (updatethread->td_wchan == &lbolt) { /* YYY */
1308 unsleep(updatethread);
1309 lwkt_schedule(updatethread);
1310 }
1311 crit_exit();
1312 if (rushjob < syncdelay / 2) {
1313 rushjob += 1;
1314 stat_rush_requests += 1;
1315 return (1);
1316 }
1317 return(0);
1318}
1319
1320/*
1321 * Associate a p-buffer with a vnode.
1322 *
1323 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1324 * with the buffer. i.e. the bp has not been linked into the vnode or
1325 * ref-counted.
1326 */
1327void
1328pbgetvp(struct vnode *vp, struct buf *bp)
1329{
1330 KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1331
1332 bp->b_vp = vp;
1333 bp->b_flags |= B_PAGING;
1334 bp->b_dev = vn_todev(vp);
1335}
1336
1337/*
1338 * Disassociate a p-buffer from a vnode.
1339 */
1340void
1341pbrelvp(struct buf *bp)
1342{
1343 KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1344
1345 /* XXX REMOVE ME */
1346 if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
1347 panic(
1348 "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1349 bp,
1350 (int)bp->b_flags
1351 );
1352 }
1353 bp->b_vp = (struct vnode *) 0;
1354 bp->b_flags &= ~B_PAGING;
1355}
1356
1357void
1358pbreassignbuf(struct buf *bp, struct vnode *newvp)
1359{
1360 if ((bp->b_flags & B_PAGING) == 0) {
1361 panic(
1362 "pbreassignbuf() on non phys bp %p",
1363 bp
1364 );
1365 }
1366 bp->b_vp = newvp;
1367}
1368
1369/*
1370 * Reassign a buffer from one vnode to another.
1371 * Used to assign file specific control information
1372 * (indirect blocks) to the vnode to which they belong.
1373 */
1374void
1375reassignbuf(struct buf *bp, struct vnode *newvp)
1376{
1377 struct buflists *listheadp;
1378 int delay;
1379 int s;
1380
1381 if (newvp == NULL) {
1382 printf("reassignbuf: NULL");
1383 return;
1384 }
1385 ++reassignbufcalls;
1386
1387 /*
1388 * B_PAGING flagged buffers cannot be reassigned because their vp
1389 * is not fully linked in.
1390 */
1391 if (bp->b_flags & B_PAGING)
1392 panic("cannot reassign paging buffer");
1393
1394 s = splbio();
1395 /*
1396 * Delete from old vnode list, if on one.
1397 */
1398 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1399 if (bp->b_xflags & BX_VNDIRTY)
1400 listheadp = &bp->b_vp->v_dirtyblkhd;
1401 else
1402 listheadp = &bp->b_vp->v_cleanblkhd;
1403 TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1404 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1405 if (bp->b_vp != newvp) {
1406 vdrop(bp->b_vp);
1407 bp->b_vp = NULL; /* for clarification */
1408 }
1409 }
1410 /*
1411 * If dirty, put on list of dirty buffers; otherwise insert onto list
1412 * of clean buffers.
1413 */
1414 if (bp->b_flags & B_DELWRI) {
1415 struct buf *tbp;
1416
1417 listheadp = &newvp->v_dirtyblkhd;
1418 if ((newvp->v_flag & VONWORKLST) == 0) {
1419 switch (newvp->v_type) {
1420 case VDIR:
1421 delay = dirdelay;
1422 break;
1423 case VCHR:
1424 case VBLK:
1425 if (newvp->v_rdev &&
1426 newvp->v_rdev->si_mountpoint != NULL) {
1427 delay = metadelay;
1428 break;
1429 }
1430 /* fall through */
1431 default:
1432 delay = filedelay;
1433 }
1434 vn_syncer_add_to_worklist(newvp, delay);
1435 }
1436 bp->b_xflags |= BX_VNDIRTY;
1437 tbp = TAILQ_FIRST(listheadp);
1438 if (tbp == NULL ||
1439 bp->b_lblkno == 0 ||
1440 (bp->b_lblkno > 0 && tbp->b_lblkno < 0) ||
1441 (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
1442 TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1443 ++reassignbufsortgood;
1444 } else if (bp->b_lblkno < 0) {
1445 TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1446 ++reassignbufsortgood;
1447 } else if (reassignbufmethod == 1) {
1448 /*
1449 * New sorting algorithm, only handle sequential case,
1450 * otherwise append to end (but before metadata)
1451 */
1452 if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
1453 (tbp->b_xflags & BX_VNDIRTY)) {
1454 /*
1455 * Found the best place to insert the buffer
1456 */
1457 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1458 ++reassignbufsortgood;
1459 } else {
1460 /*
1461 * Missed, append to end, but before meta-data.
1462 * We know that the head buffer in the list is
1463 * not meta-data due to prior conditionals.
1464 *
1465 * Indirect effects: NFS second stage write
1466 * tends to wind up here, giving maximum
1467 * distance between the unstable write and the
1468 * commit rpc.
1469 */
1470 tbp = TAILQ_LAST(listheadp, buflists);
1471 while (tbp && tbp->b_lblkno < 0)
1472 tbp = TAILQ_PREV(tbp, buflists, b_vnbufs);
1473 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1474 ++reassignbufsortbad;
1475 }
1476 } else {
1477 /*
1478 * Old sorting algorithm, scan queue and insert
1479 */
1480 struct buf *ttbp;
1481 while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1482 (ttbp->b_lblkno < bp->b_lblkno)) {
1483 ++reassignbufloops;
1484 tbp = ttbp;
1485 }
1486 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1487 }
1488 } else {
1489 bp->b_xflags |= BX_VNCLEAN;
1490 TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1491 if ((newvp->v_flag & VONWORKLST) &&
1492 TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1493 newvp->v_flag &= ~VONWORKLST;
1494 LIST_REMOVE(newvp, v_synclist);
1495 }
1496 }
1497 if (bp->b_vp != newvp) {
1498 bp->b_vp = newvp;
1499 vhold(bp->b_vp);
1500 }
1501 splx(s);
1502}
1503
1504/*
1505 * Create a vnode for a block device.
1506 * Used for mounting the root file system.
1507 */
1508int
1509bdevvp(dev_t dev, struct vnode **vpp)
1510{
1511 struct vnode *vp;
1512 struct vnode *nvp;
1513 int error;
1514
1515 if (dev == NODEV) {
1516 *vpp = NULLVP;
1517 return (ENXIO);
1518 }
1519 error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1520 if (error) {
1521 *vpp = NULLVP;
1522 return (error);
1523 }
1524 vp = nvp;
1525 vp->v_type = VCHR;
1526 vp->v_udev = dev->si_udev;
1527 *vpp = vp;
1528 return (0);
1529}
1530
1531int
1532v_associate_rdev(struct vnode *vp, dev_t dev)
1533{
1534 lwkt_tokref ilock;
1535
1536 if (dev == NULL || dev == NODEV)
1537 return(ENXIO);
1538 if (dev_is_good(dev) == 0)
1539 return(ENXIO);
1540 KKASSERT(vp->v_rdev == NULL);
1541 if (dev_ref_debug)
1542 printf("Z1");
1543 vp->v_rdev = reference_dev(dev);
1544 lwkt_gettoken(&ilock, &spechash_token);
1545 SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_specnext);
1546 lwkt_reltoken(&ilock);
1547 return(0);
1548}
1549
1550void
1551v_release_rdev(struct vnode *vp)
1552{
1553 lwkt_tokref ilock;
1554 dev_t dev;
1555
1556 if ((dev = vp->v_rdev) != NULL) {
1557 lwkt_gettoken(&ilock, &spechash_token);
1558 SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_specnext);
1559 if (dev_ref_debug && vp->v_opencount != 0) {
1560 printf("releasing rdev with non-0 "
1561 "v_opencount(%d) (revoked?)\n",
1562 vp->v_opencount);
1563 }
1564 vp->v_rdev = NULL;
1565 vp->v_opencount = 0;
1566 release_dev(dev);
1567 lwkt_reltoken(&ilock);
1568 }
1569}
1570
1571/*
1572 * Add a vnode to the alias list hung off the dev_t. We only associate
1573 * the device number with the vnode. The actual device is not associated
1574 * until the vnode is opened (usually in spec_open()), and will be
1575 * disassociated on last close.
1576 */
1577void
1578addaliasu(struct vnode *nvp, udev_t nvp_udev)
1579{
1580 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1581 panic("addaliasu on non-special vnode");
1582 nvp->v_udev = nvp_udev;
1583}
1584
1585/*
1586 * Grab a particular vnode from the free list, increment its
1587 * reference count and lock it. The vnode lock bit is set if the
1588 * vnode is being eliminated in vgone. The process is awakened
1589 * when the transition is completed, and an error returned to
1590 * indicate that the vnode is no longer usable (possibly having
1591 * been changed to a new file system type).
