bge: Use MPSAFE callout
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2001
4 * Bill Paul <wpaul@windriver.com>. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 *
33 * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34 */
35
36/*
37 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Engineer, Wind River Systems
41 */
42
43/*
44 * The Broadcom BCM5700 is based on technology originally developed by
45 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49 * frames, highly configurable RX filtering, and 16 RX and TX queues
50 * (which, along with RX filter rules, can be used for QOS applications).
51 * Other features, such as TCP segmentation, may be available as part
52 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53 * firmware images can be stored in hardware and need not be compiled
54 * into the driver.
55 *
56 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58 *
59 * The BCM5701 is a single-chip solution incorporating both the BCM5700
60 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61 * does not support external SSRAM.
62 *
63 * Broadcom also produces a variation of the BCM5700 under the "Altima"
64 * brand name, which is functionally similar but lacks PCI-X support.
65 *
66 * Without external SSRAM, you can only have at most 4 TX rings,
67 * and the use of the mini RX ring is disabled. This seems to imply
68 * that these features are simply not available on the BCM5701. As a
69 * result, this driver does not implement any support for the mini RX
70 * ring.
71 */
72
73#include "opt_polling.h"
74
75#include <sys/param.h>
76#include <sys/bus.h>
77#include <sys/endian.h>
78#include <sys/kernel.h>
79#include <sys/ktr.h>
80#include <sys/interrupt.h>
81#include <sys/mbuf.h>
82#include <sys/malloc.h>
83#include <sys/queue.h>
84#include <sys/rman.h>
85#include <sys/serialize.h>
86#include <sys/socket.h>
87#include <sys/sockio.h>
88#include <sys/sysctl.h>
89
90#include <netinet/ip.h>
91#include <netinet/tcp.h>
92
93#include <net/bpf.h>
94#include <net/ethernet.h>
95#include <net/if.h>
96#include <net/if_arp.h>
97#include <net/if_dl.h>
98#include <net/if_media.h>
99#include <net/if_types.h>
100#include <net/ifq_var.h>
101#include <net/vlan/if_vlan_var.h>
102#include <net/vlan/if_vlan_ether.h>
103
104#include <dev/netif/mii_layer/mii.h>
105#include <dev/netif/mii_layer/miivar.h>
106#include <dev/netif/mii_layer/brgphyreg.h>
107
108#include <bus/pci/pcidevs.h>
109#include <bus/pci/pcireg.h>
110#include <bus/pci/pcivar.h>
111
112#include <dev/netif/bge/if_bgereg.h>
113#include <dev/netif/bge/if_bgevar.h>
114
115/* "device miibus" required. See GENERIC if you get errors here. */
116#include "miibus_if.h"
117
118#define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP)
119
120static const struct bge_type {
121 uint16_t bge_vid;
122 uint16_t bge_did;
123 char *bge_name;
124} bge_devs[] = {
125 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
126 "3COM 3C996 Gigabit Ethernet" },
127
128 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
129 "Alteon BCM5700 Gigabit Ethernet" },
130 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
131 "Alteon BCM5701 Gigabit Ethernet" },
132
133 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
134 "Altima AC1000 Gigabit Ethernet" },
135 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
136 "Altima AC1002 Gigabit Ethernet" },
137 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
138 "Altima AC9100 Gigabit Ethernet" },
139
140 { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
141 "Apple BCM5701 Gigabit Ethernet" },
142
143 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
144 "Broadcom BCM5700 Gigabit Ethernet" },
145 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
146 "Broadcom BCM5701 Gigabit Ethernet" },
147 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
148 "Broadcom BCM5702 Gigabit Ethernet" },
149 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
150 "Broadcom BCM5702X Gigabit Ethernet" },
151 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
152 "Broadcom BCM5702 Gigabit Ethernet" },
153 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
154 "Broadcom BCM5703 Gigabit Ethernet" },
155 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
156 "Broadcom BCM5703X Gigabit Ethernet" },
157 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
158 "Broadcom BCM5703 Gigabit Ethernet" },
159 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
160 "Broadcom BCM5704C Dual Gigabit Ethernet" },
161 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
162 "Broadcom BCM5704S Dual Gigabit Ethernet" },
163 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
164 "Broadcom BCM5704S Dual Gigabit Ethernet" },
165 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
166 "Broadcom BCM5705 Gigabit Ethernet" },
167 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
168 "Broadcom BCM5705F Gigabit Ethernet" },
169 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
170 "Broadcom BCM5705K Gigabit Ethernet" },
171 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
172 "Broadcom BCM5705M Gigabit Ethernet" },
173 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
174 "Broadcom BCM5705M Gigabit Ethernet" },
175 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
176 "Broadcom BCM5714C Gigabit Ethernet" },
177 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
178 "Broadcom BCM5714S Gigabit Ethernet" },
179 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
180 "Broadcom BCM5715 Gigabit Ethernet" },
181 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
182 "Broadcom BCM5715S Gigabit Ethernet" },
183 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
184 "Broadcom BCM5720 Gigabit Ethernet" },
185 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
186 "Broadcom BCM5721 Gigabit Ethernet" },
187 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
188 "Broadcom BCM5722 Gigabit Ethernet" },
189 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723,
190 "Broadcom BCM5723 Gigabit Ethernet" },
191 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
192 "Broadcom BCM5750 Gigabit Ethernet" },
193 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
194 "Broadcom BCM5750M Gigabit Ethernet" },
195 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
196 "Broadcom BCM5751 Gigabit Ethernet" },
197 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
198 "Broadcom BCM5751F Gigabit Ethernet" },
199 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
200 "Broadcom BCM5751M Gigabit Ethernet" },
201 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
202 "Broadcom BCM5752 Gigabit Ethernet" },
203 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
204 "Broadcom BCM5752M Gigabit Ethernet" },
205 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
206 "Broadcom BCM5753 Gigabit Ethernet" },
207 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
208 "Broadcom BCM5753F Gigabit Ethernet" },
209 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
210 "Broadcom BCM5753M Gigabit Ethernet" },
211 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
212 "Broadcom BCM5754 Gigabit Ethernet" },
213 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
214 "Broadcom BCM5754M Gigabit Ethernet" },
215 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
216 "Broadcom BCM5755 Gigabit Ethernet" },
217 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
218 "Broadcom BCM5755M Gigabit Ethernet" },
219 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
220 "Broadcom BCM5756 Gigabit Ethernet" },
221 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761,
222 "Broadcom BCM5761 Gigabit Ethernet" },
223 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E,
224 "Broadcom BCM5761E Gigabit Ethernet" },
225 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S,
226 "Broadcom BCM5761S Gigabit Ethernet" },
227 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE,
228 "Broadcom BCM5761SE Gigabit Ethernet" },
229 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764,
230 "Broadcom BCM5764 Gigabit Ethernet" },
231 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
232 "Broadcom BCM5780 Gigabit Ethernet" },
233 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
234 "Broadcom BCM5780S Gigabit Ethernet" },
235 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
236 "Broadcom BCM5781 Gigabit Ethernet" },
237 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
238 "Broadcom BCM5782 Gigabit Ethernet" },
239 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784,
240 "Broadcom BCM5784 Gigabit Ethernet" },
241 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F,
242 "Broadcom BCM5785F Gigabit Ethernet" },
243 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G,
244 "Broadcom BCM5785G Gigabit Ethernet" },
245 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
246 "Broadcom BCM5786 Gigabit Ethernet" },
247 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
248 "Broadcom BCM5787 Gigabit Ethernet" },
249 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
250 "Broadcom BCM5787F Gigabit Ethernet" },
251 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
252 "Broadcom BCM5787M Gigabit Ethernet" },
253 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
254 "Broadcom BCM5788 Gigabit Ethernet" },
255 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
256 "Broadcom BCM5789 Gigabit Ethernet" },
257 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
258 "Broadcom BCM5901 Fast Ethernet" },
259 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
260 "Broadcom BCM5901A2 Fast Ethernet" },
261 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
262 "Broadcom BCM5903M Fast Ethernet" },
263 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
264 "Broadcom BCM5906 Fast Ethernet"},
265 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
266 "Broadcom BCM5906M Fast Ethernet"},
267 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760,
268 "Broadcom BCM57760 Gigabit Ethernet"},
269 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780,
270 "Broadcom BCM57780 Gigabit Ethernet"},
271 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788,
272 "Broadcom BCM57788 Gigabit Ethernet"},
273 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790,
274 "Broadcom BCM57790 Gigabit Ethernet"},
275 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
276 "SysKonnect Gigabit Ethernet" },
277
278 { 0, 0, NULL }
279};
280
281#define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO)
282#define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
283#define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
284#define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
285#define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
286#define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
287#define BGE_IS_5788(sc) ((sc)->bge_flags & BGE_FLAG_5788)
288
289#define BGE_IS_CRIPPLED(sc) \
290 (BGE_IS_5788((sc)) || (sc)->bge_asicrev == BGE_ASICREV_BCM5700)
291
292typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
293
294static int bge_probe(device_t);
295static int bge_attach(device_t);
296static int bge_detach(device_t);
297static void bge_txeof(struct bge_softc *, uint16_t);
298static void bge_rxeof(struct bge_softc *, uint16_t);
299
300static void bge_tick(void *);
301static void bge_stats_update(struct bge_softc *);
302static void bge_stats_update_regs(struct bge_softc *);
303static struct mbuf *
304 bge_defrag_shortdma(struct mbuf *);
305static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
306static int bge_setup_tso(struct bge_softc *, struct mbuf **,
307 uint16_t *, uint16_t *);
308
309#ifdef DEVICE_POLLING
310static void bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
311#endif
312static void bge_intr_crippled(void *);
313static void bge_intr_legacy(void *);
314static void bge_msi(void *);
315static void bge_msi_oneshot(void *);
316static void bge_intr(struct bge_softc *);
317static void bge_enable_intr(struct bge_softc *);
318static void bge_disable_intr(struct bge_softc *);
319static void bge_start(struct ifnet *);
320static int bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
321static void bge_init(void *);
322static void bge_stop(struct bge_softc *);
323static void bge_watchdog(struct ifnet *);
324static void bge_shutdown(device_t);
325static int bge_suspend(device_t);
326static int bge_resume(device_t);
327static int bge_ifmedia_upd(struct ifnet *);
328static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
329
330static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
331static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
332
333static uint8_t bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
334static int bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
335
336static void bge_setmulti(struct bge_softc *);
337static void bge_setpromisc(struct bge_softc *);
338static void bge_enable_msi(struct bge_softc *sc);
339
340static int bge_alloc_jumbo_mem(struct bge_softc *);
341static void bge_free_jumbo_mem(struct bge_softc *);
342static struct bge_jslot
343 *bge_jalloc(struct bge_softc *);
344static void bge_jfree(void *);
345static void bge_jref(void *);
346static int bge_newbuf_std(struct bge_softc *, int, int);
347static int bge_newbuf_jumbo(struct bge_softc *, int, int);
348static void bge_setup_rxdesc_std(struct bge_softc *, int);
349static void bge_setup_rxdesc_jumbo(struct bge_softc *, int);
350static int bge_init_rx_ring_std(struct bge_softc *);
351static void bge_free_rx_ring_std(struct bge_softc *);
352static int bge_init_rx_ring_jumbo(struct bge_softc *);
353static void bge_free_rx_ring_jumbo(struct bge_softc *);
354static void bge_free_tx_ring(struct bge_softc *);
355static int bge_init_tx_ring(struct bge_softc *);
356
357static int bge_chipinit(struct bge_softc *);
358static int bge_blockinit(struct bge_softc *);
359static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
360
361static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
362static void bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
363#ifdef notdef
364static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
365#endif
366static void bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
367static void bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
368static void bge_writembx(struct bge_softc *, int, int);
369
370static int bge_miibus_readreg(device_t, int, int);
371static int bge_miibus_writereg(device_t, int, int, int);
372static void bge_miibus_statchg(device_t);
373static void bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
374static void bge_tbi_link_upd(struct bge_softc *, uint32_t);
375static void bge_copper_link_upd(struct bge_softc *, uint32_t);
376static void bge_autopoll_link_upd(struct bge_softc *, uint32_t);
377static void bge_link_poll(struct bge_softc *);
378
379static void bge_reset(struct bge_softc *);
380
381static int bge_dma_alloc(struct bge_softc *);
382static void bge_dma_free(struct bge_softc *);
383static int bge_dma_block_alloc(struct bge_softc *, bus_size_t,
384 bus_dma_tag_t *, bus_dmamap_t *,
385 void **, bus_addr_t *);
386static void bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
387
388static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
389static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
390static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
391static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
392
393static void bge_coal_change(struct bge_softc *);
394static int bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
395static int bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
396static int bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
397static int bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
398static int bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
399static int bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
400static int bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
401static int bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
402static int bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
403 int, int, uint32_t);
404
405/*
406 * Set following tunable to 1 for some IBM blade servers with the DNLK
407 * switch module. Auto negotiation is broken for those configurations.
408 */
409static int bge_fake_autoneg = 0;
410TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
411
412static int bge_msi_enable = 1;
413TUNABLE_INT("hw.bge.msi.enable", &bge_msi_enable);
414
415#if !defined(KTR_IF_BGE)
416#define KTR_IF_BGE KTR_ALL
417#endif
418KTR_INFO_MASTER(if_bge);
419KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr");
420KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt");
421KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt");
422#define logif(name) KTR_LOG(if_bge_ ## name)
423
424static device_method_t bge_methods[] = {
425 /* Device interface */
426 DEVMETHOD(device_probe, bge_probe),
427 DEVMETHOD(device_attach, bge_attach),
428 DEVMETHOD(device_detach, bge_detach),
429 DEVMETHOD(device_shutdown, bge_shutdown),
430 DEVMETHOD(device_suspend, bge_suspend),
431 DEVMETHOD(device_resume, bge_resume),
432
433 /* bus interface */
434 DEVMETHOD(bus_print_child, bus_generic_print_child),
435 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
436
437 /* MII interface */
438 DEVMETHOD(miibus_readreg, bge_miibus_readreg),
439 DEVMETHOD(miibus_writereg, bge_miibus_writereg),
440 DEVMETHOD(miibus_statchg, bge_miibus_statchg),
441
442 { 0, 0 }
443};
444
445static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
446static devclass_t bge_devclass;
447
448DECLARE_DUMMY_MODULE(if_bge);
449DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL);
450DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL);
451
452static uint32_t
453bge_readmem_ind(struct bge_softc *sc, uint32_t off)
454{
455 device_t dev = sc->bge_dev;
456 uint32_t val;
457
458 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
459 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
460 return 0;
461
462 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
463 val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
464 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
465 return (val);
466}
467
468static void
469bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
470{
471 device_t dev = sc->bge_dev;
472
473 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
474 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
475 return;
476
477 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
478 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
479 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
480}
481
482#ifdef notdef
483static uint32_t
484bge_readreg_ind(struct bge_softc *sc, uin32_t off)
485{
486 device_t dev = sc->bge_dev;
487
488 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
489 return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
490}
491#endif
492
493static void
494bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
495{
496 device_t dev = sc->bge_dev;
497
498 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
499 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
500}
501
502static void
503bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
504{
505 CSR_WRITE_4(sc, off, val);
506}
507
508static void
509bge_writembx(struct bge_softc *sc, int off, int val)
510{
511 if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
512 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
513
514 CSR_WRITE_4(sc, off, val);
515 if (sc->bge_mbox_reorder)
516 CSR_READ_4(sc, off);
517}
518
519static uint8_t
520bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
521{
522 uint32_t access, byte = 0;
523 int i;
524
525 /* Lock. */
526 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
527 for (i = 0; i < 8000; i++) {
528 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
529 break;
530 DELAY(20);
531 }
532 if (i == 8000)
533 return (1);
534
535 /* Enable access. */
536 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
537 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
538
539 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
540 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
541 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
542 DELAY(10);
543 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
544 DELAY(10);
545 break;
546 }
547 }
548
549 if (i == BGE_TIMEOUT * 10) {
550 if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
551 return (1);
552 }
553
554 /* Get result. */
555 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
556
557 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
558
559 /* Disable access. */
560 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
561
562 /* Unlock. */
563 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
564 CSR_READ_4(sc, BGE_NVRAM_SWARB);
565
566 return (0);
567}
568
569/*
570 * Read a sequence of bytes from NVRAM.
571 */
572static int
573bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
574{
575 int err = 0, i;
576 uint8_t byte = 0;
577
578 if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
579 return (1);
580
581 for (i = 0; i < cnt; i++) {
582 err = bge_nvram_getbyte(sc, off + i, &byte);
583 if (err)
584 break;
585 *(dest + i) = byte;
586 }
587
588 return (err ? 1 : 0);
589}
590
591/*
592 * Read a byte of data stored in the EEPROM at address 'addr.' The
593 * BCM570x supports both the traditional bitbang interface and an
594 * auto access interface for reading the EEPROM. We use the auto
595 * access method.
596 */
597static uint8_t
598bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
599{
600 int i;
601 uint32_t byte = 0;
602
603 /*
604 * Enable use of auto EEPROM access so we can avoid
605 * having to use the bitbang method.
606 */
607 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
608
609 /* Reset the EEPROM, load the clock period. */
610 CSR_WRITE_4(sc, BGE_EE_ADDR,
611 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
612 DELAY(20);
613
614 /* Issue the read EEPROM command. */
615 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
616
617 /* Wait for completion */
618 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
619 DELAY(10);
620 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
621 break;
622 }
623
624 if (i == BGE_TIMEOUT) {
625 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
626 return(1);
627 }
628
629 /* Get result. */
630 byte = CSR_READ_4(sc, BGE_EE_DATA);
631
632 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
633
634 return(0);
635}
636
637/*
638 * Read a sequence of bytes from the EEPROM.
