* Ansify function definitions.
[dragonfly.git] / sys / kern / kern_intr.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved.
3 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice unmodified, this list of conditions, and the following
10 * disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $
27 * $DragonFly: src/sys/kern/kern_intr.c,v 1.38 2005/11/26 14:36:21 sephe Exp $
28 *
29 */
30
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/malloc.h>
34#include <sys/kernel.h>
35#include <sys/sysctl.h>
36#include <sys/thread.h>
37#include <sys/proc.h>
38#include <sys/thread2.h>
39#include <sys/random.h>
40#include <sys/serialize.h>
41#include <sys/bus.h>
42#include <sys/machintr.h>
43
44#include <machine/ipl.h>
45#include <machine/frame.h>
46
47#include <sys/interrupt.h>
48
49struct info_info;
50
51typedef struct intrec {
52 struct intrec *next;
53 struct intr_info *info;
54 inthand2_t *handler;
55 void *argument;
56 char *name;
57 int intr;
58 int intr_flags;
59 struct lwkt_serialize *serializer;
60} *intrec_t;
61
62struct intr_info {
63 intrec_t i_reclist;
64 struct thread i_thread;
65 struct random_softc i_random;
66 int i_running;
67 long i_count; /* interrupts dispatched */
68 int i_mplock_required;
69 int i_fast;
70 int i_slow;
71 int i_state;
72} intr_info_ary[MAX_INTS];
73
74int max_installed_hard_intr;
75int max_installed_soft_intr;
76
77#define EMERGENCY_INTR_POLLING_FREQ_MAX 20000
78
79static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS);
80static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS);
81static void emergency_intr_timer_callback(systimer_t, struct intrframe *);
82static void ithread_handler(void *arg);
83static void ithread_emergency(void *arg);
84
85int intr_info_size = sizeof(intr_info_ary) / sizeof(intr_info_ary[0]);
86
87static struct systimer emergency_intr_timer;
88static struct thread emergency_intr_thread;
89
90#define ISTATE_NOTHREAD 0
91#define ISTATE_NORMAL 1
92#define ISTATE_LIVELOCKED 2
93
94#ifdef SMP
95static int intr_mpsafe = 0;
96TUNABLE_INT("kern.intr_mpsafe", &intr_mpsafe);
97SYSCTL_INT(_kern, OID_AUTO, intr_mpsafe,
98 CTLFLAG_RW, &intr_mpsafe, 0, "Run INTR_MPSAFE handlers without the BGL");
99#endif
100static int livelock_limit = 50000;
101static int livelock_lowater = 20000;
102SYSCTL_INT(_kern, OID_AUTO, livelock_limit,
103 CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit");
104SYSCTL_INT(_kern, OID_AUTO, livelock_lowater,
105 CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore");
106
107static int emergency_intr_enable = 0; /* emergency interrupt polling */
108TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable);
109SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW,
110 0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable");
111
112static int emergency_intr_freq = 10; /* emergency polling frequency */
113TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq);
114SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW,
115 0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency");
116
117/*
118 * Sysctl support routines
119 */
120static int
121sysctl_emergency_enable(SYSCTL_HANDLER_ARGS)
122{
123 int error, enabled;
124
125 enabled = emergency_intr_enable;
126 error = sysctl_handle_int(oidp, &enabled, 0, req);
127 if (error || req->newptr == NULL)
128 return error;
129 emergency_intr_enable = enabled;
130 if (emergency_intr_enable) {
131 emergency_intr_timer.periodic =
132 sys_cputimer->fromhz(emergency_intr_freq);
133 } else {
134 emergency_intr_timer.periodic = sys_cputimer->fromhz(1);
135 }
136 return 0;
137}
138
139static int
140sysctl_emergency_freq(SYSCTL_HANDLER_ARGS)
141{
142 int error, phz;
143
144 phz = emergency_intr_freq;
145 error = sysctl_handle_int(oidp, &phz, 0, req);
146 if (error || req->newptr == NULL)
147 return error;
148 if (phz <= 0)
149 return EINVAL;
150 else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX)
151 phz = EMERGENCY_INTR_POLLING_FREQ_MAX;
152
153 emergency_intr_freq = phz;
154 if (emergency_intr_enable) {
155 emergency_intr_timer.periodic =
156 sys_cputimer->fromhz(emergency_intr_freq);
157 } else {
158 emergency_intr_timer.periodic = sys_cputimer->fromhz(1);
159 }
160 return 0;
161}
162
163/*
164 * Register an SWI or INTerrupt handler.