1592 *
1593 * This code is very sensitive. We are depending on the vnode interlock
1594 * to be maintained through to the vn_lock() call, which means that we
1595 * cannot block which means that we cannot call vbusy() until after vn_lock().
1596 * If the interlock is not maintained, the VXLOCK check will not properly
1597 * interlock against a vclean()'s LK_DRAIN operation on the lock.
1598 */
1599int
1600vget(struct vnode *vp, lwkt_tokref_t vlock, int flags, thread_t td)
1601{
1602 int error;
1603 lwkt_tokref vvlock;
1604
1605 /*
1606 * We need the interlock to safely modify the v_ fields. ZZZ it is
1607 * only legal to pass (1) the vnode's interlock and (2) only pass
1608 * NULL w/o LK_INTERLOCK if the vnode is *ALREADY* referenced or
1609 * held.
1610 */
1611 if ((flags & LK_INTERLOCK) == 0) {
1612 lwkt_gettoken(&vvlock, vp->v_interlock);
1613 vlock = &vvlock;
1614 }
1615
1616 /*
1617 * If the vnode is in the process of being cleaned out for
1618 * another use, we wait for the cleaning to finish and then
1619 * return failure. Cleaning is determined by checking that
1620 * the VXLOCK flag is set. It is possible for the vnode to be
1621 * self-referenced during the cleaning operation.
1622 */
1623 if (vp->v_flag & VXLOCK) {
1624 if (vp->v_vxthread == curthread) {
1625#if 0
1626 /* this can now occur in normal operation */
1627 log(LOG_INFO, "VXLOCK interlock avoided\n");
1628#endif
1629 } else {
1630 vp->v_flag |= VXWANT;
1631 lwkt_reltoken(vlock);
1632 tsleep((caddr_t)vp, 0, "vget", 0);
1633 return (ENOENT);
1634 }
1635 }
1636
1637 /*
1638 * Bump v_usecount to prevent the vnode from being recycled. The
1639 * usecount needs to be bumped before we successfully get our lock.
1640 */
1641 vp->v_usecount++;
1642 if (flags & LK_TYPE_MASK) {
1643 if ((error = vn_lock(vp, vlock, flags | LK_INTERLOCK, td)) != 0) {
1644 /*
1645 * must expand vrele here because we do not want
1646 * to call VOP_INACTIVE if the reference count
1647 * drops back to zero since it was never really
1648 * active. We must remove it from the free list
1649 * before sleeping so that multiple processes do
1650 * not try to recycle it.
1651 */
1652 lwkt_gettokref(vlock);
1653 vp->v_usecount--;
1654 vmaybefree(vp);
1655 lwkt_reltoken(vlock);
1656 }
1657 return (error);
1658 }
1659 if (VSHOULDBUSY(vp))
1660 vbusy(vp); /* interlock must be held on call */
1661 lwkt_reltoken(vlock);
1662 return (0);
1663}
1664
1665void
1666vref(struct vnode *vp)
1667{
1668 crit_enter(); /* YYY use crit section for moment / BGL protected */
1669 vp->v_usecount++;
1670 crit_exit();
1671}
1672
1673/*
1674 * Vnode put/release.
1675 * If count drops to zero, call inactive routine and return to freelist.
1676 */
1677void
1678vrele(struct vnode *vp)
1679{
1680 struct thread *td = curthread; /* XXX */
1681 lwkt_tokref vlock;
1682
1683 KASSERT(vp != NULL && vp->v_usecount >= 0,
1684 ("vrele: null vp or <=0 v_usecount"));
1685
1686 lwkt_gettoken(&vlock, vp->v_interlock);
1687
1688 if (vp->v_usecount > 1) {
1689 vp->v_usecount--;
1690 lwkt_reltoken(&vlock);
1691 return;
1692 }
1693
1694 if (vp->v_usecount == 1) {
1695 vp->v_usecount--;
1696 /*
1697 * We must call VOP_INACTIVE with the node locked and the
1698 * usecount 0. If we are doing a vpu, the node is already
1699 * locked, but, in the case of vrele, we must explicitly lock
1700 * the vnode before calling VOP_INACTIVE.
1701 */
1702
1703 if (vn_lock(vp, NULL, LK_EXCLUSIVE, td) == 0)
1704 VOP_INACTIVE(vp, td);
1705 vmaybefree(vp);
1706 lwkt_reltoken(&vlock);
1707 } else {
1708#ifdef DIAGNOSTIC
1709 vprint("vrele: negative ref count", vp);
1710#endif
1711 lwkt_reltoken(&vlock);
1712 panic("vrele: negative ref cnt");
1713 }
1714}
1715
1716void
1717vput(struct vnode *vp)
1718{
1719 struct thread *td = curthread; /* XXX */
1720 lwkt_tokref vlock;
1721
1722 KASSERT(vp != NULL, ("vput: null vp"));
1723
1724 lwkt_gettoken(&vlock, vp->v_interlock);
1725
1726 if (vp->v_usecount > 1) {
1727 vp->v_usecount--;
1728 VOP_UNLOCK(vp, &vlock, LK_INTERLOCK, td);
1729 return;
1730 }
1731
1732 if (vp->v_usecount == 1) {
1733 vp->v_usecount--;
1734 /*
1735 * We must call VOP_INACTIVE with the node locked.
1736 * If we are doing a vpu, the node is already locked,
1737 * so we just need to release the vnode mutex.
1738 */
1739 VOP_INACTIVE(vp, td);
1740 vmaybefree(vp);
1741 lwkt_reltoken(&vlock);
1742 } else {
1743#ifdef DIAGNOSTIC
1744 vprint("vput: negative ref count", vp);
1745#endif
1746 lwkt_reltoken(&vlock);
1747 panic("vput: negative ref cnt");
1748 }
1749}
1750
1751/*
1752 * Somebody doesn't want the vnode recycled. ZZZ vnode interlock should
1753 * be held but isn't.
1754 */
1755void
1756vhold(struct vnode *vp)
1757{
1758 int s;
1759
1760 s = splbio();
1761 vp->v_holdcnt++;
1762 if (VSHOULDBUSY(vp))
1763 vbusy(vp); /* interlock must be held on call */
1764 splx(s);
1765}
1766
1767/*
1768 * One less who cares about this vnode.
1769 */
1770void
1771vdrop(struct vnode *vp)
1772{
1773 lwkt_tokref vlock;
1774
1775 lwkt_gettoken(&vlock, vp->v_interlock);
1776 if (vp->v_holdcnt <= 0)
1777 panic("vdrop: holdcnt");
1778 vp->v_holdcnt--;
1779 vmaybefree(vp);
1780 lwkt_reltoken(&vlock);
1781}
1782
1783int
1784vmntvnodescan(
1785 struct mount *mp,
1786 int (*fastfunc)(struct mount *mp, struct vnode *vp, void *data),
1787 int (*slowfunc)(struct mount *mp, struct vnode *vp,
1788 lwkt_tokref_t vlock, void *data),
1789 void *data
1790) {
1791 lwkt_tokref ilock;
1792 lwkt_tokref vlock;
1793 struct vnode *pvp;
1794 struct vnode *vp;
1795 int r = 0;
1796
1797 /*
1798 * Scan the vnodes on the mount's vnode list. Use a placemarker
1799 */
1800 pvp = zalloc(vnode_zone);
1801 pvp->v_flag |= VPLACEMARKER;
1802
1803 lwkt_gettoken(&ilock, &mntvnode_token);
1804 TAILQ_INSERT_HEAD(&mp->mnt_nvnodelist, pvp, v_nmntvnodes);
1805
1806 while ((vp = TAILQ_NEXT(pvp, v_nmntvnodes)) != NULL) {
1807 /*
1808 * Move the placemarker and skip other placemarkers we
1809 * encounter. The nothing can get in our way so the
1810 * mount point on the vp must be valid.
1811 */
1812 TAILQ_REMOVE(&mp->mnt_nvnodelist, pvp, v_nmntvnodes);
1813 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, pvp, v_nmntvnodes);
1814 if (vp->v_flag & VPLACEMARKER)
1815 continue;
1816 KKASSERT(vp->v_mount == mp);
1817
1818 /*
1819 * Quick test
1820 */
1821 if (fastfunc) {
1822 if ((r = fastfunc(mp, vp, data)) < 0)
1823 continue;
1824 if (r)
1825 break;
1826 }
1827
1828 /*
1829 * Get the vnodes interlock and make sure it is still on the
1830 * mount list. Skip it if it has moved (we may encounter it
1831 * later). Then do the with-interlock test. The callback
1832 * is responsible for releasing the vnode interlock.