639 */
640static int
641bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
642{
643 size_t i;
644 int err;
645 uint8_t byte;
646
647 for (byte = 0, err = 0, i = 0; i < len; i++) {
648 err = bge_eeprom_getbyte(sc, off + i, &byte);
649 if (err)
650 break;
651 *(dest + i) = byte;
652 }
653
654 return(err ? 1 : 0);
655}
656
657static int
658bge_miibus_readreg(device_t dev, int phy, int reg)
659{
660 struct bge_softc *sc = device_get_softc(dev);
661 uint32_t val;
662 int i;
663
664 KASSERT(phy == sc->bge_phyno,
665 ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
666
667 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
668 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
669 CSR_WRITE_4(sc, BGE_MI_MODE,
670 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
671 DELAY(80);
672 }
673
674 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
675 BGE_MIPHY(phy) | BGE_MIREG(reg));
676
677 /* Poll for the PHY register access to complete. */
678 for (i = 0; i < BGE_TIMEOUT; i++) {
679 DELAY(10);
680 val = CSR_READ_4(sc, BGE_MI_COMM);
681 if ((val & BGE_MICOMM_BUSY) == 0) {
682 DELAY(5);
683 val = CSR_READ_4(sc, BGE_MI_COMM);
684 break;
685 }
686 }
687 if (i == BGE_TIMEOUT) {
688 if_printf(&sc->arpcom.ac_if, "PHY read timed out "
689 "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
690 val = 0;
691 }
692
693 /* Restore the autopoll bit if necessary. */
694 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
695 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
696 DELAY(80);
697 }
698
699 if (val & BGE_MICOMM_READFAIL)
700 return 0;
701
702 return (val & 0xFFFF);
703}
704
705static int
706bge_miibus_writereg(device_t dev, int phy, int reg, int val)
707{
708 struct bge_softc *sc = device_get_softc(dev);
709 int i;
710
711 KASSERT(phy == sc->bge_phyno,
712 ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
713
714 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
715 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
716 return 0;
717
718 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
719 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
720 CSR_WRITE_4(sc, BGE_MI_MODE,
721 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
722 DELAY(80);
723 }
724
725 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
726 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
727
728 for (i = 0; i < BGE_TIMEOUT; i++) {
729 DELAY(10);
730 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
731 DELAY(5);
732 CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
733 break;
734 }
735 }
736 if (i == BGE_TIMEOUT) {
737 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
738 "(phy %d, reg %d, val %d)\n", phy, reg, val);
739 }
740
741 /* Restore the autopoll bit if necessary. */
742 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
743 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
744 DELAY(80);
745 }
746
747 return 0;
748}
749
750static void
751bge_miibus_statchg(device_t dev)
752{
753 struct bge_softc *sc;
754 struct mii_data *mii;
755
756 sc = device_get_softc(dev);
757 mii = device_get_softc(sc->bge_miibus);
758
759 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
760 (IFM_ACTIVE | IFM_AVALID)) {
761 switch (IFM_SUBTYPE(mii->mii_media_active)) {
762 case IFM_10_T:
763 case IFM_100_TX:
764 sc->bge_link = 1;
765 break;
766 case IFM_1000_T:
767 case IFM_1000_SX:
768 case IFM_2500_SX:
769 if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
770 sc->bge_link = 1;
771 else
772 sc->bge_link = 0;
773 break;
774 default:
775 sc->bge_link = 0;
776 break;
777 }
778 } else {
779 sc->bge_link = 0;
780 }
781 if (sc->bge_link == 0)
782 return;
783
784 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
785 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
786 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
787 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
788 } else {
789 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
790 }
791
792 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
793 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
794 } else {
795 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
796 }
797}
798
799/*
800 * Memory management for jumbo frames.
801 */
802static int
803bge_alloc_jumbo_mem(struct bge_softc *sc)
804{
805 struct ifnet *ifp = &sc->arpcom.ac_if;
806 struct bge_jslot *entry;
807 uint8_t *ptr;
808 bus_addr_t paddr;
809 int i, error;
810
811 /*
812 * Create tag for jumbo mbufs.
813 * This is really a bit of a kludge. We allocate a special
814 * jumbo buffer pool which (thanks to the way our DMA
815 * memory allocation works) will consist of contiguous
816 * pages. This means that even though a jumbo buffer might
817 * be larger than a page size, we don't really need to
818 * map it into more than one DMA segment. However, the
819 * default mbuf tag will result in multi-segment mappings,
820 * so we have to create a special jumbo mbuf tag that
821 * lets us get away with mapping the jumbo buffers as
822 * a single segment. I think eventually the driver should
823 * be changed so that it uses ordinary mbufs and cluster
824 * buffers, i.e. jumbo frames can span multiple DMA
825 * descriptors. But that's a project for another day.
826 */
827
828 /*
829 * Create DMA stuffs for jumbo RX ring.
830 */
831 error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
832 &sc->bge_cdata.bge_rx_jumbo_ring_tag,
833 &sc->bge_cdata.bge_rx_jumbo_ring_map,
834 (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
835 &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
836 if (error) {
837 if_printf(ifp, "could not create jumbo RX ring\n");
838 return error;
839 }
840
841 /*
842 * Create DMA stuffs for jumbo buffer block.
843 */
844 error = bge_dma_block_alloc(sc, BGE_JMEM,
845 &sc->bge_cdata.bge_jumbo_tag,
846 &sc->bge_cdata.bge_jumbo_map,
847 (void **)&sc->bge_ldata.bge_jumbo_buf,
848 &paddr);
849 if (error) {
850 if_printf(ifp, "could not create jumbo buffer\n");
851 return error;
852 }
853
854 SLIST_INIT(&sc->bge_jfree_listhead);
855
856 /*
857 * Now divide it up into 9K pieces and save the addresses
858 * in an array. Note that we play an evil trick here by using
859 * the first few bytes in the buffer to hold the the address
860 * of the softc structure for this interface. This is because
861 * bge_jfree() needs it, but it is called by the mbuf management
862 * code which will not pass it to us explicitly.
863 */
864 for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
865 entry = &sc->bge_cdata.bge_jslots[i];
866 entry->bge_sc = sc;
867 entry->bge_buf = ptr;
868 entry->bge_paddr = paddr;
869 entry->bge_inuse = 0;
870 entry->bge_slot = i;
871 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
872
873 ptr += BGE_JLEN;
874 paddr += BGE_JLEN;
875 }
876 return 0;
877}
878
879static void
880bge_free_jumbo_mem(struct bge_softc *sc)
881{
882 /* Destroy jumbo RX ring. */
883 bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
884 sc->bge_cdata.bge_rx_jumbo_ring_map,
885 sc->bge_ldata.bge_rx_jumbo_ring);
886
887 /* Destroy jumbo buffer block. */
888 bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
889 sc->bge_cdata.bge_jumbo_map,
890 sc->bge_ldata.bge_jumbo_buf);
891}
892
893/*
894 * Allocate a jumbo buffer.
895 */
896static struct bge_jslot *
897bge_jalloc(struct bge_softc *sc)
898{
899 struct bge_jslot *entry;
900
901 lwkt_serialize_enter(&sc->bge_jslot_serializer);
902 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
903 if (entry) {
904 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
905 entry->bge_inuse = 1;
906 } else {
907 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
908 }
909 lwkt_serialize_exit(&sc->bge_jslot_serializer);
910 return(entry);
911}
912
913/*
914 * Adjust usage count on a jumbo buffer.
915 */
916static void
917bge_jref(void *arg)
918{
919 struct bge_jslot *entry = (struct bge_jslot *)arg;
920 struct bge_softc *sc = entry->bge_sc;
921
922 if (sc == NULL)
923 panic("bge_jref: can't find softc pointer!");
924
925 if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
926 panic("bge_jref: asked to reference buffer "
927 "that we don't manage!");
928 } else if (entry->bge_inuse == 0) {
929 panic("bge_jref: buffer already free!");
930 } else {
931 atomic_add_int(&entry->bge_inuse, 1);
932 }
933}
934
935/*
936 * Release a jumbo buffer.
937 */
938static void
939bge_jfree(void *arg)
940{
941 struct bge_jslot *entry = (struct bge_jslot *)arg;
942 struct bge_softc *sc = entry->bge_sc;
943
944 if (sc == NULL)
945 panic("bge_jfree: can't find softc pointer!");
946
947 if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
948 panic("bge_jfree: asked to free buffer that we don't manage!");
949 } else if (entry->bge_inuse == 0) {
950 panic("bge_jfree: buffer already free!");
951 } else {
952 /*
953 * Possible MP race to 0, use the serializer. The atomic insn
954 * is still needed for races against bge_jref().
955 */
956 lwkt_serialize_enter(&sc->bge_jslot_serializer);
957 atomic_subtract_int(&entry->bge_inuse, 1);
958 if (entry->bge_inuse == 0) {
959 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
960 entry, jslot_link);
961 }
962 lwkt_serialize_exit(&sc->bge_jslot_serializer);
963 }
964}
965
966
967/*
968 * Intialize a standard receive ring descriptor.
969 */
970static int
971bge_newbuf_std(struct bge_softc *sc, int i, int init)
972{
973 struct mbuf *m_new = NULL;
974 bus_dma_segment_t seg;
975 bus_dmamap_t map;
976 int error, nsegs;
977
978 m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
979 if (m_new == NULL)
980 return ENOBUFS;
981 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
982
983 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
984 m_adj(m_new, ETHER_ALIGN);
985
986 error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
987 sc->bge_cdata.bge_rx_tmpmap, m_new,
988 &seg, 1, &nsegs, BUS_DMA_NOWAIT);
989 if (error) {
990 m_freem(m_new);
991 return error;
992 }
993
994 if (!init) {
995 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
996 sc->bge_cdata.bge_rx_std_dmamap[i],
997 BUS_DMASYNC_POSTREAD);
998 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
999 sc->bge_cdata.bge_rx_std_dmamap[i]);
1000 }
1001
1002 map = sc->bge_cdata.bge_rx_tmpmap;
1003 sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
1004 sc->bge_cdata.bge_rx_std_dmamap[i] = map;
1005
1006 sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
1007 sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
1008
1009 bge_setup_rxdesc_std(sc, i);
1010 return 0;
1011}
1012
1013static void
1014bge_setup_rxdesc_std(struct bge_softc *sc, int i)
1015{
1016 struct bge_rxchain *rc;
1017 struct bge_rx_bd *r;
1018
1019 rc = &sc->bge_cdata.bge_rx_std_chain[i];
1020 r = &sc->bge_ldata.bge_rx_std_ring[i];
1021
1022 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1023 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1024 r->bge_len = rc->bge_mbuf->m_len;
1025 r->bge_idx = i;
1026 r->bge_flags = BGE_RXBDFLAG_END;
1027}
1028
1029/*
1030 * Initialize a jumbo receive ring descriptor. This allocates
1031 * a jumbo buffer from the pool managed internally by the driver.
1032 */
1033static int
1034bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
1035{
1036 struct mbuf *m_new = NULL;
1037 struct bge_jslot *buf;
1038 bus_addr_t paddr;
1039
1040 /* Allocate the mbuf. */
1041 MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1042 if (m_new == NULL)
1043 return ENOBUFS;
1044
1045 /* Allocate the jumbo buffer */
1046 buf = bge_jalloc(sc);
1047 if (buf == NULL) {
1048 m_freem(m_new);
1049 return ENOBUFS;
1050 }
1051
1052 /* Attach the buffer to the mbuf. */
1053 m_new->m_ext.ext_arg = buf;
1054 m_new->m_ext.ext_buf = buf->bge_buf;
1055 m_new->m_ext.ext_free = bge_jfree;
1056 m_new->m_ext.ext_ref = bge_jref;
1057 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1058
1059 m_new->m_flags |= M_EXT;
1060
1061 m_new->m_data = m_new->m_ext.ext_buf;
1062 m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1063
1064 paddr = buf->bge_paddr;
1065 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
1066 m_adj(m_new, ETHER_ALIGN);
1067 paddr += ETHER_ALIGN;
1068 }
1069
1070 /* Save necessary information */
1071 sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1072 sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1073
1074 /* Set up the descriptor. */
1075 bge_setup_rxdesc_jumbo(sc, i);
1076 return 0;
1077}
1078
1079static void
1080bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1081{
1082 struct bge_rx_bd *r;
1083 struct bge_rxchain *rc;
1084
1085 r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1086 rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1087
1088 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1089 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1090 r->bge_len = rc->bge_mbuf->m_len;
1091 r->bge_idx = i;
1092 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1093}
1094
1095static int
1096bge_init_rx_ring_std(struct bge_softc *sc)
1097{
1098 int i, error;
1099
1100 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1101 error = bge_newbuf_std(sc, i, 1);
1102 if (error)
1103 return error;
1104 };
1105
1106 sc->bge_std = BGE_STD_RX_RING_CNT - 1;
1107 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1108
1109 return(0);
1110}
1111
1112static void
1113bge_free_rx_ring_std(struct bge_softc *sc)
1114{
1115 int i;
1116
1117 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1118 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1119
1120 if (rc->bge_mbuf != NULL) {
1121 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1122 sc->bge_cdata.bge_rx_std_dmamap[i]);
1123 m_freem(rc->bge_mbuf);
1124 rc->bge_mbuf = NULL;
1125 }
1126 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
1127 sizeof(struct bge_rx_bd));
1128 }
1129}
1130
1131static int
1132bge_init_rx_ring_jumbo(struct bge_softc *sc)
1133{
1134 struct bge_rcb *rcb;
1135 int i, error;
1136
1137 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1138 error = bge_newbuf_jumbo(sc, i, 1);
1139 if (error)
1140 return error;
1141 };
1142
1143 sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
1144
1145 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1146 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1147 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1148
1149 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1150
1151 return(0);
1152}
1153
1154static void
1155bge_free_rx_ring_jumbo(struct bge_softc *sc)
1156{
1157 int i;
1158
1159 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1160 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1161
1162 if (rc->bge_mbuf != NULL) {
1163 m_freem(rc->bge_mbuf);
1164 rc->bge_mbuf = NULL;
1165 }
1166 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1167 sizeof(struct bge_rx_bd));
1168 }
1169}
1170
1171static void
1172bge_free_tx_ring(struct bge_softc *sc)
1173{
1174 int i;
1175
1176 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1177 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1178 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1179 sc->bge_cdata.bge_tx_dmamap[i]);
1180 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1181 sc->bge_cdata.bge_tx_chain[i] = NULL;
1182 }
1183 bzero(&sc->bge_ldata.bge_tx_ring[i],
1184 sizeof(struct bge_tx_bd));
1185 }
1186}
1187
1188static int
1189bge_init_tx_ring(struct bge_softc *sc)
1190{
1191 sc->bge_txcnt = 0;
1192 sc->bge_tx_saved_considx = 0;
1193 sc->bge_tx_prodidx = 0;
1194
1195 /* Initialize transmit producer index for host-memory send ring. */
1196 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1197
1198 /* 5700 b2 errata */
1199 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1200 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1201
1202 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1203 /* 5700 b2 errata */
1204 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1205 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1206
1207 return(0);
1208}
1209
1210static void
1211bge_setmulti(struct bge_softc *sc)
1212{
1213 struct ifnet *ifp;
1214 struct ifmultiaddr *ifma;
1215 uint32_t hashes[4] = { 0, 0, 0, 0 };
1216 int h, i;
1217
1218 ifp = &sc->arpcom.ac_if;
1219
1220 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1221 for (i = 0; i < 4; i++)
1222 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1223 return;
1224 }
1225
1226 /* First, zot all the existing filters. */
1227 for (i = 0; i < 4; i++)
1228 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1229
1230 /* Now program new ones. */
1231 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1232 if (ifma->ifma_addr->sa_family != AF_LINK)
1233 continue;
1234 h = ether_crc32_le(
1235 LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1236 ETHER_ADDR_LEN) & 0x7f;
1237 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1238 }
1239
1240 for (i = 0; i < 4; i++)
1241 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1242}
1243
1244/*
1245 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1246 * self-test results.
1247 */
1248static int
1249bge_chipinit(struct bge_softc *sc)
1250{
1251 int i;
1252 uint32_t dma_rw_ctl;
1253 uint16_t val;
1254
1255 /* Set endian type before we access any non-PCI registers. */
1256 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1257 BGE_INIT | sc->bge_pci_miscctl, 4);
1258
1259 /* Clear the MAC control register */
1260 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1261
1262 /*
1263 * Clear the MAC statistics block in the NIC's
1264 * internal memory.
1265 */
1266 for (i = BGE_STATS_BLOCK;
1267 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1268 BGE_MEMWIN_WRITE(sc, i, 0);
1269
1270 for (i = BGE_STATUS_BLOCK;
1271 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1272 BGE_MEMWIN_WRITE(sc, i, 0);
1273
1274 if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1275 /*
1276 * Fix data corruption caused by non-qword write with WB.
1277 * Fix master abort in PCI mode.
1278 * Fix PCI latency timer.
1279 */
1280 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1281 val |= (1 << 10) | (1 << 12) | (1 << 13);
1282 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1283 }
1284
1285 /* Set up the PCI DMA control register. */
1286 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1287 if (sc->bge_flags & BGE_FLAG_PCIE) {
1288 /* PCI-E bus */
1289 /* DMA read watermark not used on PCI-E */
1290 dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1291 } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1292 /* PCI-X bus */
1293 if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1294 dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1295 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1296 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1297 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5714) {
1298 dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1299 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1300 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1301 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1302 sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1303 uint32_t rd_wat = 0x7;
1304 uint32_t clkctl;
1305
1306 clkctl = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1307 if ((sc->bge_flags & BGE_FLAG_MAXADDR_40BIT) &&
1308 sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1309 dma_rw_ctl |=
1310 BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1311 } else if (clkctl == 0x6 || clkctl == 0x7) {
1312 dma_rw_ctl |=
1313 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1314 }
1315 if (sc->bge_asicrev == BGE_ASICREV_BCM5703)
1316 rd_wat = 0x4;
1317
1318 dma_rw_ctl |= (rd_wat << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1319 (3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1320 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1321 } else {
1322 dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1323 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1324 dma_rw_ctl |= 0xf;
1325 }
1326 } else {
1327 /* Conventional PCI bus */
1328 dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1329 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1330 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1331 sc->bge_asicrev != BGE_ASICREV_BCM5750)
1332 dma_rw_ctl |= 0xf;
1333 }
1334
1335 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1336 sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1337 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1338 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1339 sc->bge_asicrev == BGE_ASICREV_BCM5701) {
1340 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1341 BGE_PCIDMARWCTL_ASRT_ALL_BE;
1342 }
1343 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1344
1345 /*
1346 * Set up general mode register.
