kernel: Bring in safe(4), for SafeNet crypto accelerators.
[dragonfly.git] / sys / dev / crypto / safe / safe.c
... / ...
CommitLineData
1/*-
2 * Copyright (c) 2003 Sam Leffler, Errno Consulting
3 * Copyright (c) 2003 Global Technology Associates, Inc.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 * $FreeBSD: src/sys/dev/safe/safe.c,v 1.22 2011/06/12 23:33:08 delphij Exp $
28 */
29
30/*
31 * SafeNet SafeXcel-1141 hardware crypto accelerator
32 */
33#include "opt_safe.h"
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/proc.h>
38#include <sys/errno.h>
39#include <sys/malloc.h>
40#include <sys/kernel.h>
41#include <sys/mbuf.h>
42#include <sys/module.h>
43#include <sys/lock.h>
44#include <sys/sysctl.h>
45#include <sys/endian.h>
46
47#include <vm/vm.h>
48#include <vm/pmap.h>
49
50#include <sys/bus.h>
51#include <sys/rman.h>
52
53#include <crypto/sha1.h>
54#include <opencrypto/cryptodev.h>
55#include <opencrypto/cryptosoft.h>
56#include <sys/md5.h>
57#include <sys/random.h>
58#include <sys/kobj.h>
59
60#include "cryptodev_if.h"
61
62#include <bus/pci/pcivar.h>
63#include <bus/pci/pcireg.h>
64
65#ifdef SAFE_RNDTEST
66#include <dev/crypto/rndtest/rndtest.h>
67#endif
68#include <dev/crypto/safe/safereg.h>
69#include <dev/crypto/safe/safevar.h>
70
71#ifndef bswap32
72#define bswap32 NTOHL
73#endif
74
75/*
76 * Prototypes and count for the pci_device structure
77 */
78static int safe_probe(device_t);
79static int safe_attach(device_t);
80static int safe_detach(device_t);
81static int safe_suspend(device_t);
82static int safe_resume(device_t);
83static int safe_shutdown(device_t);
84
85static int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
86static int safe_freesession(device_t, u_int64_t);
87static int safe_process(device_t, struct cryptop *, int);
88
89static device_method_t safe_methods[] = {
90 /* Device interface */
91 DEVMETHOD(device_probe, safe_probe),
92 DEVMETHOD(device_attach, safe_attach),
93 DEVMETHOD(device_detach, safe_detach),
94 DEVMETHOD(device_suspend, safe_suspend),
95 DEVMETHOD(device_resume, safe_resume),
96 DEVMETHOD(device_shutdown, safe_shutdown),
97
98 /* bus interface */
99 DEVMETHOD(bus_print_child, bus_generic_print_child),
100 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
101
102 /* crypto device methods */
103 DEVMETHOD(cryptodev_newsession, safe_newsession),
104 DEVMETHOD(cryptodev_freesession,safe_freesession),
105 DEVMETHOD(cryptodev_process, safe_process),
106
107 { 0, 0 }
108};
109static driver_t safe_driver = {
110 "safe",
111 safe_methods,
112 sizeof (struct safe_softc)
113};
114static devclass_t safe_devclass;
115
116DRIVER_MODULE(safe, pci, safe_driver, safe_devclass, 0, 0);
117MODULE_DEPEND(safe, crypto, 1, 1, 1);
118#ifdef SAFE_RNDTEST
119MODULE_DEPEND(safe, rndtest, 1, 1, 1);
120#endif
121
122static void safe_intr(void *);
123static void safe_callback(struct safe_softc *, struct safe_ringentry *);
124static void safe_feed(struct safe_softc *, struct safe_ringentry *);
125static void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
126#ifndef SAFE_NO_RNG
127static void safe_rng_init(struct safe_softc *);
128static void safe_rng(void *);
129#endif /* SAFE_NO_RNG */
130static int safe_dma_malloc(struct safe_softc *, bus_size_t,
131 struct safe_dma_alloc *, int);
132#define safe_dma_sync(_dma, _flags) \
133 bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
134static void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
135static int safe_dmamap_aligned(const struct safe_operand *);
136static int safe_dmamap_uniform(const struct safe_operand *);
137
138static void safe_reset_board(struct safe_softc *);
139static void safe_init_board(struct safe_softc *);
140static void safe_init_pciregs(device_t dev);
141static void safe_cleanchip(struct safe_softc *);
142static void safe_totalreset(struct safe_softc *);
143
144static int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
145
146SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD, 0, "SafeNet driver parameters");
147
148#ifdef SAFE_DEBUG
149static void safe_dump_dmastatus(struct safe_softc *, const char *);
150static void safe_dump_ringstate(struct safe_softc *, const char *);
151static void safe_dump_intrstate(struct safe_softc *, const char *);
152static void safe_dump_request(struct safe_softc *, const char *,
153 struct safe_ringentry *);
154
155static struct safe_softc *safec; /* for use by hw.safe.dump */
156
157static int safe_debug = 0;
158SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
159 0, "control debugging msgs");
160#define DPRINTF(_x) if (safe_debug) kprintf _x
161#else
162#define DPRINTF(_x)
163#endif
164
165#define READ_REG(sc,r) \
166 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
167
168#define WRITE_REG(sc,reg,val) \
169 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
170
171struct safe_stats safestats;
172SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
173 safe_stats, "driver statistics");
174#ifndef SAFE_NO_RNG
175static int safe_rnginterval = 1; /* poll once a second */
176SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
177 0, "RNG polling interval (secs)");
178static int safe_rngbufsize = 16; /* 64 bytes each poll */
179SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
180 0, "RNG polling buffer size (32-bit words)");
181static int safe_rngmaxalarm = 8; /* max alarms before reset */
182SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
183 0, "RNG max alarms before reset");
184#endif /* SAFE_NO_RNG */
185
186static int
187safe_probe(device_t dev)
188{
189 if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
190 pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
191 return (BUS_PROBE_DEFAULT);
192 return (ENXIO);
193}
194
195static const char*
196safe_partname(struct safe_softc *sc)
197{
198 /* XXX sprintf numbers when not decoded */
199 switch (pci_get_vendor(sc->sc_dev)) {
200 case PCI_VENDOR_SAFENET:
201 switch (pci_get_device(sc->sc_dev)) {
202 case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
203 }
204 return "SafeNet unknown-part";
205 }
206 return "Unknown-vendor unknown-part";
207}
208
209#ifndef SAFE_NO_RNG
210static void
211default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
212{
213 uint32_t *p = (uint32_t *)buf;
214
215 for (count /= sizeof(uint32_t); count; count--)
216 add_true_randomness(*p++);
217}
218#endif /* SAFE_NO_RNG */
219
220static int
221safe_attach(device_t dev)
222{
223 struct safe_softc *sc = device_get_softc(dev);
224 u_int32_t raddr;
225 u_int32_t cmd, i, devinfo;
226 int rid;
227
228 bzero(sc, sizeof (*sc));
229 sc->sc_dev = dev;
230
231 /* XXX handle power management */
232
233 cmd = pci_read_config(dev, PCIR_COMMAND, 4);
234 cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
235 pci_write_config(dev, PCIR_COMMAND, cmd, 4);
236 cmd = pci_read_config(dev, PCIR_COMMAND, 4);
237
238 if (!(cmd & PCIM_CMD_MEMEN)) {
239 device_printf(dev, "failed to enable memory mapping\n");
240 goto bad;
241 }
242
243 if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
244 device_printf(dev, "failed to enable bus mastering\n");
245 goto bad;
246 }
247
248 /*
249 * Setup memory-mapping of PCI registers.
250 */
251 rid = BS_BAR;
252 sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
253 RF_ACTIVE);
254 if (sc->sc_sr == NULL) {
255 device_printf(dev, "cannot map register space\n");
256 goto bad;
257 }
258 sc->sc_st = rman_get_bustag(sc->sc_sr);
259 sc->sc_sh = rman_get_bushandle(sc->sc_sr);
260
261 /*
262 * Arrange interrupt line.
263 */
264 rid = 0;
265 sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
266 RF_SHAREABLE|RF_ACTIVE);
267 if (sc->sc_irq == NULL) {
268 device_printf(dev, "could not map interrupt\n");
269 goto bad1;
270 }
271 /*
272 * NB: Network code assumes we are blocked with splimp()
273 * so make sure the IRQ is mapped appropriately.
274 */
275 if (bus_setup_intr(dev, sc->sc_irq, INTR_MPSAFE,
276 safe_intr, sc, &sc->sc_ih, NULL)) {
277 device_printf(dev, "could not establish interrupt\n");
278 goto bad2;
279 }
280
281 sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
282 if (sc->sc_cid < 0) {
283 device_printf(dev, "could not get crypto driver id\n");
284 goto bad3;
285 }
286
287 sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
288 (SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
289
290 /*
291 * Setup DMA descriptor area.