1833 *
1834 * The interlock is type-stable.
1835 */
1836 if (slowfunc) {
1837 lwkt_gettoken(&vlock, vp->v_interlock);
1838 if (vp != TAILQ_PREV(pvp, vnodelst, v_nmntvnodes)) {
1839 printf("vmntvnodescan (debug info only): f=%p vp=%p vnode ripped out from under us\n", slowfunc, vp);
1840 lwkt_reltoken(&vlock);
1841 continue;
1842 }
1843 if ((r = slowfunc(mp, vp, &vlock, data)) != 0) {
1844 KKASSERT(lwkt_havetokref(&vlock) == 0);
1845 break;
1846 }
1847 KKASSERT(lwkt_havetokref(&vlock) == 0);
1848 }
1849 }
1850 TAILQ_REMOVE(&mp->mnt_nvnodelist, pvp, v_nmntvnodes);
1851 zfree(vnode_zone, pvp);
1852 lwkt_reltoken(&ilock);
1853 return(r);
1854}
1855
1856/*
1857 * Remove any vnodes in the vnode table belonging to mount point mp.
1858 *
1859 * If FORCECLOSE is not specified, there should not be any active ones,
1860 * return error if any are found (nb: this is a user error, not a
1861 * system error). If FORCECLOSE is specified, detach any active vnodes
1862 * that are found.
1863 *
1864 * If WRITECLOSE is set, only flush out regular file vnodes open for
1865 * writing.
1866 *
1867 * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1868 *
1869 * `rootrefs' specifies the base reference count for the root vnode
1870 * of this filesystem. The root vnode is considered busy if its
1871 * v_usecount exceeds this value. On a successful return, vflush()
1872 * will call vrele() on the root vnode exactly rootrefs times.
1873 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1874 * be zero.
1875 */
1876#ifdef DIAGNOSTIC
1877static int busyprt = 0; /* print out busy vnodes */
1878SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1879#endif
1880
1881static int vflush_scan(struct mount *mp, struct vnode *vp,
1882 lwkt_tokref_t vlock, void *data);
1883
1884struct vflush_info {
1885 int flags;
1886 int busy;
1887 thread_t td;
1888};
1889
1890int
1891vflush(struct mount *mp, int rootrefs, int flags)
1892{
1893 struct thread *td = curthread; /* XXX */
1894 struct vnode *rootvp = NULL;
1895 int error;
1896 lwkt_tokref vlock;
1897 struct vflush_info vflush_info;
1898
1899 if (rootrefs > 0) {
1900 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1901 ("vflush: bad args"));
1902 /*
1903 * Get the filesystem root vnode. We can vput() it
1904 * immediately, since with rootrefs > 0, it won't go away.
1905 */
1906 if ((error = VFS_ROOT(mp, &rootvp)) != 0)
1907 return (error);
1908 vput(rootvp);
1909 }
1910
1911 vflush_info.busy = 0;
1912 vflush_info.flags = flags;
1913 vflush_info.td = td;
1914 vmntvnodescan(mp, NULL, vflush_scan, &vflush_info);
1915
1916 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1917 /*
1918 * If just the root vnode is busy, and if its refcount
1919 * is equal to `rootrefs', then go ahead and kill it.
1920 */
1921 lwkt_gettoken(&vlock, rootvp->v_interlock);
1922 KASSERT(vflush_info.busy > 0, ("vflush: not busy"));
1923 KASSERT(rootvp->v_usecount >= rootrefs, ("vflush: rootrefs"));
1924 if (vflush_info.busy == 1 && rootvp->v_usecount == rootrefs) {
1925 vgonel(rootvp, &vlock, td);
1926 vflush_info.busy = 0;
1927 } else {
1928 lwkt_reltoken(&vlock);
1929 }
1930 }
1931 if (vflush_info.busy)
1932 return (EBUSY);
1933 for (; rootrefs > 0; rootrefs--)
1934 vrele(rootvp);
1935 return (0);
1936}
1937
1938/*
1939 * The scan callback is made with an interlocked vnode.
1940 */
1941static int
1942vflush_scan(struct mount *mp, struct vnode *vp,
1943 lwkt_tokref_t vlock, void *data)
1944{
1945 struct vflush_info *info = data;
1946 struct vattr vattr;
1947
1948 /*
1949 * Skip over a vnodes marked VSYSTEM.
1950 */
1951 if ((info->flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1952 lwkt_reltoken(vlock);
1953 return(0);
1954 }
1955
1956 /*
1957 * If WRITECLOSE is set, flush out unlinked but still open
1958 * files (even if open only for reading) and regular file
1959 * vnodes open for writing.
1960 */
1961 if ((info->flags & WRITECLOSE) &&
1962 (vp->v_type == VNON ||
1963 (VOP_GETATTR(vp, &vattr, info->td) == 0 &&
1964 vattr.va_nlink > 0)) &&
1965 (vp->v_writecount == 0 || vp->v_type != VREG)) {
1966 lwkt_reltoken(vlock);
1967 return(0);
1968 }
1969
1970 /*
1971 * With v_usecount == 0, all we need to do is clear out the
1972 * vnode data structures and we are done.
1973 */
1974 if (vp->v_usecount == 0) {
1975 vgonel(vp, vlock, info->td);
1976 return(0);
1977 }
1978
1979 /*
1980 * If FORCECLOSE is set, forcibly close the vnode. For block
1981 * or character devices, revert to an anonymous device. For
1982 * all other files, just kill them.
1983 */
1984 if (info->flags & FORCECLOSE) {
1985 if (vp->v_type != VBLK && vp->v_type != VCHR) {
1986 vgonel(vp, vlock, info->td);
1987 } else {
1988 vclean(vp, vlock, 0, info->td);
1989 vp->v_op = spec_vnodeop_p;
1990 insmntque(vp, (struct mount *) 0);
1991 }
1992 return(0);
1993 }
1994#ifdef DIAGNOSTIC
1995 if (busyprt)
1996 vprint("vflush: busy vnode", vp);
1997#endif
1998 lwkt_reltoken(vlock);
1999 ++info->busy;
2000 return(0);
2001}
2002
2003/*
2004 * Disassociate the underlying file system from a vnode.
2005 */
2006static void
2007vclean(struct vnode *vp, lwkt_tokref_t vlock, int flags, struct thread *td)
2008{
2009 int active;
2010
2011 /*
2012 * Check to see if the vnode is in use. If so we have to reference it
2013 * before we clean it out so that its count cannot fall to zero and
2014 * generate a race against ourselves to recycle it.
2015 */
2016 if ((active = vp->v_usecount))
2017 vp->v_usecount++;
2018
2019 /*
2020 * Prevent the vnode from being recycled or brought into use while we
2021 * clean it out.
2022 */
2023 if (vp->v_flag & VXLOCK)
2024 panic("vclean: deadlock");
2025 vp->v_flag |= VXLOCK;
2026 vp->v_vxthread = curthread;
2027
2028 /*
2029 * Even if the count is zero, the VOP_INACTIVE routine may still
2030 * have the object locked while it cleans it out. The VOP_LOCK
2031 * ensures that the VOP_INACTIVE routine is done with its work.
2032 * For active vnodes, it ensures that no other activity can
2033 * occur while the underlying object is being cleaned out.
2034 *
2035 * NOTE: we continue to hold the vnode interlock through to the
2036 * end of vclean().
2037 */
2038 VOP_LOCK(vp, NULL, LK_DRAIN, td);
2039
2040 /*
2041 * Clean out any buffers associated with the vnode.
2042 */
2043 vinvalbuf(vp, V_SAVE, td, 0, 0);
2044 VOP_DESTROYVOBJECT(vp);
2045
2046 /*
2047 * If purging an active vnode, it must be closed and
2048 * deactivated before being reclaimed. Note that the
2049 * VOP_INACTIVE will unlock the vnode.
2050 */
2051 if (active) {
2052 if (flags & DOCLOSE)
2053 VOP_CLOSE(vp, FNONBLOCK, td);
2054 VOP_INACTIVE(vp, td);
2055 } else {
2056 /*
2057 * Any other processes trying to obtain this lock must first
2058 * wait for VXLOCK to clear, then call the new lock operation.
2059 */
2060 VOP_UNLOCK(vp, NULL, 0, td);
2061 }
2062 /*
2063 * Reclaim the vnode.
