Add NetGear FA-511 support
[dragonfly.git] / sys / kern / vfs_cluster.c
... / ...
CommitLineData
1/*-
2 * Copyright (c) 1993
3 * The Regents of the University of California. All rights reserved.
4 * Modifications/enhancements:
5 * Copyright (c) 1995 John S. Dyson. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)vfs_cluster.c 8.7 (Berkeley) 2/13/94
36 * $FreeBSD: src/sys/kern/vfs_cluster.c,v 1.92.2.9 2001/11/18 07:10:59 dillon Exp $
37 * $DragonFly: src/sys/kern/vfs_cluster.c,v 1.21 2006/04/28 16:34:01 dillon Exp $
38 */
39
40#include "opt_debug_cluster.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/proc.h>
46#include <sys/buf.h>
47#include <sys/vnode.h>
48#include <sys/malloc.h>
49#include <sys/mount.h>
50#include <sys/resourcevar.h>
51#include <sys/vmmeter.h>
52#include <vm/vm.h>
53#include <vm/vm_object.h>
54#include <vm/vm_page.h>
55#include <sys/sysctl.h>
56#include <sys/buf2.h>
57#include <vm/vm_page2.h>
58
59#if defined(CLUSTERDEBUG)
60#include <sys/sysctl.h>
61static int rcluster= 0;
62SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0, "");
63#endif
64
65static MALLOC_DEFINE(M_SEGMENT, "cluster_save", "cluster_save buffer");
66
67static struct cluster_save *
68 cluster_collectbufs (struct vnode *vp, struct buf *last_bp,
69 int lblocksize);
70static struct buf *
71 cluster_rbuild (struct vnode *vp, off_t filesize, off_t loffset,
72 off_t doffset, int size, int run, struct buf *fbp);
73static void cluster_callback (struct bio *);
74
75
76static int write_behind = 1;
77SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0, "");
78
79extern vm_page_t bogus_page;
80
81extern int cluster_pbuf_freecnt;
82
83/*
84 * Maximum number of blocks for read-ahead.
85 */
86#define MAXRA 32
87
88/*
89 * This replaces bread.
90 */
91int
92cluster_read(struct vnode *vp, off_t filesize, off_t loffset,
93 int size, int totread, int seqcount, struct buf **bpp)
94{
95 struct buf *bp, *rbp, *reqbp;
96 off_t origoffset;
97 off_t doffset;
98 int error;
99 int i;
100 int maxra, racluster;
101
102 error = 0;
103
104 /*
105 * Try to limit the amount of read-ahead by a few
106 * ad-hoc parameters. This needs work!!!
107 */
108 racluster = vp->v_mount->mnt_iosize_max / size;
109 maxra = 2 * racluster + (totread / size);
110 if (maxra > MAXRA)
111 maxra = MAXRA;
112 if (maxra > nbuf/8)
113 maxra = nbuf/8;
114
115 /*
116 * get the requested block
117 */
118 *bpp = reqbp = bp = getblk(vp, loffset, size, 0, 0);
119 origoffset = loffset;
120
121 /*
122 * if it is in the cache, then check to see if the reads have been
123 * sequential. If they have, then try some read-ahead, otherwise
124 * back-off on prospective read-aheads.
125 */
126 if (bp->b_flags & B_CACHE) {
127 if (!seqcount) {
128 return 0;
129 } else if ((bp->b_flags & B_RAM) == 0) {
130 return 0;
131 } else {
132 struct buf *tbp;
133 bp->b_flags &= ~B_RAM;
134 /*
135 * We do the crit here so that there is no window
136 * between the findblk and the b_usecount increment
137 * below. We opt to keep the crit out of the loop
138 * for efficiency.
139 */
140 crit_enter();
141 for (i = 1; i < maxra; i++) {
142 if (!(tbp = findblk(vp, loffset + i * size))) {
143 break;
144 }
145
146 /*
147 * Set another read-ahead mark so we know
148 * to check again.