292 */
293 if (bus_dma_tag_create(NULL, /* parent */
294 1, /* alignment */
295 SAFE_DMA_BOUNDARY, /* boundary */
296 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
297 BUS_SPACE_MAXADDR, /* highaddr */
298 NULL, NULL, /* filter, filterarg */
299 SAFE_MAX_DMA, /* maxsize */
300 SAFE_MAX_PART, /* nsegments */
301 SAFE_MAX_SSIZE, /* maxsegsize */
302 BUS_DMA_ALLOCNOW, /* flags */
303 &sc->sc_srcdmat)) {
304 device_printf(dev, "cannot allocate DMA tag\n");
305 goto bad4;
306 }
307 if (bus_dma_tag_create(NULL, /* parent */
308 1, /* alignment */
309 SAFE_MAX_DSIZE, /* boundary */
310 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
311 BUS_SPACE_MAXADDR, /* highaddr */
312 NULL, NULL, /* filter, filterarg */
313 SAFE_MAX_DMA, /* maxsize */
314 SAFE_MAX_PART, /* nsegments */
315 SAFE_MAX_DSIZE, /* maxsegsize */
316 BUS_DMA_ALLOCNOW, /* flags */
317 &sc->sc_dstdmat)) {
318 device_printf(dev, "cannot allocate DMA tag\n");
319 goto bad4;
320 }
321
322 /*
323 * Allocate packet engine descriptors.
324 */
325 if (safe_dma_malloc(sc,
326 SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
327 &sc->sc_ringalloc, 0)) {
328 device_printf(dev, "cannot allocate PE descriptor ring\n");
329 bus_dma_tag_destroy(sc->sc_srcdmat);
330 goto bad4;
331 }
332 /*
333 * Hookup the static portion of all our data structures.
334 */
335 sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
336 sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
337 sc->sc_front = sc->sc_ring;
338 sc->sc_back = sc->sc_ring;
339 raddr = sc->sc_ringalloc.dma_paddr;
340 bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
341 for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
342 struct safe_ringentry *re = &sc->sc_ring[i];
343
344 re->re_desc.d_sa = raddr +
345 offsetof(struct safe_ringentry, re_sa);
346 re->re_sa.sa_staterec = raddr +
347 offsetof(struct safe_ringentry, re_sastate);
348
349 raddr += sizeof (struct safe_ringentry);
350 }
351 lockinit(&sc->sc_ringlock, "packet engine ring", 0, LK_CANRECURSE);
352
353 /*
354 * Allocate scatter and gather particle descriptors.
355 */
356 if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
357 &sc->sc_spalloc, 0)) {
358 device_printf(dev, "cannot allocate source particle "
359 "descriptor ring\n");
360 lockuninit(&sc->sc_ringlock);
361 safe_dma_free(sc, &sc->sc_ringalloc);
362 bus_dma_tag_destroy(sc->sc_srcdmat);
363 goto bad4;
364 }
365 sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
366 sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
367 sc->sc_spfree = sc->sc_spring;
368 bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
369
370 if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
371 &sc->sc_dpalloc, 0)) {
372 device_printf(dev, "cannot allocate destination particle "
373 "descriptor ring\n");
374 lockuninit(&sc->sc_ringlock);
375 safe_dma_free(sc, &sc->sc_spalloc);
376 safe_dma_free(sc, &sc->sc_ringalloc);
377 bus_dma_tag_destroy(sc->sc_dstdmat);
378 goto bad4;
379 }
380 sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
381 sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
382 sc->sc_dpfree = sc->sc_dpring;
383 bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
384
385 device_printf(sc->sc_dev, "%s", safe_partname(sc));
386
387 devinfo = READ_REG(sc, SAFE_DEVINFO);
388 if (devinfo & SAFE_DEVINFO_RNG) {
389 sc->sc_flags |= SAFE_FLAGS_RNG;
390 kprintf(" rng");
391 }
392 if (devinfo & SAFE_DEVINFO_PKEY) {
393#if 0
394 kprintf(" key");
395 sc->sc_flags |= SAFE_FLAGS_KEY;
396 crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
397 crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
398#endif
399 }
400 if (devinfo & SAFE_DEVINFO_DES) {
401 kprintf(" des/3des");
402 crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
403 crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
404 }
405 if (devinfo & SAFE_DEVINFO_AES) {
406 kprintf(" aes");
407 crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
408 }
409 if (devinfo & SAFE_DEVINFO_MD5) {
410 kprintf(" md5");
411 crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
412 }
413 if (devinfo & SAFE_DEVINFO_SHA1) {
414 kprintf(" sha1");
415 crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
416 }
417 kprintf(" null");
418 crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
419 crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
420 /* XXX other supported algorithms */
421 kprintf("\n");
422
423 safe_reset_board(sc); /* reset h/w */
424 safe_init_pciregs(dev); /* init pci settings */
425 safe_init_board(sc); /* init h/w */
426
427#ifndef SAFE_NO_RNG
428 if (sc->sc_flags & SAFE_FLAGS_RNG) {
429#ifdef SAFE_RNDTEST
430 sc->sc_rndtest = rndtest_attach(dev);
431 if (sc->sc_rndtest)
432 sc->sc_harvest = rndtest_harvest;
433 else
434 sc->sc_harvest = default_harvest;
435#else
436 sc->sc_harvest = default_harvest;
437#endif
438 safe_rng_init(sc);
439
440 callout_init_mp(&sc->sc_rngto);
441 callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
442 }
443#endif /* SAFE_NO_RNG */
444#ifdef SAFE_DEBUG
445 safec = sc; /* for use by hw.safe.dump */
446#endif
447 return (0);
448bad4:
449 crypto_unregister_all(sc->sc_cid);
450bad3:
451 bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
452bad2:
453 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
454bad1:
455 bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
456bad:
457 return (ENXIO);
458}
459
460/*
461 * Detach a device that successfully probed.
462 */
463static int
464safe_detach(device_t dev)
465{
466 struct safe_softc *sc = device_get_softc(dev);
467
468 /* XXX wait/abort active ops */
469
470 WRITE_REG(sc, SAFE_HI_MASK, 0); /* disable interrupts */
471
472 callout_stop(&sc->sc_rngto);
473
474 crypto_unregister_all(sc->sc_cid);
475
476#ifdef SAFE_RNDTEST
477 if (sc->sc_rndtest)
478 rndtest_detach(sc->sc_rndtest);
479#endif
480
481 safe_cleanchip(sc);
482 safe_dma_free(sc, &sc->sc_dpalloc);
483 safe_dma_free(sc, &sc->sc_spalloc);
484 lockuninit(&sc->sc_ringlock);
485 safe_dma_free(sc, &sc->sc_ringalloc);
486
487 bus_generic_detach(dev);
488 bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
489 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
490
491 bus_dma_tag_destroy(sc->sc_srcdmat);
492 bus_dma_tag_destroy(sc->sc_dstdmat);
493 bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
494
495 return (0);
496}
497
498/*
499 * Stop all chip i/o so that the kernel's probe routines don't
500 * get confused by errant DMAs when rebooting.
501 */
502static int
503safe_shutdown(device_t dev)
504{
505#ifdef notyet
506 safe_stop(device_get_softc(dev));
507#endif
508 return (0);
509}
510
511/*
512 * Device suspend routine.
513 */
514static int
515safe_suspend(device_t dev)
516{
517 struct safe_softc *sc = device_get_softc(dev);
518
519#ifdef notyet
520 /* XXX stop the device and save PCI settings */
521#endif
522 sc->sc_suspended = 1;
523
524 return (0);
525}
526
527static int
528safe_resume(device_t dev)
529{
530 struct safe_softc *sc = device_get_softc(dev);
531
532#ifdef notyet
533 /* XXX retore PCI settings and start the device */
534#endif
535 sc->sc_suspended = 0;
536 return (0);
537}
538
539/*
540 * SafeXcel Interrupt routine
541 */
542static void
543safe_intr(void *arg)
544{
545 struct safe_softc *sc = arg;
546 volatile u_int32_t stat;
547
548 stat = READ_REG(sc, SAFE_HM_STAT);
549 if (stat == 0) /* shared irq, not for us */
550 return;
551
552 WRITE_REG(sc, SAFE_HI_CLR, stat); /* IACK */
553
554 if ((stat & SAFE_INT_PE_DDONE)) {
555 /*
556 * Descriptor(s) done; scan the ring and
557 * process completed operations.
558 */
559 lockmgr(&sc->sc_ringlock, LK_EXCLUSIVE);
560 while (sc->sc_back != sc->sc_front) {
561 struct safe_ringentry *re = sc->sc_back;
562#ifdef SAFE_DEBUG
563 if (safe_debug) {
564 safe_dump_ringstate(sc, __func__);
565 safe_dump_request(sc, __func__, re);
566 }
567#endif
568 /*
569 * safe_process marks ring entries that were allocated
570 * but not used with a csr of zero. This insures the
571 * ring front pointer never needs to be set backwards
572 * in the event that an entry is allocated but not used
573 * because of a setup error.