2064 */
2065 if (VOP_RECLAIM(vp, td))
2066 panic("vclean: cannot reclaim");
2067
2068 if (active) {
2069 /*
2070 * Inline copy of vrele() since VOP_INACTIVE
2071 * has already been called.
2072 */
2073 if (--vp->v_usecount <= 0) {
2074#ifdef DIAGNOSTIC
2075 if (vp->v_usecount < 0 || vp->v_writecount != 0) {
2076 vprint("vclean: bad ref count", vp);
2077 panic("vclean: ref cnt");
2078 }
2079#endif
2080 vfree(vp);
2081 }
2082 }
2083
2084 cache_purge(vp);
2085 vp->v_vnlock = NULL;
2086 vmaybefree(vp);
2087
2088 /*
2089 * Done with purge, notify sleepers of the grim news.
2090 */
2091 vp->v_op = dead_vnodeop_p;
2092 vn_pollgone(vp);
2093 vp->v_tag = VT_NON;
2094 vp->v_flag &= ~VXLOCK;
2095 vp->v_vxthread = NULL;
2096 if (vp->v_flag & VXWANT) {
2097 vp->v_flag &= ~VXWANT;
2098 wakeup((caddr_t) vp);
2099 }
2100 lwkt_reltoken(vlock);
2101}
2102
2103/*
2104 * Eliminate all activity associated with the requested vnode
2105 * and with all vnodes aliased to the requested vnode.
2106 *
2107 * revoke { struct vnode *a_vp, int a_flags }
2108 */
2109int
2110vop_revoke(struct vop_revoke_args *ap)
2111{
2112 struct vnode *vp, *vq;
2113 lwkt_tokref ilock;
2114 dev_t dev;
2115
2116 KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
2117
2118 vp = ap->a_vp;
2119 /*
2120 * If a vgone (or vclean) is already in progress,
2121 * wait until it is done and return.
2122 */
2123 if (vp->v_flag & VXLOCK) {
2124 vp->v_flag |= VXWANT;
2125 /*lwkt_reltoken(vlock); ZZZ */
2126 tsleep((caddr_t)vp, 0, "vop_revokeall", 0);
2127 return (0);
2128 }
2129
2130 /*
2131 * If the vnode has a device association, scrap all vnodes associated
2132 * with the device. Don't let the device disappear on us while we
2133 * are scrapping the vnodes.
2134 */
2135 if (vp->v_type != VCHR && vp->v_type != VBLK)
2136 return(0);
2137 if ((dev = vp->v_rdev) == NULL) {
2138 if ((dev = udev2dev(vp->v_udev, vp->v_type == VBLK)) == NODEV)
2139 return(0);
2140 }
2141 reference_dev(dev);
2142 for (;;) {
2143 lwkt_gettoken(&ilock, &spechash_token);
2144 vq = SLIST_FIRST(&dev->si_hlist);
2145 lwkt_reltoken(&ilock);
2146 if (vq == NULL)
2147 break;
2148 vgone(vq);
2149 }
2150 release_dev(dev);
2151 return (0);
2152}
2153
2154/*
2155 * Recycle an unused vnode to the front of the free list.
2156 * Release the passed interlock if the vnode will be recycled.
2157 */
2158int
2159vrecycle(struct vnode *vp, lwkt_tokref_t inter_lkp, struct thread *td)
2160{
2161 lwkt_tokref vlock;
2162
2163 lwkt_gettoken(&vlock, vp->v_interlock);
2164 if (vp->v_usecount == 0) {
2165 if (inter_lkp)
2166 lwkt_reltoken(inter_lkp);
2167 vgonel(vp, &vlock, td);
2168 return (1);
2169 }
2170 lwkt_reltoken(&vlock);
2171 return (0);
2172}
2173
2174/*
2175 * Eliminate all activity associated with a vnode
2176 * in preparation for reuse.
2177 */
2178void
2179vgone(struct vnode *vp)
2180{
2181 struct thread *td = curthread; /* XXX */
2182 lwkt_tokref vlock;
2183
2184 lwkt_gettoken(&vlock, vp->v_interlock);
2185 vgonel(vp, &vlock, td);
2186}
2187
2188/*
2189 * vgone, with the vp interlock held.
2190 */
2191void
2192vgonel(struct vnode *vp, lwkt_tokref_t vlock, struct thread *td)
2193{
2194 lwkt_tokref ilock;
2195 int s;
2196
2197 /*
2198 * If a vgone (or vclean) is already in progress,
2199 * wait until it is done and return.
2200 */
2201 if (vp->v_flag & VXLOCK) {
2202 vp->v_flag |= VXWANT;
2203 lwkt_reltoken(vlock);
2204 tsleep((caddr_t)vp, 0, "vgone", 0);
2205 return;
2206 }
2207
2208 /*
2209 * Clean out the filesystem specific data.
2210 */
2211 vclean(vp, vlock, DOCLOSE, td);
2212 lwkt_gettokref(vlock);
2213
2214 /*
2215 * Delete from old mount point vnode list, if on one.
2216 */
2217 if (vp->v_mount != NULL)
2218 insmntque(vp, (struct mount *)0);
2219
2220 /*
2221 * If special device, remove it from special device alias list
2222 * if it is on one. This should normally only occur if a vnode is
2223 * being revoked as the device should otherwise have been released
2224 * naturally.
2225 */
2226 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
2227 v_release_rdev(vp);
2228 }
2229
2230 /*
2231 * If it is on the freelist and not already at the head,
2232 * move it to the head of the list. The test of the
2233 * VDOOMED flag and the reference count of zero is because
2234 * it will be removed from the free list by getnewvnode,
2235 * but will not have its reference count incremented until
2236 * after calling vgone. If the reference count were
2237 * incremented first, vgone would (incorrectly) try to
2238 * close the previous instance of the underlying object.
2239 */
2240 if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
2241 s = splbio();
2242 lwkt_gettoken(&ilock, &vnode_free_list_token);
2243 if (vp->v_flag & VFREE)
2244 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2245 else
2246 freevnodes++;
2247 vp->v_flag |= VFREE;
2248 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2249 lwkt_reltoken(&ilock);
2250 splx(s);
2251 }
2252 vp->v_type = VBAD;
2253 lwkt_reltoken(vlock);
2254}
2255
2256/*
2257 * Lookup a vnode by device number.
2258 */
2259int
2260vfinddev(dev_t dev, enum vtype type, struct vnode **vpp)
2261{
2262 lwkt_tokref ilock;
2263 struct vnode *vp;
2264
2265 lwkt_gettoken(&ilock, &spechash_token);
2266 SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2267 if (type == vp->v_type) {
2268 *vpp = vp;
2269 lwkt_reltoken(&ilock);
2270 return (1);
2271 }
2272 }
2273 lwkt_reltoken(&ilock);
2274 return (0);
2275}
2276
2277/*
2278 * Calculate the total number of references to a special device. This
2279 * routine may only be called for VBLK and VCHR vnodes since v_rdev is
2280 * an overloaded field. Since udev2dev can now return NODEV, we have
2281 * to check for a NULL v_rdev.
2282 */
2283int
2284count_dev(dev_t dev)
2285{
2286 lwkt_tokref ilock;
2287 struct vnode *vp;
2288 int count = 0;
2289
2290 if (SLIST_FIRST(&dev->si_hlist)) {
2291 lwkt_gettoken(&ilock, &spechash_token);
2292 SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2293 count += vp->v_usecount;
2294 }
2295 lwkt_reltoken(&ilock);
2296 }
2297 return(count);
2298}
2299
2300int
2301count_udev(udev_t udev)
2302{
2303 dev_t dev;
2304
2305 if ((dev = udev2dev(udev, 0)) == NODEV)
2306 return(0);
2307 return(count_dev(dev));
2308}
2309
2310int
2311vcount(struct vnode *vp)
2312{
2313 if (vp->v_rdev == NULL)
2314 return(0);
2315 return(count_dev(vp->v_rdev));
2316}
2317
2318/*
2319 * Print out a description of a vnode.