165 */
166void *
167register_swi(int intr, inthand2_t *handler, void *arg, const char *name,
168 struct lwkt_serialize *serializer)
169{
170 if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
171 panic("register_swi: bad intr %d", intr);
172 return(register_int(intr, handler, arg, name, serializer, 0));
173}
174
175void *
176register_int(int intr, inthand2_t *handler, void *arg, const char *name,
177 struct lwkt_serialize *serializer, int intr_flags)
178{
179 struct intr_info *info;
180 struct intrec **list;
181 intrec_t rec;
182
183 if (intr < 0 || intr >= MAX_INTS)
184 panic("register_int: bad intr %d", intr);
185 if (name == NULL)
186 name = "???";
187 info = &intr_info_ary[intr];
188
189 /*
190 * Construct an interrupt handler record
191 */
192 rec = malloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT);
193 rec->name = malloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT);
194 strcpy(rec->name, name);
195
196 rec->info = info;
197 rec->handler = handler;
198 rec->argument = arg;
199 rec->intr = intr;
200 rec->intr_flags = intr_flags;
201 rec->next = NULL;
202 rec->serializer = serializer;
203
204 /*
205 * Create an emergency polling thread and set up a systimer to wake
206 * it up.
207 */
208 if (emergency_intr_thread.td_kstack == NULL) {
209 lwkt_create(ithread_emergency, NULL, NULL,
210 &emergency_intr_thread, TDF_STOPREQ|TDF_INTTHREAD, -1,
211 "ithread emerg");
212 systimer_init_periodic_nq(&emergency_intr_timer,
213 emergency_intr_timer_callback, &emergency_intr_thread,
214 (emergency_intr_enable ? emergency_intr_freq : 1));
215 }
216
217 /*
218 * Create an interrupt thread if necessary, leave it in an unscheduled
219 * state.
220 */
221 if (info->i_state == ISTATE_NOTHREAD) {
222 info->i_state = ISTATE_NORMAL;
223 lwkt_create((void *)ithread_handler, (void *)intr, NULL,
224 &info->i_thread, TDF_STOPREQ|TDF_INTTHREAD|TDF_MPSAFE, -1,
225 "ithread %d", intr);
226 if (intr >= FIRST_SOFTINT)
227 lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM);
228 else
229 lwkt_setpri(&info->i_thread, TDPRI_INT_MED);
230 info->i_thread.td_preemptable = lwkt_preempt;
231 }
232
233 list = &info->i_reclist;
234
235 /*
236 * Keep track of how many fast and slow interrupts we have.
237 * Set i_mplock_required if any handler in the chain requires
238 * the MP lock to operate.
239 */
240 if ((intr_flags & INTR_MPSAFE) == 0)
241 info->i_mplock_required = 1;
242 if (intr_flags & INTR_FAST)
243 ++info->i_fast;
244 else
245 ++info->i_slow;
246
247 /*
248 * Add the record to the interrupt list.
249 */
250 crit_enter();
251 while (*list != NULL)
252 list = &(*list)->next;
253 *list = rec;
254 crit_exit();
255
256 /*
257 * Update max_installed_hard_intr to make the emergency intr poll
258 * a bit more efficient.
259 */
260 if (intr < FIRST_SOFTINT) {
261 if (max_installed_hard_intr <= intr)
262 max_installed_hard_intr = intr + 1;
263 } else {
264 if (max_installed_soft_intr <= intr)
265 max_installed_soft_intr = intr + 1;
266 }
267
268 /*
269 * Setup the machine level interrupt vector
270 */
271 if (intr < FIRST_SOFTINT && info->i_slow + info->i_fast == 1) {
272 if (machintr_vector_setup(intr, intr_flags))
273 printf("machintr_vector_setup: failed on irq %d\n", intr);
274 }
275
276 return(rec);
277}
278
279void
280unregister_swi(void *id)
281{
282 unregister_int(id);
283}
284
285void
286unregister_int(void *id)
287{
288 struct intr_info *info;
289 struct intrec **list;
290 intrec_t rec;
291 int intr;
292
293 intr = ((intrec_t)id)->intr;
294
295 if (intr < 0 || intr >= MAX_INTS)
296 panic("register_int: bad intr %d", intr);
297
298 info = &intr_info_ary[intr];
299
300 /*
301 * Remove the interrupt descriptor, adjust the descriptor count,
302 * and teardown the machine level vector if this was the last interrupt.