574 */
575 if (re->re_desc.d_csr != 0) {
576 if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
577 break;
578 if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
579 break;
580 sc->sc_nqchip--;
581 safe_callback(sc, re);
582 }
583 if (++(sc->sc_back) == sc->sc_ringtop)
584 sc->sc_back = sc->sc_ring;
585 }
586 lockmgr(&sc->sc_ringlock, LK_RELEASE);
587 }
588
589 /*
590 * Check to see if we got any DMA Error
591 */
592 if (stat & SAFE_INT_PE_ERROR) {
593 DPRINTF(("dmaerr dmastat %08x\n",
594 READ_REG(sc, SAFE_PE_DMASTAT)));
595 safestats.st_dmaerr++;
596 safe_totalreset(sc);
597#if 0
598 safe_feed(sc);
599#endif
600 }
601
602 if (sc->sc_needwakeup) { /* XXX check high watermark */
603 int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
604 DPRINTF(("%s: wakeup crypto %x\n", __func__,
605 sc->sc_needwakeup));
606 sc->sc_needwakeup &= ~wakeup;
607 crypto_unblock(sc->sc_cid, wakeup);
608 }
609}
610
611/*
612 * safe_feed() - post a request to chip
613 */
614static void
615safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
616{
617 bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
618 if (re->re_dst_map != NULL)
619 bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
620 BUS_DMASYNC_PREREAD);
621 /* XXX have no smaller granularity */
622 safe_dma_sync(&sc->sc_ringalloc,
623 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
624 safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
625 safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
626
627#ifdef SAFE_DEBUG
628 if (safe_debug) {
629 safe_dump_ringstate(sc, __func__);
630 safe_dump_request(sc, __func__, re);
631 }
632#endif
633 sc->sc_nqchip++;
634 if (sc->sc_nqchip > safestats.st_maxqchip)
635 safestats.st_maxqchip = sc->sc_nqchip;
636 /* poke h/w to check descriptor ring, any value can be written */
637 WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
638}
639
640#define N(a) (sizeof(a) / sizeof (a[0]))
641static void
642safe_setup_enckey(struct safe_session *ses, caddr_t key)
643{
644 int i;
645
646 bcopy(key, ses->ses_key, ses->ses_klen / 8);
647
648 /* PE is little-endian, insure proper byte order */
649 for (i = 0; i < N(ses->ses_key); i++)
650 ses->ses_key[i] = htole32(ses->ses_key[i]);
651}
652
653static void
654safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
655{
656 MD5_CTX md5ctx;
657 SHA1_CTX sha1ctx;
658 int i;
659
660
661 for (i = 0; i < klen; i++)
662 key[i] ^= HMAC_IPAD_VAL;
663
664 if (algo == CRYPTO_MD5_HMAC) {
665 MD5Init(&md5ctx);
666 MD5Update(&md5ctx, key, klen);
667 MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
668 bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
669 } else {
670 SHA1Init(&sha1ctx);
671 SHA1Update(&sha1ctx, key, klen);
672 SHA1Update(&sha1ctx, hmac_ipad_buffer,
673 SHA1_HMAC_BLOCK_LEN - klen);
674 bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
675 }
676
677 for (i = 0; i < klen; i++)
678 key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
679
680 if (algo == CRYPTO_MD5_HMAC) {
681 MD5Init(&md5ctx);
682 MD5Update(&md5ctx, key, klen);
683 MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
684 bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
685 } else {
686 SHA1Init(&sha1ctx);
687 SHA1Update(&sha1ctx, key, klen);
688 SHA1Update(&sha1ctx, hmac_opad_buffer,
689 SHA1_HMAC_BLOCK_LEN - klen);
690 bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
691 }
692
693 for (i = 0; i < klen; i++)
694 key[i] ^= HMAC_OPAD_VAL;
695
696 /* PE is little-endian, insure proper byte order */
697 for (i = 0; i < N(ses->ses_hminner); i++) {
698 ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
699 ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
700 }
701}
702#undef N
703
704/*
705 * Allocate a new 'session' and return an encoded session id. 'sidp'
706 * contains our registration id, and should contain an encoded session
707 * id on successful allocation.
708 */
709static int
710safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
711{
712 struct safe_softc *sc = device_get_softc(dev);
713 struct cryptoini *c, *encini = NULL, *macini = NULL;
714 struct safe_session *ses = NULL;
715 int sesn;
716
717 if (sidp == NULL || cri == NULL || sc == NULL)
718 return (EINVAL);
719
720 for (c = cri; c != NULL; c = c->cri_next) {
721 if (c->cri_alg == CRYPTO_MD5_HMAC ||
722 c->cri_alg == CRYPTO_SHA1_HMAC ||
723 c->cri_alg == CRYPTO_NULL_HMAC) {
724 if (macini)
725 return (EINVAL);
726 macini = c;
727 } else if (c->cri_alg == CRYPTO_DES_CBC ||
728 c->cri_alg == CRYPTO_3DES_CBC ||
729 c->cri_alg == CRYPTO_AES_CBC ||
730 c->cri_alg == CRYPTO_NULL_CBC) {
731 if (encini)
732 return (EINVAL);
733 encini = c;
734 } else
735 return (EINVAL);
736 }
737 if (encini == NULL && macini == NULL)
738 return (EINVAL);
739 if (encini) { /* validate key length */
740 switch (encini->cri_alg) {
741 case CRYPTO_DES_CBC:
742 if (encini->cri_klen != 64)
743 return (EINVAL);
744 break;
745 case CRYPTO_3DES_CBC:
746 if (encini->cri_klen != 192)
747 return (EINVAL);
748 break;
749 case CRYPTO_AES_CBC:
750 if (encini->cri_klen != 128 &&
751 encini->cri_klen != 192 &&
752 encini->cri_klen != 256)
753 return (EINVAL);
754 break;
755 }
756 }
757
758 if (sc->sc_sessions == NULL) {
759 ses = sc->sc_sessions = (struct safe_session *)kmalloc(
760 sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
761 if (ses == NULL)
762 return (ENOMEM);
763 sesn = 0;
764 sc->sc_nsessions = 1;
765 } else {
766 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
767 if (sc->sc_sessions[sesn].ses_used == 0) {
768 ses = &sc->sc_sessions[sesn];
769 break;
770 }
771 }
772
773 if (ses == NULL) {
774 sesn = sc->sc_nsessions;
775 ses = (struct safe_session *)kmalloc((sesn + 1) *
776 sizeof(struct safe_session), M_DEVBUF, M_NOWAIT);
777 if (ses == NULL)
778 return (ENOMEM);
779 bcopy(sc->sc_sessions, ses, sesn *
780 sizeof(struct safe_session));
781 bzero(sc->sc_sessions, sesn *
782 sizeof(struct safe_session));
783 kfree(sc->sc_sessions, M_DEVBUF);
784 sc->sc_sessions = ses;
785 ses = &sc->sc_sessions[sesn];
786 sc->sc_nsessions++;
787 }
788 }
789
790 bzero(ses, sizeof(struct safe_session));
791 ses->ses_used = 1;
792
793 if (encini) {
794 /* get an IV */
795 /* XXX may read fewer than requested */
796 read_random(ses->ses_iv, sizeof(ses->ses_iv));
797
798 ses->ses_klen = encini->cri_klen;
799 if (encini->cri_key != NULL)
800 safe_setup_enckey(ses, encini->cri_key);
801 }
802
803 if (macini) {
804 ses->ses_mlen = macini->cri_mlen;
805 if (ses->ses_mlen == 0) {
806 if (macini->cri_alg == CRYPTO_MD5_HMAC)
807 ses->ses_mlen = MD5_HASH_LEN;
808 else
809 ses->ses_mlen = SHA1_HASH_LEN;
810 }
811
812 if (macini->cri_key != NULL) {
813 safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
814 macini->cri_klen / 8);
815 }
816 }
817
818 *sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
819 return (0);
820}
821
822/*
823 * Deallocate a session.