2320 */
2321static char *typename[] =
2322{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2323
2324void
2325vprint(char *label, struct vnode *vp)
2326{
2327 char buf[96];
2328
2329 if (label != NULL)
2330 printf("%s: %p: ", label, (void *)vp);
2331 else
2332 printf("%p: ", (void *)vp);
2333 printf("type %s, usecount %d, writecount %d, refcount %d,",
2334 typename[vp->v_type], vp->v_usecount, vp->v_writecount,
2335 vp->v_holdcnt);
2336 buf[0] = '\0';
2337 if (vp->v_flag & VROOT)
2338 strcat(buf, "|VROOT");
2339 if (vp->v_flag & VTEXT)
2340 strcat(buf, "|VTEXT");
2341 if (vp->v_flag & VSYSTEM)
2342 strcat(buf, "|VSYSTEM");
2343 if (vp->v_flag & VXLOCK)
2344 strcat(buf, "|VXLOCK");
2345 if (vp->v_flag & VXWANT)
2346 strcat(buf, "|VXWANT");
2347 if (vp->v_flag & VBWAIT)
2348 strcat(buf, "|VBWAIT");
2349 if (vp->v_flag & VDOOMED)
2350 strcat(buf, "|VDOOMED");
2351 if (vp->v_flag & VFREE)
2352 strcat(buf, "|VFREE");
2353 if (vp->v_flag & VOBJBUF)
2354 strcat(buf, "|VOBJBUF");
2355 if (buf[0] != '\0')
2356 printf(" flags (%s)", &buf[1]);
2357 if (vp->v_data == NULL) {
2358 printf("\n");
2359 } else {
2360 printf("\n\t");
2361 VOP_PRINT(vp);
2362 }
2363}
2364
2365#ifdef DDB
2366#include <ddb/ddb.h>
2367/*
2368 * List all of the locked vnodes in the system.
2369 * Called when debugging the kernel.
2370 */
2371DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
2372{
2373 struct thread *td = curthread; /* XXX */
2374 lwkt_tokref ilock;
2375 struct mount *mp, *nmp;
2376 struct vnode *vp;
2377
2378 printf("Locked vnodes\n");
2379 lwkt_gettoken(&ilock, &mountlist_token);
2380 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2381 if (vfs_busy(mp, LK_NOWAIT, &ilock, td)) {
2382 nmp = TAILQ_NEXT(mp, mnt_list);
2383 continue;
2384 }
2385 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2386 if (VOP_ISLOCKED(vp, NULL))
2387 vprint((char *)0, vp);
2388 }
2389 lwkt_gettokref(&ilock);
2390 nmp = TAILQ_NEXT(mp, mnt_list);
2391 vfs_unbusy(mp, td);
2392 }
2393 lwkt_reltoken(&ilock);
2394}
2395#endif
2396
2397/*
2398 * Top level filesystem related information gathering.
2399 */
2400static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
2401
2402static int
2403vfs_sysctl(SYSCTL_HANDLER_ARGS)
2404{
2405 int *name = (int *)arg1 - 1; /* XXX */
2406 u_int namelen = arg2 + 1; /* XXX */
2407 struct vfsconf *vfsp;
2408
2409#if 1 || defined(COMPAT_PRELITE2)
2410 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2411 if (namelen == 1)
2412 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2413#endif
2414
2415#ifdef notyet
2416 /* all sysctl names at this level are at least name and field */
2417 if (namelen < 2)
2418 return (ENOTDIR); /* overloaded */
2419 if (name[0] != VFS_GENERIC) {
2420 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2421 if (vfsp->vfc_typenum == name[0])
2422 break;
2423 if (vfsp == NULL)
2424 return (EOPNOTSUPP);
2425 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2426 oldp, oldlenp, newp, newlen, p));
2427 }
2428#endif
2429 switch (name[1]) {
2430 case VFS_MAXTYPENUM:
2431 if (namelen != 2)
2432 return (ENOTDIR);
2433 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2434 case VFS_CONF:
2435 if (namelen != 3)
2436 return (ENOTDIR); /* overloaded */
2437 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2438 if (vfsp->vfc_typenum == name[2])
2439 break;
2440 if (vfsp == NULL)
2441 return (EOPNOTSUPP);
2442 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2443 }
2444 return (EOPNOTSUPP);
2445}
2446
2447SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2448 "Generic filesystem");
2449
2450#if 1 || defined(COMPAT_PRELITE2)
2451
2452static int
2453sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2454{
2455 int error;
2456 struct vfsconf *vfsp;
2457 struct ovfsconf ovfs;
2458
2459 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2460 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
2461 strcpy(ovfs.vfc_name, vfsp->vfc_name);
2462 ovfs.vfc_index = vfsp->vfc_typenum;
2463 ovfs.vfc_refcount = vfsp->vfc_refcount;
2464 ovfs.vfc_flags = vfsp->vfc_flags;
2465 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2466 if (error)
2467 return error;
2468 }
2469 return 0;
2470}
2471
2472#endif /* 1 || COMPAT_PRELITE2 */
2473
2474#if 0
2475#define KINFO_VNODESLOP 10
2476/*
2477 * Dump vnode list (via sysctl).
2478 * Copyout address of vnode followed by vnode.
2479 */
2480/* ARGSUSED */
2481static int
2482sysctl_vnode(SYSCTL_HANDLER_ARGS)
2483{
2484 struct proc *p = curproc; /* XXX */
2485 struct mount *mp, *nmp;
2486 struct vnode *nvp, *vp;
2487 lwkt_tokref ilock;
2488 lwkt_tokref jlock;
2489 int error;
2490
2491#define VPTRSZ sizeof (struct vnode *)
2492#define VNODESZ sizeof (struct vnode)
2493
2494 req->lock = 0;
2495 if (!req->oldptr) /* Make an estimate */
2496 return (SYSCTL_OUT(req, 0,
2497 (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2498
2499 lwkt_gettoken(&ilock, &mountlist_token);
2500 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2501 if (vfs_busy(mp, LK_NOWAIT, &ilock, p)) {
2502 nmp = TAILQ_NEXT(mp, mnt_list);
2503 continue;
2504 }
2505 lwkt_gettoken(&jlock, &mntvnode_token);
2506again:
2507 for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
2508 vp != NULL;
2509 vp = nvp) {
2510 /*
2511 * Check that the vp is still associated with
2512 * this filesystem. RACE: could have been
2513 * recycled onto the same filesystem.
2514 */
2515 if (vp->v_mount != mp)
2516 goto again;
2517 nvp = TAILQ_NEXT(vp, v_nmntvnodes);
2518 if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
2519 (error = SYSCTL_OUT(req, vp, VNODESZ))) {
2520 lwkt_reltoken(&jlock);
2521 return (error);
2522 }
2523 }
2524 lwkt_reltoken(&jlock);
2525 lwkt_gettokref(&ilock);
2526 nmp = TAILQ_NEXT(mp, mnt_list); /* ZZZ */
2527 vfs_unbusy(mp, p);
2528 }
2529 lwkt_reltoken(&ilock);
2530
2531 return (0);
2532}
2533#endif
2534
2535/*
2536 * XXX
2537 * Exporting the vnode list on large systems causes them to crash.
2538 * Exporting the vnode list on medium systems causes sysctl to coredump.
2539 */
2540#if 0
2541SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2542 0, 0, sysctl_vnode, "S,vnode", "");
2543#endif
2544
2545/*
2546 * Check to see if a filesystem is mounted on a block device.
2547 */
2548int
2549vfs_mountedon(struct vnode *vp)
2550{
2551 dev_t dev;
2552
2553 if ((dev = vp->v_rdev) == NULL)
2554 dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
2555 if (dev != NODEV && dev->si_mountpoint)
2556 return (EBUSY);
2557 return (0);
2558}
2559
2560/*
2561 * Unmount all filesystems. The list is traversed in reverse order
2562 * of mounting to avoid dependencies.
2563 */
2564void
2565vfs_unmountall(void)
2566{
2567 struct mount *mp;
2568 struct thread *td = curthread;
2569 int error;
2570
2571 if (td->td_proc == NULL)
2572 td = initproc->p_thread; /* XXX XXX use proc0 instead? */
2573
2574 /*
2575 * Since this only runs when rebooting, it is not interlocked.
2576 */
2577 while(!TAILQ_EMPTY(&mountlist)) {
2578 mp = TAILQ_LAST(&mountlist, mntlist);
2579 error = dounmount(mp, MNT_FORCE, td);
2580 if (error) {
2581 TAILQ_REMOVE(&mountlist, mp, mnt_list);
2582 printf("unmount of %s failed (",
2583 mp->mnt_stat.f_mntonname);
2584 if (error == EBUSY)
2585 printf("BUSY)\n");
2586 else
2587 printf("%d)\n", error);
2588 } else {
2589 /* The unmount has removed mp from the mountlist */
2590 }
2591 }
2592}
2593
2594/*
2595 * Build hash lists of net addresses and hang them off the mount point.
2596 * Called by ufs_mount() to set up the lists of export addresses.