1347 */
1348 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1349 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1350 BGE_MODECTL_TX_NO_PHDR_CSUM);
1351
1352 /*
1353 * BCM5701 B5 have a bug causing data corruption when using
1354 * 64-bit DMA reads, which can be terminated early and then
1355 * completed later as 32-bit accesses, in combination with
1356 * certain bridges.
1357 */
1358 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1359 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1360 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1361
1362 /*
1363 * Disable memory write invalidate. Apparently it is not supported
1364 * properly by these devices. Also ensure that INTx isn't disabled,
1365 * as these chips need it even when using MSI.
1366 */
1367 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1368 (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1369
1370 /* Set the timer prescaler (always 66Mhz) */
1371 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1372
1373 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1374 DELAY(40); /* XXX */
1375
1376 /* Put PHY into ready state */
1377 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1378 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1379 DELAY(40);
1380 }
1381
1382 return(0);
1383}
1384
1385static int
1386bge_blockinit(struct bge_softc *sc)
1387{
1388 struct bge_rcb *rcb;
1389 bus_size_t vrcb;
1390 bge_hostaddr taddr;
1391 uint32_t val;
1392 int i, limit;
1393
1394 /*
1395 * Initialize the memory window pointer register so that
1396 * we can access the first 32K of internal NIC RAM. This will
1397 * allow us to set up the TX send ring RCBs and the RX return
1398 * ring RCBs, plus other things which live in NIC memory.
1399 */
1400 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1401
1402 /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1403
1404 if (!BGE_IS_5705_PLUS(sc)) {
1405 /* Configure mbuf memory pool */
1406 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1407 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1408 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1409 else
1410 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1411
1412 /* Configure DMA resource pool */
1413 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1414 BGE_DMA_DESCRIPTORS);
1415 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1416 }
1417
1418 /* Configure mbuf pool watermarks */
1419 if (!BGE_IS_5705_PLUS(sc)) {
1420 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1421 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1422 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1423 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1424 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1425 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1426 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1427 } else {
1428 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1429 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1430 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1431 }
1432
1433 /* Configure DMA resource watermarks */
1434 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1435 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1436
1437 /* Enable buffer manager */
1438 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1439 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1440
1441 /* Poll for buffer manager start indication */
1442 for (i = 0; i < BGE_TIMEOUT; i++) {
1443 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1444 break;
1445 DELAY(10);
1446 }
1447
1448 if (i == BGE_TIMEOUT) {
1449 if_printf(&sc->arpcom.ac_if,
1450 "buffer manager failed to start\n");
1451 return(ENXIO);
1452 }
1453
1454 /* Enable flow-through queues */
1455 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1456 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1457
1458 /* Wait until queue initialization is complete */
1459 for (i = 0; i < BGE_TIMEOUT; i++) {
1460 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1461 break;
1462 DELAY(10);
1463 }
1464
1465 if (i == BGE_TIMEOUT) {
1466 if_printf(&sc->arpcom.ac_if,
1467 "flow-through queue init failed\n");
1468 return(ENXIO);
1469 }
1470
1471 /*
1472 * Summary of rings supported by the controller:
1473 *
1474 * Standard Receive Producer Ring
1475 * - This ring is used to feed receive buffers for "standard"
1476 * sized frames (typically 1536 bytes) to the controller.
1477 *
1478 * Jumbo Receive Producer Ring
1479 * - This ring is used to feed receive buffers for jumbo sized
1480 * frames (i.e. anything bigger than the "standard" frames)
1481 * to the controller.
1482 *
1483 * Mini Receive Producer Ring
1484 * - This ring is used to feed receive buffers for "mini"
1485 * sized frames to the controller.
1486 * - This feature required external memory for the controller
1487 * but was never used in a production system. Should always
1488 * be disabled.
1489 *
1490 * Receive Return Ring
1491 * - After the controller has placed an incoming frame into a
1492 * receive buffer that buffer is moved into a receive return
1493 * ring. The driver is then responsible to passing the
1494 * buffer up to the stack. Many versions of the controller
1495 * support multiple RR rings.
1496 *
1497 * Send Ring
1498 * - This ring is used for outgoing frames. Many versions of
1499 * the controller support multiple send rings.
1500 */
1501
1502 /* Initialize the standard receive producer ring control block. */
1503 rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1504 rcb->bge_hostaddr.bge_addr_lo =
1505 BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1506 rcb->bge_hostaddr.bge_addr_hi =
1507 BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1508 if (BGE_IS_5705_PLUS(sc)) {
1509 /*
1510 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1511 * Bits 15-2 : Reserved (should be 0)
1512 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
1513 * Bit 0 : Reserved
1514 */
1515 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1516 } else {
1517 /*
1518 * Ring size is always XXX entries
1519 * Bits 31-16: Maximum RX frame size
1520 * Bits 15-2 : Reserved (should be 0)
1521 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
1522 * Bit 0 : Reserved
1523 */
1524 rcb->bge_maxlen_flags =
1525 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1526 }
1527 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1528 /* Write the standard receive producer ring control block. */
1529 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1530 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1531 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1532 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1533 /* Reset the standard receive producer ring producer index. */
1534 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1535
1536 /*
1537 * Initialize the jumbo RX producer ring control
1538 * block. We set the 'ring disabled' bit in the
1539 * flags field until we're actually ready to start
1540 * using this ring (i.e. once we set the MTU
1541 * high enough to require it).
1542 */
1543 if (BGE_IS_JUMBO_CAPABLE(sc)) {
1544 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1545 /* Get the jumbo receive producer ring RCB parameters. */
1546 rcb->bge_hostaddr.bge_addr_lo =
1547 BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1548 rcb->bge_hostaddr.bge_addr_hi =
1549 BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1550 rcb->bge_maxlen_flags =
1551 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1552 BGE_RCB_FLAG_RING_DISABLED);
1553 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1554 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1555 rcb->bge_hostaddr.bge_addr_hi);
1556 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1557 rcb->bge_hostaddr.bge_addr_lo);
1558 /* Program the jumbo receive producer ring RCB parameters. */
1559 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1560 rcb->bge_maxlen_flags);
1561 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1562 /* Reset the jumbo receive producer ring producer index. */
1563 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1564 }
1565
1566 /* Disable the mini receive producer ring RCB. */
1567 if (BGE_IS_5700_FAMILY(sc)) {
1568 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1569 rcb->bge_maxlen_flags =
1570 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1571 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1572 rcb->bge_maxlen_flags);
1573 /* Reset the mini receive producer ring producer index. */
1574 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1575 }
1576
1577 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1578 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1579 (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1580 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1581 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)) {
1582 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1583 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1584 }
1585
1586 /*
1587 * The BD ring replenish thresholds control how often the
1588 * hardware fetches new BD's from the producer rings in host
1589 * memory. Setting the value too low on a busy system can
1590 * starve the hardware and recue the throughpout.
1591 *
1592 * Set the BD ring replentish thresholds. The recommended
1593 * values are 1/8th the number of descriptors allocated to
1594 * each ring.
1595 */
1596 if (BGE_IS_5705_PLUS(sc))
1597 val = 8;
1598 else
1599 val = BGE_STD_RX_RING_CNT / 8;
1600 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1601 if (BGE_IS_JUMBO_CAPABLE(sc)) {
1602 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1603 BGE_JUMBO_RX_RING_CNT/8);
1604 }
1605
1606 /*
1607 * Disable all send rings by setting the 'ring disabled' bit
1608 * in the flags field of all the TX send ring control blocks,
1609 * located in NIC memory.
1610 */
1611 if (!BGE_IS_5705_PLUS(sc)) {
1612 /* 5700 to 5704 had 16 send rings. */
1613 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1614 } else {
1615 limit = 1;
1616 }
1617 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1618 for (i = 0; i < limit; i++) {
1619 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1620 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1621 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1622 vrcb += sizeof(struct bge_rcb);
1623 }
1624
1625 /* Configure send ring RCB 0 (we use only the first ring) */
1626 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1627 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1628 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1629 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1630 RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1631 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1632 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1633 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1634
1635 /*
1636 * Disable all receive return rings by setting the
1637 * 'ring diabled' bit in the flags field of all the receive
1638 * return ring control blocks, located in NIC memory.
1639 */
1640 if (!BGE_IS_5705_PLUS(sc))
1641 limit = BGE_RX_RINGS_MAX;
1642 else if (sc->bge_asicrev == BGE_ASICREV_BCM5755)
1643 limit = 4;
1644 else
1645 limit = 1;
1646 /* Disable all receive return rings. */
1647 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1648 for (i = 0; i < limit; i++) {
1649 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1650 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1651 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1652 BGE_RCB_FLAG_RING_DISABLED);
1653 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1654 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1655 (i * (sizeof(uint64_t))), 0);
1656 vrcb += sizeof(struct bge_rcb);
1657 }
1658
1659 /*
1660 * Set up receive return ring 0. Note that the NIC address
1661 * for RX return rings is 0x0. The return rings live entirely
1662 * within the host, so the nicaddr field in the RCB isn't used.
1663 */
1664 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1665 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1666 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1667 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1668 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1669 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1670 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1671
1672 /* Set random backoff seed for TX */
1673 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1674 sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1675 sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1676 sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1677 BGE_TX_BACKOFF_SEED_MASK);
1678
1679 /* Set inter-packet gap */
1680 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1681
1682 /*
1683 * Specify which ring to use for packets that don't match
1684 * any RX rules.
1685 */
1686 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1687
1688 /*
1689 * Configure number of RX lists. One interrupt distribution
1690 * list, sixteen active lists, one bad frames class.
1691 */
1692 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1693
1694 /* Inialize RX list placement stats mask. */
1695 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1696 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1697
1698 /* Disable host coalescing until we get it set up */
1699 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1700
1701 /* Poll to make sure it's shut down. */
1702 for (i = 0; i < BGE_TIMEOUT; i++) {
1703 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1704 break;
1705 DELAY(10);
1706 }
1707
1708 if (i == BGE_TIMEOUT) {
1709 if_printf(&sc->arpcom.ac_if,
1710 "host coalescing engine failed to idle\n");
1711 return(ENXIO);
1712 }
1713
1714 /* Set up host coalescing defaults */
1715 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1716 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1717 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_coal_bds);
1718 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_coal_bds);
1719 if (!BGE_IS_5705_PLUS(sc)) {
1720 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
1721 sc->bge_rx_coal_ticks_int);
1722 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
1723 sc->bge_tx_coal_ticks_int);
1724 }
1725 /*
1726 * NOTE:
1727 * The datasheet (57XX-PG105-R) says BCM5705+ do not
1728 * have following two registers; obviously it is wrong.
1729 */
1730 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, sc->bge_rx_coal_bds_int);
1731 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, sc->bge_tx_coal_bds_int);
1732
1733 /* Set up address of statistics block */
1734 if (!BGE_IS_5705_PLUS(sc)) {
1735 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1736 BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1737 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1738 BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1739
1740 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1741 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1742 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1743 }
1744
1745 /* Set up address of status block */
1746 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1747 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1748 BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1749 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1750 BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1751
1752 /*
1753 * Set up status block partail update size.
1754 *
1755 * Because only single TX ring, RX produce ring and Rx return ring
1756 * are used, ask device to update only minimum part of status block
1757 * except for BCM5700 AX/BX, whose status block partial update size
1758 * can't be configured.
1759 */
1760 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1761 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1762 /* XXX Actually reserved on BCM5700 AX/BX */
1763 val = BGE_STATBLKSZ_FULL;
1764 } else {
1765 val = BGE_STATBLKSZ_32BYTE;
1766 }
1767#if 0
1768 /*
1769 * Does not seem to have visible effect in both
1770 * bulk data (1472B UDP datagram) and tiny data
1771 * (18B UDP datagram) TX tests.
1772 */
1773 if (!BGE_IS_CRIPPLED(sc))
1774 val |= BGE_HCCMODE_CLRTICK_TX;
1775#endif
1776
1777 /* Turn on host coalescing state machine */
1778 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1779
1780 /* Turn on RX BD completion state machine and enable attentions */
1781 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1782 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1783
1784 /* Turn on RX list placement state machine */
1785 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1786
1787 /* Turn on RX list selector state machine. */
1788 if (!BGE_IS_5705_PLUS(sc))
1789 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1790
1791 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1792 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1793 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1794 BGE_MACMODE_FRMHDR_DMA_ENB;
1795
1796 if (sc->bge_flags & BGE_FLAG_TBI)
1797 val |= BGE_PORTMODE_TBI;
1798 else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1799 val |= BGE_PORTMODE_GMII;
1800 else
1801 val |= BGE_PORTMODE_MII;
1802
1803 /* Turn on DMA, clear stats */
1804 CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1805
1806 /* Set misc. local control, enable interrupts on attentions */
1807 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1808
1809#ifdef notdef
1810 /* Assert GPIO pins for PHY reset */
1811 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1812 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1813 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1814 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1815#endif
1816
1817 /* Turn on DMA completion state machine */
1818 if (!BGE_IS_5705_PLUS(sc))
1819 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1820
1821 /* Turn on write DMA state machine */
1822 val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1823 if (BGE_IS_5755_PLUS(sc)) {
1824 /* Enable host coalescing bug fix. */
1825 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1826 }
1827 if (sc->bge_asicrev == BGE_ASICREV_BCM5785) {
1828 /* Request larger DMA burst size to get better performance. */
1829 val |= BGE_WDMAMODE_BURST_ALL_DATA;
1830 }
1831 CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1832 DELAY(40);
1833
1834 if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
1835 sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1836 sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1837 sc->bge_asicrev == BGE_ASICREV_BCM57780) {
1838 /*
1839 * Enable fix for read DMA FIFO overruns.
1840 * The fix is to limit the number of RX BDs
1841 * the hardware would fetch at a fime.
1842 */
1843 val = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
1844 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
1845 val| BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1846 }
1847
1848 /* Turn on read DMA state machine */
1849 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1850 if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1851 sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1852 sc->bge_asicrev == BGE_ASICREV_BCM57780)
1853 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1854 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1855 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1856 if (sc->bge_flags & BGE_FLAG_PCIE)
1857 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1858 if (sc->bge_flags & BGE_FLAG_TSO)
1859 val |= BGE_RDMAMODE_TSO4_ENABLE;
1860 CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1861 DELAY(40);
1862
1863 /* Turn on RX data completion state machine */
1864 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1865
1866 /* Turn on RX BD initiator state machine */
1867 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1868
1869 /* Turn on RX data and RX BD initiator state machine */
1870 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1871
1872 /* Turn on Mbuf cluster free state machine */
1873 if (!BGE_IS_5705_PLUS(sc))
1874 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1875
1876 /* Turn on send BD completion state machine */
1877 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1878
1879 /* Turn on send data completion state machine */
1880 val = BGE_SDCMODE_ENABLE;
1881 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1882 val |= BGE_SDCMODE_CDELAY;
1883 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1884
1885 /* Turn on send data initiator state machine */
1886 if (sc->bge_flags & BGE_FLAG_TSO)
1887 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
1888 BGE_SDIMODE_HW_LSO_PRE_DMA);
1889 else
1890 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1891
1892 /* Turn on send BD initiator state machine */
1893 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1894
1895 /* Turn on send BD selector state machine */
1896 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1897
1898 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1899 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1900 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1901
1902 /* ack/clear link change events */
1903 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1904 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1905 BGE_MACSTAT_LINK_CHANGED);
1906 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1907
1908 /*
1909 * Enable attention when the link has changed state for
1910 * devices that use auto polling.
1911 */
1912 if (sc->bge_flags & BGE_FLAG_TBI) {
1913 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1914 } else {
1915 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
1916 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1917 DELAY(80);
1918 }
1919 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1920 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1921 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1922 BGE_EVTENB_MI_INTERRUPT);
1923 }
1924 }
1925
1926 /*
1927 * Clear any pending link state attention.
1928 * Otherwise some link state change events may be lost until attention
1929 * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1930 * It's not necessary on newer BCM chips - perhaps enabling link
1931 * state change attentions implies clearing pending attention.
1932 */
1933 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1934 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1935 BGE_MACSTAT_LINK_CHANGED);
1936
1937 /* Enable link state change attentions. */
1938 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1939
1940 return(0);
1941}
1942
1943/*
1944 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1945 * against our list and return its name if we find a match. Note
1946 * that since the Broadcom controller contains VPD support, we
1947 * can get the device name string from the controller itself instead
1948 * of the compiled-in string. This is a little slow, but it guarantees
1949 * we'll always announce the right product name.
1950 */
1951static int
1952bge_probe(device_t dev)
1953{
1954 const struct bge_type *t;
1955 uint16_t product, vendor;
1956
1957 product = pci_get_device(dev);
1958 vendor = pci_get_vendor(dev);
1959
1960 for (t = bge_devs; t->bge_name != NULL; t++) {
1961 if (vendor == t->bge_vid && product == t->bge_did)
1962 break;
1963 }
1964 if (t->bge_name == NULL)
1965 return(ENXIO);
1966
1967 device_set_desc(dev, t->bge_name);
1968 return(0);
1969}
1970
1971static int
1972bge_attach(device_t dev)
1973{
1974 struct ifnet *ifp;
1975 struct bge_softc *sc;
1976 uint32_t hwcfg = 0, misccfg;
1977 int error = 0, rid, capmask;
1978 uint8_t ether_addr[ETHER_ADDR_LEN];
1979 uint16_t product, vendor;
1980 driver_intr_t *intr_func;
1981 uintptr_t mii_priv = 0;
1982 u_int intr_flags;
1983 int msi_enable;
1984
1985 sc = device_get_softc(dev);
1986 sc->bge_dev = dev;
1987 callout_init_mp(&sc->bge_stat_timer);
1988 lwkt_serialize_init(&sc->bge_jslot_serializer);
1989
1990 product = pci_get_device(dev);
1991 vendor = pci_get_vendor(dev);
1992
1993#ifndef BURN_BRIDGES
1994 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1995 uint32_t irq, mem;
1996
1997 irq = pci_read_config(dev, PCIR_INTLINE, 4);
1998 mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
1999
2000 device_printf(dev, "chip is in D%d power mode "
2001 "-- setting to D0\n", pci_get_powerstate(dev));
2002
2003 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
2004
2005 pci_write_config(dev, PCIR_INTLINE, irq, 4);
2006 pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
2007 }
2008#endif /* !BURN_BRIDGE */
2009
2010 /*
2011 * Map control/status registers.