824 */
825static int
826safe_freesession(device_t dev, u_int64_t tid)
827{
828 struct safe_softc *sc = device_get_softc(dev);
829 int session, ret;
830 u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
831
832 if (sc == NULL)
833 return (EINVAL);
834
835 session = SAFE_SESSION(sid);
836 if (session < sc->sc_nsessions) {
837 bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
838 ret = 0;
839 } else
840 ret = EINVAL;
841 return (ret);
842}
843
844static void
845safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
846{
847 struct safe_operand *op = arg;
848
849 DPRINTF(("%s: mapsize %u nsegs %d error %d\n", __func__,
850 (u_int) mapsize, nsegs, error));
851 if (error != 0)
852 return;
853 op->mapsize = mapsize;
854 op->nsegs = nsegs;
855 bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
856}
857
858static int
859safe_process(device_t dev, struct cryptop *crp, int hint)
860{
861 struct safe_softc *sc = device_get_softc(dev);
862 int err = 0, i, nicealign, uniform;
863 struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
864 int bypass, oplen, ivsize;
865 caddr_t iv;
866 int16_t coffset;
867 struct safe_session *ses;
868 struct safe_ringentry *re;
869 struct safe_sarec *sa;
870 struct safe_pdesc *pd;
871 u_int32_t cmd0, cmd1, staterec;
872
873 if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
874 safestats.st_invalid++;
875 return (EINVAL);
876 }
877 if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
878 safestats.st_badsession++;
879 return (EINVAL);
880 }
881
882 lockmgr(&sc->sc_ringlock, LK_EXCLUSIVE);
883 if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
884 safestats.st_ringfull++;
885 sc->sc_needwakeup |= CRYPTO_SYMQ;
886 lockmgr(&sc->sc_ringlock, LK_RELEASE);
887 return (ERESTART);
888 }
889 re = sc->sc_front;
890
891 staterec = re->re_sa.sa_staterec; /* save */
892 /* NB: zero everything but the PE descriptor */
893 bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
894 re->re_sa.sa_staterec = staterec; /* restore */
895
896 re->re_crp = crp;
897 re->re_sesn = SAFE_SESSION(crp->crp_sid);
898
899 if (crp->crp_flags & CRYPTO_F_IMBUF) {
900 re->re_src_m = (struct mbuf *)crp->crp_buf;
901 re->re_dst_m = (struct mbuf *)crp->crp_buf;
902 } else if (crp->crp_flags & CRYPTO_F_IOV) {
903 re->re_src_io = (struct uio *)crp->crp_buf;
904 re->re_dst_io = (struct uio *)crp->crp_buf;
905 } else {
906 safestats.st_badflags++;
907 err = EINVAL;
908 goto errout; /* XXX we don't handle contiguous blocks! */
909 }
910
911 sa = &re->re_sa;
912 ses = &sc->sc_sessions[re->re_sesn];
913
914 crd1 = crp->crp_desc;
915 if (crd1 == NULL) {
916 safestats.st_nodesc++;
917 err = EINVAL;
918 goto errout;
919 }
920 crd2 = crd1->crd_next;
921
922 cmd0 = SAFE_SA_CMD0_BASIC; /* basic group operation */
923 cmd1 = 0;
924 if (crd2 == NULL) {
925 if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
926 crd1->crd_alg == CRYPTO_SHA1_HMAC ||
927 crd1->crd_alg == CRYPTO_NULL_HMAC) {
928 maccrd = crd1;
929 enccrd = NULL;
930 cmd0 |= SAFE_SA_CMD0_OP_HASH;
931 } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
932 crd1->crd_alg == CRYPTO_3DES_CBC ||
933 crd1->crd_alg == CRYPTO_AES_CBC ||
934 crd1->crd_alg == CRYPTO_NULL_CBC) {
935 maccrd = NULL;
936 enccrd = crd1;
937 cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
938 } else {
939 safestats.st_badalg++;
940 err = EINVAL;
941 goto errout;
942 }
943 } else {
944 if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
945 crd1->crd_alg == CRYPTO_SHA1_HMAC ||
946 crd1->crd_alg == CRYPTO_NULL_HMAC) &&
947 (crd2->crd_alg == CRYPTO_DES_CBC ||
948 crd2->crd_alg == CRYPTO_3DES_CBC ||
949 crd2->crd_alg == CRYPTO_AES_CBC ||
950 crd2->crd_alg == CRYPTO_NULL_CBC) &&
951 ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
952 maccrd = crd1;
953 enccrd = crd2;
954 } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
955 crd1->crd_alg == CRYPTO_3DES_CBC ||
956 crd1->crd_alg == CRYPTO_AES_CBC ||
957 crd1->crd_alg == CRYPTO_NULL_CBC) &&
958 (crd2->crd_alg == CRYPTO_MD5_HMAC ||
959 crd2->crd_alg == CRYPTO_SHA1_HMAC ||
960 crd2->crd_alg == CRYPTO_NULL_HMAC) &&
961 (crd1->crd_flags & CRD_F_ENCRYPT)) {
962 enccrd = crd1;
963 maccrd = crd2;
964 } else {
965 safestats.st_badalg++;
966 err = EINVAL;
967 goto errout;
968 }
969 cmd0 |= SAFE_SA_CMD0_OP_BOTH;
970 }
971
972 if (enccrd) {
973 if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
974 safe_setup_enckey(ses, enccrd->crd_key);
975
976 if (enccrd->crd_alg == CRYPTO_DES_CBC) {
977 cmd0 |= SAFE_SA_CMD0_DES;
978 cmd1 |= SAFE_SA_CMD1_CBC;
979 ivsize = 2*sizeof(u_int32_t);
980 } else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
981 cmd0 |= SAFE_SA_CMD0_3DES;
982 cmd1 |= SAFE_SA_CMD1_CBC;
983 ivsize = 2*sizeof(u_int32_t);
984 } else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
985 cmd0 |= SAFE_SA_CMD0_AES;
986 cmd1 |= SAFE_SA_CMD1_CBC;
987 if (ses->ses_klen == 128)
988 cmd1 |= SAFE_SA_CMD1_AES128;
989 else if (ses->ses_klen == 192)
990 cmd1 |= SAFE_SA_CMD1_AES192;
991 else
992 cmd1 |= SAFE_SA_CMD1_AES256;
993 ivsize = 4*sizeof(u_int32_t);
994 } else {
995 cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
996 ivsize = 0;
997 }
998
999 /*
1000 * Setup encrypt/decrypt state. When using basic ops
1001 * we can't use an inline IV because hash/crypt offset
1002 * must be from the end of the IV to the start of the
1003 * crypt data and this leaves out the preceding header
1004 * from the hash calculation. Instead we place the IV
1005 * in the state record and set the hash/crypt offset to
1006 * copy both the header+IV.
1007 */
1008 if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1009 cmd0 |= SAFE_SA_CMD0_OUTBOUND;
1010
1011 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1012 iv = enccrd->crd_iv;
1013 else
1014 iv = (caddr_t) ses->ses_iv;
1015 if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1016 crypto_copyback(crp->crp_flags, crp->crp_buf,
1017 enccrd->crd_inject, ivsize, iv);
1018 }
1019 bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
1020 cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
1021 re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
1022 } else {
1023 cmd0 |= SAFE_SA_CMD0_INBOUND;
1024
1025 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
1026 bcopy(enccrd->crd_iv,
1027 re->re_sastate.sa_saved_iv, ivsize);
1028 } else {
1029 crypto_copydata(crp->crp_flags, crp->crp_buf,
1030 enccrd->crd_inject, ivsize,
1031 (caddr_t)re->re_sastate.sa_saved_iv);
1032 }
1033 cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
1034 }
1035 /*
1036 * For basic encryption use the zero pad algorithm.
1037 * This pads results to an 8-byte boundary and
1038 * suppresses padding verification for inbound (i.e.
1039 * decrypt) operations.
1040 *
1041 * NB: Not sure if the 8-byte pad boundary is a problem.
1042 */
1043 cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
1044
1045 /* XXX assert key bufs have the same size */
1046 bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
1047 }
1048
1049 if (maccrd) {
1050 if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
1051 safe_setup_mackey(ses, maccrd->crd_alg,
1052 maccrd->crd_key, maccrd->crd_klen / 8);
1053 }
1054
1055 if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
1056 cmd0 |= SAFE_SA_CMD0_MD5;
1057 cmd1 |= SAFE_SA_CMD1_HMAC; /* NB: enable HMAC */
1058 } else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
1059 cmd0 |= SAFE_SA_CMD0_SHA1;
1060 cmd1 |= SAFE_SA_CMD1_HMAC; /* NB: enable HMAC */
1061 } else {
1062 cmd0 |= SAFE_SA_CMD0_HASH_NULL;
1063 }
1064 /*
1065 * Digest data is loaded from the SA and the hash
1066 * result is saved to the state block where we
1067 * retrieve it for return to the caller.
1068 */
1069 /* XXX assert digest bufs have the same size */
1070 bcopy(ses->ses_hminner, sa->sa_indigest,
1071 sizeof(sa->sa_indigest));
1072 bcopy(ses->ses_hmouter, sa->sa_outdigest,
1073 sizeof(sa->sa_outdigest));
1074
1075 cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
1076 re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
1077 }
1078
1079 if (enccrd && maccrd) {
1080 /*
1081 * The offset from hash data to the start of
1082 * crypt data is the difference in the skips.
1083 */
1084 bypass = maccrd->crd_skip;
1085 coffset = enccrd->crd_skip - maccrd->crd_skip;
1086 if (coffset < 0) {
1087 DPRINTF(("%s: hash does not precede crypt; "
1088 "mac skip %u enc skip %u\n",
1089 __func__, maccrd->crd_skip, enccrd->crd_skip));
1090 safestats.st_skipmismatch++;
1091 err = EINVAL;
1092 goto errout;
1093 }
1094 oplen = enccrd->crd_skip + enccrd->crd_len;
1095 if (maccrd->crd_skip + maccrd->crd_len != oplen) {
1096 DPRINTF(("%s: hash amount %u != crypt amount %u\n",
1097 __func__, maccrd->crd_skip + maccrd->crd_len,
1098 oplen));
1099 safestats.st_lenmismatch++;
1100 err = EINVAL;
1101 goto errout;
1102 }
1103#ifdef SAFE_DEBUG
1104 if (safe_debug) {
1105 kprintf("mac: skip %d, len %d, inject %d\n",
1106 maccrd->crd_skip, maccrd->crd_len,
1107 maccrd->crd_inject);
1108 kprintf("enc: skip %d, len %d, inject %d\n",
1109 enccrd->crd_skip, enccrd->crd_len,
1110 enccrd->crd_inject);
1111 kprintf("bypass %d coffset %d oplen %d\n",
1112 bypass, coffset, oplen);
1113 }
1114#endif
1115 if (coffset & 3) { /* offset must be 32-bit aligned */
1116 DPRINTF(("%s: coffset %u misaligned\n",
1117 __func__, coffset));
1118 safestats.st_coffmisaligned++;
1119 err = EINVAL;
1120 goto errout;
1121 }
1122 coffset >>= 2;
1123 if (coffset > 255) { /* offset must be <256 dwords */
1124 DPRINTF(("%s: coffset %u too big\n",
1125 __func__, coffset));
1126 safestats.st_cofftoobig++;
1127 err = EINVAL;
1128 goto errout;
1129 }
1130 /*
1131 * Tell the hardware to copy the header to the output.
1132 * The header is defined as the data from the end of
1133 * the bypass to the start of data to be encrypted.
1134 * Typically this is the inline IV. Note that you need
1135 * to do this even if src+dst are the same; it appears
1136 * that w/o this bit the crypted data is written
1137 * immediately after the bypass data.
1138 */
1139 cmd1 |= SAFE_SA_CMD1_HDRCOPY;
1140 /*
1141 * Disable IP header mutable bit handling. This is
1142 * needed to get correct HMAC calculations.
