Fix breakage introduced: When bootstrapping from -RELEASE we don't
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2001
4 * Bill Paul <wpaul@windriver.com>. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 *
33 * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.29 2003/12/01 21:06:59 ambrisko Exp $
34 * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.46 2005/08/22 18:29:52 joerg Exp $
35 *
36 */
37
38/*
39 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40 *
41 * Written by Bill Paul <wpaul@windriver.com>
42 * Senior Engineer, Wind River Systems
43 */
44
45/*
46 * The Broadcom BCM5700 is based on technology originally developed by
47 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51 * frames, highly configurable RX filtering, and 16 RX and TX queues
52 * (which, along with RX filter rules, can be used for QOS applications).
53 * Other features, such as TCP segmentation, may be available as part
54 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55 * firmware images can be stored in hardware and need not be compiled
56 * into the driver.
57 *
58 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60 *
61 * The BCM5701 is a single-chip solution incorporating both the BCM5700
62 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63 * does not support external SSRAM.
64 *
65 * Broadcom also produces a variation of the BCM5700 under the "Altima"
66 * brand name, which is functionally similar but lacks PCI-X support.
67 *
68 * Without external SSRAM, you can only have at most 4 TX rings,
69 * and the use of the mini RX ring is disabled. This seems to imply
70 * that these features are simply not available on the BCM5701. As a
71 * result, this driver does not implement any support for the mini RX
72 * ring.
73 */
74
75#include "opt_bge.h"
76
77#include <sys/param.h>
78#include <sys/systm.h>
79#include <sys/sockio.h>
80#include <sys/mbuf.h>
81#include <sys/malloc.h>
82#include <sys/kernel.h>
83#include <sys/socket.h>
84#include <sys/queue.h>
85#include <sys/thread2.h>
86
87#include <net/if.h>
88#include <net/ifq_var.h>
89#include <net/if_arp.h>
90#include <net/ethernet.h>
91#include <net/if_dl.h>
92#include <net/if_media.h>
93
94#include <net/bpf.h>
95
96#include <net/if_types.h>
97#include <net/vlan/if_vlan_var.h>
98
99#include <netinet/in_systm.h>
100#include <netinet/in.h>
101#include <netinet/ip.h>
102
103#include <vm/vm.h> /* for vtophys */
104#include <vm/pmap.h> /* for vtophys */
105#include <machine/resource.h>
106#include <sys/bus.h>
107#include <sys/rman.h>
108
109#include <dev/netif/mii_layer/mii.h>
110#include <dev/netif/mii_layer/miivar.h>
111#include <dev/netif/mii_layer/miidevs.h>
112#include <dev/netif/mii_layer/brgphyreg.h>
113
114#include <bus/pci/pcidevs.h>
115#include <bus/pci/pcireg.h>
116#include <bus/pci/pcivar.h>
117
118#include "if_bgereg.h"
119
120#define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
121
122/* "controller miibus0" required. See GENERIC if you get errors here. */
123#include "miibus_if.h"
124
125/*
126 * Various supported device vendors/types and their names. Note: the
127 * spec seems to indicate that the hardware still has Alteon's vendor
128 * ID burned into it, though it will always be overriden by the vendor
129 * ID in the EEPROM. Just to be safe, we cover all possibilities.
130 */
131#define BGE_DEVDESC_MAX 64 /* Maximum device description length */
132
133static struct bge_type bge_devs[] = {
134 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
135 "Alteon BCM5700 Gigabit Ethernet" },
136 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
137 "Alteon BCM5701 Gigabit Ethernet" },
138 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
139 "Broadcom BCM5700 Gigabit Ethernet" },
140 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
141 "Broadcom BCM5701 Gigabit Ethernet" },
142 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
143 "Broadcom BCM5702X Gigabit Ethernet" },
144 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
145 "Broadcom BCM5702 Gigabit Ethernet" },
146 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
147 "Broadcom BCM5703X Gigabit Ethernet" },
148 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
149 "Broadcom BCM5703 Gigabit Ethernet" },
150 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
151 "Broadcom BCM5704C Dual Gigabit Ethernet" },
152 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
153 "Broadcom BCM5704S Dual Gigabit Ethernet" },
154 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
155 "Broadcom BCM5705 Gigabit Ethernet" },
156 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
157 "Broadcom BCM5705K Gigabit Ethernet" },
158 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
159 "Broadcom BCM5705M Gigabit Ethernet" },
160 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
161 "Broadcom BCM5705M Gigabit Ethernet" },
162 { PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5714C,
163 "Broadcom BCM5714C Gigabit Ethernet" },
164 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
165 "Broadcom BCM5721 Gigabit Ethernet" },
166 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
167 "Broadcom BCM5750 Gigabit Ethernet" },
168 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
169 "Broadcom BCM5750M Gigabit Ethernet" },
170 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
171 "Broadcom BCM5751 Gigabit Ethernet" },
172 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
173 "Broadcom BCM5751M Gigabit Ethernet" },
174 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
175 "Broadcom BCM5782 Gigabit Ethernet" },
176 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
177 "Broadcom BCM5788 Gigabit Ethernet" },
178 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
179 "Broadcom BCM5789 Gigabit Ethernet" },
180 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
181 "Broadcom BCM5901 Fast Ethernet" },
182 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
183 "Broadcom BCM5901A2 Fast Ethernet" },
184 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
185 "SysKonnect Gigabit Ethernet" },
186 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
187 "Altima AC1000 Gigabit Ethernet" },
188 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
189 "Altima AC1002 Gigabit Ethernet" },
190 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
191 "Altima AC9100 Gigabit Ethernet" },
192 { 0, 0, NULL }
193};
194
195static int bge_probe(device_t);
196static int bge_attach(device_t);
197static int bge_detach(device_t);
198static void bge_release_resources(struct bge_softc *);
199static void bge_txeof(struct bge_softc *);
200static void bge_rxeof(struct bge_softc *);
201
202static void bge_tick(void *);
203static void bge_stats_update(struct bge_softc *);
204static void bge_stats_update_regs(struct bge_softc *);
205static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
206
207static void bge_intr(void *);
208static void bge_start(struct ifnet *);
209static int bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
210static void bge_init(void *);
211static void bge_stop(struct bge_softc *);
212static void bge_watchdog(struct ifnet *);
213static void bge_shutdown(device_t);
214static int bge_ifmedia_upd(struct ifnet *);
215static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
216
217static uint8_t bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
218static int bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
219
220static void bge_setmulti(struct bge_softc *);
221
222static void bge_handle_events(struct bge_softc *);
223static int bge_alloc_jumbo_mem(struct bge_softc *);
224static void bge_free_jumbo_mem(struct bge_softc *);
225static struct bge_jslot
226 *bge_jalloc(struct bge_softc *);
227static void bge_jfree(void *);
228static void bge_jref(void *);
229static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
230static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
231static int bge_init_rx_ring_std(struct bge_softc *);
232static void bge_free_rx_ring_std(struct bge_softc *);
233static int bge_init_rx_ring_jumbo(struct bge_softc *);
234static void bge_free_rx_ring_jumbo(struct bge_softc *);
235static void bge_free_tx_ring(struct bge_softc *);
236static int bge_init_tx_ring(struct bge_softc *);
237
238static int bge_chipinit(struct bge_softc *);
239static int bge_blockinit(struct bge_softc *);
240
241#ifdef notdef
242static uint8_t bge_vpd_readbyte(struct bge_softc *, uint32_t);
243static void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, uint32_t);
244static void bge_vpd_read(struct bge_softc *);
245#endif
246
247static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
248static void bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
249#ifdef notdef
250static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
251#endif
252static void bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
253
254static int bge_miibus_readreg(device_t, int, int);
255static int bge_miibus_writereg(device_t, int, int, int);
256static void bge_miibus_statchg(device_t);
257
258static void bge_reset(struct bge_softc *);
259
260static device_method_t bge_methods[] = {
261 /* Device interface */
262 DEVMETHOD(device_probe, bge_probe),
263 DEVMETHOD(device_attach, bge_attach),
264 DEVMETHOD(device_detach, bge_detach),
265 DEVMETHOD(device_shutdown, bge_shutdown),
266
267 /* bus interface */