303 */
304 crit_enter();
305 list = &info->i_reclist;
306 while ((rec = *list) != NULL) {
307 if (rec == id)
308 break;
309 list = &rec->next;
310 }
311 if (rec) {
312 intrec_t rec0;
313
314 *list = rec->next;
315 if (rec->intr_flags & INTR_FAST)
316 --info->i_fast;
317 else
318 --info->i_slow;
319 if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0)
320 machintr_vector_teardown(intr);
321
322 /*
323 * Clear i_mplock_required if no handlers in the chain require the
324 * MP lock.
325 */
326 for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) {
327 if ((rec0->intr_flags & INTR_MPSAFE) == 0)
328 break;
329 }
330 if (rec0 == NULL)
331 info->i_mplock_required = 0;
332 }
333
334 crit_exit();
335
336 /*
337 * Free the record.
338 */
339 if (rec != NULL) {
340 free(rec->name, M_DEVBUF);
341 free(rec, M_DEVBUF);
342 } else {
343 printf("warning: unregister_int: int %d handler for %s not found\n",
344 intr, ((intrec_t)id)->name);
345 }
346}
347
348const char *
349get_registered_name(int intr)
350{
351 intrec_t rec;
352
353 if (intr < 0 || intr >= MAX_INTS)
354 panic("register_int: bad intr %d", intr);
355
356 if ((rec = intr_info_ary[intr].i_reclist) == NULL)
357 return(NULL);
358 else if (rec->next)
359 return("mux");
360 else
361 return(rec->name);
362}
363
364int
365count_registered_ints(int intr)
366{
367 struct intr_info *info;
368
369 if (intr < 0 || intr >= MAX_INTS)
370 panic("register_int: bad intr %d", intr);
371 info = &intr_info_ary[intr];
372 return(info->i_fast + info->i_slow);
373}
374
375long
376get_interrupt_counter(int intr)
377{
378 struct intr_info *info;
379
380 if (intr < 0 || intr >= MAX_INTS)
381 panic("register_int: bad intr %d", intr);
382 info = &intr_info_ary[intr];
383 return(info->i_count);
384}
385
386
387void
388swi_setpriority(int intr, int pri)
389{
390 struct intr_info *info;
391
392 if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
393 panic("register_swi: bad intr %d", intr);
394 info = &intr_info_ary[intr];
395 if (info->i_state != ISTATE_NOTHREAD)
396 lwkt_setpri(&info->i_thread, pri);
397}
398
399void
400register_randintr(int intr)
401{
402 struct intr_info *info;
403
404 if (intr < 0 || intr >= MAX_INTS)
405 panic("register_randintr: bad intr %d", intr);
406 info = &intr_info_ary[intr];
407 info->i_random.sc_intr = intr;
408 info->i_random.sc_enabled = 1;
409}
410
411void
412unregister_randintr(int intr)
413{
414 struct intr_info *info;
415
416 if (intr < 0 || intr >= MAX_INTS)
417 panic("register_swi: bad intr %d", intr);
418 info = &intr_info_ary[intr];
419 info->i_random.sc_enabled = 0;
420}
421
422int
423next_registered_randintr(int intr)
424{
425 struct intr_info *info;
426
427 if (intr < 0 || intr >= MAX_INTS)
428 panic("register_swi: bad intr %d", intr);
429 while (intr < MAX_INTS) {
430 info = &intr_info_ary[intr];
431 if (info->i_random.sc_enabled)
432 break;
433 ++intr;
434 }
435 return(intr);
436}
437
438/*
439 * Dispatch an interrupt. If there's nothing to do we have a stray
440 * interrupt and can just return, leaving the interrupt masked.