1143 */
1144 cmd1 |= SAFE_SA_CMD1_MUTABLE;
1145 } else {
1146 if (enccrd) {
1147 bypass = enccrd->crd_skip;
1148 oplen = bypass + enccrd->crd_len;
1149 } else {
1150 bypass = maccrd->crd_skip;
1151 oplen = bypass + maccrd->crd_len;
1152 }
1153 coffset = 0;
1154 }
1155 /* XXX verify multiple of 4 when using s/g */
1156 if (bypass > 96) { /* bypass offset must be <= 96 bytes */
1157 DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
1158 safestats.st_bypasstoobig++;
1159 err = EINVAL;
1160 goto errout;
1161 }
1162
1163 if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
1164 safestats.st_nomap++;
1165 err = ENOMEM;
1166 goto errout;
1167 }
1168 if (crp->crp_flags & CRYPTO_F_IMBUF) {
1169 if (bus_dmamap_load_mbuf(sc->sc_srcdmat, re->re_src_map,
1170 re->re_src_m, safe_op_cb,
1171 &re->re_src, BUS_DMA_NOWAIT) != 0) {
1172 bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1173 re->re_src_map = NULL;
1174 safestats.st_noload++;
1175 err = ENOMEM;
1176 goto errout;
1177 }
1178 } else if (crp->crp_flags & CRYPTO_F_IOV) {
1179 if (bus_dmamap_load_uio(sc->sc_srcdmat, re->re_src_map,
1180 re->re_src_io, safe_op_cb,
1181 &re->re_src, BUS_DMA_NOWAIT) != 0) {
1182 bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1183 re->re_src_map = NULL;
1184 safestats.st_noload++;
1185 err = ENOMEM;
1186 goto errout;
1187 }
1188 }
1189 nicealign = safe_dmamap_aligned(&re->re_src);
1190 uniform = safe_dmamap_uniform(&re->re_src);
1191
1192 DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
1193 nicealign, uniform, re->re_src.nsegs));
1194 if (re->re_src.nsegs > 1) {
1195 re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
1196 ((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
1197 for (i = 0; i < re->re_src_nsegs; i++) {
1198 /* NB: no need to check if there's space */
1199 pd = sc->sc_spfree;
1200 if (++(sc->sc_spfree) == sc->sc_springtop)
1201 sc->sc_spfree = sc->sc_spring;
1202
1203 KASSERT((pd->pd_flags&3) == 0 ||
1204 (pd->pd_flags&3) == SAFE_PD_DONE,
1205 ("bogus source particle descriptor; flags %x",
1206 pd->pd_flags));
1207 pd->pd_addr = re->re_src_segs[i].ds_addr;
1208 pd->pd_size = re->re_src_segs[i].ds_len;
1209 pd->pd_flags = SAFE_PD_READY;
1210 }
1211 cmd0 |= SAFE_SA_CMD0_IGATHER;
1212 } else {
1213 /*
1214 * No need for gather, reference the operand directly.
1215 */
1216 re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1217 }
1218
1219 if (enccrd == NULL && maccrd != NULL) {
1220 /*
1221 * Hash op; no destination needed.
1222 */
1223 } else {
1224 if (crp->crp_flags & CRYPTO_F_IOV) {
1225 if (!nicealign) {
1226 safestats.st_iovmisaligned++;
1227 err = EINVAL;
1228 goto errout;
1229 }
1230 if (uniform != 1) {
1231 /*
1232 * Source is not suitable for direct use as
1233 * the destination. Create a new scatter/gather
1234 * list based on the destination requirements
1235 * and check if that's ok.
1236 */
1237 if (bus_dmamap_create(sc->sc_dstdmat,
1238 BUS_DMA_NOWAIT, &re->re_dst_map)) {
1239 safestats.st_nomap++;
1240 err = ENOMEM;
1241 goto errout;
1242 }
1243 if (bus_dmamap_load_uio(sc->sc_dstdmat,
1244 re->re_dst_map, re->re_dst_io,
1245 safe_op_cb, &re->re_dst,
1246 BUS_DMA_NOWAIT) != 0) {
1247 bus_dmamap_destroy(sc->sc_dstdmat,
1248 re->re_dst_map);
1249 re->re_dst_map = NULL;
1250 safestats.st_noload++;
1251 err = ENOMEM;
1252 goto errout;
1253 }
1254 uniform = safe_dmamap_uniform(&re->re_dst);
1255 if (!uniform) {
1256 /*
1257 * There's no way to handle the DMA
1258 * requirements with this uio. We
1259 * could create a separate DMA area for
1260 * the result and then copy it back,
1261 * but for now we just bail and return
1262 * an error. Note that uio requests
1263 * > SAFE_MAX_DSIZE are handled because
1264 * the DMA map and segment list for the
1265 * destination wil result in a
1266 * destination particle list that does
1267 * the necessary scatter DMA.
1268 */
1269 safestats.st_iovnotuniform++;
1270 err = EINVAL;
1271 goto errout;
1272 }
1273 } else
1274 re->re_dst = re->re_src;
1275 } else if (crp->crp_flags & CRYPTO_F_IMBUF) {
1276 if (nicealign && uniform == 1) {
1277 /*
1278 * Source layout is suitable for direct
1279 * sharing of the DMA map and segment list.
1280 */
1281 re->re_dst = re->re_src;
1282 } else if (nicealign && uniform == 2) {
1283 /*
1284 * The source is properly aligned but requires a
1285 * different particle list to handle DMA of the
1286 * result. Create a new map and do the load to
1287 * create the segment list. The particle
1288 * descriptor setup code below will handle the
1289 * rest.
1290 */
1291 if (bus_dmamap_create(sc->sc_dstdmat,
1292 BUS_DMA_NOWAIT, &re->re_dst_map)) {
1293 safestats.st_nomap++;
1294 err = ENOMEM;
1295 goto errout;
1296 }
1297 if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1298 re->re_dst_map, re->re_dst_m,
1299 safe_op_cb, &re->re_dst,
1300 BUS_DMA_NOWAIT) != 0) {
1301 bus_dmamap_destroy(sc->sc_dstdmat,
1302 re->re_dst_map);
1303 re->re_dst_map = NULL;
1304 safestats.st_noload++;
1305 err = ENOMEM;
1306 goto errout;
1307 }
1308 } else { /* !(aligned and/or uniform) */
1309 int totlen, len;
1310 struct mbuf *m, *top, **mp;
1311
1312 /*
1313 * DMA constraints require that we allocate a
1314 * new mbuf chain for the destination. We
1315 * allocate an entire new set of mbufs of
1316 * optimal/required size and then tell the
1317 * hardware to copy any bits that are not
1318 * created as a byproduct of the operation.
1319 */
1320 if (!nicealign)
1321 safestats.st_unaligned++;
1322 if (!uniform)
1323 safestats.st_notuniform++;
1324 totlen = re->re_src_mapsize;
1325 if (re->re_src_m->m_flags & M_PKTHDR) {
1326 len = MHLEN;
1327 MGETHDR(m, MB_DONTWAIT, MT_DATA);
1328 if (m && !m_dup_pkthdr(m, re->re_src_m,
1329 MB_DONTWAIT)) {
1330 m_free(m);
1331 m = NULL;
1332 }
1333 } else {
1334 len = MLEN;
1335 MGET(m, MB_DONTWAIT, MT_DATA);
1336 }
1337 if (m == NULL) {
1338 safestats.st_nombuf++;
1339 err = sc->sc_nqchip ? ERESTART : ENOMEM;
1340 goto errout;
1341 }
1342 if (totlen >= MINCLSIZE) {
1343 MCLGET(m, MB_DONTWAIT);
1344 if ((m->m_flags & M_EXT) == 0) {
1345 m_free(m);
1346 safestats.st_nomcl++;
1347 err = sc->sc_nqchip ?
1348 ERESTART : ENOMEM;
1349 goto errout;
1350 }
1351 len = MCLBYTES;
1352 }
1353 m->m_len = len;
1354 top = NULL;
1355 mp = &top;
1356
1357 while (totlen > 0) {
1358 if (top) {
1359 MGET(m, MB_DONTWAIT, MT_DATA);
1360 if (m == NULL) {
1361 m_freem(top);
1362 safestats.st_nombuf++;
1363 err = sc->sc_nqchip ?
1364 ERESTART : ENOMEM;
1365 goto errout;
1366 }
1367 len = MLEN;
1368 }
1369 if (top && totlen >= MINCLSIZE) {
1370 MCLGET(m, MB_DONTWAIT);
1371 if ((m->m_flags & M_EXT) == 0) {
1372 *mp = m;
1373 m_freem(top);
1374 safestats.st_nomcl++;
1375 err = sc->sc_nqchip ?