149 */
150 if (((i % racluster) == (racluster - 1)) ||
151 (i == (maxra - 1)))
152 tbp->b_flags |= B_RAM;
153 }
154 crit_exit();
155 if (i >= maxra) {
156 return 0;
157 }
158 loffset += i * size;
159 }
160 reqbp = bp = NULL;
161 } else {
162 off_t firstread = bp->b_loffset;
163 int nblks;
164
165 KASSERT(firstread != NOOFFSET,
166 ("cluster_read: no buffer offset"));
167 if (firstread + totread > filesize)
168 totread = (int)(filesize - firstread);
169 nblks = totread / size;
170 if (nblks) {
171 int burstbytes;
172
173 if (nblks > racluster)
174 nblks = racluster;
175
176 error = VOP_BMAP(vp, loffset, NULL,
177 &doffset, &burstbytes, NULL);
178 if (error)
179 goto single_block_read;
180 if (doffset == NOOFFSET)
181 goto single_block_read;
182 if (burstbytes < size * 2)
183 goto single_block_read;
184 if (nblks > burstbytes / size)
185 nblks = burstbytes / size;
186
187 bp = cluster_rbuild(vp, filesize, loffset,
188 doffset, size, nblks, bp);
189 loffset += bp->b_bufsize;
190 } else {
191single_block_read:
192 /*
193 * if it isn't in the cache, then get a chunk from
194 * disk if sequential, otherwise just get the block.
195 */
196 bp->b_flags |= B_READ | B_RAM;
197 loffset += size;
198 }
199 }
200
201 /*
202 * If we have been doing sequential I/O, then do some read-ahead.
203 */
204 rbp = NULL;
205 if (seqcount &&
206 loffset < origoffset + seqcount * size &&
207 loffset + size <= filesize
208 ) {
209 rbp = getblk(vp, loffset, size, 0, 0);
210 if ((rbp->b_flags & B_CACHE) == 0) {
211 int nblksread;
212 int ntoread;
213 int burstbytes;
214
215 error = VOP_BMAP(vp, loffset, NULL,
216 &doffset, &burstbytes, NULL);
217 if (error || doffset == NOOFFSET) {
218 rbp->b_flags &= ~(B_ASYNC | B_READ);
219 brelse(rbp);
220 rbp = NULL;
221 goto no_read_ahead;
222 }
223 ntoread = burstbytes / size;
224 nblksread = (totread + size - 1) / size;
225 if (seqcount < nblksread)
226 seqcount = nblksread;
227 if (seqcount < ntoread)
228 ntoread = seqcount;
229
230 rbp->b_flags |= B_READ | B_ASYNC | B_RAM;
231 if (burstbytes) {
232 rbp = cluster_rbuild(vp, filesize, loffset,
233 doffset, size,
234 ntoread, rbp);
235 } else {
236 rbp->b_bio2.bio_offset = doffset;
237 }
238 }
239 }
240no_read_ahead:
241
242 /*
243 * Handle the synchronous read. This only occurs if B_CACHE was
244 * not set.
245 */
246 if (bp) {
247#if defined(CLUSTERDEBUG)
248 if (rcluster)
249 printf("S(%lld,%d,%d) ",
250 bp->b_loffset, bp->b_bcount, seqcount);
251#endif
252 if ((bp->b_flags & B_CLUSTER) == 0) {
253 vfs_busy_pages(vp, bp, 0);
254 }
255 bp->b_flags &= ~(B_ERROR|B_INVAL);
256 if ((bp->b_flags & B_ASYNC) || bp->b_bio1.bio_done != NULL)
257 BUF_KERNPROC(bp);
258 vn_strategy(vp, &bp->b_bio1);
259 error = bp->b_error;
260 }
261
262 /*
263 * And if we have read-aheads, do them too
264 */
265 if (rbp) {
266 if (error) {
267 rbp->b_flags &= ~(B_ASYNC | B_READ);
268 brelse(rbp);
269 } else if (rbp->b_flags & B_CACHE) {
270 rbp->b_flags &= ~(B_ASYNC | B_READ);
271 bqrelse(rbp);
272 } else {
273#if defined(CLUSTERDEBUG)
274 if (rcluster) {
275 if (bp)
276 printf("A+(%lld,%d,%lld,%d) ",
277 rbp->b_loffset, rbp->b_bcount,
278 rbp->b_loffset - origoffset,
279 seqcount);
280 else
281 printf("A(%lld,%d,%lld,%d) ",
282 rbp->b_loffset, rbp->b_bcount,
283 rbp->b_loffset - origoffset,
284 seqcount);
285 }
286#endif
287
288 if ((rbp->b_flags & B_CLUSTER) == 0) {
289 vfs_busy_pages(vp, rbp, 0);
290 }
291 rbp->b_flags &= ~(B_ERROR|B_INVAL);
292 if ((rbp->b_flags & B_ASYNC) || rbp->b_bio1.bio_done != NULL)
293 BUF_KERNPROC(rbp);
294 vn_strategy(vp, &rbp->b_bio1);
295 }
296 }
297 if (reqbp)
298 return (biowait(reqbp));
299 else
300 return (error);
301}
302
303/*
304 * If blocks are contiguous on disk, use this to provide clustered
305 * read ahead. We will read as many blocks as possible sequentially
306 * and then parcel them up into logical blocks in the buffer hash table.