441 *
442 * We need to schedule the interrupt and set its i_running bit. If
443 * we are not on the interrupt thread's cpu we have to send a message
444 * to the correct cpu that will issue the desired action (interlocking
445 * with the interrupt thread's critical section). We do NOT attempt to
446 * reschedule interrupts whos i_running bit is already set because
447 * this would prematurely wakeup a livelock-limited interrupt thread.
448 *
449 * i_running is only tested/set on the same cpu as the interrupt thread.
450 *
451 * We are NOT in a critical section, which will allow the scheduled
452 * interrupt to preempt us. The MP lock might *NOT* be held here.
453 */
454#ifdef SMP
455
456static void
457sched_ithd_remote(void *arg)
458{
459 sched_ithd((int)arg);
460}
461
462#endif
463
464void
465sched_ithd(int intr)
466{
467 struct intr_info *info;
468
469 info = &intr_info_ary[intr];
470
471 ++info->i_count;
472 if (info->i_state != ISTATE_NOTHREAD) {
473 if (info->i_reclist == NULL) {
474 printf("sched_ithd: stray interrupt %d\n", intr);
475 } else {
476#ifdef SMP
477 if (info->i_thread.td_gd == mycpu) {
478 if (info->i_running == 0) {
479 info->i_running = 1;
480 if (info->i_state != ISTATE_LIVELOCKED)
481 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
482 }
483 } else {
484 lwkt_send_ipiq(info->i_thread.td_gd,
485 sched_ithd_remote, (void *)intr);
486 }
487#else
488 if (info->i_running == 0) {
489 info->i_running = 1;
490 if (info->i_state != ISTATE_LIVELOCKED)
491 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
492 }
493#endif
494 }
495 } else {
496 printf("sched_ithd: stray interrupt %d\n", intr);
497 }
498}
499
500/*
501 * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL
502 * might not be held).
503 */
504static void
505ithread_livelock_wakeup(systimer_t st)
506{
507 struct intr_info *info;
508
509 info = &intr_info_ary[(int)st->data];
510 if (info->i_state != ISTATE_NOTHREAD)
511 lwkt_schedule(&info->i_thread);
512}
513
514/*
515 * This function is called drectly from the ICU or APIC vector code assembly
516 * to process an interrupt. The critical section and interrupt deferral
517 * checks have already been done but the function is entered WITHOUT
518 * a critical section held. The BGL may or may not be held.
519 *
520 * Must return non-zero if we do not want the vector code to re-enable
521 * the interrupt (which we don't if we have to schedule the interrupt)
522 */
523int ithread_fast_handler(struct intrframe frame);
524
525int
526ithread_fast_handler(struct intrframe frame)
527{
528 int intr;
529 struct intr_info *info;
530 struct intrec **list;
531 int must_schedule;
532#ifdef SMP
533 int got_mplock;
534#endif
535 intrec_t rec, next_rec;
536 globaldata_t gd;
537
538 intr = frame.if_vec;
539 gd = mycpu;
540
541 info = &intr_info_ary[intr];
542
543 /*
544 * If we are not processing any FAST interrupts, just schedule the thing.
545 * (since we aren't in a critical section, this can result in a
546 * preemption)
547 */
548 if (info->i_fast == 0) {
549 sched_ithd(intr);
550 return(1);
551 }
552
553 /*
554 * This should not normally occur since interrupts ought to be
555 * masked if the ithread has been scheduled or is running.
556 */
557 if (info->i_running)
558 return(1);
559
560 /*
561 * Bump the interrupt nesting level to process any FAST interrupts.
562 * Obtain the MP lock as necessary. If the MP lock cannot be obtained,
563 * schedule the interrupt thread to deal with the issue instead.
564 *
565 * To reduce overhead, just leave the MP lock held once it has been
566 * obtained.