1376 ERESTART : ENOMEM;
1377 goto errout;
1378 }
1379 len = MCLBYTES;
1380 }
1381 m->m_len = len = min(totlen, len);
1382 totlen -= len;
1383 *mp = m;
1384 mp = &m->m_next;
1385 }
1386 re->re_dst_m = top;
1387 if (bus_dmamap_create(sc->sc_dstdmat,
1388 BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1389 safestats.st_nomap++;
1390 err = ENOMEM;
1391 goto errout;
1392 }
1393 if (bus_dmamap_load_mbuf(sc->sc_dstdmat,
1394 re->re_dst_map, re->re_dst_m,
1395 safe_op_cb, &re->re_dst,
1396 BUS_DMA_NOWAIT) != 0) {
1397 bus_dmamap_destroy(sc->sc_dstdmat,
1398 re->re_dst_map);
1399 re->re_dst_map = NULL;
1400 safestats.st_noload++;
1401 err = ENOMEM;
1402 goto errout;
1403 }
1404 if (re->re_src.mapsize > oplen) {
1405 /*
1406 * There's data following what the
1407 * hardware will copy for us. If this
1408 * isn't just the ICV (that's going to
1409 * be written on completion), copy it
1410 * to the new mbufs
1411 */
1412 if (!(maccrd &&
1413 (re->re_src.mapsize-oplen) == 12 &&
1414 maccrd->crd_inject == oplen))
1415 safe_mcopy(re->re_src_m,
1416 re->re_dst_m,
1417 oplen);
1418 else
1419 safestats.st_noicvcopy++;
1420 }
1421 }
1422 } else {
1423 safestats.st_badflags++;
1424 err = EINVAL;
1425 goto errout;
1426 }
1427
1428 if (re->re_dst.nsegs > 1) {
1429 re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1430 ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1431 for (i = 0; i < re->re_dst_nsegs; i++) {
1432 pd = sc->sc_dpfree;
1433 KASSERT((pd->pd_flags&3) == 0 ||
1434 (pd->pd_flags&3) == SAFE_PD_DONE,
1435 ("bogus dest particle descriptor; flags %x",
1436 pd->pd_flags));
1437 if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1438 sc->sc_dpfree = sc->sc_dpring;
1439 pd->pd_addr = re->re_dst_segs[i].ds_addr;
1440 pd->pd_flags = SAFE_PD_READY;
1441 }
1442 cmd0 |= SAFE_SA_CMD0_OSCATTER;
1443 } else {
1444 /*
1445 * No need for scatter, reference the operand directly.
1446 */
1447 re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1448 }
1449 }
1450
1451 /*
1452 * All done with setup; fillin the SA command words
1453 * and the packet engine descriptor. The operation
1454 * is now ready for submission to the hardware.
1455 */
1456 sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1457 sa->sa_cmd1 = cmd1
1458 | (coffset << SAFE_SA_CMD1_OFFSET_S)
1459 | SAFE_SA_CMD1_SAREV1 /* Rev 1 SA data structure */
1460 | SAFE_SA_CMD1_SRPCI
1461 ;
1462 /*
1463 * NB: the order of writes is important here. In case the
1464 * chip is scanning the ring because of an outstanding request
1465 * it might nab this one too. In that case we need to make
1466 * sure the setup is complete before we write the length
1467 * field of the descriptor as it signals the descriptor is
1468 * ready for processing.
1469 */
1470 re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1471 if (maccrd)
1472 re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1473 re->re_desc.d_len = oplen
1474 | SAFE_PE_LEN_READY
1475 | (bypass << SAFE_PE_LEN_BYPASS_S)
1476 ;
1477
1478 safestats.st_ipackets++;
1479 safestats.st_ibytes += oplen;
1480
1481 if (++(sc->sc_front) == sc->sc_ringtop)
1482 sc->sc_front = sc->sc_ring;
1483
1484 /* XXX honor batching */
1485 safe_feed(sc, re);
1486 lockmgr(&sc->sc_ringlock, LK_RELEASE);
1487 return (0);
1488
1489errout:
1490 if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
1491 m_freem(re->re_dst_m);
1492
1493 if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1494 bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1495 bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1496 }
1497 if (re->re_src_map != NULL) {
1498 bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1499 bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1500 }
1501 lockmgr(&sc->sc_ringlock, LK_RELEASE);
1502 if (err != ERESTART) {
1503 crp->crp_etype = err;
1504 crypto_done(crp);
1505 } else {
1506 sc->sc_needwakeup |= CRYPTO_SYMQ;
1507 }
1508 return (err);
1509}
1510
1511static void
1512safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1513{
1514 struct cryptop *crp = (struct cryptop *)re->re_crp;
1515 struct cryptodesc *crd;
1516
1517 safestats.st_opackets++;
1518 safestats.st_obytes += re->re_dst.mapsize;
1519
1520 safe_dma_sync(&sc->sc_ringalloc,
1521 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1522 if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1523 device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1524 re->re_desc.d_csr,
1525 re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1526 safestats.st_peoperr++;
1527 crp->crp_etype = EIO; /* something more meaningful? */
1528 }
1529 if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1530 bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1531 BUS_DMASYNC_POSTREAD);
1532 bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1533 bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1534 }
1535 bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1536 bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1537 bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1538
1539 /*
1540 * If result was written to a differet mbuf chain, swap
1541 * it in as the return value and reclaim the original.
1542 */
1543 if ((crp->crp_flags & CRYPTO_F_IMBUF) && re->re_src_m != re->re_dst_m) {
1544 m_freem(re->re_src_m);
1545 crp->crp_buf = (caddr_t)re->re_dst_m;
1546 }
1547
1548 if (re->re_flags & SAFE_QFLAGS_COPYOUTIV) {
1549 /* copy out IV for future use */
1550 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1551 int ivsize;
1552
1553 if (crd->crd_alg == CRYPTO_DES_CBC ||
1554 crd->crd_alg == CRYPTO_3DES_CBC) {
1555 ivsize = 2*sizeof(u_int32_t);
1556 } else if (crd->crd_alg == CRYPTO_AES_CBC) {
1557 ivsize = 4*sizeof(u_int32_t);
1558 } else
1559 continue;
1560 crypto_copydata(crp->crp_flags, crp->crp_buf,
1561 crd->crd_skip + crd->crd_len - ivsize, ivsize,
1562 (caddr_t)sc->sc_sessions[re->re_sesn].ses_iv);
1563 break;
1564 }
1565 }
1566
1567 if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1568 /* copy out ICV result */
1569 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1570 if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
1571 crd->crd_alg == CRYPTO_SHA1_HMAC ||
1572 crd->crd_alg == CRYPTO_NULL_HMAC))
1573 continue;
1574 if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
1575 /*
1576 * SHA-1 ICV's are byte-swapped; fix 'em up
1577 * before copy them to their destination.
1578 */
1579 re->re_sastate.sa_saved_indigest[0] =
1580 bswap32(re->re_sastate.sa_saved_indigest[0]);
1581 re->re_sastate.sa_saved_indigest[1] =
1582 bswap32(re->re_sastate.sa_saved_indigest[1]);
1583 re->re_sastate.sa_saved_indigest[2] =
1584 bswap32(re->re_sastate.sa_saved_indigest[2]);
1585 }
1586 crypto_copyback(crp->crp_flags, crp->crp_buf,
1587 crd->crd_inject,
1588 sc->sc_sessions[re->re_sesn].ses_mlen,
1589 (caddr_t)re->re_sastate.sa_saved_indigest);
1590 break;
1591 }
1592 }
1593 crypto_done(crp);
1594}
1595
1596/*
1597 * Copy all data past offset from srcm to dstm.
1598 */
1599static void
1600safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1601{
1602 u_int j, dlen, slen;
1603 caddr_t dptr, sptr;
1604
1605 /*
1606 * Advance src and dst to offset.
1607 */
1608 j = offset;
1609 while (j >= 0) {
1610 if (srcm->m_len > j)
1611 break;
1612 j -= srcm->m_len;
1613 srcm = srcm->m_next;
1614 if (srcm == NULL)
1615 return;
1616 }
1617 sptr = mtod(srcm, caddr_t) + j;
1618 slen = srcm->m_len - j;
1619
1620 j = offset;
1621 while (j >= 0) {
1622 if (dstm->m_len > j)
1623 break;
1624 j -= dstm->m_len;
1625 dstm = dstm->m_next;
1626 if (dstm == NULL)
1627 return;
1628 }
1629 dptr = mtod(dstm, caddr_t) + j;
1630 dlen = dstm->m_len - j;
1631
1632 /*
1633 * Copy everything that remains.
1634 */
1635 for (;;) {
1636 j = min(slen, dlen);
1637 bcopy(sptr, dptr, j);
1638 if (slen == j) {
1639 srcm = srcm->m_next;
1640 if (srcm == NULL)
1641 return;
1642 sptr = srcm->m_data;
1643 slen = srcm->m_len;
1644 } else
1645 sptr += j, slen -= j;
1646 if (dlen == j) {
1647 dstm = dstm->m_next;
1648 if (dstm == NULL)
1649 return;
1650 dptr = dstm->m_data;
1651 dlen = dstm->m_len;
1652 } else
1653 dptr += j, dlen -= j;
1654 }
1655}
1656
1657#ifndef SAFE_NO_RNG
1658#define SAFE_RNG_MAXWAIT 1000
1659
1660static void
1661safe_rng_init(struct safe_softc *sc)
1662{
1663 u_int32_t w, v;
1664 int i;
1665
1666 WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1667 /* use default value according to the manual */
1668 WRITE_REG(sc, SAFE_RNG_CNFG, 0x834); /* magic from SafeNet */
1669 WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1670
1671 /*
1672 * There is a bug in rev 1.0 of the 1140 that when the RNG
1673 * is brought out of reset the ready status flag does not
1674 * work until the RNG has finished its internal initialization.
1675 *
1676 * So in order to determine the device is through its
1677 * initialization we must read the data register, using the
1678 * status reg in the read in case it is initialized. Then read
1679 * the data register until it changes from the first read.
1680 * Once it changes read the data register until it changes
1681 * again. At this time the RNG is considered initialized.
1682 * This could take between 750ms - 1000ms in time.