2012 */
2013 pci_enable_busmaster(dev);
2014
2015 rid = BGE_PCI_BAR0;
2016 sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2017 RF_ACTIVE);
2018
2019 if (sc->bge_res == NULL) {
2020 device_printf(dev, "couldn't map memory\n");
2021 return ENXIO;
2022 }
2023
2024 sc->bge_btag = rman_get_bustag(sc->bge_res);
2025 sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
2026
2027 /* Save various chip information */
2028 sc->bge_chipid =
2029 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2030 BGE_PCIMISCCTL_ASICREV_SHIFT;
2031 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2032 /* All chips, which use BGE_PCI_PRODID_ASICREV, have CPMU */
2033 sc->bge_flags |= BGE_FLAG_CPMU;
2034 sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2035 }
2036 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2037 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2038
2039 /* Save chipset family. */
2040 switch (sc->bge_asicrev) {
2041 case BGE_ASICREV_BCM5755:
2042 case BGE_ASICREV_BCM5761:
2043 case BGE_ASICREV_BCM5784:
2044 case BGE_ASICREV_BCM5785:
2045 case BGE_ASICREV_BCM5787:
2046 case BGE_ASICREV_BCM57780:
2047 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2048 BGE_FLAG_5705_PLUS;
2049 break;
2050
2051 case BGE_ASICREV_BCM5700:
2052 case BGE_ASICREV_BCM5701:
2053 case BGE_ASICREV_BCM5703:
2054 case BGE_ASICREV_BCM5704:
2055 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2056 break;
2057
2058 case BGE_ASICREV_BCM5714_A0:
2059 case BGE_ASICREV_BCM5780:
2060 case BGE_ASICREV_BCM5714:
2061 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
2062 /* Fall through */
2063
2064 case BGE_ASICREV_BCM5750:
2065 case BGE_ASICREV_BCM5752:
2066 case BGE_ASICREV_BCM5906:
2067 sc->bge_flags |= BGE_FLAG_575X_PLUS;
2068 /* Fall through */
2069
2070 case BGE_ASICREV_BCM5705:
2071 sc->bge_flags |= BGE_FLAG_5705_PLUS;
2072 break;
2073 }
2074
2075 if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2076 sc->bge_flags |= BGE_FLAG_NO_EEPROM;
2077
2078 misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2079 if (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2080 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2081 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2082 sc->bge_flags |= BGE_FLAG_5788;
2083
2084 /* BCM5755 or higher and BCM5906 have short DMA bug. */
2085 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
2086 sc->bge_flags |= BGE_FLAG_SHORTDMA;
2087
2088 /*
2089 * Check if this is a PCI-X or PCI Express device.
2090 */
2091 if (BGE_IS_5705_PLUS(sc)) {
2092 if (pci_is_pcie(dev)) {
2093 sc->bge_flags |= BGE_FLAG_PCIE;
2094 sc->bge_pciecap = pci_get_pciecap_ptr(sc->bge_dev);
2095 pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
2096 }
2097 } else {
2098 /*
2099 * Check if the device is in PCI-X Mode.
2100 * (This bit is not valid on PCI Express controllers.)
2101 */
2102 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
2103 BGE_PCISTATE_PCI_BUSMODE) == 0) {
2104 sc->bge_flags |= BGE_FLAG_PCIX;
2105 sc->bge_pcixcap = pci_get_pcixcap_ptr(sc->bge_dev);
2106 sc->bge_mbox_reorder = device_getenv_int(sc->bge_dev,
2107 "mbox_reorder", 0);
2108 }
2109 }
2110 device_printf(dev, "CHIP ID 0x%08x; "
2111 "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2112 sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2113 (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
2114 : ((sc->bge_flags & BGE_FLAG_PCIE) ?
2115 "PCI-E" : "PCI"));
2116
2117 /*
2118 * The 40bit DMA bug applies to the 5714/5715 controllers and is
2119 * not actually a MAC controller bug but an issue with the embedded
2120 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2121 */
2122 if ((sc->bge_flags & BGE_FLAG_PCIX) &&
2123 (BGE_IS_5714_FAMILY(sc) || device_getenv_int(dev, "dma40b", 0)))
2124 sc->bge_flags |= BGE_FLAG_MAXADDR_40BIT;
2125
2126 /*
2127 * When using the BCM5701 in PCI-X mode, data corruption has
2128 * been observed in the first few bytes of some received packets.
2129 * Aligning the packet buffer in memory eliminates the corruption.
2130 * Unfortunately, this misaligns the packet payloads. On platforms
2131 * which do not support unaligned accesses, we will realign the
2132 * payloads by copying the received packets.
2133 */
2134 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2135 (sc->bge_flags & BGE_FLAG_PCIX))
2136 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2137
2138 if (!BGE_IS_CRIPPLED(sc)) {
2139 if (device_getenv_int(dev, "status_tag", 1)) {
2140 sc->bge_flags |= BGE_FLAG_STATUS_TAG;
2141 sc->bge_pci_miscctl = BGE_PCIMISCCTL_TAGGED_STATUS;
2142 if (bootverbose)
2143 device_printf(dev, "enable status tag\n");
2144 }
2145 }
2146
2147 if (BGE_IS_5755_PLUS(sc)) {
2148 /*
2149 * BCM5754 and BCM5787 shares the same ASIC id so
2150 * explicit device id check is required.
2151 * Due to unknown reason TSO does not work on BCM5755M.
2152 */
2153 if (product != PCI_PRODUCT_BROADCOM_BCM5754 &&
2154 product != PCI_PRODUCT_BROADCOM_BCM5754M &&
2155 product != PCI_PRODUCT_BROADCOM_BCM5755M)
2156 sc->bge_flags |= BGE_FLAG_TSO;
2157 }
2158
2159 /*
2160 * Set various PHY quirk flags.
2161 */
2162
2163 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2164 sc->bge_asicrev == BGE_ASICREV_BCM5701) &&
2165 pci_get_subvendor(dev) == PCI_VENDOR_DELL)
2166 mii_priv |= BRGPHY_FLAG_NO_3LED;
2167
2168 capmask = MII_CAPMASK_DEFAULT;
2169 if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2170 (misccfg == 0x4000 || misccfg == 0x8000)) ||
2171 (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2172 vendor == PCI_VENDOR_BROADCOM &&
2173 (product == PCI_PRODUCT_BROADCOM_BCM5901 ||
2174 product == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2175 product == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2176 (vendor == PCI_VENDOR_BROADCOM &&
2177 (product == PCI_PRODUCT_BROADCOM_BCM5751F ||
2178 product == PCI_PRODUCT_BROADCOM_BCM5753F ||
2179 product == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2180 product == PCI_PRODUCT_BROADCOM_BCM57790 ||
2181 sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2182 /* 10/100 only */
2183 capmask &= ~BMSR_EXTSTAT;
2184 }
2185
2186 mii_priv |= BRGPHY_FLAG_WIRESPEED;
2187 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2188 (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2189 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2190 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2191 sc->bge_asicrev == BGE_ASICREV_BCM5906)
2192 mii_priv &= ~BRGPHY_FLAG_WIRESPEED;
2193
2194 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2195 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2196 mii_priv |= BRGPHY_FLAG_CRC_BUG;
2197
2198 if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2199 sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2200 mii_priv |= BRGPHY_FLAG_ADC_BUG;
2201
2202 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2203 mii_priv |= BRGPHY_FLAG_5704_A0;
2204
2205 if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2206 mii_priv |= BRGPHY_FLAG_5906;
2207
2208 if (BGE_IS_5705_PLUS(sc) &&
2209 sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2210 /* sc->bge_asicrev != BGE_ASICREV_BCM5717 && */
2211 sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2212 /* sc->bge_asicrev != BGE_ASICREV_BCM57765 && */
2213 sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2214 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2215 sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2216 sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2217 sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2218 if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
2219 product != PCI_PRODUCT_BROADCOM_BCM5756)
2220 mii_priv |= BRGPHY_FLAG_JITTER_BUG;
2221 if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
2222 mii_priv |= BRGPHY_FLAG_ADJUST_TRIM;
2223 } else {
2224 mii_priv |= BRGPHY_FLAG_BER_BUG;
2225 }
2226 }
2227
2228 /*
2229 * Allocate interrupt
2230 */
2231 msi_enable = bge_msi_enable;
2232 if ((sc->bge_flags & BGE_FLAG_STATUS_TAG) == 0) {
2233 /* If "tagged status" is disabled, don't enable MSI */
2234 msi_enable = 0;
2235 } else if (msi_enable) {
2236 msi_enable = 0; /* Disable by default */
2237 if (BGE_IS_575X_PLUS(sc)) {
2238 msi_enable = 1;
2239 /* XXX we filter all 5714 chips */
2240 if (sc->bge_asicrev == BGE_ASICREV_BCM5714 ||
2241 (sc->bge_asicrev == BGE_ASICREV_BCM5750 &&
2242 (sc->bge_chiprev == BGE_CHIPREV_5750_AX ||
2243 sc->bge_chiprev == BGE_CHIPREV_5750_BX)))
2244 msi_enable = 0;
2245 else if (BGE_IS_5755_PLUS(sc) ||
2246 sc->bge_asicrev == BGE_ASICREV_BCM5906)
2247 sc->bge_flags |= BGE_FLAG_ONESHOT_MSI;
2248 }
2249 }
2250 if (msi_enable) {
2251 if (pci_find_extcap(dev, PCIY_MSI, &sc->bge_msicap)) {
2252 device_printf(dev, "no MSI capability\n");
2253 msi_enable = 0;
2254 }
2255 }
2256
2257 sc->bge_irq_type = pci_alloc_1intr(dev, msi_enable, &sc->bge_irq_rid,
2258 &intr_flags);
2259
2260 sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->bge_irq_rid,
2261 intr_flags);
2262 if (sc->bge_irq == NULL) {
2263 device_printf(dev, "couldn't map interrupt\n");
2264 error = ENXIO;
2265 goto fail;
2266 }
2267
2268 if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2269 bge_enable_msi(sc);
2270 else
2271 sc->bge_flags &= ~BGE_FLAG_ONESHOT_MSI;
2272
2273 /* Initialize if_name earlier, so if_printf could be used */
2274 ifp = &sc->arpcom.ac_if;
2275 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2276
2277 /* Try to reset the chip. */
2278 bge_reset(sc);
2279
2280 if (bge_chipinit(sc)) {
2281 device_printf(dev, "chip initialization failed\n");
2282 error = ENXIO;
2283 goto fail;
2284 }
2285
2286 /*
2287 * Get station address
2288 */
2289 error = bge_get_eaddr(sc, ether_addr);
2290 if (error) {
2291 device_printf(dev, "failed to read station address\n");
2292 goto fail;
2293 }
2294
2295 /* 5705/5750 limits RX return ring to 512 entries. */
2296 if (BGE_IS_5705_PLUS(sc))
2297 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2298 else
2299 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2300
2301 error = bge_dma_alloc(sc);
2302 if (error)
2303 goto fail;
2304
2305 /* Set default tuneable values. */
2306 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2307 sc->bge_rx_coal_ticks = BGE_RX_COAL_TICKS_DEF;
2308 sc->bge_tx_coal_ticks = BGE_TX_COAL_TICKS_DEF;
2309 sc->bge_rx_coal_bds = BGE_RX_COAL_BDS_DEF;
2310 sc->bge_tx_coal_bds = BGE_TX_COAL_BDS_DEF;
2311 if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2312 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_DEF;
2313 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_DEF;
2314 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_DEF;
2315 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_DEF;
2316 } else {
2317 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_MIN;
2318 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_MIN;
2319 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_MIN;
2320 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_MIN;
2321 }
2322
2323 /* Set up TX spare and reserved descriptor count */
2324 if (sc->bge_flags & BGE_FLAG_TSO) {
2325 sc->bge_txspare = BGE_NSEG_SPARE_TSO;
2326 sc->bge_txrsvd = BGE_NSEG_RSVD_TSO;
2327 } else {
2328 sc->bge_txspare = BGE_NSEG_SPARE;
2329 sc->bge_txrsvd = BGE_NSEG_RSVD;
2330 }
2331
2332 /* Set up ifnet structure */
2333 ifp->if_softc = sc;
2334 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2335 ifp->if_ioctl = bge_ioctl;
2336 ifp->if_start = bge_start;
2337#ifdef DEVICE_POLLING
2338 ifp->if_poll = bge_poll;
2339#endif
2340 ifp->if_watchdog = bge_watchdog;
2341 ifp->if_init = bge_init;
2342 ifp->if_mtu = ETHERMTU;
2343 ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2344 ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2345 ifq_set_ready(&ifp->if_snd);
2346
2347 /*
2348 * 5700 B0 chips do not support checksumming correctly due
2349 * to hardware bugs.
2350 */
2351 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
2352 ifp->if_capabilities |= IFCAP_HWCSUM;
2353 ifp->if_hwassist |= BGE_CSUM_FEATURES;
2354 }
2355 if (sc->bge_flags & BGE_FLAG_TSO) {
2356 ifp->if_capabilities |= IFCAP_TSO;
2357 ifp->if_hwassist |= CSUM_TSO;
2358 }
2359 ifp->if_capenable = ifp->if_capabilities;
2360
2361 /*
2362 * Figure out what sort of media we have by checking the
2363 * hardware config word in the first 32k of NIC internal memory,
2364 * or fall back to examining the EEPROM if necessary.
2365 * Note: on some BCM5700 cards, this value appears to be unset.
2366 * If that's the case, we have to rely on identifying the NIC
2367 * by its PCI subsystem ID, as we do below for the SysKonnect
2368 * SK-9D41.
2369 */
2370 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2371 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2372 } else {
2373 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2374 sizeof(hwcfg))) {
2375 device_printf(dev, "failed to read EEPROM\n");
2376 error = ENXIO;
2377 goto fail;
2378 }
2379 hwcfg = ntohl(hwcfg);
2380 }
2381
2382 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2383 if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2384 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2385 if (BGE_IS_5714_FAMILY(sc))
2386 sc->bge_flags |= BGE_FLAG_MII_SERDES;
2387 else
2388 sc->bge_flags |= BGE_FLAG_TBI;
2389 }
2390
2391 /* Setup MI MODE */
2392 if (sc->bge_flags & BGE_FLAG_CPMU)
2393 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2394 else
2395 sc->bge_mi_mode = BGE_MIMODE_BASE;
2396 if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2397 /* Enable auto polling for BCM570[0-5]. */
2398 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2399 }
2400
2401 /* Setup link status update stuffs */
2402 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2403 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2404 sc->bge_link_upd = bge_bcm5700_link_upd;
2405 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
2406 } else if (sc->bge_flags & BGE_FLAG_TBI) {
2407 sc->bge_link_upd = bge_tbi_link_upd;
2408 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2409 } else if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2410 sc->bge_link_upd = bge_autopoll_link_upd;
2411 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2412 } else {
2413 sc->bge_link_upd = bge_copper_link_upd;
2414 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2415 }
2416
2417 /*
2418 * Broadcom's own driver always assumes the internal
2419 * PHY is at GMII address 1. On some chips, the PHY responds
2420 * to accesses at all addresses, which could cause us to
2421 * bogusly attach the PHY 32 times at probe type. Always
2422 * restricting the lookup to address 1 is simpler than
2423 * trying to figure out which chips revisions should be
2424 * special-cased.
2425 */
2426 sc->bge_phyno = 1;
2427
2428 if (sc->bge_flags & BGE_FLAG_TBI) {
2429 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
2430 bge_ifmedia_upd, bge_ifmedia_sts);
2431 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2432 ifmedia_add(&sc->bge_ifmedia,
2433 IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2434 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2435 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2436 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2437 } else {
2438 struct mii_probe_args mii_args;
2439
2440 mii_probe_args_init(&mii_args, bge_ifmedia_upd, bge_ifmedia_sts);
2441 mii_args.mii_probemask = 1 << sc->bge_phyno;
2442 mii_args.mii_capmask = capmask;
2443 mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2444 mii_args.mii_priv = mii_priv;
2445
2446 error = mii_probe(dev, &sc->bge_miibus, &mii_args);
2447 if (error) {
2448 device_printf(dev, "MII without any PHY!\n");
2449 goto fail;
2450 }
2451 }
2452
2453 /*
2454 * Create sysctl nodes.
2455 */
2456 sysctl_ctx_init(&sc->bge_sysctl_ctx);
2457 sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
2458 SYSCTL_STATIC_CHILDREN(_hw),
2459 OID_AUTO,
2460 device_get_nameunit(dev),
2461 CTLFLAG_RD, 0, "");
2462 if (sc->bge_sysctl_tree == NULL) {
2463 device_printf(dev, "can't add sysctl node\n");
2464 error = ENXIO;
2465 goto fail;
2466 }
2467
2468 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2469 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2470 OID_AUTO, "rx_coal_ticks",
2471 CTLTYPE_INT | CTLFLAG_RW,
2472 sc, 0, bge_sysctl_rx_coal_ticks, "I",
2473 "Receive coalescing ticks (usec).");
2474 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2475 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2476 OID_AUTO, "tx_coal_ticks",
2477 CTLTYPE_INT | CTLFLAG_RW,
2478 sc, 0, bge_sysctl_tx_coal_ticks, "I",
2479 "Transmit coalescing ticks (usec).");
2480 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2481 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2482 OID_AUTO, "rx_coal_bds",
2483 CTLTYPE_INT | CTLFLAG_RW,
2484 sc, 0, bge_sysctl_rx_coal_bds, "I",
2485 "Receive max coalesced BD count.");
2486 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2487 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2488 OID_AUTO, "tx_coal_bds",
2489 CTLTYPE_INT | CTLFLAG_RW,
2490 sc, 0, bge_sysctl_tx_coal_bds, "I",
2491 "Transmit max coalesced BD count.");
2492 if (sc->bge_flags & BGE_FLAG_PCIE) {
2493 /*
2494 * A common design characteristic for many Broadcom
2495 * client controllers is that they only support a
2496 * single outstanding DMA read operation on the PCIe
2497 * bus. This means that it will take twice as long to
2498 * fetch a TX frame that is split into header and
2499 * payload buffers as it does to fetch a single,
2500 * contiguous TX frame (2 reads vs. 1 read). For these
2501 * controllers, coalescing buffers to reduce the number
2502 * of memory reads is effective way to get maximum
2503 * performance(about 940Mbps). Without collapsing TX
2504 * buffers the maximum TCP bulk transfer performance
2505 * is about 850Mbps. However forcing coalescing mbufs
2506 * consumes a lot of CPU cycles, so leave it off by
2507 * default.