567 */
568 crit_enter_gd(gd);
569 ++gd->gd_intr_nesting_level;
570 ++gd->gd_cnt.v_intr;
571 must_schedule = info->i_slow;
572#ifdef SMP
573 got_mplock = 0;
574#endif
575
576 list = &info->i_reclist;
577 for (rec = *list; rec; rec = next_rec) {
578 next_rec = rec->next; /* rec may be invalid after call */
579
580 if (rec->intr_flags & INTR_FAST) {
581#ifdef SMP
582 if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) {
583 if (try_mplock() == 0) {
584 int owner;
585
586 /*
587 * If we couldn't get the MP lock try to forward it
588 * to the cpu holding the MP lock, setting must_schedule
589 * to -1 so we do not schedule and also do not unmask
590 * the interrupt. Otherwise just schedule it.
591 */
592 owner = owner_mplock();
593 if (owner >= 0 && owner != gd->gd_cpuid) {
594 lwkt_send_ipiq_bycpu(owner, forward_fastint_remote,
595 (void *)intr);
596 must_schedule = -1;
597 ++gd->gd_cnt.v_forwarded_ints;
598 } else {
599 must_schedule = 1;
600 }
601 break;
602 }
603 got_mplock = 1;
604 }
605#endif
606 if (rec->serializer) {
607 must_schedule += lwkt_serialize_handler_try(
608 rec->serializer, rec->handler,
609 rec->argument, &frame);
610 } else {
611 rec->handler(rec->argument, &frame);
612 }
613 }
614 }
615
616 /*
617 * Cleanup
618 */
619 --gd->gd_intr_nesting_level;
620#ifdef SMP
621 if (got_mplock)
622 rel_mplock();
623#endif
624 crit_exit_gd(gd);
625
626 /*
627 * If we had a problem, schedule the thread to catch the missed
628 * records (it will just re-run all of them). A return value of 0
629 * indicates that all handlers have been run and the interrupt can
630 * be re-enabled, and a non-zero return indicates that the interrupt
631 * thread controls re-enablement.
632 */
633 if (must_schedule > 0)
634 sched_ithd(intr);
635 else if (must_schedule == 0)
636 ++info->i_count;
637 return(must_schedule);
638}
639
640#if 0
641
6426: ; \
643 /* could not get the MP lock, forward the interrupt */ \
644 movl mp_lock, %eax ; /* check race */ \
645 cmpl $MP_FREE_LOCK,%eax ; \
646 je 2b ; \
647 incl PCPU(cnt)+V_FORWARDED_INTS ; \
648 subl $12,%esp ; \
649 movl $irq_num,8(%esp) ; \
650 movl $forward_fastint_remote,4(%esp) ; \
651 movl %eax,(%esp) ; \
652 call lwkt_send_ipiq_bycpu ; \
653 addl $12,%esp ; \
654 jmp 5f ;
655
656#endif
657
658
659/*
660 * Interrupt threads run this as their main loop.
661 *
662 * The handler begins execution outside a critical section and with the BGL
663 * held.
664 *
665 * The i_running state starts at 0. When an interrupt occurs, the hardware
666 * interrupt is disabled and sched_ithd() The HW interrupt remains disabled
667 * until all routines have run. We then call ithread_done() to reenable
668 * the HW interrupt and deschedule us until the next interrupt.
669 *
670 * We are responsible for atomically checking i_running and ithread_done()
671 * is responsible for atomically checking for platform-specific delayed
672 * interrupts. i_running for our irq is only set in the context of our cpu,
673 * so a critical section is a sufficient interlock.
674 */
675#define LIVELOCK_TIMEFRAME(freq) ((freq) >> 2) /* 1/4 second */
676
677static void
678ithread_handler(void *arg)
679{
680 struct intr_info *info;
681 int use_limit;
682 int lticks;
683 int lcount;
684 int intr;
685 int mpheld;
686 struct intrec **list;
687 intrec_t rec, nrec;
688 globaldata_t gd;
689 struct systimer ill_timer; /* enforced freq. timer */
690 u_int ill_count; /* interrupt livelock counter */
691
692 ill_count = 0;
693 lticks = ticks;
694 lcount = 0;
695 intr = (int)arg;
696 info = &intr_info_ary[intr];
697 list = &info->i_reclist;
698 gd = mycpu;
699
700 /*
701 * The loop must be entered with one critical section held. The thread
702 * is created with TDF_MPSAFE so the MP lock is not held on start.