307 */
308static struct buf *
309cluster_rbuild(struct vnode *vp, off_t filesize, off_t loffset,
310 off_t doffset, int size, int run, struct buf *fbp)
311{
312 struct buf *bp, *tbp;
313 off_t boffset;
314 int i, j;
315
316 KASSERT(size == vp->v_mount->mnt_stat.f_iosize,
317 ("cluster_rbuild: size %d != filesize %ld\n",
318 size, vp->v_mount->mnt_stat.f_iosize));
319
320 /*
321 * avoid a division
322 */
323 while (loffset + run * size > filesize) {
324 --run;
325 }
326
327 tbp = fbp;
328 tbp->b_flags |= B_READ;
329 tbp->b_bio2.bio_offset = doffset;
330 if( (tbp->b_flags & B_MALLOC) ||
331 ((tbp->b_flags & B_VMIO) == 0) || (run <= 1) )
332 return tbp;
333
334 bp = trypbuf(&cluster_pbuf_freecnt);
335 if (bp == NULL)
336 return tbp;
337
338 /*
339 * We are synthesizing a buffer out of vm_page_t's, but
340 * if the block size is not page aligned then the starting
341 * address may not be either. Inherit the b_data offset
342 * from the original buffer.
343 */
344 bp->b_data = (char *)((vm_offset_t)bp->b_data |
345 ((vm_offset_t)tbp->b_data & PAGE_MASK));
346 bp->b_flags |= B_ASYNC | B_READ | B_CLUSTER | B_VMIO;
347 bp->b_bio1.bio_done = cluster_callback;
348 bp->b_bio1.bio_caller_info1.cluster_head = NULL;
349 bp->b_bio1.bio_caller_info2.cluster_tail = NULL;
350 bp->b_loffset = loffset;
351 bp->b_bio2.bio_offset = NOOFFSET;
352 KASSERT(bp->b_loffset != NOOFFSET,
353 ("cluster_rbuild: no buffer offset"));
354
355 bp->b_bcount = 0;
356 bp->b_bufsize = 0;
357 bp->b_xio.xio_npages = 0;
358
359 for (boffset = doffset, i = 0; i < run; ++i, boffset += size) {
360 if (i != 0) {
361 if ((bp->b_xio.xio_npages * PAGE_SIZE) +
362 round_page(size) > vp->v_mount->mnt_iosize_max) {
363 break;
364 }
365
366 /*
367 * Shortcut some checks and try to avoid buffers that
368 * would block in the lock. The same checks have to
369 * be made again after we officially get the buffer.
370 */
371 if ((tbp = findblk(vp, loffset + i * size)) != NULL) {
372 if (BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT))
373 break;
374 BUF_UNLOCK(tbp);
375
376 for (j = 0; j < tbp->b_xio.xio_npages; j++) {
377 if (tbp->b_xio.xio_pages[j]->valid)
378 break;
379 }
380
381 if (j != tbp->b_xio.xio_npages)
382 break;
383
384 if (tbp->b_bcount != size)
385 break;
386 }
387
388 tbp = getblk(vp, loffset + i * size, size, 0, 0);
389
390 /*
391 * Stop scanning if the buffer is fuly valid
392 * (marked B_CACHE), or locked (may be doing a
393 * background write), or if the buffer is not
394 * VMIO backed. The clustering code can only deal
395 * with VMIO-backed buffers.
396 */
397 if ((tbp->b_flags & (B_CACHE|B_LOCKED)) ||
398 (tbp->b_flags & B_VMIO) == 0) {
399 bqrelse(tbp);
400 break;
401 }
402
403 /*
404 * The buffer must be completely invalid in order to
405 * take part in the cluster. If it is partially valid
406 * then we stop.