2508 */
2509 SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2510 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2511 OID_AUTO, "force_defrag", CTLFLAG_RW,
2512 &sc->bge_force_defrag, 0,
2513 "Force defragment on TX path");
2514 }
2515 if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2516 if (!BGE_IS_5705_PLUS(sc)) {
2517 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2518 SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2519 "rx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2520 sc, 0, bge_sysctl_rx_coal_ticks_int, "I",
2521 "Receive coalescing ticks "
2522 "during interrupt (usec).");
2523 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2524 SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2525 "tx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2526 sc, 0, bge_sysctl_tx_coal_ticks_int, "I",
2527 "Transmit coalescing ticks "
2528 "during interrupt (usec).");
2529 }
2530 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2531 SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2532 "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2533 sc, 0, bge_sysctl_rx_coal_bds_int, "I",
2534 "Receive max coalesced BD count during interrupt.");
2535 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2536 SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2537 "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2538 sc, 0, bge_sysctl_tx_coal_bds_int, "I",
2539 "Transmit max coalesced BD count during interrupt.");
2540 }
2541
2542 /*
2543 * Call MI attach routine.
2544 */
2545 ether_ifattach(ifp, ether_addr, NULL);
2546
2547 if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2548 if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
2549 intr_func = bge_msi_oneshot;
2550 if (bootverbose)
2551 device_printf(dev, "oneshot MSI\n");
2552 } else {
2553 intr_func = bge_msi;
2554 }
2555 } else if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2556 intr_func = bge_intr_legacy;
2557 } else {
2558 intr_func = bge_intr_crippled;
2559 }
2560 error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE, intr_func, sc,
2561 &sc->bge_intrhand, ifp->if_serializer);
2562 if (error) {
2563 ether_ifdetach(ifp);
2564 device_printf(dev, "couldn't set up irq\n");
2565 goto fail;
2566 }
2567
2568 ifp->if_cpuid = rman_get_cpuid(sc->bge_irq);
2569 KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
2570
2571 return(0);
2572fail:
2573 bge_detach(dev);
2574 return(error);
2575}
2576
2577static int
2578bge_detach(device_t dev)
2579{
2580 struct bge_softc *sc = device_get_softc(dev);
2581
2582 if (device_is_attached(dev)) {
2583 struct ifnet *ifp = &sc->arpcom.ac_if;
2584
2585 lwkt_serialize_enter(ifp->if_serializer);
2586 bge_stop(sc);
2587 bge_reset(sc);
2588 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2589 lwkt_serialize_exit(ifp->if_serializer);
2590
2591 ether_ifdetach(ifp);
2592 }
2593
2594 if (sc->bge_flags & BGE_FLAG_TBI)
2595 ifmedia_removeall(&sc->bge_ifmedia);
2596 if (sc->bge_miibus)
2597 device_delete_child(dev, sc->bge_miibus);
2598 bus_generic_detach(dev);
2599
2600 if (sc->bge_irq != NULL) {
2601 bus_release_resource(dev, SYS_RES_IRQ, sc->bge_irq_rid,
2602 sc->bge_irq);
2603 }
2604 if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2605 pci_release_msi(dev);
2606
2607 if (sc->bge_res != NULL) {
2608 bus_release_resource(dev, SYS_RES_MEMORY,
2609 BGE_PCI_BAR0, sc->bge_res);
2610 }
2611
2612 if (sc->bge_sysctl_tree != NULL)
2613 sysctl_ctx_free(&sc->bge_sysctl_ctx);
2614
2615 bge_dma_free(sc);
2616
2617 return 0;
2618}
2619
2620static void
2621bge_reset(struct bge_softc *sc)
2622{
2623 device_t dev;
2624 uint32_t cachesize, command, pcistate, reset;
2625 void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2626 int i, val = 0;
2627
2628 dev = sc->bge_dev;
2629
2630 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2631 sc->bge_asicrev != BGE_ASICREV_BCM5906) {
2632 if (sc->bge_flags & BGE_FLAG_PCIE)
2633 write_op = bge_writemem_direct;
2634 else
2635 write_op = bge_writemem_ind;
2636 } else {
2637 write_op = bge_writereg_ind;
2638 }
2639
2640 /* Save some important PCI state. */
2641 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2642 command = pci_read_config(dev, BGE_PCI_CMD, 4);
2643 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2644
2645 pci_write_config(dev, BGE_PCI_MISC_CTL,
2646 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2647 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2648 sc->bge_pci_miscctl, 4);
2649
2650 /* Disable fastboot on controllers that support it. */
2651 if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2652 BGE_IS_5755_PLUS(sc)) {
2653 if (bootverbose)
2654 if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2655 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2656 }
2657
2658 /*
2659 * Write the magic number to SRAM at offset 0xB50.
2660 * When firmware finishes its initialization it will
2661 * write ~BGE_MAGIC_NUMBER to the same location.
2662 */
2663 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2664
2665 reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2666
2667 /* XXX: Broadcom Linux driver. */
2668 if (sc->bge_flags & BGE_FLAG_PCIE) {
2669 /* Force PCI-E 1.0a mode */
2670 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2671 CSR_READ_4(sc, BGE_PCIE_PHY_TSTCTL) ==
2672 (BGE_PCIE_PHY_TSTCTL_PSCRAM |
2673 BGE_PCIE_PHY_TSTCTL_PCIE10)) {
2674 CSR_WRITE_4(sc, BGE_PCIE_PHY_TSTCTL,
2675 BGE_PCIE_PHY_TSTCTL_PSCRAM);
2676 }
2677 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2678 /* Prevent PCIE link training during global reset */
2679 CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2680 reset |= (1<<29);
2681 }
2682 }
2683
2684 /*
2685 * Set GPHY Power Down Override to leave GPHY
2686 * powered up in D0 uninitialized.
2687 */
2688 if (BGE_IS_5705_PLUS(sc) && (sc->bge_flags & BGE_FLAG_CPMU) == 0)
2689 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2690
2691 /* Issue global reset */
2692 write_op(sc, BGE_MISC_CFG, reset);
2693
2694 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2695 uint32_t status, ctrl;
2696
2697 status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2698 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2699 status | BGE_VCPU_STATUS_DRV_RESET);
2700 ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2701 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2702 ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2703 }
2704
2705 DELAY(1000);
2706
2707 /* XXX: Broadcom Linux driver. */
2708 if (sc->bge_flags & BGE_FLAG_PCIE) {
2709 uint16_t devctl;
2710
2711 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2712 uint32_t v;
2713
2714 DELAY(500000); /* wait for link training to complete */
2715 v = pci_read_config(dev, 0xc4, 4);
2716 pci_write_config(dev, 0xc4, v | (1<<15), 4);
2717 }
2718
2719 devctl = pci_read_config(dev,
2720 sc->bge_pciecap + PCIER_DEVCTRL, 2);
2721
2722 /* Disable no snoop and disable relaxed ordering. */
2723 devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2724
2725 /* Old PCI-E chips only support 128 bytes Max PayLoad Size. */
2726 if ((sc->bge_flags & BGE_FLAG_CPMU) == 0) {
2727 devctl &= ~PCIEM_DEVCTL_MAX_PAYLOAD_MASK;
2728 devctl |= PCIEM_DEVCTL_MAX_PAYLOAD_128;
2729 }
2730
2731 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVCTRL,
2732 devctl, 2);
2733
2734 /* Clear error status. */
2735 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVSTS,
2736 PCIEM_DEVSTS_CORR_ERR |
2737 PCIEM_DEVSTS_NFATAL_ERR |
2738 PCIEM_DEVSTS_FATAL_ERR |
2739 PCIEM_DEVSTS_UNSUPP_REQ, 2);
2740 }
2741
2742 /* Reset some of the PCI state that got zapped by reset */
2743 pci_write_config(dev, BGE_PCI_MISC_CTL,
2744 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2745 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2746 sc->bge_pci_miscctl, 4);
2747 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2748 pci_write_config(dev, BGE_PCI_CMD, command, 4);
2749 write_op(sc, BGE_MISC_CFG, (65 << 1));
2750
2751 /*
2752 * Disable PCI-X relaxed ordering to ensure status block update
2753 * comes first then packet buffer DMA. Otherwise driver may
2754 * read stale status block.
2755 */
2756 if (sc->bge_flags & BGE_FLAG_PCIX) {
2757 uint16_t devctl;
2758
2759 devctl = pci_read_config(dev,
2760 sc->bge_pcixcap + PCIXR_COMMAND, 2);
2761 devctl &= ~PCIXM_COMMAND_ERO;
2762 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
2763 devctl &= ~PCIXM_COMMAND_MAX_READ;
2764 devctl |= PCIXM_COMMAND_MAX_READ_2048;
2765 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2766 devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
2767 PCIXM_COMMAND_MAX_READ);
2768 devctl |= PCIXM_COMMAND_MAX_READ_2048;
2769 }
2770 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
2771 devctl, 2);
2772 }
2773
2774 /*
2775 * Enable memory arbiter and re-enable MSI if necessary.
2776 */
2777 if (BGE_IS_5714_FAMILY(sc)) {
2778 uint32_t val;
2779
2780 if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2781 /*
2782 * Resetting BCM5714 family will clear MSI
2783 * enable bit; restore it after resetting.
2784 */
2785 PCI_SETBIT(sc->bge_dev, sc->bge_msicap + PCIR_MSI_CTRL,
2786 PCIM_MSICTRL_MSI_ENABLE, 2);
2787 BGE_SETBIT(sc, BGE_MSI_MODE, BGE_MSIMODE_ENABLE);
2788 }
2789 val = CSR_READ_4(sc, BGE_MARB_MODE);
2790 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2791 } else {
2792 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2793 }
2794
2795 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2796 for (i = 0; i < BGE_TIMEOUT; i++) {
2797 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2798 if (val & BGE_VCPU_STATUS_INIT_DONE)
2799 break;
2800 DELAY(100);
2801 }
2802 if (i == BGE_TIMEOUT) {
2803 if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2804 return;
2805 }
2806 } else {
2807 /*
2808 * Poll until we see the 1's complement of the magic number.
2809 * This indicates that the firmware initialization
2810 * is complete.
2811 */
2812 for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
2813 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2814 if (val == ~BGE_MAGIC_NUMBER)
2815 break;
2816 DELAY(10);
2817 }
2818 if (i == BGE_FIRMWARE_TIMEOUT) {
2819 if_printf(&sc->arpcom.ac_if, "firmware handshake "
2820 "timed out, found 0x%08x\n", val);
2821 }
2822 }
2823
2824 /*
2825 * XXX Wait for the value of the PCISTATE register to
2826 * return to its original pre-reset state. This is a
2827 * fairly good indicator of reset completion. If we don't
2828 * wait for the reset to fully complete, trying to read
2829 * from the device's non-PCI registers may yield garbage
2830 * results.
2831 */
2832 for (i = 0; i < BGE_TIMEOUT; i++) {
2833 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2834 break;
2835 DELAY(10);
2836 }
2837
2838 /* Fix up byte swapping */
2839 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2840 BGE_MODECTL_BYTESWAP_DATA);
2841
2842 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2843
2844 /*
2845 * The 5704 in TBI mode apparently needs some special
2846 * adjustment to insure the SERDES drive level is set
2847 * to 1.2V.
2848 */
2849 if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2850 (sc->bge_flags & BGE_FLAG_TBI)) {
2851 uint32_t serdescfg;
2852
2853 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2854 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2855 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2856 }
2857
2858 CSR_WRITE_4(sc, BGE_MI_MODE,
2859 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
2860 DELAY(80);
2861
2862 /* XXX: Broadcom Linux driver. */
2863 if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2864 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
2865 sc->bge_asicrev != BGE_ASICREV_BCM5785) {
2866 uint32_t v;
2867
2868 /* Enable Data FIFO protection. */
2869 v = CSR_READ_4(sc, BGE_PCIE_TLDLPL_PORT);
2870 CSR_WRITE_4(sc, BGE_PCIE_TLDLPL_PORT, v | (1 << 25));
2871 }
2872
2873 DELAY(10000);
2874}
2875
2876/*
2877 * Frame reception handling. This is called if there's a frame
2878 * on the receive return list.
2879 *
2880 * Note: we have to be able to handle two possibilities here:
2881 * 1) the frame is from the jumbo recieve ring
2882 * 2) the frame is from the standard receive ring
2883 */
2884
2885static void
2886bge_rxeof(struct bge_softc *sc, uint16_t rx_prod)
2887{
2888 struct ifnet *ifp;
2889 int stdcnt = 0, jumbocnt = 0;
2890
2891 ifp = &sc->arpcom.ac_if;
2892
2893 while (sc->bge_rx_saved_considx != rx_prod) {
2894 struct bge_rx_bd *cur_rx;
2895 uint32_t rxidx;
2896 struct mbuf *m = NULL;
2897 uint16_t vlan_tag = 0;
2898 int have_tag = 0;
2899
2900 cur_rx =
2901 &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2902
2903 rxidx = cur_rx->bge_idx;
2904 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2905 logif(rx_pkt);
2906
2907 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2908 have_tag = 1;
2909 vlan_tag = cur_rx->bge_vlan_tag;
2910 }
2911
2912 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2913 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2914 jumbocnt++;
2915
2916 if (rxidx != sc->bge_jumbo) {
2917 ifp->if_ierrors++;
2918 if_printf(ifp, "sw jumbo index(%d) "
2919 "and hw jumbo index(%d) mismatch, drop!\n",
2920 sc->bge_jumbo, rxidx);
2921 bge_setup_rxdesc_jumbo(sc, rxidx);
2922 continue;
2923 }
2924
2925 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
2926 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2927 ifp->if_ierrors++;
2928 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2929 continue;
2930 }
2931 if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
2932 ifp->if_ierrors++;
2933 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2934 continue;
2935 }
2936 } else {
2937 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2938 stdcnt++;
2939
2940 if (rxidx != sc->bge_std) {
2941 ifp->if_ierrors++;
2942 if_printf(ifp, "sw std index(%d) "
2943 "and hw std index(%d) mismatch, drop!\n",
2944 sc->bge_std, rxidx);
2945 bge_setup_rxdesc_std(sc, rxidx);
2946 continue;
2947 }
2948
2949 m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
2950 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2951 ifp->if_ierrors++;
2952 bge_setup_rxdesc_std(sc, sc->bge_std);
2953 continue;
2954 }
2955 if (bge_newbuf_std(sc, sc->bge_std, 0)) {
2956 ifp->if_ierrors++;
2957 bge_setup_rxdesc_std(sc, sc->bge_std);
2958 continue;
2959 }
2960 }
2961
2962 ifp->if_ipackets++;
2963#if !defined(__i386__) && !defined(__x86_64__)
2964 /*
2965 * The x86 allows unaligned accesses, but for other
2966 * platforms we must make sure the payload is aligned.
2967 */
2968 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
2969 bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2970 cur_rx->bge_len);
2971 m->m_data += ETHER_ALIGN;
2972 }
2973#endif
2974 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2975 m->m_pkthdr.rcvif = ifp;
2976
2977 if (ifp->if_capenable & IFCAP_RXCSUM) {
2978 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2979 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2980 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2981 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2982 }
2983 if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
2984 m->m_pkthdr.len >= BGE_MIN_FRAMELEN) {
2985 m->m_pkthdr.csum_data =
2986 cur_rx->bge_tcp_udp_csum;
2987 m->m_pkthdr.csum_flags |=
2988 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2989 }
2990 }
2991
2992 /*
2993 * If we received a packet with a vlan tag, pass it
2994 * to vlan_input() instead of ether_input().
2995 */
2996 if (have_tag) {
2997 m->m_flags |= M_VLANTAG;
2998 m->m_pkthdr.ether_vlantag = vlan_tag;
2999 have_tag = vlan_tag = 0;
3000 }
3001 ifp->if_input(ifp, m);
3002 }
3003
3004 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3005 if (stdcnt)
3006 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3007 if (jumbocnt)
3008 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3009}
3010
3011static void
3012bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3013{
3014 struct ifnet *ifp;
3015
3016 ifp = &sc->arpcom.ac_if;
3017
3018 /*
3019 * Go through our tx ring and free mbufs for those
3020 * frames that have been sent.
3021 */
3022 while (sc->bge_tx_saved_considx != tx_cons) {
3023 uint32_t idx = 0;
3024
3025 idx = sc->bge_tx_saved_considx;
3026 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3027 ifp->if_opackets++;
3028 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3029 sc->bge_cdata.bge_tx_dmamap[idx]);
3030 m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3031 sc->bge_cdata.bge_tx_chain[idx] = NULL;
3032 }
3033 sc->bge_txcnt--;
3034 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3035 logif(tx_pkt);
3036 }
3037
3038 if ((BGE_TX_RING_CNT - sc->bge_txcnt) >=
3039 (sc->bge_txrsvd + sc->bge_txspare))
3040 ifp->if_flags &= ~IFF_OACTIVE;
3041
3042 if (sc->bge_txcnt == 0)
3043 ifp->if_timer = 0;
3044
3045 if (!ifq_is_empty(&ifp->if_snd))
3046 if_devstart(ifp);
3047}
3048
3049#ifdef DEVICE_POLLING
3050
3051static void
3052bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3053{
3054 struct bge_softc *sc = ifp->if_softc;
3055 struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3056 uint16_t rx_prod, tx_cons;
3057
3058 switch(cmd) {
3059 case POLL_REGISTER:
3060 bge_disable_intr(sc);
3061 break;
3062 case POLL_DEREGISTER:
3063 bge_enable_intr(sc);
3064 break;
3065 case POLL_AND_CHECK_STATUS:
3066 /*
3067 * Process link state changes.
3068 */
3069 bge_link_poll(sc);
3070 /* Fall through */
3071 case POLL_ONLY:
3072 if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
3073 sc->bge_status_tag = sblk->bge_status_tag;
3074 /*
3075 * Use a load fence to ensure that status_tag
3076 * is saved before rx_prod and tx_cons.