703 */
704 crit_enter_gd(gd);
705 mpheld = 0;
706
707 for (;;) {
708 /*
709 * The chain is only considered MPSAFE if all its interrupt handlers
710 * are MPSAFE. However, if intr_mpsafe has been turned off we
711 * always operate with the BGL.
712 */
713#ifdef SMP
714 if (intr_mpsafe == 0) {
715 if (mpheld == 0) {
716 get_mplock();
717 mpheld = 1;
718 }
719 } else if (info->i_mplock_required != mpheld) {
720 if (info->i_mplock_required) {
721 KKASSERT(mpheld == 0);
722 get_mplock();
723 mpheld = 1;
724 } else {
725 KKASSERT(mpheld != 0);
726 rel_mplock();
727 mpheld = 0;
728 }
729 }
730#endif
731
732 /*
733 * If an interrupt is pending, clear i_running and execute the
734 * handlers. Note that certain types of interrupts can re-trigger
735 * and set i_running again.
736 *
737 * Each handler is run in a critical section. Note that we run both
738 * FAST and SLOW designated service routines.
739 */
740 if (info->i_running) {
741 ++ill_count;
742 info->i_running = 0;
743
744 for (rec = *list; rec; rec = nrec) {
745 nrec = rec->next;
746 if (rec->serializer) {
747 lwkt_serialize_handler_call(rec->serializer, rec->handler,
748 rec->argument, NULL);
749 } else {
750 rec->handler(rec->argument, NULL);
751 }
752 }
753 }
754
755 /*
756 * This is our interrupt hook to add rate randomness to the random
757 * number generator.
758 */
759 if (info->i_random.sc_enabled)
760 add_interrupt_randomness(intr);
761
762 /*
763 * Unmask the interrupt to allow it to trigger again. This only
764 * applies to certain types of interrupts (typ level interrupts).
765 * This can result in the interrupt retriggering, but the retrigger
766 * will not be processed until we cycle our critical section.
767 *
768 * Only unmask interrupts while handlers are installed. It is
769 * possible to hit a situation where no handlers are installed
770 * due to a device driver livelocking and then tearing down its
771 * interrupt on close (the parallel bus being a good example).
772 */
773 if (*list)
774 machintr_intren(intr);
775
776 /*
777 * Do a quick exit/enter to catch any higher-priority interrupt
778 * sources, such as the statclock, so thread time accounting
779 * will still work. This may also cause an interrupt to re-trigger.
780 */
781 crit_exit_gd(gd);
782 crit_enter_gd(gd);
783
784 /*
785 * LIVELOCK STATE MACHINE
786 */
787 switch(info->i_state) {
788 case ISTATE_NORMAL:
789 /*
790 * Calculate a running average every tick.
791 */
792 if (lticks != ticks) {
793 lticks = ticks;
794 ill_count -= ill_count / hz;
795 }
796
797 /*
798 * If we did not exceed the frequency limit, we are done.
799 * If the interrupt has not retriggered we deschedule ourselves.
800 */
801 if (ill_count <= livelock_limit) {
802 if (info->i_running == 0) {
803 lwkt_deschedule_self(gd->gd_curthread);
804 lwkt_switch();
805 }
806 break;
807 }
808
809 /*
810 * Otherwise we are livelocked. Set up a periodic systimer
811 * to wake the thread up at the limit frequency.
812 */
813 printf("intr %d at %d > %d hz, livelocked limit engaged!\n",
814 intr, livelock_limit, ill_count);
815 info->i_state = ISTATE_LIVELOCKED;
816 if ((use_limit = livelock_limit) < 100)
817 use_limit = 100;
818 else if (use_limit > 500000)
819 use_limit = 500000;
820 systimer_init_periodic(&ill_timer, ithread_livelock_wakeup,
821 (void *)intr, use_limit);
822 lcount = 0;
823 /* fall through */
824 case ISTATE_LIVELOCKED:
825 /*
826 * Wait for our periodic timer to go off. Since the interrupt
827 * has re-armed it can still set i_running, but it will not
828 * reschedule us while we are in a livelocked state.
829 */
830 lwkt_deschedule_self(gd->gd_curthread);
831 lwkt_switch();
832
833 /*
834 * Check to see if the livelock condition no longer applies.