1683 */
1684 i = 0;
1685 w = READ_REG(sc, SAFE_RNG_OUT);
1686 do {
1687 v = READ_REG(sc, SAFE_RNG_OUT);
1688 if (v != w) {
1689 w = v;
1690 break;
1691 }
1692 DELAY(10);
1693 } while (++i < SAFE_RNG_MAXWAIT);
1694
1695 /* Wait Until data changes again */
1696 i = 0;
1697 do {
1698 v = READ_REG(sc, SAFE_RNG_OUT);
1699 if (v != w)
1700 break;
1701 DELAY(10);
1702 } while (++i < SAFE_RNG_MAXWAIT);
1703}
1704
1705static __inline void
1706safe_rng_disable_short_cycle(struct safe_softc *sc)
1707{
1708 WRITE_REG(sc, SAFE_RNG_CTRL,
1709 READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1710}
1711
1712static __inline void
1713safe_rng_enable_short_cycle(struct safe_softc *sc)
1714{
1715 WRITE_REG(sc, SAFE_RNG_CTRL,
1716 READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1717}
1718
1719static __inline u_int32_t
1720safe_rng_read(struct safe_softc *sc)
1721{
1722 int i;
1723
1724 i = 0;
1725 while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1726 ;
1727 return READ_REG(sc, SAFE_RNG_OUT);
1728}
1729
1730static void
1731safe_rng(void *arg)
1732{
1733 struct safe_softc *sc = arg;
1734 u_int32_t buf[SAFE_RNG_MAXBUFSIZ]; /* NB: maybe move to softc */
1735 u_int maxwords;
1736 int i;
1737
1738 safestats.st_rng++;
1739 /*
1740 * Fetch the next block of data.
1741 */
1742 maxwords = safe_rngbufsize;
1743 if (maxwords > SAFE_RNG_MAXBUFSIZ)
1744 maxwords = SAFE_RNG_MAXBUFSIZ;
1745retry:
1746 for (i = 0; i < maxwords; i++)
1747 buf[i] = safe_rng_read(sc);
1748 /*
1749 * Check the comparator alarm count and reset the h/w if
1750 * it exceeds our threshold. This guards against the
1751 * hardware oscillators resonating with external signals.
1752 */
1753 if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1754 u_int32_t freq_inc, w;
1755
1756 DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1757 READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1758 safestats.st_rngalarm++;
1759 safe_rng_enable_short_cycle(sc);
1760 freq_inc = 18;
1761 for (i = 0; i < 64; i++) {
1762 w = READ_REG(sc, SAFE_RNG_CNFG);
1763 freq_inc = ((w + freq_inc) & 0x3fL);
1764 w = ((w & ~0x3fL) | freq_inc);
1765 WRITE_REG(sc, SAFE_RNG_CNFG, w);
1766
1767 WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1768
1769 (void) safe_rng_read(sc);
1770 DELAY(25);
1771
1772 if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1773 safe_rng_disable_short_cycle(sc);
1774 goto retry;
1775 }
1776 freq_inc = 1;
1777 }
1778 safe_rng_disable_short_cycle(sc);
1779 } else
1780 WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1781
1782 (*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1783 callout_reset(&sc->sc_rngto,
1784 hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1785}
1786#endif /* SAFE_NO_RNG */
1787
1788static void
1789safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1790{
1791 bus_addr_t *paddr = (bus_addr_t*) arg;
1792 *paddr = segs->ds_addr;
1793}
1794
1795static int
1796safe_dma_malloc(
1797 struct safe_softc *sc,
1798 bus_size_t size,
1799 struct safe_dma_alloc *dma,
1800 int mapflags
1801)
1802{
1803 int r;
1804
1805 r = bus_dma_tag_create(NULL, /* parent */
1806 sizeof(u_int32_t), 0, /* alignment, bounds */
1807 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1808 BUS_SPACE_MAXADDR, /* highaddr */
1809 NULL, NULL, /* filter, filterarg */
1810 size, /* maxsize */
1811 1, /* nsegments */
1812 size, /* maxsegsize */
1813 BUS_DMA_ALLOCNOW, /* flags */
1814 &dma->dma_tag);
1815 if (r != 0) {
1816 device_printf(sc->sc_dev, "safe_dma_malloc: "
1817 "bus_dma_tag_create failed; error %u\n", r);
1818 goto fail_0;
1819 }
1820
1821 r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
1822 if (r != 0) {
1823 device_printf(sc->sc_dev, "safe_dma_malloc: "
1824 "bus_dmamap_create failed; error %u\n", r);
1825 goto fail_1;
1826 }
1827
1828 r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1829 BUS_DMA_NOWAIT, &dma->dma_map);
1830 if (r != 0) {
1831 device_printf(sc->sc_dev, "safe_dma_malloc: "
1832 "bus_dmammem_alloc failed; size %zu, error %u\n",
1833 size, r);
1834 goto fail_2;
1835 }
1836
1837 r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1838 size,
1839 safe_dmamap_cb,
1840 &dma->dma_paddr,
1841 mapflags | BUS_DMA_NOWAIT);
1842 if (r != 0) {
1843 device_printf(sc->sc_dev, "safe_dma_malloc: "
1844 "bus_dmamap_load failed; error %u\n", r);
1845 goto fail_3;
1846 }
1847
1848 dma->dma_size = size;
1849 return (0);
1850
1851fail_3:
1852 bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1853fail_2:
1854 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1855fail_1:
1856 bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1857 bus_dma_tag_destroy(dma->dma_tag);
1858fail_0:
1859 dma->dma_map = NULL;
1860 dma->dma_tag = NULL;
1861 return (r);
1862}
1863
1864static void
1865safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1866{
1867 bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1868 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1869 bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
1870 bus_dma_tag_destroy(dma->dma_tag);
1871}
1872
1873/*
1874 * Resets the board. Values in the regesters are left as is
1875 * from the reset (i.e. initial values are assigned elsewhere).
1876 */
1877static void
1878safe_reset_board(struct safe_softc *sc)
1879{
1880 u_int32_t v;
1881 /*
1882 * Reset the device. The manual says no delay
1883 * is needed between marking and clearing reset.
1884 */
1885 v = READ_REG(sc, SAFE_PE_DMACFG) &~
1886 (SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1887 SAFE_PE_DMACFG_SGRESET);
1888 WRITE_REG(sc, SAFE_PE_DMACFG, v
1889 | SAFE_PE_DMACFG_PERESET
1890 | SAFE_PE_DMACFG_PDRRESET
1891 | SAFE_PE_DMACFG_SGRESET);
1892 WRITE_REG(sc, SAFE_PE_DMACFG, v);
1893}
1894
1895/*
1896 * Initialize registers we need to touch only once.
1897 */
1898static void
1899safe_init_board(struct safe_softc *sc)
1900{
1901 u_int32_t v, dwords;
1902
1903 v = READ_REG(sc, SAFE_PE_DMACFG);
1904 v &=~ SAFE_PE_DMACFG_PEMODE;
1905 v |= SAFE_PE_DMACFG_FSENA /* failsafe enable */
1906 | SAFE_PE_DMACFG_GPRPCI /* gather ring on PCI */
1907 | SAFE_PE_DMACFG_SPRPCI /* scatter ring on PCI */
1908 | SAFE_PE_DMACFG_ESDESC /* endian-swap descriptors */
1909 | SAFE_PE_DMACFG_ESSA /* endian-swap SA's */
1910 | SAFE_PE_DMACFG_ESPDESC /* endian-swap part. desc's */
1911 ;
1912 WRITE_REG(sc, SAFE_PE_DMACFG, v);
1913#if 0
1914 /* XXX select byte swap based on host byte order */
1915 WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1916#endif
1917 if (sc->sc_chiprev == SAFE_REV(1,0)) {
1918 /*
1919 * Avoid large PCI DMA transfers. Rev 1.0 has a bug where
1920 * "target mode transfers" done while the chip is DMA'ing
1921 * >1020 bytes cause the hardware to lockup. To avoid this
1922 * we reduce the max PCI transfer size and use small source
1923 * particle descriptors (<= 256 bytes).
1924 */
1925 WRITE_REG(sc, SAFE_DMA_CFG, 256);
1926 device_printf(sc->sc_dev,
1927 "Reduce max DMA size to %u words for rev %u.%u WAR\n",
1928 (READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1929 SAFE_REV_MAJ(sc->sc_chiprev),
1930 SAFE_REV_MIN(sc->sc_chiprev));
1931 }
1932
1933 /* NB: operands+results are overlaid */
1934 WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1935 WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1936 /*
1937 * Configure ring entry size and number of items in the ring.
1938 */
1939 KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1940 ("PE ring entry not 32-bit aligned!"));
1941 dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1942 WRITE_REG(sc, SAFE_PE_RINGCFG,
1943 (dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1944 WRITE_REG(sc, SAFE_PE_RINGPOLL, 0); /* disable polling */
1945
1946 WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1947 WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1948 WRITE_REG(sc, SAFE_PE_PARTSIZE,
1949 (SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1950 /*
1951 * NB: destination particles are fixed size. We use
1952 * an mbuf cluster and require all results go to
1953 * clusters or smaller.
1954 */
1955 WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1956
1957 /* it's now safe to enable PE mode, do it */
1958 WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1959
1960 /*
1961 * Configure hardware to use level-triggered interrupts and
1962 * to interrupt after each descriptor is processed.
1963 */
1964 WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1965 WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1966 WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1967}
1968
1969/*
1970 * Init PCI registers
1971 */
1972static void
1973safe_init_pciregs(device_t dev)
1974{
1975}
1976
1977/*
1978 * Clean up after a chip crash.