3077 */
3078 cpu_lfence();
3079 }
3080 rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3081 tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3082 if (ifp->if_flags & IFF_RUNNING) {
3083 rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3084 if (sc->bge_rx_saved_considx != rx_prod)
3085 bge_rxeof(sc, rx_prod);
3086
3087 tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3088 if (sc->bge_tx_saved_considx != tx_cons)
3089 bge_txeof(sc, tx_cons);
3090 }
3091 break;
3092 }
3093}
3094
3095#endif
3096
3097static void
3098bge_intr_crippled(void *xsc)
3099{
3100 struct bge_softc *sc = xsc;
3101 struct ifnet *ifp = &sc->arpcom.ac_if;
3102
3103 logif(intr);
3104
3105 /*
3106 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't
3107 * disable interrupts by writing nonzero like we used to, since with
3108 * our current organization this just gives complications and
3109 * pessimizations for re-enabling interrupts. We used to have races
3110 * instead of the necessary complications. Disabling interrupts
3111 * would just reduce the chance of a status update while we are
3112 * running (by switching to the interrupt-mode coalescence
3113 * parameters), but this chance is already very low so it is more
3114 * efficient to get another interrupt than prevent it.
3115 *
3116 * We do the ack first to ensure another interrupt if there is a
3117 * status update after the ack. We don't check for the status
3118 * changing later because it is more efficient to get another
3119 * interrupt than prevent it, not quite as above (not checking is
3120 * a smaller optimization than not toggling the interrupt enable,
3121 * since checking doesn't involve PCI accesses and toggling require
3122 * the status check). So toggling would probably be a pessimization
3123 * even with MSI. It would only be needed for using a task queue.
3124 */
3125 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3126
3127 /*
3128 * Process link state changes.
3129 */
3130 bge_link_poll(sc);
3131
3132 if (ifp->if_flags & IFF_RUNNING) {
3133 struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3134 uint16_t rx_prod, tx_cons;
3135
3136 rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3137 if (sc->bge_rx_saved_considx != rx_prod)
3138 bge_rxeof(sc, rx_prod);
3139
3140 tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3141 if (sc->bge_tx_saved_considx != tx_cons)
3142 bge_txeof(sc, tx_cons);
3143 }
3144
3145 if (sc->bge_coal_chg)
3146 bge_coal_change(sc);
3147}
3148
3149static void
3150bge_intr_legacy(void *xsc)
3151{
3152 struct bge_softc *sc = xsc;
3153 struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3154
3155 if (sc->bge_status_tag == sblk->bge_status_tag) {
3156 uint32_t val;
3157
3158 val = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3159 if (val & BGE_PCISTAT_INTR_NOTACT)
3160 return;
3161 }
3162
3163 /*
3164 * NOTE:
3165 * Interrupt will have to be disabled if tagged status
3166 * is used, else interrupt will always be asserted on
3167 * certain chips (at least on BCM5750 AX/BX).
3168 */
3169 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3170
3171 bge_intr(sc);
3172}
3173
3174static void
3175bge_msi(void *xsc)
3176{
3177 struct bge_softc *sc = xsc;
3178
3179 /* Disable interrupt first */
3180 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3181 bge_intr(sc);
3182}
3183
3184static void
3185bge_msi_oneshot(void *xsc)
3186{
3187 bge_intr(xsc);
3188}
3189
3190static void
3191bge_intr(struct bge_softc *sc)
3192{
3193 struct ifnet *ifp = &sc->arpcom.ac_if;
3194 struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3195 uint16_t rx_prod, tx_cons;
3196 uint32_t status;
3197
3198 sc->bge_status_tag = sblk->bge_status_tag;
3199 /*
3200 * Use a load fence to ensure that status_tag is saved
3201 * before rx_prod, tx_cons and status.
3202 */
3203 cpu_lfence();
3204
3205 rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3206 tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3207 status = sblk->bge_status;
3208
3209 if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bge_link_evt)
3210 bge_link_poll(sc);
3211
3212 if (ifp->if_flags & IFF_RUNNING) {
3213 if (sc->bge_rx_saved_considx != rx_prod)
3214 bge_rxeof(sc, rx_prod);
3215
3216 if (sc->bge_tx_saved_considx != tx_cons)
3217 bge_txeof(sc, tx_cons);
3218 }
3219
3220 bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3221
3222 if (sc->bge_coal_chg)
3223 bge_coal_change(sc);
3224}
3225
3226static void
3227bge_tick(void *xsc)
3228{
3229 struct bge_softc *sc = xsc;
3230 struct ifnet *ifp = &sc->arpcom.ac_if;
3231
3232 lwkt_serialize_enter(ifp->if_serializer);
3233
3234 if (BGE_IS_5705_PLUS(sc))
3235 bge_stats_update_regs(sc);
3236 else
3237 bge_stats_update(sc);
3238
3239 if (sc->bge_flags & BGE_FLAG_TBI) {
3240 /*
3241 * Since in TBI mode auto-polling can't be used we should poll
3242 * link status manually. Here we register pending link event
3243 * and trigger interrupt.
3244 */
3245 sc->bge_link_evt++;
3246 if (BGE_IS_CRIPPLED(sc))
3247 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3248 else
3249 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3250 } else if (!sc->bge_link) {
3251 mii_tick(device_get_softc(sc->bge_miibus));
3252 }
3253
3254 callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3255
3256 lwkt_serialize_exit(ifp->if_serializer);
3257}
3258
3259static void
3260bge_stats_update_regs(struct bge_softc *sc)
3261{
3262 struct ifnet *ifp = &sc->arpcom.ac_if;
3263 struct bge_mac_stats_regs stats;
3264 uint32_t *s;
3265 int i;
3266
3267 s = (uint32_t *)&stats;
3268 for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3269 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
3270 s++;
3271 }
3272
3273 ifp->if_collisions +=
3274 (stats.dot3StatsSingleCollisionFrames +
3275 stats.dot3StatsMultipleCollisionFrames +
3276 stats.dot3StatsExcessiveCollisions +
3277 stats.dot3StatsLateCollisions) -
3278 ifp->if_collisions;
3279}
3280
3281static void
3282bge_stats_update(struct bge_softc *sc)
3283{
3284 struct ifnet *ifp = &sc->arpcom.ac_if;
3285 bus_size_t stats;
3286
3287 stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3288
3289#define READ_STAT(sc, stats, stat) \
3290 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3291
3292 ifp->if_collisions +=
3293 (READ_STAT(sc, stats,
3294 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
3295 READ_STAT(sc, stats,
3296 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3297 READ_STAT(sc, stats,
3298 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
3299 READ_STAT(sc, stats,
3300 txstats.dot3StatsLateCollisions.bge_addr_lo)) -
3301 ifp->if_collisions;
3302
3303#undef READ_STAT
3304
3305#ifdef notdef
3306 ifp->if_collisions +=
3307 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3308 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3309 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3310 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3311 ifp->if_collisions;
3312#endif
3313}
3314
3315/*
3316 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3317 * pointers to descriptors.
3318 */
3319static int
3320bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx)
3321{
3322 struct bge_tx_bd *d = NULL, *last_d;
3323 uint16_t csum_flags = 0, mss = 0;
3324 bus_dma_segment_t segs[BGE_NSEG_NEW];
3325 bus_dmamap_t map;
3326 int error, maxsegs, nsegs, idx, i;
3327 struct mbuf *m_head = *m_head0, *m_new;
3328
3329 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3330 error = bge_setup_tso(sc, m_head0, &mss, &csum_flags);
3331 if (error)
3332 return ENOBUFS;
3333 m_head = *m_head0;
3334 } else if (m_head->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) {
3335 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3336 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3337 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3338 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3339 if (m_head->m_flags & M_LASTFRAG)
3340 csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3341 else if (m_head->m_flags & M_FRAG)
3342 csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3343 }
3344
3345 idx = *txidx;
3346 map = sc->bge_cdata.bge_tx_dmamap[idx];
3347
3348 maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - sc->bge_txrsvd;
3349 KASSERT(maxsegs >= sc->bge_txspare,
3350 ("not enough segments %d", maxsegs));
3351
3352 if (maxsegs > BGE_NSEG_NEW)
3353 maxsegs = BGE_NSEG_NEW;
3354
3355 /*
3356 * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
3357 * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
3358 * but when such padded frames employ the bge IP/TCP checksum
3359 * offload, the hardware checksum assist gives incorrect results
3360 * (possibly from incorporating its own padding into the UDP/TCP
3361 * checksum; who knows). If we pad such runts with zeros, the
3362 * onboard checksum comes out correct.
3363 */
3364 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3365 m_head->m_pkthdr.len < BGE_MIN_FRAMELEN) {
3366 error = m_devpad(m_head, BGE_MIN_FRAMELEN);
3367 if (error)
3368 goto back;
3369 }
3370
3371 if ((sc->bge_flags & BGE_FLAG_SHORTDMA) && m_head->m_next != NULL) {
3372 m_new = bge_defrag_shortdma(m_head);
3373 if (m_new == NULL) {
3374 error = ENOBUFS;
3375 goto back;
3376 }
3377 *m_head0 = m_head = m_new;
3378 }
3379 if ((m_head->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3380 sc->bge_force_defrag && (sc->bge_flags & BGE_FLAG_PCIE) &&
3381 m_head->m_next != NULL) {
3382 /*
3383 * Forcefully defragment mbuf chain to overcome hardware
3384 * limitation which only support a single outstanding
3385 * DMA read operation. If it fails, keep moving on using
3386 * the original mbuf chain.
3387 */
3388 m_new = m_defrag(m_head, MB_DONTWAIT);
3389 if (m_new != NULL)
3390 *m_head0 = m_head = m_new;
3391 }
3392
3393 error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
3394 m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3395 if (error)
3396 goto back;
3397
3398 m_head = *m_head0;
3399 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3400
3401 for (i = 0; ; i++) {
3402 d = &sc->bge_ldata.bge_tx_ring[idx];
3403
3404 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3405 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3406 d->bge_len = segs[i].ds_len;
3407 d->bge_flags = csum_flags;
3408 d->bge_mss = mss;
3409
3410 if (i == nsegs - 1)
3411 break;
3412 BGE_INC(idx, BGE_TX_RING_CNT);
3413 }
3414 last_d = d;
3415
3416 /* Set vlan tag to the first segment of the packet. */
3417 d = &sc->bge_ldata.bge_tx_ring[*txidx];
3418 if (m_head->m_flags & M_VLANTAG) {
3419 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3420 d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
3421 } else {
3422 d->bge_vlan_tag = 0;
3423 }
3424
3425 /* Mark the last segment as end of packet... */
3426 last_d->bge_flags |= BGE_TXBDFLAG_END;
3427
3428 /*
3429 * Insure that the map for this transmission is placed at
3430 * the array index of the last descriptor in this chain.
3431 */
3432 sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3433 sc->bge_cdata.bge_tx_dmamap[idx] = map;
3434 sc->bge_cdata.bge_tx_chain[idx] = m_head;
3435 sc->bge_txcnt += nsegs;
3436
3437 BGE_INC(idx, BGE_TX_RING_CNT);
3438 *txidx = idx;
3439back:
3440 if (error) {
3441 m_freem(*m_head0);
3442 *m_head0 = NULL;
3443 }
3444 return error;
3445}
3446
3447/*
3448 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3449 * to the mbuf data regions directly in the transmit descriptors.
3450 */
3451static void
3452bge_start(struct ifnet *ifp)
3453{
3454 struct bge_softc *sc = ifp->if_softc;
3455 struct mbuf *m_head = NULL;
3456 uint32_t prodidx;
3457 int need_trans;
3458
3459 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3460 return;
3461
3462 prodidx = sc->bge_tx_prodidx;
3463
3464 need_trans = 0;
3465 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3466 m_head = ifq_dequeue(&ifp->if_snd, NULL);
3467 if (m_head == NULL)
3468 break;
3469
3470 /*
3471 * XXX
3472 * The code inside the if() block is never reached since we
3473 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
3474 * requests to checksum TCP/UDP in a fragmented packet.
3475 *
3476 * XXX
3477 * safety overkill. If this is a fragmented packet chain
3478 * with delayed TCP/UDP checksums, then only encapsulate
3479 * it if we have enough descriptors to handle the entire
3480 * chain at once.
3481 * (paranoia -- may not actually be needed)
3482 */
3483 if ((m_head->m_flags & M_FIRSTFRAG) &&
3484 (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
3485 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3486 m_head->m_pkthdr.csum_data + sc->bge_txrsvd) {
3487 ifp->if_flags |= IFF_OACTIVE;
3488 ifq_prepend(&ifp->if_snd, m_head);
3489 break;
3490 }
3491 }
3492
3493 /*
3494 * Sanity check: avoid coming within bge_txrsvd
3495 * descriptors of the end of the ring. Also make
3496 * sure there are bge_txspare descriptors for
3497 * jumbo buffers' defragmentation.
3498 */
3499 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3500 (sc->bge_txrsvd + sc->bge_txspare)) {
3501 ifp->if_flags |= IFF_OACTIVE;
3502 ifq_prepend(&ifp->if_snd, m_head);
3503 break;
3504 }
3505
3506 /*
3507 * Pack the data into the transmit ring. If we
3508 * don't have room, set the OACTIVE flag and wait
3509 * for the NIC to drain the ring.
3510 */
3511 if (bge_encap(sc, &m_head, &prodidx)) {
3512 ifp->if_flags |= IFF_OACTIVE;
3513 ifp->if_oerrors++;
3514 break;
3515 }
3516 need_trans = 1;
3517
3518 ETHER_BPF_MTAP(ifp, m_head);
3519 }
3520
3521 if (!need_trans)
3522 return;
3523
3524 /* Transmit */
3525 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3526 /* 5700 b2 errata */
3527 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
3528 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3529
3530 sc->bge_tx_prodidx = prodidx;
3531
3532 /*
3533 * Set a timeout in case the chip goes out to lunch.
3534 */
3535 ifp->if_timer = 5;
3536}
3537
3538static void
3539bge_init(void *xsc)
3540{
3541 struct bge_softc *sc = xsc;
3542 struct ifnet *ifp = &sc->arpcom.ac_if;
3543 uint16_t *m;
3544 uint32_t mode;
3545
3546 ASSERT_SERIALIZED(ifp->if_serializer);
3547
3548 /* Cancel pending I/O and flush buffers. */
3549 bge_stop(sc);
3550 bge_reset(sc);
3551 bge_chipinit(sc);
3552
3553 /*
3554 * Init the various state machines, ring
3555 * control blocks and firmware.
3556 */
3557 if (bge_blockinit(sc)) {
3558 if_printf(ifp, "initialization failure\n");
3559 bge_stop(sc);
3560 return;
3561 }
3562
3563 /* Specify MTU. */
3564 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3565 ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3566
3567 /* Load our MAC address. */
3568 m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3569 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3570 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3571
3572 /* Enable or disable promiscuous mode as needed. */
3573 bge_setpromisc(sc);
3574
3575 /* Program multicast filter. */
3576 bge_setmulti(sc);
3577
3578 /* Init RX ring. */
3579 if (bge_init_rx_ring_std(sc)) {
3580 if_printf(ifp, "RX ring initialization failed\n");
3581 bge_stop(sc);
3582 return;
3583 }
3584
3585 /*
3586 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3587 * memory to insure that the chip has in fact read the first
3588 * entry of the ring.
3589 */
3590 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3591 uint32_t v, i;
3592 for (i = 0; i < 10; i++) {
3593 DELAY(20);
3594 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3595 if (v == (MCLBYTES - ETHER_ALIGN))
3596 break;
3597 }
3598 if (i == 10)
3599 if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
3600 }
3601
3602 /* Init jumbo RX ring. */
3603 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3604 if (bge_init_rx_ring_jumbo(sc)) {
3605 if_printf(ifp, "Jumbo RX ring initialization failed\n");
3606 bge_stop(sc);
3607 return;
3608 }
3609 }
3610
3611 /* Init our RX return ring index */
3612 sc->bge_rx_saved_considx = 0;
3613
3614 /* Init TX ring. */
3615 bge_init_tx_ring(sc);
3616
3617 /* Enable TX MAC state machine lockup fix. */
3618 mode = CSR_READ_4(sc, BGE_TX_MODE);
3619 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3620 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3621 /* Turn on transmitter */
3622 CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3623
3624 /* Turn on receiver */
3625 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3626
3627 /*
3628 * Set the number of good frames to receive after RX MBUF
3629 * Low Watermark has been reached. After the RX MAC receives
3630 * this number of frames, it will drop subsequent incoming
3631 * frames until the MBUF High Watermark is reached.
3632 */
3633 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3634
3635 if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
3636 if (bootverbose) {
3637 if_printf(ifp, "MSI_MODE: %#x\n",
3638 CSR_READ_4(sc, BGE_MSI_MODE));
3639 }
3640
3641 /*
3642 * XXX
3643 * Linux driver turns it on for all chips supporting MSI?!
3644 */
3645 if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
3646 /*
3647 * XXX
3648 * According to 5722-PG101-R,
3649 * BGE_PCIE_TRANSACT_ONESHOT_MSI applies only to
3650 * BCM5906.
3651 */
3652 BGE_SETBIT(sc, BGE_PCIE_TRANSACT,
3653 BGE_PCIE_TRANSACT_ONESHOT_MSI);
3654 }
3655 }
3656
3657 /* Tell firmware we're alive. */
3658 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3659
3660 /* Enable host interrupts if polling(4) is not enabled. */
3661 PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3662#ifdef DEVICE_POLLING
3663 if (ifp->if_flags & IFF_POLLING)
3664 bge_disable_intr(sc);
3665 else
3666#endif
3667 bge_enable_intr(sc);
3668
3669 bge_ifmedia_upd(ifp);
3670
3671 ifp->if_flags |= IFF_RUNNING;
3672 ifp->if_flags &= ~IFF_OACTIVE;
3673
3674 callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3675}
3676
3677/*
3678 * Set media options.