268 DEVMETHOD(bus_print_child, bus_generic_print_child),
269 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
270
271 /* MII interface */
272 DEVMETHOD(miibus_readreg, bge_miibus_readreg),
273 DEVMETHOD(miibus_writereg, bge_miibus_writereg),
274 DEVMETHOD(miibus_statchg, bge_miibus_statchg),
275
276 { 0, 0 }
277};
278
279static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
280static devclass_t bge_devclass;
281
282DECLARE_DUMMY_MODULE(if_bge);
283DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
284DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
285
286static uint32_t
287bge_readmem_ind(struct bge_softc *sc, uint32_t off)
288{
289 device_t dev = sc->bge_dev;
290
291 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
292 return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
293}
294
295static void
296bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
297{
298 device_t dev = sc->bge_dev;
299
300 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
301 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
302}
303
304#ifdef notdef
305static uint32_t
306bge_readreg_ind(struct bge_softc *sc, uin32_t off)
307{
308 device_t dev = sc->bge_dev;
309
310 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
311 return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
312}
313#endif
314
315static void
316bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
317{
318 device_t dev = sc->bge_dev;
319
320 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
321 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
322}
323
324#ifdef notdef
325static uint8_t
326bge_vpd_readbyte(struct bge_softc *sc, uint32_t addr)
327{
328 device_t dev = sc->bge_dev;
329 uint32_t val;
330 int i;
331
332 pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
333 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
334 DELAY(10);
335 if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
336 break;
337 }
338
339 if (i == BGE_TIMEOUT) {
340 device_printf(sc->bge_dev, "VPD read timed out\n");
341 return(0);
342 }
343
344 val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
345
346 return((val >> ((addr % 4) * 8)) & 0xFF);
347}
348
349static void
350bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, uint32_t addr)
351{
352 size_t i;
353 uint8_t *ptr;
354
355 ptr = (uint8_t *)res;
356 for (i = 0; i < sizeof(struct vpd_res); i++)
357 ptr[i] = bge_vpd_readbyte(sc, i + addr);
358
359 return;
360}
361
362static void
363bge_vpd_read(struct bge_softc *sc)
364{
365 int pos = 0, i;
366 struct vpd_res res;
367
368 if (sc->bge_vpd_prodname != NULL)
369 free(sc->bge_vpd_prodname, M_DEVBUF);
370 if (sc->bge_vpd_readonly != NULL)
371 free(sc->bge_vpd_readonly, M_DEVBUF);
372 sc->bge_vpd_prodname = NULL;
373 sc->bge_vpd_readonly = NULL;
374
375 bge_vpd_read_res(sc, &res, pos);
376
377 if (res.vr_id != VPD_RES_ID) {
378 device_printf(sc->bge_dev,
379 "bad VPD resource id: expected %x got %x\n",
380 VPD_RES_ID, res.vr_id);
381 return;
382 }
383
384 pos += sizeof(res);
385 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
386 for (i = 0; i < res.vr_len; i++)
387 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
388 sc->bge_vpd_prodname[i] = '\0';
389 pos += i;
390
391 bge_vpd_read_res(sc, &res, pos);
392
393 if (res.vr_id != VPD_RES_READ) {
394 device_printf(sc->bge_dev,
395 "bad VPD resource id: expected %x got %x\n",
396 VPD_RES_READ, res.vr_id);
397 return;
398 }
399
400 pos += sizeof(res);
401 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_INTWAIT);
402 for (i = 0; i < res.vr_len + 1; i++)
403 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
404}
405#endif
406
407/*
408 * Read a byte of data stored in the EEPROM at address 'addr.' The
409 * BCM570x supports both the traditional bitbang interface and an
410 * auto access interface for reading the EEPROM. We use the auto
411 * access method.
412 */
413static uint8_t
414bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
415{
416 int i;
417 uint32_t byte = 0;
418
419 /*
420 * Enable use of auto EEPROM access so we can avoid
421 * having to use the bitbang method.
422 */
423 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
424
425 /* Reset the EEPROM, load the clock period. */
426 CSR_WRITE_4(sc, BGE_EE_ADDR,
427 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
428 DELAY(20);
429
430 /* Issue the read EEPROM command. */
431 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
432
433 /* Wait for completion */
434 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
435 DELAY(10);
436 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
437 break;
438 }
439
440 if (i == BGE_TIMEOUT) {
441 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
442 return(0);
443 }
444
445 /* Get result. */
446 byte = CSR_READ_4(sc, BGE_EE_DATA);
447
448 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
449
450 return(0);
451}
452
453/*
454 * Read a sequence of bytes from the EEPROM.
455 */
456static int
457bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
458{
459 size_t i;
460 int err;
461 uint8_t byte;
462
463 for (byte = 0, err = 0, i = 0; i < len; i++) {
464 err = bge_eeprom_getbyte(sc, off + i, &byte);
465 if (err)
466 break;
467 *(dest + i) = byte;
468 }
469
470 return(err ? 1 : 0);
471}
472
473static int
474bge_miibus_readreg(device_t dev, int phy, int reg)
475{
476 struct bge_softc *sc;
477 struct ifnet *ifp;
478 uint32_t val, autopoll;
479 int i;
480
481 sc = device_get_softc(dev);
482 ifp = &sc->arpcom.ac_if;
483
484 /*
485 * Broadcom's own driver always assumes the internal
486 * PHY is at GMII address 1. On some chips, the PHY responds
487 * to accesses at all addresses, which could cause us to
488 * bogusly attach the PHY 32 times at probe type. Always
489 * restricting the lookup to address 1 is simpler than
490 * trying to figure out which chips revisions should be
491 * special-cased.
492 */
493 if (phy != 1)
494 return(0);
495
496 /* Reading with autopolling on may trigger PCI errors */
497 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
498 if (autopoll & BGE_MIMODE_AUTOPOLL) {
499 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
500 DELAY(40);
501 }
502
503 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
504 BGE_MIPHY(phy)|BGE_MIREG(reg));
505
506 for (i = 0; i < BGE_TIMEOUT; i++) {
507 val = CSR_READ_4(sc, BGE_MI_COMM);
508 if (!(val & BGE_MICOMM_BUSY))
509 break;
510 }
511
512 if (i == BGE_TIMEOUT) {
513 if_printf(ifp, "PHY read timed out\n");
514 val = 0;
515 goto done;
516 }
517
518 val = CSR_READ_4(sc, BGE_MI_COMM);
519
520done:
521 if (autopoll & BGE_MIMODE_AUTOPOLL) {
522 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
523 DELAY(40);
524 }
525
526 if (val & BGE_MICOMM_READFAIL)
527 return(0);
528
529 return(val & 0xFFFF);
530}
531
532static int
533bge_miibus_writereg(device_t dev, int phy, int reg, int val)
534{
535 struct bge_softc *sc;
536 uint32_t autopoll;
537 int i;
538
539 sc = device_get_softc(dev);
540
541 /* Reading with autopolling on may trigger PCI errors */
542 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
543 if (autopoll & BGE_MIMODE_AUTOPOLL) {
544 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
545 DELAY(40);
546 }
547
548 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
549 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
550
551 for (i = 0; i < BGE_TIMEOUT; i++) {
552 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
553 break;
554 }
555
556 if (autopoll & BGE_MIMODE_AUTOPOLL) {
557 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
558 DELAY(40);
559 }
560
561 if (i == BGE_TIMEOUT) {
562 if_printf(&sc->arpcom.ac_if, "PHY read timed out\n");
563 return(0);
564 }
565
566 return(0);
567}
568
569static void
570bge_miibus_statchg(device_t dev)
571{
572 struct bge_softc *sc;
573 struct mii_data *mii;
574
575 sc = device_get_softc(dev);
576 mii = device_get_softc(sc->bge_miibus);
577
578 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
579 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
580 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
581 } else {
582 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
583 }
584
585 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
586 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
587 } else {
588 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
589 }
590}
591
592/*
593 * Handle events that have triggered interrupts.
594 */
595static void
596bge_handle_events(struct bge_softc *sc)
597{
598}
599
600/*
601 * Memory management for jumbo frames.
602 */
603static int
604bge_alloc_jumbo_mem(struct bge_softc *sc)
605{
606 struct bge_jslot *entry;
607 caddr_t ptr;
608 int i;
609
610 /* Grab a big chunk o' storage. */
611 sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
612 M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
613
614 if (sc->bge_cdata.bge_jumbo_buf == NULL) {
615 if_printf(&sc->arpcom.ac_if, "no memory for jumbo buffers!\n");
616 return(ENOBUFS);
617 }
618
619 SLIST_INIT(&sc->bge_jfree_listhead);
620
621 /*
622 * Now divide it up into 9K pieces and save the addresses
623 * in an array. Note that we play an evil trick here by using
624 * the first few bytes in the buffer to hold the the address
625 * of the softc structure for this interface. This is because
626 * bge_jfree() needs it, but it is called by the mbuf management
627 * code which will not pass it to us explicitly.