2597 */
2598static int
2599vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
2600 struct export_args *argp)
2601{
2602 struct netcred *np;
2603 struct radix_node_head *rnh;
2604 int i;
2605 struct radix_node *rn;
2606 struct sockaddr *saddr, *smask = 0;
2607 struct domain *dom;
2608 int error;
2609
2610 if (argp->ex_addrlen == 0) {
2611 if (mp->mnt_flag & MNT_DEFEXPORTED)
2612 return (EPERM);
2613 np = &nep->ne_defexported;
2614 np->netc_exflags = argp->ex_flags;
2615 np->netc_anon = argp->ex_anon;
2616 np->netc_anon.cr_ref = 1;
2617 mp->mnt_flag |= MNT_DEFEXPORTED;
2618 return (0);
2619 }
2620
2621 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
2622 return (EINVAL);
2623 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
2624 return (EINVAL);
2625
2626 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2627 np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
2628 bzero((caddr_t) np, i);
2629 saddr = (struct sockaddr *) (np + 1);
2630 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2631 goto out;
2632 if (saddr->sa_len > argp->ex_addrlen)
2633 saddr->sa_len = argp->ex_addrlen;
2634 if (argp->ex_masklen) {
2635 smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
2636 error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
2637 if (error)
2638 goto out;
2639 if (smask->sa_len > argp->ex_masklen)
2640 smask->sa_len = argp->ex_masklen;
2641 }
2642 i = saddr->sa_family;
2643 if ((rnh = nep->ne_rtable[i]) == 0) {
2644 /*
2645 * Seems silly to initialize every AF when most are not used,
2646 * do so on demand here
2647 */
2648 for (dom = domains; dom; dom = dom->dom_next)
2649 if (dom->dom_family == i && dom->dom_rtattach) {
2650 dom->dom_rtattach((void **) &nep->ne_rtable[i],
2651 dom->dom_rtoffset);
2652 break;
2653 }
2654 if ((rnh = nep->ne_rtable[i]) == 0) {
2655 error = ENOBUFS;
2656 goto out;
2657 }
2658 }
2659 rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2660 np->netc_rnodes);
2661 if (rn == 0 || np != (struct netcred *) rn) { /* already exists */
2662 error = EPERM;
2663 goto out;
2664 }
2665 np->netc_exflags = argp->ex_flags;
2666 np->netc_anon = argp->ex_anon;
2667 np->netc_anon.cr_ref = 1;
2668 return (0);
2669out:
2670 free(np, M_NETADDR);
2671 return (error);
2672}
2673
2674/* ARGSUSED */
2675static int
2676vfs_free_netcred(struct radix_node *rn, void *w)
2677{
2678 struct radix_node_head *rnh = (struct radix_node_head *) w;
2679
2680 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2681 free((caddr_t) rn, M_NETADDR);
2682 return (0);
2683}
2684
2685/*
2686 * Free the net address hash lists that are hanging off the mount points.
2687 */
2688static void
2689vfs_free_addrlist(struct netexport *nep)
2690{
2691 int i;
2692 struct radix_node_head *rnh;
2693
2694 for (i = 0; i <= AF_MAX; i++)
2695 if ((rnh = nep->ne_rtable[i])) {
2696 (*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2697 (caddr_t) rnh);
2698 free((caddr_t) rnh, M_RTABLE);
2699 nep->ne_rtable[i] = 0;
2700 }
2701}
2702
2703int
2704vfs_export(struct mount *mp, struct netexport *nep, struct export_args *argp)
2705{
2706 int error;
2707
2708 if (argp->ex_flags & MNT_DELEXPORT) {
2709 if (mp->mnt_flag & MNT_EXPUBLIC) {
2710 vfs_setpublicfs(NULL, NULL, NULL);
2711 mp->mnt_flag &= ~MNT_EXPUBLIC;
2712 }
2713 vfs_free_addrlist(nep);
2714 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2715 }
2716 if (argp->ex_flags & MNT_EXPORTED) {
2717 if (argp->ex_flags & MNT_EXPUBLIC) {
2718 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2719 return (error);
2720 mp->mnt_flag |= MNT_EXPUBLIC;
2721 }
2722 if ((error = vfs_hang_addrlist(mp, nep, argp)))
2723 return (error);
2724 mp->mnt_flag |= MNT_EXPORTED;
2725 }
2726 return (0);
2727}
2728
2729
2730/*
2731 * Set the publicly exported filesystem (WebNFS). Currently, only
2732 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2733 */
2734int
2735vfs_setpublicfs(struct mount *mp, struct netexport *nep,
2736 struct export_args *argp)
2737{
2738 int error;
2739 struct vnode *rvp;
2740 char *cp;
2741
2742 /*
2743 * mp == NULL -> invalidate the current info, the FS is
2744 * no longer exported. May be called from either vfs_export
2745 * or unmount, so check if it hasn't already been done.
2746 */
2747 if (mp == NULL) {
2748 if (nfs_pub.np_valid) {
2749 nfs_pub.np_valid = 0;
2750 if (nfs_pub.np_index != NULL) {
2751 FREE(nfs_pub.np_index, M_TEMP);
2752 nfs_pub.np_index = NULL;
2753 }
2754 }
2755 return (0);
2756 }
2757
2758 /*
2759 * Only one allowed at a time.
2760 */
2761 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2762 return (EBUSY);
2763
2764 /*
2765 * Get real filehandle for root of exported FS.
2766 */
2767 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2768 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2769
2770 if ((error = VFS_ROOT(mp, &rvp)))
2771 return (error);
2772
2773 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2774 return (error);
2775
2776 vput(rvp);
2777
2778 /*
2779 * If an indexfile was specified, pull it in.
2780 */
2781 if (argp->ex_indexfile != NULL) {
2782 MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2783 M_WAITOK);
2784 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2785 MAXNAMLEN, (size_t *)0);
2786 if (!error) {
2787 /*
2788 * Check for illegal filenames.
2789 */
2790 for (cp = nfs_pub.np_index; *cp; cp++) {
2791 if (*cp == '/') {
2792 error = EINVAL;
2793 break;
2794 }
2795 }
2796 }
2797 if (error) {
2798 FREE(nfs_pub.np_index, M_TEMP);
2799 return (error);
2800 }
2801 }
2802
2803 nfs_pub.np_mount = mp;
2804 nfs_pub.np_valid = 1;
2805 return (0);
2806}
2807
2808struct netcred *
2809vfs_export_lookup(struct mount *mp, struct netexport *nep,
2810 struct sockaddr *nam)
2811{
2812 struct netcred *np;
2813 struct radix_node_head *rnh;
2814 struct sockaddr *saddr;
2815
2816 np = NULL;
2817 if (mp->mnt_flag & MNT_EXPORTED) {
2818 /*
2819 * Lookup in the export list first.
2820 */
2821 if (nam != NULL) {
2822 saddr = nam;
2823 rnh = nep->ne_rtable[saddr->sa_family];
2824 if (rnh != NULL) {
2825 np = (struct netcred *)
2826 (*rnh->rnh_matchaddr)((caddr_t)saddr,
2827 rnh);
2828 if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2829 np = NULL;
2830 }
2831 }
2832 /*
2833 * If no address match, use the default if it exists.
2834 */
2835 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2836 np = &nep->ne_defexported;
2837 }
2838 return (np);
2839}
2840
2841/*
2842 * perform msync on all vnodes under a mount point. The mount point must
2843 * be locked. This code is also responsible for lazy-freeing unreferenced
2844 * vnodes whos VM objects no longer contain pages.
2845 *
2846 * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
2847 */
2848static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
2849static int vfs_msync_scan2(struct mount *mp, struct vnode *vp,
2850 lwkt_tokref_t vlock, void *data);
2851
2852void
2853vfs_msync(struct mount *mp, int flags)
2854{
2855 vmntvnodescan(mp, vfs_msync_scan1, vfs_msync_scan2, (void *)flags);
2856}
2857
2858/*
2859 * scan1 is a fast pre-check. There could be hundreds of thousands of
2860 * vnodes, we cannot afford to do anything heavy weight until we have a
2861 * fairly good indication that there is work to do.