3679 */
3680static int
3681bge_ifmedia_upd(struct ifnet *ifp)
3682{
3683 struct bge_softc *sc = ifp->if_softc;
3684
3685 /* If this is a 1000baseX NIC, enable the TBI port. */
3686 if (sc->bge_flags & BGE_FLAG_TBI) {
3687 struct ifmedia *ifm = &sc->bge_ifmedia;
3688
3689 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3690 return(EINVAL);
3691
3692 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3693 case IFM_AUTO:
3694 /*
3695 * The BCM5704 ASIC appears to have a special
3696 * mechanism for programming the autoneg
3697 * advertisement registers in TBI mode.
3698 */
3699 if (!bge_fake_autoneg &&
3700 sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3701 uint32_t sgdig;
3702
3703 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3704 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3705 sgdig |= BGE_SGDIGCFG_AUTO |
3706 BGE_SGDIGCFG_PAUSE_CAP |
3707 BGE_SGDIGCFG_ASYM_PAUSE;
3708 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3709 sgdig | BGE_SGDIGCFG_SEND);
3710 DELAY(5);
3711 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3712 }
3713 break;
3714 case IFM_1000_SX:
3715 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3716 BGE_CLRBIT(sc, BGE_MAC_MODE,
3717 BGE_MACMODE_HALF_DUPLEX);
3718 } else {
3719 BGE_SETBIT(sc, BGE_MAC_MODE,
3720 BGE_MACMODE_HALF_DUPLEX);
3721 }
3722 break;
3723 default:
3724 return(EINVAL);
3725 }
3726 } else {
3727 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3728
3729 sc->bge_link_evt++;
3730 sc->bge_link = 0;
3731 if (mii->mii_instance) {
3732 struct mii_softc *miisc;
3733
3734 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3735 mii_phy_reset(miisc);
3736 }
3737 mii_mediachg(mii);
3738
3739 /*
3740 * Force an interrupt so that we will call bge_link_upd
3741 * if needed and clear any pending link state attention.
3742 * Without this we are not getting any further interrupts
3743 * for link state changes and thus will not UP the link and
3744 * not be able to send in bge_start. The only way to get
3745 * things working was to receive a packet and get an RX
3746 * intr.
3747 *
3748 * bge_tick should help for fiber cards and we might not
3749 * need to do this here if BGE_FLAG_TBI is set but as
3750 * we poll for fiber anyway it should not harm.
3751 */
3752 if (BGE_IS_CRIPPLED(sc))
3753 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3754 else
3755 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3756 }
3757 return(0);
3758}
3759
3760/*
3761 * Report current media status.
3762 */
3763static void
3764bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3765{
3766 struct bge_softc *sc = ifp->if_softc;
3767
3768 if (sc->bge_flags & BGE_FLAG_TBI) {
3769 ifmr->ifm_status = IFM_AVALID;
3770 ifmr->ifm_active = IFM_ETHER;
3771 if (CSR_READ_4(sc, BGE_MAC_STS) &
3772 BGE_MACSTAT_TBI_PCS_SYNCHED) {
3773 ifmr->ifm_status |= IFM_ACTIVE;
3774 } else {
3775 ifmr->ifm_active |= IFM_NONE;
3776 return;
3777 }
3778
3779 ifmr->ifm_active |= IFM_1000_SX;
3780 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3781 ifmr->ifm_active |= IFM_HDX;
3782 else
3783 ifmr->ifm_active |= IFM_FDX;
3784 } else {
3785 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3786
3787 mii_pollstat(mii);
3788 ifmr->ifm_active = mii->mii_media_active;
3789 ifmr->ifm_status = mii->mii_media_status;
3790 }
3791}
3792
3793static int
3794bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3795{
3796 struct bge_softc *sc = ifp->if_softc;
3797 struct ifreq *ifr = (struct ifreq *)data;
3798 int mask, error = 0;
3799
3800 ASSERT_SERIALIZED(ifp->if_serializer);
3801
3802 switch (command) {
3803 case SIOCSIFMTU:
3804 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3805 (BGE_IS_JUMBO_CAPABLE(sc) &&
3806 ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3807 error = EINVAL;
3808 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3809 ifp->if_mtu = ifr->ifr_mtu;
3810 if (ifp->if_flags & IFF_RUNNING)
3811 bge_init(sc);
3812 }
3813 break;
3814 case SIOCSIFFLAGS:
3815 if (ifp->if_flags & IFF_UP) {
3816 if (ifp->if_flags & IFF_RUNNING) {
3817 mask = ifp->if_flags ^ sc->bge_if_flags;
3818
3819 /*
3820 * If only the state of the PROMISC flag
3821 * changed, then just use the 'set promisc
3822 * mode' command instead of reinitializing
3823 * the entire NIC. Doing a full re-init
3824 * means reloading the firmware and waiting
3825 * for it to start up, which may take a
3826 * second or two. Similarly for ALLMULTI.
3827 */
3828 if (mask & IFF_PROMISC)
3829 bge_setpromisc(sc);
3830 if (mask & IFF_ALLMULTI)
3831 bge_setmulti(sc);
3832 } else {
3833 bge_init(sc);
3834 }
3835 } else if (ifp->if_flags & IFF_RUNNING) {
3836 bge_stop(sc);
3837 }
3838 sc->bge_if_flags = ifp->if_flags;
3839 break;
3840 case SIOCADDMULTI:
3841 case SIOCDELMULTI:
3842 if (ifp->if_flags & IFF_RUNNING)
3843 bge_setmulti(sc);
3844 break;
3845 case SIOCSIFMEDIA:
3846 case SIOCGIFMEDIA:
3847 if (sc->bge_flags & BGE_FLAG_TBI) {
3848 error = ifmedia_ioctl(ifp, ifr,
3849 &sc->bge_ifmedia, command);
3850 } else {
3851 struct mii_data *mii;
3852
3853 mii = device_get_softc(sc->bge_miibus);
3854 error = ifmedia_ioctl(ifp, ifr,
3855 &mii->mii_media, command);
3856 }
3857 break;
3858 case SIOCSIFCAP:
3859 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3860 if (mask & IFCAP_HWCSUM) {
3861 ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
3862 if (ifp->if_capenable & IFCAP_TXCSUM)
3863 ifp->if_hwassist |= BGE_CSUM_FEATURES;
3864 else
3865 ifp->if_hwassist &= ~BGE_CSUM_FEATURES;
3866 }
3867 if (mask & IFCAP_TSO) {
3868 ifp->if_capenable ^= IFCAP_TSO;
3869 if (ifp->if_capenable & IFCAP_TSO)
3870 ifp->if_hwassist |= CSUM_TSO;
3871 else
3872 ifp->if_hwassist &= ~CSUM_TSO;
3873 }
3874 break;
3875 default:
3876 error = ether_ioctl(ifp, command, data);
3877 break;
3878 }
3879 return error;
3880}
3881
3882static void
3883bge_watchdog(struct ifnet *ifp)
3884{
3885 struct bge_softc *sc = ifp->if_softc;
3886
3887 if_printf(ifp, "watchdog timeout -- resetting\n");
3888
3889 bge_init(sc);
3890
3891 ifp->if_oerrors++;
3892
3893 if (!ifq_is_empty(&ifp->if_snd))
3894 if_devstart(ifp);
3895}
3896
3897/*
3898 * Stop the adapter and free any mbufs allocated to the
3899 * RX and TX lists.
3900 */
3901static void
3902bge_stop(struct bge_softc *sc)
3903{
3904 struct ifnet *ifp = &sc->arpcom.ac_if;
3905
3906 ASSERT_SERIALIZED(ifp->if_serializer);
3907
3908 callout_stop(&sc->bge_stat_timer);
3909
3910 /*
3911 * Disable all of the receiver blocks
3912 */
3913 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3914 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3915 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3916 if (BGE_IS_5700_FAMILY(sc))
3917 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3918 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3919 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3920 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3921
3922 /*
3923 * Disable all of the transmit blocks
3924 */
3925 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3926 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3927 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3928 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3929 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3930 if (BGE_IS_5700_FAMILY(sc))
3931 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3932 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3933
3934 /*
3935 * Shut down all of the memory managers and related
3936 * state machines.
3937 */
3938 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3939 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3940 if (BGE_IS_5700_FAMILY(sc))
3941 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3942 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3943 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3944 if (!BGE_IS_5705_PLUS(sc)) {
3945 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3946 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3947 }
3948
3949 /* Disable host interrupts. */
3950 bge_disable_intr(sc);
3951
3952 /*
3953 * Tell firmware we're shutting down.
3954 */
3955 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3956
3957 /* Free the RX lists. */
3958 bge_free_rx_ring_std(sc);
3959
3960 /* Free jumbo RX list. */
3961 if (BGE_IS_JUMBO_CAPABLE(sc))
3962 bge_free_rx_ring_jumbo(sc);
3963
3964 /* Free TX buffers. */
3965 bge_free_tx_ring(sc);
3966
3967 sc->bge_status_tag = 0;
3968 sc->bge_link = 0;
3969 sc->bge_coal_chg = 0;
3970
3971 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3972
3973 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3974 ifp->if_timer = 0;
3975}
3976
3977/*
3978 * Stop all chip I/O so that the kernel's probe routines don't
3979 * get confused by errant DMAs when rebooting.
3980 */
3981static void
3982bge_shutdown(device_t dev)
3983{
3984 struct bge_softc *sc = device_get_softc(dev);
3985 struct ifnet *ifp = &sc->arpcom.ac_if;
3986
3987 lwkt_serialize_enter(ifp->if_serializer);
3988 bge_stop(sc);
3989 bge_reset(sc);
3990 lwkt_serialize_exit(ifp->if_serializer);
3991}
3992
3993static int
3994bge_suspend(device_t dev)
3995{
3996 struct bge_softc *sc = device_get_softc(dev);
3997 struct ifnet *ifp = &sc->arpcom.ac_if;
3998
3999 lwkt_serialize_enter(ifp->if_serializer);
4000 bge_stop(sc);
4001 lwkt_serialize_exit(ifp->if_serializer);
4002
4003 return 0;
4004}
4005
4006static int
4007bge_resume(device_t dev)
4008{
4009 struct bge_softc *sc = device_get_softc(dev);
4010 struct ifnet *ifp = &sc->arpcom.ac_if;
4011
4012 lwkt_serialize_enter(ifp->if_serializer);
4013
4014 if (ifp->if_flags & IFF_UP) {
4015 bge_init(sc);
4016
4017 if (!ifq_is_empty(&ifp->if_snd))
4018 if_devstart(ifp);
4019 }
4020
4021 lwkt_serialize_exit(ifp->if_serializer);
4022
4023 return 0;
4024}
4025
4026static void
4027bge_setpromisc(struct bge_softc *sc)
4028{
4029 struct ifnet *ifp = &sc->arpcom.ac_if;
4030
4031 if (ifp->if_flags & IFF_PROMISC)
4032 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4033 else
4034 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4035}
4036
4037static void
4038bge_dma_free(struct bge_softc *sc)
4039{
4040 int i;
4041
4042 /* Destroy RX mbuf DMA stuffs. */
4043 if (sc->bge_cdata.bge_rx_mtag != NULL) {
4044 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4045 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4046 sc->bge_cdata.bge_rx_std_dmamap[i]);
4047 }
4048 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4049 sc->bge_cdata.bge_rx_tmpmap);
4050 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4051 }
4052
4053 /* Destroy TX mbuf DMA stuffs. */
4054 if (sc->bge_cdata.bge_tx_mtag != NULL) {
4055 for (i = 0; i < BGE_TX_RING_CNT; i++) {
4056 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4057 sc->bge_cdata.bge_tx_dmamap[i]);
4058 }
4059 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4060 }
4061
4062 /* Destroy standard RX ring */
4063 bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
4064 sc->bge_cdata.bge_rx_std_ring_map,
4065 sc->bge_ldata.bge_rx_std_ring);
4066
4067 if (BGE_IS_JUMBO_CAPABLE(sc))
4068 bge_free_jumbo_mem(sc);
4069
4070 /* Destroy RX return ring */
4071 bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
4072 sc->bge_cdata.bge_rx_return_ring_map,
4073 sc->bge_ldata.bge_rx_return_ring);
4074
4075 /* Destroy TX ring */
4076 bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
4077 sc->bge_cdata.bge_tx_ring_map,
4078 sc->bge_ldata.bge_tx_ring);
4079
4080 /* Destroy status block */
4081 bge_dma_block_free(sc->bge_cdata.bge_status_tag,
4082 sc->bge_cdata.bge_status_map,
4083 sc->bge_ldata.bge_status_block);
4084
4085 /* Destroy statistics block */
4086 bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
4087 sc->bge_cdata.bge_stats_map,
4088 sc->bge_ldata.bge_stats);
4089
4090 /* Destroy the parent tag */
4091 if (sc->bge_cdata.bge_parent_tag != NULL)
4092 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
4093}
4094
4095static int
4096bge_dma_alloc(struct bge_softc *sc)
4097{
4098 struct ifnet *ifp = &sc->arpcom.ac_if;
4099 int i, error;
4100 bus_addr_t lowaddr;
4101 bus_size_t txmaxsz;
4102
4103 lowaddr = BUS_SPACE_MAXADDR;
4104 if (sc->bge_flags & BGE_FLAG_MAXADDR_40BIT)
4105 lowaddr = BGE_DMA_MAXADDR_40BIT;
4106
4107 /*
4108 * Allocate the parent bus DMA tag appropriate for PCI.
4109 *
4110 * All of the NetExtreme/NetLink controllers have 4GB boundary
4111 * DMA bug.
4112 * Whenever an address crosses a multiple of the 4GB boundary
4113 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
4114 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
4115 * state machine will lockup and cause the device to hang.
4116 */
4117 error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
4118 lowaddr, BUS_SPACE_MAXADDR,
4119 NULL, NULL,
4120 BUS_SPACE_MAXSIZE_32BIT, 0,
4121 BUS_SPACE_MAXSIZE_32BIT,
4122 0, &sc->bge_cdata.bge_parent_tag);
4123 if (error) {
4124 if_printf(ifp, "could not allocate parent dma tag\n");
4125 return error;
4126 }
4127
4128 /*
4129 * Create DMA tag and maps for RX mbufs.
4130 */
4131 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4132 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4133 NULL, NULL, MCLBYTES, 1, MCLBYTES,
4134 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
4135 &sc->bge_cdata.bge_rx_mtag);
4136 if (error) {
4137 if_printf(ifp, "could not allocate RX mbuf dma tag\n");
4138 return error;
4139 }
4140
4141 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4142 BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap);
4143 if (error) {
4144 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4145 sc->bge_cdata.bge_rx_mtag = NULL;
4146 return error;
4147 }
4148
4149 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4150 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4151 BUS_DMA_WAITOK,
4152 &sc->bge_cdata.bge_rx_std_dmamap[i]);
4153 if (error) {
4154 int j;
4155
4156 for (j = 0; j < i; ++j) {
4157 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4158 sc->bge_cdata.bge_rx_std_dmamap[j]);
4159 }
4160 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4161 sc->bge_cdata.bge_rx_mtag = NULL;
4162
4163 if_printf(ifp, "could not create DMA map for RX\n");
4164 return error;
4165 }
4166 }
4167
4168 /*
4169 * Create DMA tag and maps for TX mbufs.
4170 */
4171 if (sc->bge_flags & BGE_FLAG_TSO)
4172 txmaxsz = IP_MAXPACKET + sizeof(struct ether_vlan_header);
4173 else
4174 txmaxsz = BGE_JUMBO_FRAMELEN;
4175 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4176 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4177 NULL, NULL,
4178 txmaxsz, BGE_NSEG_NEW, PAGE_SIZE,
4179 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
4180 BUS_DMA_ONEBPAGE,
4181 &sc->bge_cdata.bge_tx_mtag);
4182 if (error) {
4183 if_printf(ifp, "could not allocate TX mbuf dma tag\n");
4184 return error;
4185 }
4186
4187 for (i = 0; i < BGE_TX_RING_CNT; i++) {
4188 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag,
4189 BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
4190 &sc->bge_cdata.bge_tx_dmamap[i]);
4191 if (error) {
4192 int j;
4193
4194 for (j = 0; j < i; ++j) {
4195 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4196 sc->bge_cdata.bge_tx_dmamap[j]);
4197 }
4198 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4199 sc->bge_cdata.bge_tx_mtag = NULL;
4200
4201 if_printf(ifp, "could not create DMA map for TX\n");
4202 return error;
4203 }
4204 }
4205
4206 /*
4207 * Create DMA stuffs for standard RX ring.
4208 */
4209 error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4210 &sc->bge_cdata.bge_rx_std_ring_tag,
4211 &sc->bge_cdata.bge_rx_std_ring_map,
4212 (void *)&sc->bge_ldata.bge_rx_std_ring,
4213 &sc->bge_ldata.bge_rx_std_ring_paddr);
4214 if (error) {
4215 if_printf(ifp, "could not create std RX ring\n");
4216 return error;
4217 }
4218
4219 /*
4220 * Create jumbo buffer pool.
4221 */
4222 if (BGE_IS_JUMBO_CAPABLE(sc)) {
4223 error = bge_alloc_jumbo_mem(sc);
4224 if (error) {
4225 if_printf(ifp, "could not create jumbo buffer pool\n");
4226 return error;
4227 }
4228 }
4229
4230 /*
4231 * Create DMA stuffs for RX return ring.
4232 */
4233 error = bge_dma_block_alloc(sc,
4234 BGE_RX_RTN_RING_SZ(sc->bge_return_ring_cnt),
4235 &sc->bge_cdata.bge_rx_return_ring_tag,
4236 &sc->bge_cdata.bge_rx_return_ring_map,
4237 (void *)&sc->bge_ldata.bge_rx_return_ring,
4238 &sc->bge_ldata.bge_rx_return_ring_paddr);
4239 if (error) {
4240 if_printf(ifp, "could not create RX ret ring\n");
4241 return error;
4242 }
4243
4244 /*
4245 * Create DMA stuffs for TX ring.
4246 */
4247 error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
4248 &sc->bge_cdata.bge_tx_ring_tag,
4249 &sc->bge_cdata.bge_tx_ring_map,
4250 (void *)&sc->bge_ldata.bge_tx_ring,
4251 &sc->bge_ldata.bge_tx_ring_paddr);
4252 if (error) {
4253 if_printf(ifp, "could not create TX ring\n");
4254 return error;
4255 }
4256
4257 /*
4258 * Create DMA stuffs for status block.