628 */
629 ptr = sc->bge_cdata.bge_jumbo_buf;
630 for (i = 0; i < BGE_JSLOTS; i++) {
631 entry = &sc->bge_cdata.bge_jslots[i];
632 entry->bge_sc = sc;
633 entry->bge_buf = ptr;
634 entry->bge_inuse = 0;
635 entry->bge_slot = i;
636 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
637 ptr += BGE_JLEN;
638 }
639
640 return(0);
641}
642
643static void
644bge_free_jumbo_mem(struct bge_softc *sc)
645{
646 if (sc->bge_cdata.bge_jumbo_buf)
647 contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
648}
649
650/*
651 * Allocate a jumbo buffer.
652 */
653static struct bge_jslot *
654bge_jalloc(struct bge_softc *sc)
655{
656 struct bge_jslot *entry;
657
658 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
659
660 if (entry == NULL) {
661 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
662 return(NULL);
663 }
664
665 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
666 entry->bge_inuse = 1;
667 return(entry);
668}
669
670/*
671 * Adjust usage count on a jumbo buffer.
672 */
673static void
674bge_jref(void *arg)
675{
676 struct bge_jslot *entry = (struct bge_jslot *)arg;
677 struct bge_softc *sc = entry->bge_sc;
678
679 if (sc == NULL)
680 panic("bge_jref: can't find softc pointer!");
681
682 if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry)
683 panic("bge_jref: asked to reference buffer "
684 "that we don't manage!");
685 else if (entry->bge_inuse == 0)
686 panic("bge_jref: buffer already free!");
687 else
688 entry->bge_inuse++;
689}
690
691/*
692 * Release a jumbo buffer.
693 */
694static void
695bge_jfree(void *arg)
696{
697 struct bge_jslot *entry = (struct bge_jslot *)arg;
698 struct bge_softc *sc = entry->bge_sc;
699
700 if (sc == NULL)
701 panic("bge_jfree: can't find softc pointer!");
702
703 if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry)
704 panic("bge_jfree: asked to free buffer that we don't manage!");
705 else if (entry->bge_inuse == 0)
706 panic("bge_jfree: buffer already free!");
707 else if (--entry->bge_inuse == 0)
708 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
709}
710
711
712/*
713 * Intialize a standard receive ring descriptor.
714 */
715static int
716bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
717{
718 struct mbuf *m_new = NULL;
719 struct bge_rx_bd *r;
720
721 if (m == NULL) {
722 m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
723 if (m_new == NULL)
724 return (ENOBUFS);
725 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
726 } else {
727 m_new = m;
728 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
729 m_new->m_data = m_new->m_ext.ext_buf;
730 }
731
732 if (!sc->bge_rx_alignment_bug)
733 m_adj(m_new, ETHER_ALIGN);
734 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
735 r = &sc->bge_rdata->bge_rx_std_ring[i];
736 BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
737 r->bge_flags = BGE_RXBDFLAG_END;
738 r->bge_len = m_new->m_len;
739 r->bge_idx = i;
740
741 return(0);
742}
743
744/*
745 * Initialize a jumbo receive ring descriptor. This allocates
746 * a jumbo buffer from the pool managed internally by the driver.
747 */
748static int
749bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
750{
751 struct mbuf *m_new = NULL;
752 struct bge_rx_bd *r;
753
754 if (m == NULL) {
755 struct bge_jslot *buf;
756
757 /* Allocate the mbuf. */
758 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
759 if (m_new == NULL)
760 return(ENOBUFS);
761
762 /* Allocate the jumbo buffer */
763 buf = bge_jalloc(sc);
764 if (buf == NULL) {
765 m_freem(m_new);
766 if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
767 "-- packet dropped!\n");
768 return(ENOBUFS);
769 }
770
771 /* Attach the buffer to the mbuf. */
772 m_new->m_ext.ext_arg = buf;
773 m_new->m_ext.ext_buf = buf->bge_buf;
774 m_new->m_ext.ext_free = bge_jfree;
775 m_new->m_ext.ext_ref = bge_jref;
776 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
777
778 m_new->m_data = m_new->m_ext.ext_buf;
779 m_new->m_flags |= M_EXT;
780 m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
781 } else {
782 m_new = m;
783 m_new->m_data = m_new->m_ext.ext_buf;
784 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
785 }
786
787 if (!sc->bge_rx_alignment_bug)
788 m_adj(m_new, ETHER_ALIGN);
789 /* Set up the descriptor. */
790 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
791 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
792 BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
793 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
794 r->bge_len = m_new->m_len;
795 r->bge_idx = i;
796
797 return(0);
798}
799
800/*
801 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
802 * that's 1MB or memory, which is a lot. For now, we fill only the first
803 * 256 ring entries and hope that our CPU is fast enough to keep up with
804 * the NIC.
805 */
806static int
807bge_init_rx_ring_std(struct bge_softc *sc)
808{
809 int i;
810
811 for (i = 0; i < BGE_SSLOTS; i++) {
812 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
813 return(ENOBUFS);
814 };
815
816 sc->bge_std = i - 1;
817 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
818
819 return(0);
820}
821
822static void
823bge_free_rx_ring_std(struct bge_softc *sc)
824{
825 int i;
826
827 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
828 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
829 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
830 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
831 }
832 bzero(&sc->bge_rdata->bge_rx_std_ring[i],
833 sizeof(struct bge_rx_bd));
834 }
835}
836
837static int
838bge_init_rx_ring_jumbo(struct bge_softc *sc)
839{
840 int i;
841 struct bge_rcb *rcb;
842
843 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
844 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
845 return(ENOBUFS);
846 };
847
848 sc->bge_jumbo = i - 1;
849
850 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
851 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
852 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
853
854 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
855
856 return(0);
857}
858
859static void
860bge_free_rx_ring_jumbo(struct bge_softc *sc)
861{
862 int i;
863
864 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
865 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
866 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
867 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
868 }
869 bzero(&sc->bge_rdata->bge_rx_jumbo_ring[i],
870 sizeof(struct bge_rx_bd));
871 }
872}
873
874static void
875bge_free_tx_ring(struct bge_softc *sc)
876{
877 int i;
878
879 if (sc->bge_rdata->bge_tx_ring == NULL)
880 return;
881
882 for (i = 0; i < BGE_TX_RING_CNT; i++) {
883 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
884 m_freem(sc->bge_cdata.bge_tx_chain[i]);
885 sc->bge_cdata.bge_tx_chain[i] = NULL;
886 }
887 bzero(&sc->bge_rdata->bge_tx_ring[i],
888 sizeof(struct bge_tx_bd));
889 }
890}
891
892static int
893bge_init_tx_ring(struct bge_softc *sc)
894{
895 sc->bge_txcnt = 0;
896 sc->bge_tx_saved_considx = 0;
897
898 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
899 /* 5700 b2 errata */
900 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
901 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
902
903 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
904 /* 5700 b2 errata */
905 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
906 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
907
908 return(0);
909}
910
911static void
912bge_setmulti(struct bge_softc *sc)
913{
914 struct ifnet *ifp;
915 struct ifmultiaddr *ifma;
916 uint32_t hashes[4] = { 0, 0, 0, 0 };
917 int h, i;
918
919 ifp = &sc->arpcom.ac_if;
920
921 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
922 for (i = 0; i < 4; i++)
923 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
924 return;
925 }
926
927 /* First, zot all the existing filters. */
928 for (i = 0; i < 4; i++)
929 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
930
931 /* Now program new ones. */
932 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
933 if (ifma->ifma_addr->sa_family != AF_LINK)
934 continue;
935 h = ether_crc32_le(
936 LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
937 ETHER_ADDR_LEN) & 0x7f;
938 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
939 }
940
941 for (i = 0; i < 4; i++)
942 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
943}
944
945/*
946 * Do endian, PCI and DMA initialization. Also check the on-board ROM
947 * self-test results.
948 */
949static int
950bge_chipinit(struct bge_softc *sc)
951{
952 int i;
953 uint32_t dma_rw_ctl;
954
955 /* Set endianness before we access any non-PCI registers. */
956#if BYTE_ORDER == BIG_ENDIAN
957 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
958 BGE_BIGENDIAN_INIT, 4);
959#else
960 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
961 BGE_LITTLEENDIAN_INIT, 4);
962#endif
963
964 /*
965 * Check the 'ROM failed' bit on the RX CPU to see if
966 * self-tests passed.
967 */
968 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
969 if_printf(&sc->arpcom.ac_if,
970 "RX CPU self-diagnostics failed!\n");
971 return(ENODEV);
972 }
973
974 /* Clear the MAC control register */
975 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
976
977 /*
978 * Clear the MAC statistics block in the NIC's
979 * internal memory.