1979 * It is assumed that the caller in splimp()
1980 */
1981static void
1982safe_cleanchip(struct safe_softc *sc)
1983{
1984
1985 if (sc->sc_nqchip != 0) {
1986 struct safe_ringentry *re = sc->sc_back;
1987
1988 while (re != sc->sc_front) {
1989 if (re->re_desc.d_csr != 0)
1990 safe_free_entry(sc, re);
1991 if (++re == sc->sc_ringtop)
1992 re = sc->sc_ring;
1993 }
1994 sc->sc_back = re;
1995 sc->sc_nqchip = 0;
1996 }
1997}
1998
1999/*
2000 * free a safe_q
2001 * It is assumed that the caller is within splimp().
2002 */
2003static int
2004safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
2005{
2006 struct cryptop *crp;
2007
2008 /*
2009 * Free header MCR
2010 */
2011 if ((re->re_dst_m != NULL) && (re->re_src_m != re->re_dst_m))
2012 m_freem(re->re_dst_m);
2013
2014 crp = (struct cryptop *)re->re_crp;
2015
2016 re->re_desc.d_csr = 0;
2017
2018 crp->crp_etype = EFAULT;
2019 crypto_done(crp);
2020 return(0);
2021}
2022
2023/*
2024 * Routine to reset the chip and clean up.
2025 * It is assumed that the caller is in splimp()
2026 */
2027static void
2028safe_totalreset(struct safe_softc *sc)
2029{
2030 safe_reset_board(sc);
2031 safe_init_board(sc);
2032 safe_cleanchip(sc);
2033}
2034
2035/*
2036 * Is the operand suitable aligned for direct DMA. Each
2037 * segment must be aligned on a 32-bit boundary and all
2038 * but the last segment must be a multiple of 4 bytes.
2039 */
2040static int
2041safe_dmamap_aligned(const struct safe_operand *op)
2042{
2043 int i;
2044
2045 for (i = 0; i < op->nsegs; i++) {
2046 if (op->segs[i].ds_addr & 3)
2047 return (0);
2048 if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
2049 return (0);
2050 }
2051 return (1);
2052}
2053
2054/*
2055 * Is the operand suitable for direct DMA as the destination
2056 * of an operation. The hardware requires that each ``particle''
2057 * but the last in an operation result have the same size. We
2058 * fix that size at SAFE_MAX_DSIZE bytes. This routine returns
2059 * 0 if some segment is not a multiple of of this size, 1 if all
2060 * segments are exactly this size, or 2 if segments are at worst
2061 * a multple of this size.
2062 */
2063static int
2064safe_dmamap_uniform(const struct safe_operand *op)
2065{
2066 int result = 1;
2067
2068 if (op->nsegs > 0) {
2069 int i;
2070
2071 for (i = 0; i < op->nsegs-1; i++) {
2072 if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
2073 return (0);
2074 if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
2075 result = 2;
2076 }
2077 }
2078 return (result);
2079}
2080
2081#ifdef SAFE_DEBUG
2082static void
2083safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
2084{
2085 kprintf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
2086 , tag
2087 , READ_REG(sc, SAFE_DMA_ENDIAN)
2088 , READ_REG(sc, SAFE_DMA_SRCADDR)
2089 , READ_REG(sc, SAFE_DMA_DSTADDR)
2090 , READ_REG(sc, SAFE_DMA_STAT)
2091 );
2092}
2093
2094static void
2095safe_dump_intrstate(struct safe_softc *sc, const char *tag)
2096{
2097 kprintf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
2098 , tag
2099 , READ_REG(sc, SAFE_HI_CFG)
2100 , READ_REG(sc, SAFE_HI_MASK)
2101 , READ_REG(sc, SAFE_HI_DESC_CNT)
2102 , READ_REG(sc, SAFE_HU_STAT)
2103 , READ_REG(sc, SAFE_HM_STAT)
2104 );
2105}
2106
2107static void
2108safe_dump_ringstate(struct safe_softc *sc, const char *tag)
2109{
2110 u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
2111
2112 /* NB: assume caller has lock on ring */
2113 kprintf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
2114 tag,
2115 estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
2116 (unsigned long)(sc->sc_back - sc->sc_ring),
2117 (unsigned long)(sc->sc_front - sc->sc_ring));
2118}
2119
2120static void
2121safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
2122{
2123 int ix, nsegs;
2124
2125 ix = re - sc->sc_ring;
2126 kprintf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
2127 , tag
2128 , re, ix
2129 , re->re_desc.d_csr
2130 , re->re_desc.d_src
2131 , re->re_desc.d_dst
2132 , re->re_desc.d_sa
2133 , re->re_desc.d_len
2134 );
2135 if (re->re_src.nsegs > 1) {
2136 ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
2137 sizeof(struct safe_pdesc);
2138 for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
2139 kprintf(" spd[%u] %p: %p size %u flags %x"
2140 , ix, &sc->sc_spring[ix]
2141 , (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
2142 , sc->sc_spring[ix].pd_size
2143 , sc->sc_spring[ix].pd_flags
2144 );
2145 if (sc->sc_spring[ix].pd_size == 0)
2146 kprintf(" (zero!)");
2147 kprintf("\n");
2148 if (++ix == SAFE_TOTAL_SPART)
2149 ix = 0;
2150 }
2151 }
2152 if (re->re_dst.nsegs > 1) {
2153 ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
2154 sizeof(struct safe_pdesc);
2155 for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
2156 kprintf(" dpd[%u] %p: %p flags %x\n"
2157 , ix, &sc->sc_dpring[ix]
2158 , (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
2159 , sc->sc_dpring[ix].pd_flags
2160 );
2161 if (++ix == SAFE_TOTAL_DPART)
2162 ix = 0;
2163 }
2164 }
2165 kprintf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
2166 re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
2167 kprintf("sa: key %x %x %x %x %x %x %x %x\n"
2168 , re->re_sa.sa_key[0]
2169 , re->re_sa.sa_key[1]
2170 , re->re_sa.sa_key[2]
2171 , re->re_sa.sa_key[3]
2172 , re->re_sa.sa_key[4]
2173 , re->re_sa.sa_key[5]
2174 , re->re_sa.sa_key[6]
2175 , re->re_sa.sa_key[7]
2176 );
2177 kprintf("sa: indigest %x %x %x %x %x\n"
2178 , re->re_sa.sa_indigest[0]
2179 , re->re_sa.sa_indigest[1]
2180 , re->re_sa.sa_indigest[2]
2181 , re->re_sa.sa_indigest[3]
2182 , re->re_sa.sa_indigest[4]
2183 );
2184 kprintf("sa: outdigest %x %x %x %x %x\n"
2185 , re->re_sa.sa_outdigest[0]
2186 , re->re_sa.sa_outdigest[1]
2187 , re->re_sa.sa_outdigest[2]
2188 , re->re_sa.sa_outdigest[3]
2189 , re->re_sa.sa_outdigest[4]
2190 );
2191 kprintf("sr: iv %x %x %x %x\n"
2192 , re->re_sastate.sa_saved_iv[0]
2193 , re->re_sastate.sa_saved_iv[1]
2194 , re->re_sastate.sa_saved_iv[2]
2195 , re->re_sastate.sa_saved_iv[3]
2196 );
2197 kprintf("sr: hashbc %u indigest %x %x %x %x %x\n"
2198 , re->re_sastate.sa_saved_hashbc
2199 , re->re_sastate.sa_saved_indigest[0]
2200 , re->re_sastate.sa_saved_indigest[1]
2201 , re->re_sastate.sa_saved_indigest[2]
2202 , re->re_sastate.sa_saved_indigest[3]
2203 , re->re_sastate.sa_saved_indigest[4]
2204 );
2205}
2206
2207static void
2208safe_dump_ring(struct safe_softc *sc, const char *tag)
2209{
2210 lockmgr(&sc->sc_ringlock, LK_EXCLUSIVE);
2211 kprintf("\nSafeNet Ring State:\n");
2212 safe_dump_intrstate(sc, tag);
2213 safe_dump_dmastatus(sc, tag);
2214 safe_dump_ringstate(sc, tag);
2215 if (sc->sc_nqchip) {
2216 struct safe_ringentry *re = sc->sc_back;
2217 do {
2218 safe_dump_request(sc, tag, re);
2219 if (++re == sc->sc_ringtop)
2220 re = sc->sc_ring;
2221 } while (re != sc->sc_front);
2222 }
2223 lockmgr(&sc->sc_ringlock, LK_RELEASE);
2224}
2225
2226static int
2227sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
2228{
2229 char dmode[64];
2230 int error;
2231
2232 strncpy(dmode, "", sizeof(dmode) - 1);
2233 dmode[sizeof(dmode) - 1] = '\0';
2234 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2235
2236 if (error == 0 && req->newptr != NULL) {
2237 struct safe_softc *sc = safec;
2238
2239 if (!sc)
2240 return EINVAL;
2241 if (strncmp(dmode, "dma", 3) == 0)
2242 safe_dump_dmastatus(sc, "safe0");
2243 else if (strncmp(dmode, "int", 3) == 0)
2244 safe_dump_intrstate(sc, "safe0");
2245 else if (strncmp(dmode, "ring", 4) == 0)
2246 safe_dump_ring(sc, "safe0");
2247 else
2248 return EINVAL;
2249 }
2250 return error;
2251}
2252SYSCTL_PROC(_hw_safe, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2253 0, 0, sysctl_hw_safe_dump, "A", "Dump driver state");
2254#endif /* SAFE_DEBUG */