4259 */
4260 error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
4261 &sc->bge_cdata.bge_status_tag,
4262 &sc->bge_cdata.bge_status_map,
4263 (void *)&sc->bge_ldata.bge_status_block,
4264 &sc->bge_ldata.bge_status_block_paddr);
4265 if (error) {
4266 if_printf(ifp, "could not create status block\n");
4267 return error;
4268 }
4269
4270 /*
4271 * Create DMA stuffs for statistics block.
4272 */
4273 error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
4274 &sc->bge_cdata.bge_stats_tag,
4275 &sc->bge_cdata.bge_stats_map,
4276 (void *)&sc->bge_ldata.bge_stats,
4277 &sc->bge_ldata.bge_stats_paddr);
4278 if (error) {
4279 if_printf(ifp, "could not create stats block\n");
4280 return error;
4281 }
4282 return 0;
4283}
4284
4285static int
4286bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4287 bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4288{
4289 bus_dmamem_t dmem;
4290 int error;
4291
4292 error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
4293 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4294 size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4295 if (error)
4296 return error;
4297
4298 *tag = dmem.dmem_tag;
4299 *map = dmem.dmem_map;
4300 *addr = dmem.dmem_addr;
4301 *paddr = dmem.dmem_busaddr;
4302
4303 return 0;
4304}
4305
4306static void
4307bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4308{
4309 if (tag != NULL) {
4310 bus_dmamap_unload(tag, map);
4311 bus_dmamem_free(tag, addr, map);
4312 bus_dma_tag_destroy(tag);
4313 }
4314}
4315
4316/*
4317 * Grrr. The link status word in the status block does
4318 * not work correctly on the BCM5700 rev AX and BX chips,
4319 * according to all available information. Hence, we have
4320 * to enable MII interrupts in order to properly obtain
4321 * async link changes. Unfortunately, this also means that
4322 * we have to read the MAC status register to detect link
4323 * changes, thereby adding an additional register access to
4324 * the interrupt handler.
4325 *
4326 * XXX: perhaps link state detection procedure used for
4327 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4328 */
4329static void
4330bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
4331{
4332 struct ifnet *ifp = &sc->arpcom.ac_if;
4333 struct mii_data *mii = device_get_softc(sc->bge_miibus);
4334
4335 mii_pollstat(mii);
4336
4337 if (!sc->bge_link &&
4338 (mii->mii_media_status & IFM_ACTIVE) &&
4339 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4340 sc->bge_link++;
4341 if (bootverbose)
4342 if_printf(ifp, "link UP\n");
4343 } else if (sc->bge_link &&
4344 (!(mii->mii_media_status & IFM_ACTIVE) ||
4345 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4346 sc->bge_link = 0;
4347 if (bootverbose)
4348 if_printf(ifp, "link DOWN\n");
4349 }
4350
4351 /* Clear the interrupt. */
4352 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
4353 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4354 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
4355}
4356
4357static void
4358bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
4359{
4360 struct ifnet *ifp = &sc->arpcom.ac_if;
4361
4362#define PCS_ENCODE_ERR (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4363
4364 /*
4365 * Sometimes PCS encoding errors are detected in
4366 * TBI mode (on fiber NICs), and for some reason
4367 * the chip will signal them as link changes.
4368 * If we get a link change event, but the 'PCS
4369 * encoding error' bit in the MAC status register
4370 * is set, don't bother doing a link check.
4371 * This avoids spurious "gigabit link up" messages
4372 * that sometimes appear on fiber NICs during
4373 * periods of heavy traffic.
4374 */
4375 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4376 if (!sc->bge_link) {
4377 sc->bge_link++;
4378 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4379 BGE_CLRBIT(sc, BGE_MAC_MODE,
4380 BGE_MACMODE_TBI_SEND_CFGS);
4381 }
4382 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4383
4384 if (bootverbose)
4385 if_printf(ifp, "link UP\n");
4386
4387 ifp->if_link_state = LINK_STATE_UP;
4388 if_link_state_change(ifp);
4389 }
4390 } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4391 if (sc->bge_link) {
4392 sc->bge_link = 0;
4393
4394 if (bootverbose)
4395 if_printf(ifp, "link DOWN\n");
4396
4397 ifp->if_link_state = LINK_STATE_DOWN;
4398 if_link_state_change(ifp);
4399 }
4400 }
4401
4402#undef PCS_ENCODE_ERR
4403
4404 /* Clear the attention. */
4405 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4406 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4407 BGE_MACSTAT_LINK_CHANGED);
4408}
4409
4410static void
4411bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
4412{
4413 struct ifnet *ifp = &sc->arpcom.ac_if;
4414 struct mii_data *mii = device_get_softc(sc->bge_miibus);
4415
4416 mii_pollstat(mii);
4417 bge_miibus_statchg(sc->bge_dev);
4418
4419 if (bootverbose) {
4420 if (sc->bge_link)
4421 if_printf(ifp, "link UP\n");
4422 else
4423 if_printf(ifp, "link DOWN\n");
4424 }
4425
4426 /* Clear the attention. */
4427 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4428 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4429 BGE_MACSTAT_LINK_CHANGED);
4430}
4431
4432static void
4433bge_autopoll_link_upd(struct bge_softc *sc, uint32_t status __unused)
4434{
4435 struct ifnet *ifp = &sc->arpcom.ac_if;
4436 struct mii_data *mii = device_get_softc(sc->bge_miibus);
4437
4438 mii_pollstat(mii);
4439
4440 if (!sc->bge_link &&
4441 (mii->mii_media_status & IFM_ACTIVE) &&
4442 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4443 sc->bge_link++;
4444 if (bootverbose)
4445 if_printf(ifp, "link UP\n");
4446 } else if (sc->bge_link &&
4447 (!(mii->mii_media_status & IFM_ACTIVE) ||
4448 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4449 sc->bge_link = 0;
4450 if (bootverbose)
4451 if_printf(ifp, "link DOWN\n");
4452 }
4453
4454 /* Clear the attention. */
4455 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4456 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4457 BGE_MACSTAT_LINK_CHANGED);
4458}
4459
4460static int
4461bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4462{
4463 struct bge_softc *sc = arg1;
4464
4465 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4466 &sc->bge_rx_coal_ticks,
4467 BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4468 BGE_RX_COAL_TICKS_CHG);
4469}
4470
4471static int
4472bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4473{
4474 struct bge_softc *sc = arg1;
4475
4476 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4477 &sc->bge_tx_coal_ticks,
4478 BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4479 BGE_TX_COAL_TICKS_CHG);
4480}
4481
4482static int
4483bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4484{
4485 struct bge_softc *sc = arg1;
4486
4487 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4488 &sc->bge_rx_coal_bds,
4489 BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4490 BGE_RX_COAL_BDS_CHG);
4491}
4492
4493static int
4494bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4495{
4496 struct bge_softc *sc = arg1;
4497
4498 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4499 &sc->bge_tx_coal_bds,
4500 BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4501 BGE_TX_COAL_BDS_CHG);
4502}
4503
4504static int
4505bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4506{
4507 struct bge_softc *sc = arg1;
4508
4509 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4510 &sc->bge_rx_coal_ticks_int,
4511 BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4512 BGE_RX_COAL_TICKS_INT_CHG);
4513}
4514
4515static int
4516bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4517{
4518 struct bge_softc *sc = arg1;
4519
4520 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4521 &sc->bge_tx_coal_ticks_int,
4522 BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4523 BGE_TX_COAL_TICKS_INT_CHG);
4524}
4525
4526static int
4527bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4528{
4529 struct bge_softc *sc = arg1;
4530
4531 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4532 &sc->bge_rx_coal_bds_int,
4533 BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4534 BGE_RX_COAL_BDS_INT_CHG);
4535}
4536
4537static int
4538bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4539{
4540 struct bge_softc *sc = arg1;
4541
4542 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4543 &sc->bge_tx_coal_bds_int,
4544 BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4545 BGE_TX_COAL_BDS_INT_CHG);
4546}
4547
4548static int
4549bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4550 int coal_min, int coal_max, uint32_t coal_chg_mask)
4551{
4552 struct bge_softc *sc = arg1;
4553 struct ifnet *ifp = &sc->arpcom.ac_if;
4554 int error = 0, v;
4555
4556 lwkt_serialize_enter(ifp->if_serializer);
4557
4558 v = *coal;
4559 error = sysctl_handle_int(oidp, &v, 0, req);
4560 if (!error && req->newptr != NULL) {
4561 if (v < coal_min || v > coal_max) {
4562 error = EINVAL;
4563 } else {
4564 *coal = v;
4565 sc->bge_coal_chg |= coal_chg_mask;
4566 }
4567 }
4568
4569 lwkt_serialize_exit(ifp->if_serializer);
4570 return error;
4571}
4572
4573static void
4574bge_coal_change(struct bge_softc *sc)
4575{
4576 struct ifnet *ifp = &sc->arpcom.ac_if;
4577 uint32_t val;
4578
4579 ASSERT_SERIALIZED(ifp->if_serializer);
4580
4581 if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
4582 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4583 sc->bge_rx_coal_ticks);
4584 DELAY(10);
4585 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4586
4587 if (bootverbose) {
4588 if_printf(ifp, "rx_coal_ticks -> %u\n",
4589 sc->bge_rx_coal_ticks);
4590 }
4591 }
4592
4593 if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
4594 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4595 sc->bge_tx_coal_ticks);
4596 DELAY(10);
4597 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
4598
4599 if (bootverbose) {
4600 if_printf(ifp, "tx_coal_ticks -> %u\n",
4601 sc->bge_tx_coal_ticks);
4602 }
4603 }
4604
4605 if (sc->bge_coal_chg & BGE_RX_COAL_BDS_CHG) {
4606 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
4607 sc->bge_rx_coal_bds);
4608 DELAY(10);
4609 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4610
4611 if (bootverbose) {
4612 if_printf(ifp, "rx_coal_bds -> %u\n",
4613 sc->bge_rx_coal_bds);
4614 }
4615 }
4616
4617 if (sc->bge_coal_chg & BGE_TX_COAL_BDS_CHG) {
4618 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
4619 sc->bge_tx_coal_bds);
4620 DELAY(10);
4621 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
4622
4623 if (bootverbose) {
4624 if_printf(ifp, "tx_max_coal_bds -> %u\n",
4625 sc->bge_tx_coal_bds);
4626 }
4627 }
4628
4629 if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_INT_CHG) {
4630 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
4631 sc->bge_rx_coal_ticks_int);
4632 DELAY(10);
4633 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS_INT);
4634
4635 if (bootverbose) {
4636 if_printf(ifp, "rx_coal_ticks_int -> %u\n",
4637 sc->bge_rx_coal_ticks_int);
4638 }
4639 }
4640
4641 if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_INT_CHG) {
4642 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
4643 sc->bge_tx_coal_ticks_int);
4644 DELAY(10);
4645 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS_INT);
4646
4647 if (bootverbose) {
4648 if_printf(ifp, "tx_coal_ticks_int -> %u\n",
4649 sc->bge_tx_coal_ticks_int);
4650 }
4651 }
4652
4653 if (sc->bge_coal_chg & BGE_RX_COAL_BDS_INT_CHG) {
4654 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4655 sc->bge_rx_coal_bds_int);
4656 DELAY(10);
4657 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT);
4658
4659 if (bootverbose) {
4660 if_printf(ifp, "rx_coal_bds_int -> %u\n",
4661 sc->bge_rx_coal_bds_int);
4662 }
4663 }
4664
4665 if (sc->bge_coal_chg & BGE_TX_COAL_BDS_INT_CHG) {
4666 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4667 sc->bge_tx_coal_bds_int);
4668 DELAY(10);
4669 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT);
4670
4671 if (bootverbose) {
4672 if_printf(ifp, "tx_coal_bds_int -> %u\n",
4673 sc->bge_tx_coal_bds_int);
4674 }
4675 }
4676
4677 sc->bge_coal_chg = 0;
4678}
4679
4680static void
4681bge_enable_intr(struct bge_softc *sc)
4682{
4683 struct ifnet *ifp = &sc->arpcom.ac_if;
4684
4685 lwkt_serialize_handler_enable(ifp->if_serializer);
4686
4687 /*
4688 * Enable interrupt.
4689 */
4690 bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4691 if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4692 /* XXX Linux driver */
4693 bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4694 }
4695
4696 /*
4697 * Unmask the interrupt when we stop polling.
4698 */
4699 PCI_CLRBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4700 BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4701
4702 /*
4703 * Trigger another interrupt, since above writing
4704 * to interrupt mailbox0 may acknowledge pending
4705 * interrupt.
4706 */
4707 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4708}
4709
4710static void
4711bge_disable_intr(struct bge_softc *sc)
4712{
4713 struct ifnet *ifp = &sc->arpcom.ac_if;
4714
4715 /*
4716 * Mask the interrupt when we start polling.
4717 */
4718 PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4719 BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4720
4721 /*
4722 * Acknowledge possible asserted interrupt.
4723 */
4724 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4725
4726 lwkt_serialize_handler_disable(ifp->if_serializer);
4727}
4728
4729static int
4730bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4731{
4732 uint32_t mac_addr;
4733 int ret = 1;
4734
4735 mac_addr = bge_readmem_ind(sc, 0x0c14);
4736 if ((mac_addr >> 16) == 0x484b) {
4737 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4738 ether_addr[1] = (uint8_t)mac_addr;
4739 mac_addr = bge_readmem_ind(sc, 0x0c18);
4740 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4741 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4742 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4743 ether_addr[5] = (uint8_t)mac_addr;
4744 ret = 0;
4745 }
4746 return ret;
4747}
4748
4749static int
4750bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4751{
4752 int mac_offset = BGE_EE_MAC_OFFSET;
4753
4754 if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4755 mac_offset = BGE_EE_MAC_OFFSET_5906;
4756
4757 return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4758}
4759
4760static int
4761bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4762{
4763 if (sc->bge_flags & BGE_FLAG_NO_EEPROM)
4764 return 1;
4765
4766 return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4767 ETHER_ADDR_LEN);
4768}
4769
4770static int
4771bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4772{
4773 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4774 /* NOTE: Order is critical */
4775 bge_get_eaddr_mem,
4776 bge_get_eaddr_nvram,
4777 bge_get_eaddr_eeprom,
4778 NULL
4779 };
4780 const bge_eaddr_fcn_t *func;
4781
4782 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4783 if ((*func)(sc, eaddr) == 0)
4784 break;
4785 }
4786 return (*func == NULL ? ENXIO : 0);
4787}
4788
4789/*
4790 * NOTE: 'm' is not freed upon failure
4791 */
4792struct mbuf *
4793bge_defrag_shortdma(struct mbuf *m)
4794{
4795 struct mbuf *n;
4796 int found;
4797
4798 /*
4799 * If device receive two back-to-back send BDs with less than
4800 * or equal to 8 total bytes then the device may hang. The two
4801 * back-to-back send BDs must in the same frame for this failure
4802 * to occur. Scan mbuf chains and see whether two back-to-back
4803 * send BDs are there. If this is the case, allocate new mbuf
4804 * and copy the frame to workaround the silicon bug.
4805 */
4806 for (n = m, found = 0; n != NULL; n = n->m_next) {
4807 if (n->m_len < 8) {
4808 found++;
4809 if (found > 1)
4810 break;
4811 continue;
4812 }
4813 found = 0;
4814 }
4815
4816 if (found > 1)
4817 n = m_defrag(m, MB_DONTWAIT);
4818 else
4819 n = m;
4820 return n;
4821}
4822
4823static void
4824bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
4825{
4826 int i;
4827
4828 BGE_CLRBIT(sc, reg, bit);
4829 for (i = 0; i < BGE_TIMEOUT; i++) {
4830 if ((CSR_READ_4(sc, reg) & bit) == 0)
4831 return;
4832 DELAY(100);
4833 }
4834}
4835
4836static void
4837bge_link_poll(struct bge_softc *sc)
4838{
4839 uint32_t status;
4840
4841 status = CSR_READ_4(sc, BGE_MAC_STS);
4842 if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
4843 sc->bge_link_evt = 0;
4844 sc->bge_link_upd(sc, status);
4845 }
4846}
4847
4848static void
4849bge_enable_msi(struct bge_softc *sc)
4850{
4851 uint32_t msi_mode;
4852
4853 msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
4854 msi_mode |= BGE_MSIMODE_ENABLE;
4855 if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4856 /*
4857 * According to all of the datasheets that are publicly
4858 * available, bit 5 of the MSI_MODE is defined to be
4859 * "MSI FIFO Underrun Attn" for BCM5755+ and BCM5906, on
4860 * which "oneshot MSI" is enabled. However, it is always
4861 * safe to clear it here.
4862 */
4863 msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
4864 }
4865 CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
4866}
4867
4868static int
4869bge_setup_tso(struct bge_softc *sc, struct mbuf **mp,
4870 uint16_t *mss0, uint16_t *flags0)
4871{
4872 struct mbuf *m;
4873 struct ip *ip;
4874 struct tcphdr *th;
4875 int thoff, iphlen, hoff, hlen;
4876 uint16_t flags, mss;
4877
4878 m = *mp;
4879 KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4880
4881 hoff = m->m_pkthdr.csum_lhlen;
4882 iphlen = m->m_pkthdr.csum_iphlen;
4883 thoff = m->m_pkthdr.csum_thlen;
4884
4885 KASSERT(hoff > 0, ("invalid ether header len"));
4886 KASSERT(iphlen > 0, ("invalid ip header len"));
4887 KASSERT(thoff > 0, ("invalid tcp header len"));
4888
4889 if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4890 m = m_pullup(m, hoff + iphlen + thoff);
4891 if (m == NULL) {
4892 *mp = NULL;
4893 return ENOBUFS;
4894 }
4895 *mp = m;
4896 }
4897 ip = mtodoff(m, struct ip *, hoff);
4898 th = mtodoff(m, struct tcphdr *, hoff + iphlen);
4899
4900 mss = m->m_pkthdr.tso_segsz;
4901 flags = BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA;
4902
4903 ip->ip_len = htons(mss + iphlen + thoff);
4904 th->th_sum = 0;
4905
4906 hlen = (iphlen + thoff) >> 2;
4907 mss |= (hlen << 11);
4908
4909 *mss0 = mss;
4910 *flags0 = flags;
4911
4912 return 0;
4913}