980 */
981 for (i = BGE_STATS_BLOCK;
982 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
983 BGE_MEMWIN_WRITE(sc, i, 0);
984
985 for (i = BGE_STATUS_BLOCK;
986 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
987 BGE_MEMWIN_WRITE(sc, i, 0);
988
989 /* Set up the PCI DMA control register. */
990 if (sc->bge_pcie) {
991 /* PCI Express */
992 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
993 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
994 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
995 } else if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
996 BGE_PCISTATE_PCI_BUSMODE) {
997 /* Conventional PCI bus */
998 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
999 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1000 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1001 (0x0F);
1002 } else {
1003 /* PCI-X bus */
1004 /*
1005 * The 5704 uses a different encoding of read/write
1006 * watermarks.
1007 */
1008 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1009 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1010 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1011 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1012 else
1013 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1014 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1015 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1016 (0x0F);
1017
1018 /*
1019 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1020 * for hardware bugs.
1021 */
1022 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1023 sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1024 uint32_t tmp;
1025
1026 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1027 if (tmp == 0x6 || tmp == 0x7)
1028 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1029 }
1030 }
1031
1032 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1033 sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1034 sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1035 sc->bge_asicrev == BGE_ASICREV_BCM5750)
1036 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1037 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1038
1039 /*
1040 * Set up general mode register.
1041 */
1042 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1043 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1044 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1045 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1046
1047 /*
1048 * Disable memory write invalidate. Apparently it is not supported
1049 * properly by these devices.
1050 */
1051 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1052
1053 /* Set the timer prescaler (always 66Mhz) */
1054 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1055
1056 return(0);
1057}
1058
1059static int
1060bge_blockinit(struct bge_softc *sc)
1061{
1062 struct bge_rcb *rcb;
1063 volatile struct bge_rcb *vrcb;
1064 int i;
1065
1066 /*
1067 * Initialize the memory window pointer register so that
1068 * we can access the first 32K of internal NIC RAM. This will
1069 * allow us to set up the TX send ring RCBs and the RX return
1070 * ring RCBs, plus other things which live in NIC memory.
1071 */
1072 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1073
1074 /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1075
1076 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1077 sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1078 /* Configure mbuf memory pool */
1079 if (sc->bge_extram) {
1080 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1081 BGE_EXT_SSRAM);
1082 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1083 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1084 else
1085 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1086 } else {
1087 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1088 BGE_BUFFPOOL_1);
1089 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1090 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1091 else
1092 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1093 }
1094
1095 /* Configure DMA resource pool */
1096 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1097 BGE_DMA_DESCRIPTORS);
1098 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1099 }
1100
1101 /* Configure mbuf pool watermarks */
1102 if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1103 sc->bge_asicrev == BGE_ASICREV_BCM5750) {
1104 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1105 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1106 } else {
1107 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1108 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1109 }
1110 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1111
1112 /* Configure DMA resource watermarks */
1113 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1114 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1115
1116 /* Enable buffer manager */
1117 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1118 sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1119 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1120 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1121
1122 /* Poll for buffer manager start indication */
1123 for (i = 0; i < BGE_TIMEOUT; i++) {
1124 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1125 break;
1126 DELAY(10);
1127 }
1128
1129 if (i == BGE_TIMEOUT) {
1130 if_printf(&sc->arpcom.ac_if,
1131 "buffer manager failed to start\n");
1132 return(ENXIO);
1133 }
1134 }
1135
1136 /* Enable flow-through queues */
1137 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1138 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1139
1140 /* Wait until queue initialization is complete */
1141 for (i = 0; i < BGE_TIMEOUT; i++) {
1142 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1143 break;
1144 DELAY(10);
1145 }
1146
1147 if (i == BGE_TIMEOUT) {
1148 if_printf(&sc->arpcom.ac_if,
1149 "flow-through queue init failed\n");
1150 return(ENXIO);
1151 }
1152
1153 /* Initialize the standard RX ring control block */
1154 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1155 BGE_HOSTADDR(rcb->bge_hostaddr,
1156 vtophys(&sc->bge_rdata->bge_rx_std_ring));
1157 if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1158 sc->bge_asicrev == BGE_ASICREV_BCM5750)
1159 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1160 else
1161 rcb->bge_maxlen_flags =
1162 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1163 if (sc->bge_extram)
1164 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1165 else
1166 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1167 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1168 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1169 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1170 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1171
1172 /*
1173 * Initialize the jumbo RX ring control block
1174 * We set the 'ring disabled' bit in the flags
1175 * field until we're actually ready to start
1176 * using this ring (i.e. once we set the MTU
1177 * high enough to require it).
1178 */
1179 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1180 sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1181 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1182 BGE_HOSTADDR(rcb->bge_hostaddr,
1183 vtophys(&sc->bge_rdata->bge_rx_jumbo_ring));
1184 rcb->bge_maxlen_flags =
1185 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1186 BGE_RCB_FLAG_RING_DISABLED);
1187 if (sc->bge_extram)
1188 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1189 else
1190 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1191 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1192 rcb->bge_hostaddr.bge_addr_hi);
1193 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1194 rcb->bge_hostaddr.bge_addr_lo);
1195 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1196 rcb->bge_maxlen_flags);
1197 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1198
1199 /* Set up dummy disabled mini ring RCB */
1200 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1201 rcb->bge_maxlen_flags =
1202 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1203 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1204 rcb->bge_maxlen_flags);
1205 }
1206
1207 /*
1208 * Set the BD ring replentish thresholds. The recommended
1209 * values are 1/8th the number of descriptors allocated to
1210 * each ring.
1211 */
1212 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1213 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1214
1215 /*
1216 * Disable all unused send rings by setting the 'ring disabled'
1217 * bit in the flags field of all the TX send ring control blocks.
1218 * These are located in NIC memory.
1219 */
1220 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1221 BGE_SEND_RING_RCB);
1222 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1223 vrcb->bge_maxlen_flags =
1224 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1225 vrcb->bge_nicaddr = 0;
1226 vrcb++;
1227 }
1228
1229 /* Configure TX RCB 0 (we use only the first ring) */
1230 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1231 BGE_SEND_RING_RCB);
1232 vrcb->bge_hostaddr.bge_addr_hi = 0;
1233 BGE_HOSTADDR(vrcb->bge_hostaddr, vtophys(&sc->bge_rdata->bge_tx_ring));
1234 vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1235 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1236 sc->bge_asicrev != BGE_ASICREV_BCM5750)
1237 vrcb->bge_maxlen_flags =
1238 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0);
1239
1240 /* Disable all unused RX return rings */
1241 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1242 BGE_RX_RETURN_RING_RCB);
1243 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1244 vrcb->bge_hostaddr.bge_addr_hi = 0;
1245 vrcb->bge_hostaddr.bge_addr_lo = 0;
1246 vrcb->bge_maxlen_flags =
1247 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1248 BGE_RCB_FLAG_RING_DISABLED);
1249 vrcb->bge_nicaddr = 0;
1250 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1251 (i * (sizeof(uint64_t))), 0);
1252 vrcb++;
1253 }
1254
1255 /* Initialize RX ring indexes */
1256 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1257 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1258 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1259
1260 /*
1261 * Set up RX return ring 0
1262 * Note that the NIC address for RX return rings is 0x00000000.
1263 * The return rings live entirely within the host, so the
1264 * nicaddr field in the RCB isn't used.
1265 */
1266 vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1267 BGE_RX_RETURN_RING_RCB);
1268 vrcb->bge_hostaddr.bge_addr_hi = 0;
1269 BGE_HOSTADDR(vrcb->bge_hostaddr,
1270 vtophys(&sc->bge_rdata->bge_rx_return_ring));
1271 vrcb->bge_nicaddr = 0x00000000;
1272 vrcb->bge_maxlen_flags =
1273 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0);
1274
1275 /* Set random backoff seed for TX */
1276 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1277 sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1278 sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1279 sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1280 BGE_TX_BACKOFF_SEED_MASK);
1281
1282 /* Set inter-packet gap */
1283 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1284
1285 /*
1286 * Specify which ring to use for packets that don't match
1287 * any RX rules.
1288 */
1289 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1290
1291 /*
1292 * Configure number of RX lists. One interrupt distribution
1293 * list, sixteen active lists, one bad frames class.