407 */
408 for (j = 0;j < tbp->b_xio.xio_npages; j++) {
409 if (tbp->b_xio.xio_pages[j]->valid)
410 break;
411 }
412 if (j != tbp->b_xio.xio_npages) {
413 bqrelse(tbp);
414 break;
415 }
416
417 /*
418 * Set a read-ahead mark as appropriate
419 */
420 if (i == 1 || i == (run - 1))
421 tbp->b_flags |= B_RAM;
422
423 /*
424 * Set the buffer up for an async read (XXX should
425 * we do this only if we do not wind up brelse()ing?).
426 * Set the block number if it isn't set, otherwise
427 * if it is make sure it matches the block number we
428 * expect.
429 */
430 tbp->b_flags |= B_READ | B_ASYNC;
431 if (tbp->b_bio2.bio_offset == NOOFFSET) {
432 tbp->b_bio2.bio_offset = boffset;
433 } else if (tbp->b_bio2.bio_offset != boffset) {
434 brelse(tbp);
435 break;
436 }
437 }
438 /*
439 * XXX fbp from caller may not be B_ASYNC, but we are going
440 * to biodone() it in cluster_callback() anyway
441 */
442 BUF_KERNPROC(tbp);
443 cluster_append(&bp->b_bio1, tbp);
444 for (j = 0; j < tbp->b_xio.xio_npages; ++j) {
445 vm_page_t m;
446 m = tbp->b_xio.xio_pages[j];
447 vm_page_io_start(m);
448 vm_object_pip_add(m->object, 1);
449 if ((bp->b_xio.xio_npages == 0) ||
450 (bp->b_xio.xio_pages[bp->b_xio.xio_npages-1] != m)) {
451 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
452 bp->b_xio.xio_npages++;
453 }
454 if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL)
455 tbp->b_xio.xio_pages[j] = bogus_page;
456 }
457 /*
458 * XXX shouldn't this be += size for both, like in
459 * cluster_wbuild()?
460 *
461 * Don't inherit tbp->b_bufsize as it may be larger due to
462 * a non-page-aligned size. Instead just aggregate using
463 * 'size'.
464 */
465 if (tbp->b_bcount != size)
466 printf("warning: tbp->b_bcount wrong %d vs %d\n", tbp->b_bcount, size);
467 if (tbp->b_bufsize != size)
468 printf("warning: tbp->b_bufsize wrong %d vs %d\n", tbp->b_bufsize, size);
469 bp->b_bcount += size;
470 bp->b_bufsize += size;
471 }
472
473 /*
474 * Fully valid pages in the cluster are already good and do not need
475 * to be re-read from disk. Replace the page with bogus_page
476 */
477 for (j = 0; j < bp->b_xio.xio_npages; j++) {
478 if ((bp->b_xio.xio_pages[j]->valid & VM_PAGE_BITS_ALL) ==
479 VM_PAGE_BITS_ALL) {
480 bp->b_xio.xio_pages[j] = bogus_page;
481 }
482 }
483 if (bp->b_bufsize > bp->b_kvasize)
484 panic("cluster_rbuild: b_bufsize(%d) > b_kvasize(%d)",
485 bp->b_bufsize, bp->b_kvasize);
486 bp->b_kvasize = bp->b_bufsize;
487
488 pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
489 (vm_page_t *)bp->b_xio.xio_pages, bp->b_xio.xio_npages);
490 return (bp);
491}
492
493/*
494 * Cleanup after a clustered read or write.
495 * This is complicated by the fact that any of the buffers might have
496 * extra memory (if there were no empty buffer headers at allocbuf time)
497 * that we will need to shift around.
498 *
499 * The returned bio is &bp->b_bio1
500 */
501void
502cluster_callback(struct bio *bio)
503{
504 struct buf *bp = bio->bio_buf;
505 struct buf *tbp;
506 int error = 0;
507
508 /*
509 * Must propogate errors to all the components.
510 */
511 if (bp->b_flags & B_ERROR)
512 error = bp->b_error;
513
514 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
515 /*
516 * Move memory from the large cluster buffer into the component
517 * buffers and mark IO as done on these. Since the memory map
518 * is the same, no actual copying is required.