2862 */
2863static
2864int
2865vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2866{
2867 int flags = (int)data;
2868
2869 if ((vp->v_flag & VXLOCK) == 0) {
2870 if (VSHOULDFREE(vp))
2871 return(0);
2872 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2873 (vp->v_flag & VOBJDIRTY) &&
2874 (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
2875 return(0);
2876 }
2877 }
2878 return(-1);
2879}
2880
2881static
2882int
2883vfs_msync_scan2(struct mount *mp, struct vnode *vp,
2884 lwkt_tokref_t vlock, void *data)
2885{
2886 vm_object_t obj;
2887 int error;
2888 int flags = (int)data;
2889
2890 if (vp->v_flag & VXLOCK)
2891 return(0);
2892
2893 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2894 (vp->v_flag & VOBJDIRTY) &&
2895 (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
2896 error = vget(vp, vlock, LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ | LK_INTERLOCK, curthread);
2897 if (error == 0) {
2898 if (VOP_GETVOBJECT(vp, &obj) == 0) {
2899 vm_object_page_clean(obj, 0, 0,
2900 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2901 }
2902 vput(vp);
2903 }
2904 return(0);
2905 }
2906 vmaybefree(vp);
2907 lwkt_reltoken(vlock);
2908 return(0);
2909}
2910
2911/*
2912 * Create the VM object needed for VMIO and mmap support. This
2913 * is done for all VREG files in the system. Some filesystems might
2914 * afford the additional metadata buffering capability of the
2915 * VMIO code by making the device node be VMIO mode also.
2916 *
2917 * vp must be locked when vfs_object_create is called.
2918 */
2919int
2920vfs_object_create(struct vnode *vp, struct thread *td)
2921{
2922 return (VOP_CREATEVOBJECT(vp, td));
2923}
2924
2925/*
2926 * NOTE: the vnode interlock must be held during the call. We have to recheck
2927 * the VFREE flag since the vnode may have been removed from the free list
2928 * while we were blocked on vnode_free_list_token. The use or hold count
2929 * must have already been bumped by the caller.
2930 */
2931static void
2932vbusy(struct vnode *vp)
2933{
2934 lwkt_tokref ilock;
2935
2936 lwkt_gettoken(&ilock, &vnode_free_list_token);
2937 if ((vp->v_flag & VFREE) != 0) {
2938 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2939 freevnodes--;
2940 vp->v_flag &= ~(VFREE|VAGE);
2941 }
2942 lwkt_reltoken(&ilock);
2943}
2944
2945/*
2946 * NOTE: the vnode interlock must be held during the call. The use or hold
2947 * count must have already been bumped by the caller. We use a VINFREE to
2948 * interlock against other calls to vfree() which might occur while we
2949 * are blocked. The vnode cannot be reused until it has actually been
2950 * placed on the free list, so there are no other races even though the
2951 * use and hold counts are 0.
2952 */
2953static void
2954vfree(struct vnode *vp)
2955{
2956 lwkt_tokref ilock;
2957
2958 if ((vp->v_flag & VINFREE) == 0) {
2959 vp->v_flag |= VINFREE;
2960 lwkt_gettoken(&ilock, &vnode_free_list_token); /* can block */
2961 KASSERT((vp->v_flag & VFREE) == 0, ("vnode already free"));
2962 if (vp->v_flag & VAGE) {
2963 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2964 } else {
2965 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2966 }
2967 freevnodes++;
2968 vp->v_flag &= ~(VAGE|VINFREE);
2969 vp->v_flag |= VFREE;
2970 lwkt_reltoken(&ilock); /* can block */
2971 }
2972}
2973
2974
2975/*
2976 * Record a process's interest in events which might happen to
2977 * a vnode. Because poll uses the historic select-style interface
2978 * internally, this routine serves as both the ``check for any
2979 * pending events'' and the ``record my interest in future events''
2980 * functions. (These are done together, while the lock is held,
2981 * to avoid race conditions.)
2982 */
2983int
2984vn_pollrecord(struct vnode *vp, struct thread *td, int events)
2985{
2986 lwkt_tokref ilock;
2987
2988 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
2989 if (vp->v_pollinfo.vpi_revents & events) {
2990 /*
2991 * This leaves events we are not interested
2992 * in available for the other process which
2993 * which presumably had requested them
2994 * (otherwise they would never have been
2995 * recorded).
2996 */
2997 events &= vp->v_pollinfo.vpi_revents;
2998 vp->v_pollinfo.vpi_revents &= ~events;
2999
3000 lwkt_reltoken(&ilock);
3001 return events;
3002 }
3003 vp->v_pollinfo.vpi_events |= events;
3004 selrecord(td, &vp->v_pollinfo.vpi_selinfo);
3005 lwkt_reltoken(&ilock);
3006 return 0;
3007}
3008
3009/*
3010 * Note the occurrence of an event. If the VN_POLLEVENT macro is used,
3011 * it is possible for us to miss an event due to race conditions, but
3012 * that condition is expected to be rare, so for the moment it is the
3013 * preferred interface.
3014 */
3015void
3016vn_pollevent(struct vnode *vp, int events)
3017{
3018 lwkt_tokref ilock;
3019
3020 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
3021 if (vp->v_pollinfo.vpi_events & events) {
3022 /*
3023 * We clear vpi_events so that we don't
3024 * call selwakeup() twice if two events are
3025 * posted before the polling process(es) is
3026 * awakened. This also ensures that we take at
3027 * most one selwakeup() if the polling process
3028 * is no longer interested. However, it does
3029 * mean that only one event can be noticed at
3030 * a time. (Perhaps we should only clear those
3031 * event bits which we note?) XXX
3032 */
3033 vp->v_pollinfo.vpi_events = 0; /* &= ~events ??? */
3034 vp->v_pollinfo.vpi_revents |= events;
3035 selwakeup(&vp->v_pollinfo.vpi_selinfo);
3036 }
3037 lwkt_reltoken(&ilock);
3038}
3039
3040/*
3041 * Wake up anyone polling on vp because it is being revoked.
3042 * This depends on dead_poll() returning POLLHUP for correct
3043 * behavior.
3044 */
3045void
3046vn_pollgone(struct vnode *vp)
3047{
3048 lwkt_tokref ilock;
3049
3050 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
3051 if (vp->v_pollinfo.vpi_events) {
3052 vp->v_pollinfo.vpi_events = 0;
3053 selwakeup(&vp->v_pollinfo.vpi_selinfo);
3054 }
3055 lwkt_reltoken(&ilock);
3056}
3057
3058
3059
3060/*
3061 * Routine to create and manage a filesystem syncer vnode.
3062 */
3063#define sync_close ((int (*) (struct vop_close_args *))nullop)
3064static int sync_fsync (struct vop_fsync_args *);
3065static int sync_inactive (struct vop_inactive_args *);
3066static int sync_reclaim (struct vop_reclaim_args *);
3067#define sync_lock ((int (*) (struct vop_lock_args *))vop_nolock)
3068#define sync_unlock ((int (*) (struct vop_unlock_args *))vop_nounlock)
3069static int sync_print (struct vop_print_args *);
3070#define sync_islocked ((int(*) (struct vop_islocked_args *))vop_noislocked)
3071
3072static vop_t **sync_vnodeop_p;
3073static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
3074 { &vop_default_desc, (vop_t *) vop_eopnotsupp },
3075 { &vop_close_desc, (vop_t *) sync_close }, /* close */
3076 { &vop_fsync_desc, (vop_t *) sync_fsync }, /* fsync */
3077 { &vop_inactive_desc, (vop_t *) sync_inactive }, /* inactive */
3078 { &vop_reclaim_desc, (vop_t *) sync_reclaim }, /* reclaim */
3079 { &vop_lock_desc, (vop_t *) sync_lock }, /* lock */
3080 { &vop_unlock_desc, (vop_t *) sync_unlock }, /* unlock */
3081 { &vop_print_desc, (vop_t *) sync_print }, /* print */
3082 { &vop_islocked_desc, (vop_t *) sync_islocked }, /* islocked */
3083 { NULL, NULL }
3084};
3085static struct vnodeopv_desc sync_vnodeop_opv_desc =
3086 { &sync_vnodeop_p, sync_vnodeop_entries };
3087
3088VNODEOP_SET(sync_vnodeop_opv_desc);
3089
3090/*
3091 * Create a new filesystem syncer vnode for the specified mount point.
3092 * This vnode is placed on the worklist and is responsible for sync'ing
3093 * the filesystem.
3094 *
3095 * NOTE: read-only mounts are also placed on the worklist. The filesystem
3096 * sync code is also responsible for cleaning up vnodes.
3097 */
3098int
3099vfs_allocate_syncvnode(struct mount *mp)
3100{
3101 struct vnode *vp;
3102 static long start, incr, next;
3103 int error;
3104
3105 /* Allocate a new vnode */
3106 if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
3107 mp->mnt_syncer = NULL;
3108 return (error);
3109 }
3110 vp->v_type = VNON;
3111 /*
3112 * Place the vnode onto the syncer worklist. We attempt to
3113 * scatter them about on the list so that they will go off
3114 * at evenly distributed times even if all the filesystems
3115 * are mounted at once.