1294 */
1295 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1296
1297 /* Inialize RX list placement stats mask. */
1298 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1299 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1300
1301 /* Disable host coalescing until we get it set up */
1302 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1303
1304 /* Poll to make sure it's shut down. */
1305 for (i = 0; i < BGE_TIMEOUT; i++) {
1306 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1307 break;
1308 DELAY(10);
1309 }
1310
1311 if (i == BGE_TIMEOUT) {
1312 if_printf(&sc->arpcom.ac_if,
1313 "host coalescing engine failed to idle\n");
1314 return(ENXIO);
1315 }
1316
1317 /* Set up host coalescing defaults */
1318 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1319 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1320 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1321 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1322 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1323 sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1324 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1325 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1326 }
1327 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1328 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1329
1330 /* Set up address of statistics block */
1331 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1332 sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1333 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1334 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1335 vtophys(&sc->bge_rdata->bge_info.bge_stats));
1336
1337 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1338 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1339 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1340 }
1341
1342 /* Set up address of status block */
1343 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1344 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1345 vtophys(&sc->bge_rdata->bge_status_block));
1346
1347 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1348 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1349
1350 /* Turn on host coalescing state machine */
1351 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1352
1353 /* Turn on RX BD completion state machine and enable attentions */
1354 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1355 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1356
1357 /* Turn on RX list placement state machine */
1358 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1359
1360 /* Turn on RX list selector state machine. */
1361 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1362 sc->bge_asicrev != BGE_ASICREV_BCM5750)
1363 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1364
1365 /* Turn on DMA, clear stats */
1366 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1367 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1368 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1369 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1370 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1371
1372 /* Set misc. local control, enable interrupts on attentions */
1373 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1374
1375#ifdef notdef
1376 /* Assert GPIO pins for PHY reset */
1377 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1378 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1379 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1380 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1381#endif
1382
1383 /* Turn on DMA completion state machine */
1384 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1385 sc->bge_asicrev != BGE_ASICREV_BCM5750)
1386 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1387
1388 /* Turn on write DMA state machine */
1389 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1390 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1391
1392 /* Turn on read DMA state machine */
1393 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1394 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1395
1396 /* Turn on RX data completion state machine */
1397 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1398
1399 /* Turn on RX BD initiator state machine */
1400 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1401
1402 /* Turn on RX data and RX BD initiator state machine */
1403 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1404
1405 /* Turn on Mbuf cluster free state machine */
1406 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1407 sc->bge_asicrev != BGE_ASICREV_BCM5750)
1408 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1409
1410 /* Turn on send BD completion state machine */
1411 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1412
1413 /* Turn on send data completion state machine */
1414 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1415
1416 /* Turn on send data initiator state machine */
1417 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1418
1419 /* Turn on send BD initiator state machine */
1420 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1421
1422 /* Turn on send BD selector state machine */
1423 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1424
1425 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1426 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1427 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1428
1429 /* ack/clear link change events */
1430 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1431 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1432 BGE_MACSTAT_LINK_CHANGED);
1433
1434 /* Enable PHY auto polling (for MII/GMII only) */
1435 if (sc->bge_tbi) {
1436 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1437 } else {
1438 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1439 if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1440 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1441 BGE_EVTENB_MI_INTERRUPT);
1442 }
1443
1444 /* Enable link state change attentions. */
1445 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1446
1447 return(0);
1448}
1449
1450/*
1451 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1452 * against our list and return its name if we find a match. Note
1453 * that since the Broadcom controller contains VPD support, we
1454 * can get the device name string from the controller itself instead
1455 * of the compiled-in string. This is a little slow, but it guarantees
1456 * we'll always announce the right product name.
1457 */
1458static int
1459bge_probe(device_t dev)
1460{
1461 struct bge_softc *sc;
1462 struct bge_type *t;
1463 char *descbuf;
1464 uint16_t product, vendor;
1465
1466 product = pci_get_device(dev);
1467 vendor = pci_get_vendor(dev);
1468
1469 for (t = bge_devs; t->bge_name != NULL; t++) {
1470 if (vendor == t->bge_vid && product == t->bge_did)
1471 break;
1472 }
1473
1474 if (t->bge_name == NULL)
1475 return(ENXIO);
1476
1477 sc = device_get_softc(dev);
1478#ifdef notdef
1479 sc->bge_dev = dev;
1480
1481 bge_vpd_read(sc);
1482 device_set_desc(dev, sc->bge_vpd_prodname);
1483#endif
1484 descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_WAITOK);
1485 snprintf(descbuf, BGE_DEVDESC_MAX, "%s, ASIC rev. %#04x", t->bge_name,
1486 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1487 device_set_desc_copy(dev, descbuf);
1488 if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1489 sc->bge_no_3_led = 1;
1490 free(descbuf, M_TEMP);
1491 return(0);
1492}
1493
1494static int
1495bge_attach(device_t dev)
1496{
1497 struct ifnet *ifp;
1498 struct bge_softc *sc;
1499 uint32_t hwcfg = 0;
1500 uint32_t mac_addr = 0;
1501 int error = 0, rid;
1502 uint8_t ether_addr[ETHER_ADDR_LEN];
1503
1504 sc = device_get_softc(dev);
1505 sc->bge_dev = dev;
1506 callout_init(&sc->bge_stat_timer);
1507
1508 /*
1509 * Map control/status registers.
1510 */
1511 pci_enable_busmaster(dev);
1512
1513 rid = BGE_PCI_BAR0;
1514 sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1515 RF_ACTIVE);
1516
1517 if (sc->bge_res == NULL) {
1518 device_printf(dev, "couldn't map memory\n");
1519 error = ENXIO;
1520 return(error);
1521 }
1522
1523 sc->bge_btag = rman_get_bustag(sc->bge_res);
1524 sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1525 sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1526
1527 /* Allocate interrupt */
1528 rid = 0;
1529
1530 sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1531 RF_SHAREABLE | RF_ACTIVE);
1532
1533 if (sc->bge_irq == NULL) {
1534 device_printf(dev, "couldn't map interrupt\n");
1535 error = ENXIO;
1536 goto fail;
1537 }
1538
1539 /* Save ASIC rev. */
1540 sc->bge_chipid =
1541 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1542 BGE_PCIMISCCTL_ASICREV;
1543 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1544 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1545
1546 /*
1547 * Treat the 5714 like the 5750 until we have more info
1548 * on this chip.
1549 */
1550 if (sc->bge_asicrev == BGE_ASICREV_BCM5714)
1551 sc->bge_asicrev = BGE_ASICREV_BCM5750;
1552
1553 /*
1554 * XXX: Broadcom Linux driver. Not in specs or eratta.
1555 * PCI-Express?
1556 */
1557 if (sc->bge_asicrev == BGE_ASICREV_BCM5750) {
1558 uint32_t v;
1559
1560 v = pci_read_config(dev, BGE_PCI_MSI_CAPID, 4);
1561 if (((v >> 8) & 0xff) == BGE_PCIE_MSI_CAPID) {
1562 v = pci_read_config(dev, BGE_PCIE_MSI_CAPID, 4);
1563 if ((v & 0xff) == BGE_PCIE_MSI_CAPID_VAL)
1564 sc->bge_pcie = 1;
1565 }
1566 }
1567
1568 ifp = &sc->arpcom.ac_if;
1569 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1570
1571 /* Try to reset the chip. */
1572 bge_reset(sc);
1573
1574 if (bge_chipinit(sc)) {
1575 device_printf(dev, "chip initialization failed\n");
1576 error = ENXIO;
1577 goto fail;
1578 }
1579
1580 /*
1581 * Get station address from the EEPROM.
1582 */
1583 mac_addr = bge_readmem_ind(sc, 0x0c14);
1584 if ((mac_addr >> 16) == 0x484b) {
1585 ether_addr[0] = (uint8_t)(mac_addr >> 8);
1586 ether_addr[1] = (uint8_t)mac_addr;
1587 mac_addr = bge_readmem_ind(sc, 0x0c18);
1588 ether_addr[2] = (uint8_t)(mac_addr >> 24);
1589 ether_addr[3] = (uint8_t)(mac_addr >> 16);
1590 ether_addr[4] = (uint8_t)(mac_addr >> 8);
1591 ether_addr[5] = (uint8_t)mac_addr;
1592 } else if (bge_read_eeprom(sc, ether_addr,
1593 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1594 device_printf(dev, "failed to read station address\n");
1595 error = ENXIO;
1596 goto fail;
1597 }
1598
1599 /* Allocate the general information block and ring buffers. */
1600 sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1601 M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1602
1603 if (sc->bge_rdata == NULL) {
1604 error = ENXIO;
1605 device_printf(dev, "no memory for list buffers!\n");
1606 goto fail;
1607 }
1608
1609 bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1610
1611 /*
1612 * Try to allocate memory for jumbo buffers.
1613 * The 5705/5750 does not appear to support jumbo frames.