519 */
520 while ((tbp = bio->bio_caller_info1.cluster_head) != NULL) {
521 bio->bio_caller_info1.cluster_head = tbp->b_cluster_next;
522 if (error) {
523 tbp->b_flags |= B_ERROR;
524 tbp->b_error = error;
525 } else {
526 tbp->b_dirtyoff = tbp->b_dirtyend = 0;
527 tbp->b_flags &= ~(B_ERROR|B_INVAL);
528 /*
529 * XXX the bdwrite()/bqrelse() issued during
530 * cluster building clears B_RELBUF (see bqrelse()
531 * comment). If direct I/O was specified, we have
532 * to restore it here to allow the buffer and VM
533 * to be freed.
534 */
535 if (tbp->b_flags & B_DIRECT)
536 tbp->b_flags |= B_RELBUF;
537 }
538 biodone(&tbp->b_bio1);
539 }
540 relpbuf(bp, &cluster_pbuf_freecnt);
541}
542
543/*
544 * cluster_wbuild_wb:
545 *
546 * Implement modified write build for cluster.
547 *
548 * write_behind = 0 write behind disabled
549 * write_behind = 1 write behind normal (default)
550 * write_behind = 2 write behind backed-off
551 */
552
553static __inline int
554cluster_wbuild_wb(struct vnode *vp, int size, off_t start_loffset, int len)
555{
556 int r = 0;
557
558 switch(write_behind) {
559 case 2:
560 if (start_loffset < len)
561 break;
562 start_loffset -= len;
563 /* fall through */
564 case 1:
565 r = cluster_wbuild(vp, size, start_loffset, len);
566 /* fall through */
567 default:
568 /* fall through */
569 break;
570 }
571 return(r);
572}
573
574/*
575 * Do clustered write for FFS.
576 *
577 * Three cases:
578 * 1. Write is not sequential (write asynchronously)
579 * Write is sequential:
580 * 2. beginning of cluster - begin cluster
581 * 3. middle of a cluster - add to cluster
582 * 4. end of a cluster - asynchronously write cluster
583 */
584void
585cluster_write(struct buf *bp, off_t filesize, int seqcount)
586{
587 struct vnode *vp;
588 off_t loffset;
589 int maxclen, cursize;
590 int lblocksize;
591 int async;
592
593 vp = bp->b_vp;
594 if (vp->v_type == VREG) {
595 async = vp->v_mount->mnt_flag & MNT_ASYNC;
596 lblocksize = vp->v_mount->mnt_stat.f_iosize;
597 } else {
598 async = 0;
599 lblocksize = bp->b_bufsize;
600 }
601 loffset = bp->b_loffset;
602 KASSERT(bp->b_loffset != NOOFFSET,
603 ("cluster_write: no buffer offset"));
604
605 /* Initialize vnode to beginning of file. */
606 if (loffset == 0)
607 vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
608
609 if (vp->v_clen == 0 || loffset != vp->v_lastw + lblocksize ||
610 bp->b_bio2.bio_offset == NOOFFSET ||
611 (bp->b_bio2.bio_offset != vp->v_lasta + lblocksize)) {
612 maxclen = vp->v_mount->mnt_iosize_max;
613 if (vp->v_clen != 0) {
614 /*
615 * Next block is not sequential.
616 *
617 * If we are not writing at end of file, the process
618 * seeked to another point in the file since its last
619 * write, or we have reached our maximum cluster size,
620 * then push the previous cluster. Otherwise try
621 * reallocating to make it sequential.
622 *
623 * Change to algorithm: only push previous cluster if
624 * it was sequential from the point of view of the
625 * seqcount heuristic, otherwise leave the buffer
626 * intact so we can potentially optimize the I/O
627 * later on in the buf_daemon or update daemon
628 * flush.
629 */
630 cursize = vp->v_lastw - vp->v_cstart + lblocksize;
631 if (bp->b_loffset + lblocksize != filesize ||
632 loffset != vp->v_lastw + lblocksize || vp->v_clen <= cursize) {
633 if (!async && seqcount > 0) {
634 cluster_wbuild_wb(vp, lblocksize,
635 vp->v_cstart, cursize);
636 }
637 } else {
638 struct buf **bpp, **endbp;
639 struct cluster_save *buflist;
640
641 buflist = cluster_collectbufs(vp, bp,
642 lblocksize);
643 endbp = &buflist->bs_children
644 [buflist->bs_nchildren - 1];
645 if (VOP_REALLOCBLKS(vp, buflist)) {
646 /*
647 * Failed, push the previous cluster
648 * if *really* writing sequentially
649 * in the logical file (seqcount > 1),
650 * otherwise delay it in the hopes that
651 * the low level disk driver can
652 * optimize the write ordering.