3116 */
3117 next += incr;
3118 if (next == 0 || next > syncer_maxdelay) {
3119 start /= 2;
3120 incr /= 2;
3121 if (start == 0) {
3122 start = syncer_maxdelay / 2;
3123 incr = syncer_maxdelay;
3124 }
3125 next = start;
3126 }
3127 vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
3128 mp->mnt_syncer = vp;
3129 return (0);
3130}
3131
3132/*
3133 * Do a lazy sync of the filesystem.
3134 *
3135 * sync_fsync { struct vnode *a_vp, struct ucred *a_cred, int a_waitfor,
3136 * struct thread *a_td }
3137 */
3138static int
3139sync_fsync(struct vop_fsync_args *ap)
3140{
3141 struct vnode *syncvp = ap->a_vp;
3142 struct mount *mp = syncvp->v_mount;
3143 struct thread *td = ap->a_td;
3144 lwkt_tokref ilock;
3145 int asyncflag;
3146
3147 /*
3148 * We only need to do something if this is a lazy evaluation.
3149 */
3150 if (ap->a_waitfor != MNT_LAZY)
3151 return (0);
3152
3153 /*
3154 * Move ourselves to the back of the sync list.
3155 */
3156 vn_syncer_add_to_worklist(syncvp, syncdelay);
3157
3158 /*
3159 * Walk the list of vnodes pushing all that are dirty and
3160 * not already on the sync list, and freeing vnodes which have
3161 * no refs and whos VM objects are empty. vfs_msync() handles
3162 * the VM issues and must be called whether the mount is readonly
3163 * or not.
3164 */
3165 lwkt_gettoken(&ilock, &mountlist_token);
3166 if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &ilock, td) != 0) {
3167 lwkt_reltoken(&ilock);
3168 return (0);
3169 }
3170 if (mp->mnt_flag & MNT_RDONLY) {
3171 vfs_msync(mp, MNT_NOWAIT);
3172 } else {
3173 asyncflag = mp->mnt_flag & MNT_ASYNC;
3174 mp->mnt_flag &= ~MNT_ASYNC; /* ZZZ hack */
3175 vfs_msync(mp, MNT_NOWAIT);
3176 VFS_SYNC(mp, MNT_LAZY, td);
3177 if (asyncflag)
3178 mp->mnt_flag |= MNT_ASYNC;
3179 }
3180 vfs_unbusy(mp, td);
3181 return (0);
3182}
3183
3184/*
3185 * The syncer vnode is no referenced.
3186 *
3187 * sync_inactive { struct vnode *a_vp, struct proc *a_p }
3188 */
3189static int
3190sync_inactive(struct vop_inactive_args *ap)
3191{
3192 vgone(ap->a_vp);
3193 return (0);
3194}
3195
3196/*
3197 * The syncer vnode is no longer needed and is being decommissioned.
3198 *
3199 * Modifications to the worklist must be protected at splbio().
3200 *
3201 * sync_reclaim { struct vnode *a_vp }
3202 */
3203static int
3204sync_reclaim(struct vop_reclaim_args *ap)
3205{
3206 struct vnode *vp = ap->a_vp;
3207 int s;
3208
3209 s = splbio();
3210 vp->v_mount->mnt_syncer = NULL;
3211 if (vp->v_flag & VONWORKLST) {
3212 LIST_REMOVE(vp, v_synclist);
3213 vp->v_flag &= ~VONWORKLST;
3214 }
3215 splx(s);
3216
3217 return (0);
3218}
3219
3220/*
3221 * Print out a syncer vnode.
3222 *
3223 * sync_print { struct vnode *a_vp }
3224 */
3225static int
3226sync_print(struct vop_print_args *ap)
3227{
3228 struct vnode *vp = ap->a_vp;
3229
3230 printf("syncer vnode");
3231 if (vp->v_vnlock != NULL)
3232 lockmgr_printinfo(vp->v_vnlock);
3233 printf("\n");
3234 return (0);
3235}
3236
3237/*
3238 * extract the dev_t from a VBLK or VCHR. The vnode must have been opened
3239 * (or v_rdev might be NULL).
3240 */
3241dev_t
3242vn_todev(struct vnode *vp)
3243{
3244 if (vp->v_type != VBLK && vp->v_type != VCHR)
3245 return (NODEV);
3246 KKASSERT(vp->v_rdev != NULL);
3247 return (vp->v_rdev);
3248}
3249
3250/*
3251 * Check if vnode represents a disk device. The vnode does not need to be
3252 * opened.
3253 */
3254int
3255vn_isdisk(struct vnode *vp, int *errp)
3256{
3257 dev_t dev;
3258
3259 if (vp->v_type != VBLK && vp->v_type != VCHR) {
3260 if (errp != NULL)
3261 *errp = ENOTBLK;
3262 return (0);
3263 }
3264
3265 if ((dev = vp->v_rdev) == NULL)
3266 dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
3267 if (dev == NULL || dev == NODEV) {
3268 if (errp != NULL)
3269 *errp = ENXIO;
3270 return (0);
3271 }
3272 if (dev_is_good(dev) == 0) {
3273 if (errp != NULL)
3274 *errp = ENXIO;
3275 return (0);
3276 }
3277 if ((dev_dflags(dev) & D_DISK) == 0) {
3278 if (errp != NULL)
3279 *errp = ENOTBLK;
3280 return (0);
3281 }
3282 if (errp != NULL)
3283 *errp = 0;
3284 return (1);
3285}
3286
3287void
3288NDFREE(struct nameidata *ndp, const uint flags)
3289{
3290 if (!(flags & NDF_NO_FREE_PNBUF) &&
3291 (ndp->ni_cnd.cn_flags & CNP_HASBUF)) {
3292 zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
3293 ndp->ni_cnd.cn_flags &= ~CNP_HASBUF;
3294 }
3295 if (!(flags & NDF_NO_DNCP_RELE) &&
3296 (ndp->ni_cnd.cn_flags & CNP_WANTDNCP) &&
3297 ndp->ni_dncp) {
3298 cache_drop(ndp->ni_dncp);
3299 ndp->ni_dncp = NULL;
3300 }
3301 if (!(flags & NDF_NO_NCP_RELE) &&
3302 (ndp->ni_cnd.cn_flags & CNP_WANTNCP) &&
3303 ndp->ni_ncp) {
3304 cache_drop(ndp->ni_ncp);
3305 ndp->ni_ncp = NULL;
3306 }
3307 if (!(flags & NDF_NO_DVP_UNLOCK) &&
3308 (ndp->ni_cnd.cn_flags & CNP_LOCKPARENT) &&
3309 ndp->ni_dvp != ndp->ni_vp) {
3310 VOP_UNLOCK(ndp->ni_dvp, NULL, 0, ndp->ni_cnd.cn_td);
3311 }
3312 if (!(flags & NDF_NO_DVP_RELE) &&
3313 (ndp->ni_cnd.cn_flags & (CNP_LOCKPARENT|CNP_WANTPARENT))) {
3314 vrele(ndp->ni_dvp);
3315 ndp->ni_dvp = NULL;
3316 }
3317 if (!(flags & NDF_NO_VP_UNLOCK) &&
3318 (ndp->ni_cnd.cn_flags & CNP_LOCKLEAF) && ndp->ni_vp) {
3319 VOP_UNLOCK(ndp->ni_vp, NULL, 0, ndp->ni_cnd.cn_td);
3320 }
3321 if (!(flags & NDF_NO_VP_RELE) &&
3322 ndp->ni_vp) {
3323 vrele(ndp->ni_vp);
3324 ndp->ni_vp = NULL;
3325 }
3326 if (!(flags & NDF_NO_STARTDIR_RELE) &&
3327 (ndp->ni_cnd.cn_flags & CNP_SAVESTART)) {
3328 vrele(ndp->ni_startdir);
3329 ndp->ni_startdir = NULL;
3330 }
3331}
3332
3333#ifdef DEBUG_VFS_LOCKS
3334
3335void
3336assert_vop_locked(struct vnode *vp, const char *str)
3337{
3338 if (vp && IS_LOCKING_VFS(vp) && !VOP_ISLOCKED(vp, NULL)) {
3339 panic("%s: %p is not locked shared but should be", str, vp);
3340 }
3341}
3342
3343void
3344assert_vop_unlocked(struct vnode *vp, const char *str)
3345{
3346 if (vp && IS_LOCKING_VFS(vp)) {
3347 if (VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE) {
3348 panic("%s: %p is locked but should not be", str, vp);
3349 }
3350 }
3351}
3352
3353#endif