1614 */
1615 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1616 sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1617 if (bge_alloc_jumbo_mem(sc)) {
1618 device_printf(dev, "jumbo buffer allocation failed\n");
1619 error = ENXIO;
1620 goto fail;
1621 }
1622 }
1623
1624 /* Set default tuneable values. */
1625 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1626 sc->bge_rx_coal_ticks = 150;
1627 sc->bge_tx_coal_ticks = 150;
1628 sc->bge_rx_max_coal_bds = 64;
1629 sc->bge_tx_max_coal_bds = 128;
1630
1631 /* 5705/5750 limits RX return ring to 512 entries. */
1632 if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1633 sc->bge_asicrev == BGE_ASICREV_BCM5750)
1634 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1635 else
1636 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1637
1638 /* Set up ifnet structure */
1639 ifp->if_softc = sc;
1640 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1641 ifp->if_ioctl = bge_ioctl;
1642 ifp->if_start = bge_start;
1643 ifp->if_watchdog = bge_watchdog;
1644 ifp->if_init = bge_init;
1645 ifp->if_mtu = ETHERMTU;
1646 ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1647 ifq_set_ready(&ifp->if_snd);
1648 ifp->if_hwassist = BGE_CSUM_FEATURES;
1649 ifp->if_capabilities = IFCAP_HWCSUM;
1650 ifp->if_capenable = ifp->if_capabilities;
1651
1652 /*
1653 * Figure out what sort of media we have by checking the
1654 * hardware config word in the first 32k of NIC internal memory,
1655 * or fall back to examining the EEPROM if necessary.
1656 * Note: on some BCM5700 cards, this value appears to be unset.
1657 * If that's the case, we have to rely on identifying the NIC
1658 * by its PCI subsystem ID, as we do below for the SysKonnect
1659 * SK-9D41.
1660 */
1661 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1662 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1663 else {
1664 bge_read_eeprom(sc, (caddr_t)&hwcfg,
1665 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1666 hwcfg = ntohl(hwcfg);
1667 }
1668
1669 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1670 sc->bge_tbi = 1;
1671
1672 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1673 if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1674 sc->bge_tbi = 1;
1675
1676 if (sc->bge_tbi) {
1677 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1678 bge_ifmedia_upd, bge_ifmedia_sts);
1679 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1680 ifmedia_add(&sc->bge_ifmedia,
1681 IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1682 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1683 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1684 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
1685 } else {
1686 /*
1687 * Do transceiver setup.
1688 */
1689 if (mii_phy_probe(dev, &sc->bge_miibus,
1690 bge_ifmedia_upd, bge_ifmedia_sts)) {
1691 device_printf(dev, "MII without any PHY!\n");
1692 error = ENXIO;
1693 goto fail;
1694 }
1695 }
1696
1697 /*
1698 * When using the BCM5701 in PCI-X mode, data corruption has
1699 * been observed in the first few bytes of some received packets.
1700 * Aligning the packet buffer in memory eliminates the corruption.
1701 * Unfortunately, this misaligns the packet payloads. On platforms
1702 * which do not support unaligned accesses, we will realign the
1703 * payloads by copying the received packets.
1704 */
1705 switch (sc->bge_chipid) {
1706 case BGE_CHIPID_BCM5701_A0:
1707 case BGE_CHIPID_BCM5701_B0:
1708 case BGE_CHIPID_BCM5701_B2:
1709 case BGE_CHIPID_BCM5701_B5:
1710 /* If in PCI-X mode, work around the alignment bug. */
1711 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
1712 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
1713 BGE_PCISTATE_PCI_BUSSPEED)
1714 sc->bge_rx_alignment_bug = 1;
1715 break;
1716 }
1717
1718 /*
1719 * Call MI attach routine.
1720 */
1721 ether_ifattach(ifp, ether_addr);
1722
1723 error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET,
1724 bge_intr, sc, &sc->bge_intrhand, NULL);
1725 if (error) {
1726 ether_ifdetach(ifp);
1727 device_printf(dev, "couldn't set up irq\n");
1728 goto fail;
1729 }
1730
1731 return(0);
1732
1733fail:
1734 bge_detach(dev);
1735
1736 return(error);
1737}
1738
1739static int
1740bge_detach(device_t dev)
1741{
1742 struct bge_softc *sc = device_get_softc(dev);
1743 struct ifnet *ifp = &sc->arpcom.ac_if;
1744
1745 crit_enter();
1746
1747 if (device_is_attached(dev)) {
1748 ether_ifdetach(ifp);
1749 bge_stop(sc);
1750 bge_reset(sc);
1751 }
1752
1753 if (sc->bge_tbi)
1754 ifmedia_removeall(&sc->bge_ifmedia);
1755 if (sc->bge_miibus);
1756 device_delete_child(dev, sc->bge_miibus);
1757 bus_generic_detach(dev);
1758
1759 bge_release_resources(sc);
1760
1761 crit_exit();
1762
1763 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1764 sc->bge_asicrev != BGE_ASICREV_BCM5750)
1765 bge_free_jumbo_mem(sc);
1766
1767 return(0);
1768}
1769
1770static void
1771bge_release_resources(struct bge_softc *sc)
1772{
1773 device_t dev;
1774
1775 dev = sc->bge_dev;
1776
1777 if (sc->bge_vpd_prodname != NULL)
1778 free(sc->bge_vpd_prodname, M_DEVBUF);
1779
1780 if (sc->bge_vpd_readonly != NULL)
1781 free(sc->bge_vpd_readonly, M_DEVBUF);
1782
1783 if (sc->bge_intrhand != NULL)
1784 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1785
1786 if (sc->bge_irq != NULL)
1787 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1788
1789 if (sc->bge_res != NULL)
1790 bus_release_resource(dev, SYS_RES_MEMORY,
1791 BGE_PCI_BAR0, sc->bge_res);
1792
1793 if (sc->bge_rdata != NULL)
1794 contigfree(sc->bge_rdata, sizeof(struct bge_ring_data),
1795 M_DEVBUF);
1796
1797 return;
1798}
1799
1800static void
1801bge_reset(struct bge_softc *sc)
1802{
1803 device_t dev;
1804 uint32_t cachesize, command, pcistate, reset;
1805 int i, val = 0;
1806
1807 dev = sc->bge_dev;
1808
1809 /* Save some important PCI state. */
1810 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1811 command = pci_read_config(dev, BGE_PCI_CMD, 4);
1812 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1813
1814 pci_write_config(dev, BGE_PCI_MISC_CTL,
1815 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1816 BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1817
1818 reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
1819
1820 /* XXX: Broadcom Linux driver. */
1821 if (sc->bge_pcie) {
1822 if (CSR_READ_4(sc, 0x7e2c) == 0x60) /* PCIE 1.0 */
1823 CSR_WRITE_4(sc, 0x7e2c, 0x20);
1824 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
1825 /* Prevent PCIE link training during global reset */
1826 CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
1827 reset |= (1<<29);
1828 }
1829 }
1830
1831 /* Issue global reset */
1832 bge_writereg_ind(sc, BGE_MISC_CFG, reset);
1833
1834 DELAY(1000);
1835
1836 /* XXX: Broadcom Linux driver. */
1837 if (sc->bge_pcie) {
1838 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
1839 uint32_t v;
1840
1841 DELAY(500000); /* wait for link training to complete */
1842 v = pci_read_config(dev, 0xc4, 4);
1843 pci_write_config(dev, 0xc4, v | (1<<15), 4);
1844 }
1845 /* Set PCIE max payload size and clear error status. */
1846 pci_write_config(dev, 0xd8, 0xf5000, 4);
1847 }
1848
1849 /* Reset some of the PCI state that got zapped by reset */
1850 pci_write_config(dev, BGE_PCI_MISC_CTL,
1851 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1852 BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1853 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1854 pci_write_config(dev, BGE_PCI_CMD, command, 4);
1855 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1856
1857 /* Enable memory arbiter. */
1858 if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1859 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1860
1861 /*
1862 * Prevent PXE restart: write a magic number to the
1863 * general communications memory at 0xB50.
1864 */
1865 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1866 /*
1867 * Poll the value location we just wrote until
1868 * we see the 1's complement of the magic number.
1869 * This indicates that the firmware initialization
1870 * is complete.
1871 */
1872 for (i = 0; i < BGE_TIMEOUT; i++) {
1873 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1874 if (val == ~BGE_MAGIC_NUMBER)
1875 break;
1876 DELAY(10);
1877 }
1878
1879 if (i == BGE_TIMEOUT) {
1880 if_printf(&sc->arpcom.ac_if, "firmware handshake timed out\n");
1881 return;
1882 }
1883
1884 /*
1885 * XXX Wait for the value of the PCISTATE register to
1886 * return to its original pre-reset state. This is a
1887 * fairly good indicator of reset completion. If we don't
1888 * wait for the reset to fully complete, trying to read
1889 * from the device's non-PCI registers may yield garbage
1890 * results.