653 */
654 for (bpp = buflist->bs_children;
655 bpp < endbp; bpp++)
656 brelse(*bpp);
657 free(buflist, M_SEGMENT);
658 if (seqcount > 1) {
659 cluster_wbuild_wb(vp,
660 lblocksize, vp->v_cstart,
661 cursize);
662 }
663 } else {
664 /*
665 * Succeeded, keep building cluster.
666 */
667 for (bpp = buflist->bs_children;
668 bpp <= endbp; bpp++)
669 bdwrite(*bpp);
670 free(buflist, M_SEGMENT);
671 vp->v_lastw = loffset;
672 vp->v_lasta = bp->b_bio2.bio_offset;
673 return;
674 }
675 }
676 }
677 /*
678 * Consider beginning a cluster. If at end of file, make
679 * cluster as large as possible, otherwise find size of
680 * existing cluster.
681 */
682 if ((vp->v_type == VREG) &&
683 bp->b_loffset + lblocksize != filesize &&
684 (bp->b_bio2.bio_offset == NOOFFSET) &&
685 (VOP_BMAP(vp, loffset, NULL, &bp->b_bio2.bio_offset, &maxclen, NULL) ||
686 bp->b_bio2.bio_offset == NOOFFSET)) {
687 bawrite(bp);
688 vp->v_clen = 0;
689 vp->v_lasta = bp->b_bio2.bio_offset;
690 vp->v_cstart = loffset + lblocksize;
691 vp->v_lastw = loffset;
692 return;
693 }
694 if (maxclen > lblocksize)
695 vp->v_clen = maxclen - lblocksize;
696 else
697 vp->v_clen = 0;
698 if (!async && vp->v_clen == 0) { /* I/O not contiguous */
699 vp->v_cstart = loffset + lblocksize;
700 bawrite(bp);
701 } else { /* Wait for rest of cluster */
702 vp->v_cstart = loffset;
703 bdwrite(bp);
704 }
705 } else if (loffset == vp->v_cstart + vp->v_clen) {
706 /*
707 * At end of cluster, write it out if seqcount tells us we
708 * are operating sequentially, otherwise let the buf or
709 * update daemon handle it.
710 */
711 bdwrite(bp);
712 if (seqcount > 1)
713 cluster_wbuild_wb(vp, lblocksize, vp->v_cstart,
714 vp->v_clen + lblocksize);
715 vp->v_clen = 0;
716 vp->v_cstart = loffset + lblocksize;
717 } else if (vm_page_count_severe()) {
718 /*
719 * We are low on memory, get it going NOW
720 */
721 bawrite(bp);
722 } else {
723 /*
724 * In the middle of a cluster, so just delay the I/O for now.
725 */
726 bdwrite(bp);
727 }
728 vp->v_lastw = loffset;
729 vp->v_lasta = bp->b_bio2.bio_offset;
730}
731
732
733/*
734 * This is an awful lot like cluster_rbuild...wish they could be combined.
735 * The last lbn argument is the current block on which I/O is being
736 * performed. Check to see that it doesn't fall in the middle of
737 * the current block (if last_bp == NULL).
738 */
739int
740cluster_wbuild(struct vnode *vp, int size, off_t start_loffset, int bytes)
741{
742 struct buf *bp, *tbp;
743 int i, j;
744 int totalwritten = 0;
745
746 while (bytes > 0) {
747 crit_enter();
748 /*
749 * If the buffer is not delayed-write (i.e. dirty), or it
750 * is delayed-write but either locked or inval, it cannot
751 * partake in the clustered write.
752 */
753 if (((tbp = findblk(vp, start_loffset)) == NULL) ||
754 ((tbp->b_flags & (B_LOCKED | B_INVAL | B_DELWRI)) != B_DELWRI) ||
755 BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) {
756 start_loffset += size;
757 bytes -= size;
758 crit_exit();
759 continue;
760 }
761 bremfree(tbp);
762 tbp->b_flags &= ~B_DONE;
763 crit_exit();
764
765 /*
766 * Extra memory in the buffer, punt on this buffer.