835 * The interrupt must be able to operate normally for one
836 * full second before we restore normal operation.
837 */
838 if (lticks != ticks) {
839 lticks = ticks;
840 if (ill_count < livelock_lowater) {
841 if (++lcount >= hz) {
842 info->i_state = ISTATE_NORMAL;
843 systimer_del(&ill_timer);
844 printf("intr %d at %d < %d hz, livelock removed\n",
845 intr, ill_count, livelock_lowater);
846 }
847 } else {
848 lcount = 0;
849 }
850 ill_count -= ill_count / hz;
851 }
852 break;
853 }
854 }
855 /* not reached */
856}
857
858/*
859 * Emergency interrupt polling thread. The thread begins execution
860 * outside a critical section with the BGL held.
861 *
862 * If emergency interrupt polling is enabled, this thread will
863 * execute all system interrupts not marked INTR_NOPOLL at the
864 * specified polling frequency.
865 *
866 * WARNING! This thread runs *ALL* interrupt service routines that
867 * are not marked INTR_NOPOLL, which basically means everything except
868 * the 8254 clock interrupt and the ATA interrupt. It has very high
869 * overhead and should only be used in situations where the machine
870 * cannot otherwise be made to work. Due to the severe performance
871 * degredation, it should not be enabled on production machines.
872 */
873static void
874ithread_emergency(void *arg __unused)
875{
876 struct intr_info *info;
877 intrec_t rec, nrec;
878 int intr;
879
880 for (;;) {
881 for (intr = 0; intr < max_installed_hard_intr; ++intr) {
882 info = &intr_info_ary[intr];
883 for (rec = info->i_reclist; rec; rec = nrec) {
884 if ((rec->intr_flags & INTR_NOPOLL) == 0) {
885 if (rec->serializer) {
886 lwkt_serialize_handler_call(rec->serializer,
887 rec->handler, rec->argument, NULL);
888 } else {
889 rec->handler(rec->argument, NULL);
890 }
891 }
892 nrec = rec->next;
893 }
894 }
895 lwkt_deschedule_self(curthread);
896 lwkt_switch();
897 }
898}
899
900/*
901 * Systimer callback - schedule the emergency interrupt poll thread
902 * if emergency polling is enabled.
903 */
904static
905void
906emergency_intr_timer_callback(systimer_t info, struct intrframe *frame __unused)
907{
908 if (emergency_intr_enable)
909 lwkt_schedule(info->data);
910}
911
912/*
913 * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
914 * The data for this machine dependent, and the declarations are in machine
915 * dependent code. The layout of intrnames and intrcnt however is machine
916 * independent.
917 *
918 * We do not know the length of intrcnt and intrnames at compile time, so
919 * calculate things at run time.
920 */
921
922static int
923sysctl_intrnames(SYSCTL_HANDLER_ARGS)
924{
925 struct intr_info *info;
926 intrec_t rec;
927 int error = 0;
928 int len;
929 int intr;
930 char buf[64];
931
932 for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) {
933 info = &intr_info_ary[intr];
934
935 len = 0;
936 buf[0] = 0;
937 for (rec = info->i_reclist; rec; rec = rec->next) {
938 snprintf(buf + len, sizeof(buf) - len, "%s%s",
939 (len ? "/" : ""), rec->name);
940 len += strlen(buf + len);
941 }
942 if (len == 0) {
943 snprintf(buf, sizeof(buf), "irq%d", intr);
944 len = strlen(buf);
945 }
946 error = SYSCTL_OUT(req, buf, len + 1);
947 }
948 return (error);
949}
950
951
952SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
953 NULL, 0, sysctl_intrnames, "", "Interrupt Names");
954
955static int
956sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
957{
958 struct intr_info *info;
959 int error = 0;
960 int intr;
961
962 for (intr = 0; intr < max_installed_hard_intr; ++intr) {
963 info = &intr_info_ary[intr];
964
965 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
966 if (error)
967 goto failed;
968 }
969 for (intr = FIRST_SOFTINT; intr < max_installed_soft_intr; ++intr) {
970 info = &intr_info_ary[intr];
971
972 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
973 if (error)
974 goto failed;
975 }
976failed:
977 return(error);
978}
979
980SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
981 NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
982