1891 */
1892 for (i = 0; i < BGE_TIMEOUT; i++) {
1893 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
1894 break;
1895 DELAY(10);
1896 }
1897
1898 /* Fix up byte swapping */
1899 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
1900 BGE_MODECTL_BYTESWAP_DATA);
1901
1902 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1903
1904 /*
1905 * The 5704 in TBI mode apparently needs some special
1906 * adjustment to insure the SERDES drive level is set
1907 * to 1.2V.
1908 */
1909 if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && sc->bge_tbi) {
1910 uint32_t serdescfg;
1911
1912 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
1913 serdescfg = (serdescfg & ~0xFFF) | 0x880;
1914 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
1915 }
1916
1917 /* XXX: Broadcom Linux driver. */
1918 if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
1919 uint32_t v;
1920
1921 v = CSR_READ_4(sc, 0x7c00);
1922 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
1923 }
1924
1925 DELAY(10000);
1926}
1927
1928/*
1929 * Frame reception handling. This is called if there's a frame
1930 * on the receive return list.
1931 *
1932 * Note: we have to be able to handle two possibilities here:
1933 * 1) the frame is from the jumbo recieve ring
1934 * 2) the frame is from the standard receive ring
1935 */
1936
1937static void
1938bge_rxeof(struct bge_softc *sc)
1939{
1940 struct ifnet *ifp;
1941 int stdcnt = 0, jumbocnt = 0;
1942
1943 ifp = &sc->arpcom.ac_if;
1944
1945 while(sc->bge_rx_saved_considx !=
1946 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1947 struct bge_rx_bd *cur_rx;
1948 uint32_t rxidx;
1949 struct mbuf *m = NULL;
1950 uint16_t vlan_tag = 0;
1951 int have_tag = 0;
1952
1953 cur_rx =
1954 &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
1955
1956 rxidx = cur_rx->bge_idx;
1957 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
1958
1959 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
1960 have_tag = 1;
1961 vlan_tag = cur_rx->bge_vlan_tag;
1962 }
1963
1964 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
1965 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1966 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
1967 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
1968 jumbocnt++;
1969 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1970 ifp->if_ierrors++;
1971 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1972 continue;
1973 }
1974 if (bge_newbuf_jumbo(sc,
1975 sc->bge_jumbo, NULL) == ENOBUFS) {
1976 ifp->if_ierrors++;
1977 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1978 continue;
1979 }
1980 } else {
1981 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1982 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
1983 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
1984 stdcnt++;
1985 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1986 ifp->if_ierrors++;
1987 bge_newbuf_std(sc, sc->bge_std, m);
1988 continue;
1989 }
1990 if (bge_newbuf_std(sc, sc->bge_std,
1991 NULL) == ENOBUFS) {
1992 ifp->if_ierrors++;
1993 bge_newbuf_std(sc, sc->bge_std, m);
1994 continue;
1995 }
1996 }
1997
1998 ifp->if_ipackets++;
1999#ifndef __i386__
2000 /*
2001 * The i386 allows unaligned accesses, but for other
2002 * platforms we must make sure the payload is aligned.
2003 */
2004 if (sc->bge_rx_alignment_bug) {
2005 bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2006 cur_rx->bge_len);
2007 m->m_data += ETHER_ALIGN;
2008 }
2009#endif
2010 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2011 m->m_pkthdr.rcvif = ifp;
2012
2013#if 0 /* currently broken for some packets, possibly related to TCP options */
2014 if (ifp->if_hwassist) {
2015 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2016 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2017 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2018 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2019 m->m_pkthdr.csum_data =
2020 cur_rx->bge_tcp_udp_csum;
2021 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2022 }
2023 }
2024#endif
2025
2026 /*
2027 * If we received a packet with a vlan tag, pass it
2028 * to vlan_input() instead of ether_input().
2029 */
2030 if (have_tag) {
2031 VLAN_INPUT_TAG(m, vlan_tag);
2032 have_tag = vlan_tag = 0;
2033 continue;
2034 }
2035
2036 (*ifp->if_input)(ifp, m);
2037 }
2038
2039 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2040 if (stdcnt)
2041 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2042 if (jumbocnt)
2043 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2044}
2045
2046static void
2047bge_txeof(struct bge_softc *sc)
2048{
2049 struct bge_tx_bd *cur_tx = NULL;
2050 struct ifnet *ifp;
2051
2052 ifp = &sc->arpcom.ac_if;
2053
2054 /*
2055 * Go through our tx ring and free mbufs for those
2056 * frames that have been sent.
2057 */
2058 while (sc->bge_tx_saved_considx !=
2059 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2060 uint32_t idx = 0;
2061
2062 idx = sc->bge_tx_saved_considx;
2063 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2064 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2065 ifp->if_opackets++;
2066 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2067 m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2068 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2069 }
2070 sc->bge_txcnt--;
2071 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2072 ifp->if_timer = 0;
2073 }
2074
2075 if (cur_tx != NULL)
2076 ifp->if_flags &= ~IFF_OACTIVE;
2077}
2078
2079static void
2080bge_intr(void *xsc)
2081{
2082 struct bge_softc *sc = xsc;
2083 struct ifnet *ifp = &sc->arpcom.ac_if;
2084 uint32_t status, statusword, mimode;
2085
2086 /* XXX */
2087 statusword = loadandclear(&sc->bge_rdata->bge_status_block.bge_status);
2088
2089#ifdef notdef
2090 /* Avoid this for now -- checking this register is expensive. */
2091 /* Make sure this is really our interrupt. */
2092 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2093 return;
2094#endif
2095 /* Ack interrupt and stop others from occuring. */
2096 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2097
2098 /*
2099 * Process link state changes.
2100 * Grrr. The link status word in the status block does
2101 * not work correctly on the BCM5700 rev AX and BX chips,
2102 * according to all available information. Hence, we have
2103 * to enable MII interrupts in order to properly obtain
2104 * async link changes. Unfortunately, this also means that
2105 * we have to read the MAC status register to detect link
2106 * changes, thereby adding an additional register access to
2107 * the interrupt handler.
2108 */
2109
2110 if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
2111 status = CSR_READ_4(sc, BGE_MAC_STS);
2112 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2113 sc->bge_link = 0;
2114 callout_stop(&sc->bge_stat_timer);
2115 bge_tick(sc);
2116 /* Clear the interrupt */
2117 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2118 BGE_EVTENB_MI_INTERRUPT);
2119 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
2120 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
2121 BRGPHY_INTRS);
2122 }
2123 } else {
2124 if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) {
2125 /*
2126 * Sometimes PCS encoding errors are detected in
2127 * TBI mode (on fiber NICs), and for some reason
2128 * the chip will signal them as link changes.
2129 * If we get a link change event, but the 'PCS
2130 * encoding error' bit in the MAC status register
2131 * is set, don't bother doing a link check.
2132 * This avoids spurious "gigabit link up" messages
2133 * that sometimes appear on fiber NICs during
2134 * periods of heavy traffic. (There should be no
2135 * effect on copper NICs.)
2136 *
2137 * If we do have a copper NIC (bge_tbi == 0) then
2138 * check that the AUTOPOLL bit is set before
2139 * processing the event as a real link change.
2140 * Turning AUTOPOLL on and off in the MII read/write
2141 * functions will often trigger a link status
2142 * interrupt for no reason.