767 * XXX we could handle this in most cases, but we would
768 * have to push the extra memory down to after our max
769 * possible cluster size and then potentially pull it back
770 * up if the cluster was terminated prematurely--too much
771 * hassle.
772 */
773 if (((tbp->b_flags & (B_CLUSTEROK|B_MALLOC)) != B_CLUSTEROK) ||
774 (tbp->b_bcount != tbp->b_bufsize) ||
775 (tbp->b_bcount != size) ||
776 (bytes == size) ||
777 ((bp = getpbuf(&cluster_pbuf_freecnt)) == NULL)) {
778 totalwritten += tbp->b_bufsize;
779 bawrite(tbp);
780 start_loffset += size;
781 bytes -= size;
782 continue;
783 }
784
785 /*
786 * We got a pbuf to make the cluster in.
787 * so initialise it.
788 */
789 bp->b_bcount = 0;
790 bp->b_bufsize = 0;
791 bp->b_xio.xio_npages = 0;
792 bp->b_loffset = tbp->b_loffset;
793 bp->b_bio2.bio_offset = tbp->b_bio2.bio_offset;
794
795 /*
796 * We are synthesizing a buffer out of vm_page_t's, but
797 * if the block size is not page aligned then the starting
798 * address may not be either. Inherit the b_data offset
799 * from the original buffer.
800 */
801 bp->b_data = (char *)((vm_offset_t)bp->b_data |
802 ((vm_offset_t)tbp->b_data & PAGE_MASK));
803 bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
804 bp->b_flags |= B_CLUSTER | B_ASYNC |
805 (tbp->b_flags & (B_VMIO | B_NEEDCOMMIT | B_NOWDRAIN));
806 bp->b_bio1.bio_done = cluster_callback;
807 bp->b_bio1.bio_caller_info1.cluster_head = NULL;
808 bp->b_bio1.bio_caller_info2.cluster_tail = NULL;
809 /*
810 * From this location in the file, scan forward to see
811 * if there are buffers with adjacent data that need to
812 * be written as well.
813 */
814 for (i = 0; i < bytes; (i += size), (start_loffset += size)) {
815 if (i != 0) { /* If not the first buffer */
816 crit_enter();
817 /*
818 * If the adjacent data is not even in core it
819 * can't need to be written.
820 */
821 if ((tbp = findblk(vp, start_loffset)) == NULL) {
822 crit_exit();
823 break;
824 }
825
826 /*
827 * If it IS in core, but has different
828 * characteristics, or is locked (which
829 * means it could be undergoing a background
830 * I/O or be in a weird state), then don't
831 * cluster with it.
832 */
833 if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK |
834 B_INVAL | B_DELWRI | B_NEEDCOMMIT))
835 != (B_DELWRI | B_CLUSTEROK |
836 (bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) ||
837 (tbp->b_flags & B_LOCKED) ||
838 BUF_LOCK(tbp, LK_EXCLUSIVE | LK_NOWAIT)) {
839 crit_exit();
840 break;
841 }
842
843 /*
844 * Check that the combined cluster
845 * would make sense with regard to pages
846 * and would not be too large
847 */
848 if ((tbp->b_bcount != size) ||
849 ((bp->b_bio2.bio_offset + i) !=
850 tbp->b_bio2.bio_offset) ||
851 ((tbp->b_xio.xio_npages + bp->b_xio.xio_npages) >
852 (vp->v_mount->mnt_iosize_max / PAGE_SIZE))) {
853 BUF_UNLOCK(tbp);
854 crit_exit();
855 break;
856 }
857 /*
858 * Ok, it's passed all the tests,
859 * so remove it from the free list
860 * and mark it busy. We will use it.
861 */
862 bremfree(tbp);
863 tbp->b_flags &= ~B_DONE;
864 crit_exit();
865 } /* end of code for non-first buffers only */
866
867 /*
868 * If the IO is via the VM then we do some
869 * special VM hackery (yuck). Since the buffer's
870 * block size may not be page-aligned it is possible
871 * for a page to be shared between two buffers. We
872 * have to get rid of the duplication when building
873 * the cluster.
874 */
875 if (tbp->b_flags & B_VMIO) {
876 vm_page_t m;
877
878 if (i != 0) { /* if not first buffer */
879 for (j = 0; j < tbp->b_xio.xio_npages; ++j) {
880 m = tbp->b_xio.xio_pages[j];
881 if (m->flags & PG_BUSY) {
882 bqrelse(tbp);
883 goto finishcluster;
884 }
885 }
886 }
887
888 for (j = 0; j < tbp->b_xio.xio_npages; ++j) {
889 m = tbp->b_xio.xio_pages[j];
890 vm_page_io_start(m);
891 vm_object_pip_add(m->object, 1);
892 if ((bp->b_xio.xio_npages == 0) ||
893 (bp->b_xio.xio_pages[bp->b_xio.xio_npages - 1] != m)) {
894 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
895 bp->b_xio.xio_npages++;
896 }
897 }
898 }
899 bp->b_bcount += size;
900 bp->b_bufsize += size;
901
902 crit_enter();
903 bundirty(tbp);
904 tbp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
905 tbp->b_flags |= B_ASYNC;
906 crit_exit();
907 BUF_KERNPROC(tbp);
908 cluster_append(&bp->b_bio1, tbp);
909
910 /*
911 * check for latent dependencies to be handled
912 */
913 if (LIST_FIRST(&tbp->b_dep) != NULL && bioops.io_start)
914 (*bioops.io_start)(tbp);
915
916 }
917 finishcluster:
918 pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
919 (vm_page_t *) bp->b_xio.xio_pages, bp->b_xio.xio_npages);
920 if (bp->b_bufsize > bp->b_kvasize)
921 panic(
922 "cluster_wbuild: b_bufsize(%d) > b_kvasize(%d)\n",
923 bp->b_bufsize, bp->b_kvasize);
924 bp->b_kvasize = bp->b_bufsize;
925 totalwritten += bp->b_bufsize;
926 bp->b_dirtyoff = 0;
927 bp->b_dirtyend = bp->b_bufsize;
928
929 vfs_busy_pages(vp, bp, 1);
930 bp->b_runningbufspace = bp->b_bufsize;
931 runningbufspace += bp->b_runningbufspace;
932 BUF_KERNPROC(bp); /* B_ASYNC */
933 vn_strategy(vp, &bp->b_bio1);
934
935 bytes -= i;
936 }
937 return totalwritten;
938}
939
940/*
941 * Collect together all the buffers in a cluster.
942 * Plus add one additional buffer.
943 */
944static struct cluster_save *
945cluster_collectbufs(struct vnode *vp, struct buf *last_bp, int lblocksize)
946{
947 struct cluster_save *buflist;
948 struct buf *bp;
949 off_t loffset;
950 int i, len;
951
952 len = (int)(vp->v_lastw - vp->v_cstart + lblocksize) / lblocksize;
953 buflist = malloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
954 M_SEGMENT, M_WAITOK);
955 buflist->bs_nchildren = 0;
956 buflist->bs_children = (struct buf **) (buflist + 1);
957 for (loffset = vp->v_cstart, i = 0; i < len; (loffset += lblocksize), i++) {
958 (void) bread(vp, loffset, last_bp->b_bcount, &bp);
959 buflist->bs_children[i] = bp;
960 if (bp->b_bio2.bio_offset == NOOFFSET) {
961 VOP_BMAP(bp->b_vp, bp->b_loffset, NULL,
962 &bp->b_bio2.bio_offset, NULL, NULL);
963 }
964 }
965 buflist->bs_children[i] = bp = last_bp;
966 if (bp->b_bio2.bio_offset == NOOFFSET) {
967 VOP_BMAP(bp->b_vp, bp->b_loffset, NULL,
968 &bp->b_bio2.bio_offset, NULL, NULL);
969 }
970 buflist->bs_nchildren = i + 1;
971 return (buflist);
972}
973
974void
975cluster_append(struct bio *bio, struct buf *tbp)
976{
977 tbp->b_cluster_next = NULL;
978 if (bio->bio_caller_info1.cluster_head == NULL) {
979 bio->bio_caller_info1.cluster_head = tbp;
980 bio->bio_caller_info2.cluster_tail = tbp;
981 } else {
982 bio->bio_caller_info2.cluster_tail->b_cluster_next = tbp;
983 bio->bio_caller_info2.cluster_tail = tbp;
984 }
985}
986