2143 */
2144 status = CSR_READ_4(sc, BGE_MAC_STS);
2145 mimode = CSR_READ_4(sc, BGE_MI_MODE);
2146 if (!(status & (BGE_MACSTAT_PORT_DECODE_ERROR |
2147 BGE_MACSTAT_MI_COMPLETE)) &&
2148 (!sc->bge_tbi && (mimode & BGE_MIMODE_AUTOPOLL))) {
2149 sc->bge_link = 0;
2150 callout_stop(&sc->bge_stat_timer);
2151 bge_tick(sc);
2152 }
2153 sc->bge_link = 0;
2154 callout_stop(&sc->bge_stat_timer);
2155 bge_tick(sc);
2156 /* Clear the interrupt */
2157 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2158 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2159 BGE_MACSTAT_LINK_CHANGED);
2160
2161 /* Force flush the status block cached by PCI bridge */
2162 CSR_READ_4(sc, BGE_MBX_IRQ0_LO);
2163 }
2164 }
2165
2166 if (ifp->if_flags & IFF_RUNNING) {
2167 /* Check RX return ring producer/consumer */
2168 bge_rxeof(sc);
2169
2170 /* Check TX ring producer/consumer */
2171 bge_txeof(sc);
2172 }
2173
2174 bge_handle_events(sc);
2175
2176 /* Re-enable interrupts. */
2177 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2178
2179 if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
2180 (*ifp->if_start)(ifp);
2181}
2182
2183static void
2184bge_tick(void *xsc)
2185{
2186 struct bge_softc *sc = xsc;
2187 struct ifnet *ifp = &sc->arpcom.ac_if;
2188 struct mii_data *mii = NULL;
2189 struct ifmedia *ifm = NULL;
2190
2191 crit_enter();
2192
2193 if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
2194 sc->bge_asicrev == BGE_ASICREV_BCM5750)
2195 bge_stats_update_regs(sc);
2196 else
2197 bge_stats_update(sc);
2198
2199 callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2200
2201 if (sc->bge_link) {
2202 crit_exit();
2203 return;
2204 }
2205
2206 if (sc->bge_tbi) {
2207 ifm = &sc->bge_ifmedia;
2208 if (CSR_READ_4(sc, BGE_MAC_STS) &
2209 BGE_MACSTAT_TBI_PCS_SYNCHED) {
2210 sc->bge_link++;
2211 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2212 BGE_CLRBIT(sc, BGE_MAC_MODE,
2213 BGE_MACMODE_TBI_SEND_CFGS);
2214 }
2215 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2216 if_printf(ifp, "gigabit link up\n");
2217 if (!ifq_is_empty(&ifp->if_snd))
2218 (*ifp->if_start)(ifp);
2219 }
2220 crit_exit();
2221 return;
2222 }
2223
2224 mii = device_get_softc(sc->bge_miibus);
2225 mii_tick(mii);
2226
2227 if (!sc->bge_link) {
2228 mii_pollstat(mii);
2229 if (mii->mii_media_status & IFM_ACTIVE &&
2230 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2231 sc->bge_link++;
2232 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2233 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2234 if_printf(ifp, "gigabit link up\n");
2235 if (!ifq_is_empty(&ifp->if_snd))
2236 (*ifp->if_start)(ifp);
2237 }
2238 }
2239
2240 crit_exit();
2241}
2242
2243static void
2244bge_stats_update_regs(struct bge_softc *sc)
2245{
2246 struct ifnet *ifp = &sc->arpcom.ac_if;
2247 struct bge_mac_stats_regs stats;
2248 uint32_t *s;
2249 int i;
2250
2251 s = (uint32_t *)&stats;
2252 for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2253 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2254 s++;
2255 }
2256
2257 ifp->if_collisions +=
2258 (stats.dot3StatsSingleCollisionFrames +
2259 stats.dot3StatsMultipleCollisionFrames +
2260 stats.dot3StatsExcessiveCollisions +
2261 stats.dot3StatsLateCollisions) -
2262 ifp->if_collisions;
2263}
2264
2265static void
2266bge_stats_update(struct bge_softc *sc)
2267{
2268 struct ifnet *ifp = &sc->arpcom.ac_if;
2269 struct bge_stats *stats;
2270
2271 stats = (struct bge_stats *)(sc->bge_vhandle +
2272 BGE_MEMWIN_START + BGE_STATS_BLOCK);
2273
2274 ifp->if_collisions +=
2275 (stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo +
2276 stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo +
2277 stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo +
2278 stats->txstats.dot3StatsLateCollisions.bge_addr_lo) -
2279 ifp->if_collisions;
2280
2281#ifdef notdef
2282 ifp->if_collisions +=
2283 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2284 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2285 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2286 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2287 ifp->if_collisions;
2288#endif
2289}
2290
2291/*
2292 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2293 * pointers to descriptors.
2294 */
2295static int
2296bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2297{
2298 struct bge_tx_bd *f = NULL;
2299 struct mbuf *m;
2300 uint32_t frag, cur, cnt = 0;
2301 uint16_t csum_flags = 0;
2302 struct ifvlan *ifv = NULL;
2303
2304 if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2305 m_head->m_pkthdr.rcvif != NULL &&
2306 m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2307 ifv = m_head->m_pkthdr.rcvif->if_softc;
2308
2309 m = m_head;
2310 cur = frag = *txidx;
2311
2312 if (m_head->m_pkthdr.csum_flags) {
2313 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2314 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2315 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2316 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2317 if (m_head->m_flags & M_LASTFRAG)
2318 csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2319 else if (m_head->m_flags & M_FRAG)
2320 csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2321 }
2322 /*
2323 * Start packing the mbufs in this chain into
2324 * the fragment pointers. Stop when we run out
2325 * of fragments or hit the end of the mbuf chain.
2326 */
2327 for (m = m_head; m != NULL; m = m->m_next) {
2328 if (m->m_len != 0) {
2329 f = &sc->bge_rdata->bge_tx_ring[frag];
2330 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2331 break;
2332 BGE_HOSTADDR(f->bge_addr,
2333 vtophys(mtod(m, vm_offset_t)));
2334 f->bge_len = m->m_len;
2335 f->bge_flags = csum_flags;
2336 if (ifv != NULL) {
2337 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2338 f->bge_vlan_tag = ifv->ifv_tag;
2339 } else {
2340 f->bge_vlan_tag = 0;
2341 }
2342 /*
2343 * Sanity check: avoid coming within 16 descriptors
2344 * of the end of the ring.
2345 */
2346 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2347 return(ENOBUFS);
2348 cur = frag;
2349 BGE_INC(frag, BGE_TX_RING_CNT);
2350 cnt++;
2351 }
2352 }
2353
2354 if (m != NULL)
2355 return(ENOBUFS);
2356
2357 if (frag == sc->bge_tx_saved_considx)
2358 return(ENOBUFS);
2359
2360 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2361 sc->bge_cdata.bge_tx_chain[cur] = m_head;
2362 sc->bge_txcnt += cnt;
2363
2364 *txidx = frag;
2365
2366 return(0);
2367}
2368
2369/*
2370 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2371 * to the mbuf data regions directly in the transmit descriptors.
2372 */
2373static void
2374bge_start(struct ifnet *ifp)
2375{
2376 struct bge_softc *sc;
2377 struct mbuf *m_head = NULL;
2378 uint32_t prodidx = 0;
2379
2380 sc = ifp->if_softc;
2381
2382 if (!sc->bge_link)
2383 return;
2384
2385 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2386
2387 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2388 m_head = ifq_poll(&ifp->if_snd);
2389 if (m_head == NULL)
2390 break;
2391
2392 /*
2393 * XXX
2394 * safety overkill. If this is a fragmented packet chain
2395 * with delayed TCP/UDP checksums, then only encapsulate
2396 * it if we have enough descriptors to handle the entire
2397 * chain at once.
2398 * (paranoia -- may not actually be needed)
2399 */
2400 if (m_head->m_flags & M_FIRSTFRAG &&
2401 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2402 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2403 m_head->m_pkthdr.csum_data + 16) {
2404 ifp->if_flags |= IFF_OACTIVE;
2405 break;
2406 }
2407 }
2408
2409 /*
2410 * Pack the data into the transmit ring. If we
2411 * don't have room, set the OACTIVE flag and wait
2412 * for the NIC to drain the ring.
2413 */
2414 if (bge_encap(sc, m_head, &prodidx)) {
2415 ifp->if_flags |= IFF_OACTIVE;
2416 break;
2417 }
2418 m_head = ifq_dequeue(&ifp->if_snd);
2419
2420 BPF_MTAP(ifp, m_head);
2421 }
2422
2423 /* Transmit */
2424 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2425 /* 5700 b2 errata */
2426 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2427 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2428
2429 /*
2430 * Set a timeout in case the chip goes out to lunch.
2431 */
2432 ifp->if_timer = 5;
2433}
2434
2435static void
2436bge_init(void *xsc)
2437{
2438 struct bge_softc *sc = xsc;
2439 struct ifnet *ifp = &sc->arpcom.ac_if;
2440 uint16_t *m;
2441
2442 crit_enter();
2443
2444 if (ifp->if_flags & IFF_RUNNING) {
2445 crit_exit();
2446 return;
2447 }
2448
2449 /* Cancel pending I/O and flush buffers. */
2450 bge_stop(sc);
2451 bge_reset(sc);
2452 bge_chipinit(sc);
2453
2454 /*
2455 * Init the various state machines, ring
2456 * control blocks and firmware.
2457 */
2458 if (bge_blockinit(sc)) {
2459 if_printf(ifp, "initialization failure\n");
2460 crit_exit();
2461 return;
2462 }
2463
2464 /* Specify MTU. */
2465 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2466 ETHER_HDR_LEN + ETHER_CRC_LEN);
2467
2468 /* Load our MAC address. */
2469 m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2470 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2471 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2472
2473 /* Enable or disable promiscuous mode as needed. */
2474 if (ifp->if_flags & IFF_PROMISC) {
2475 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2476 } else {
2477 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2478 }
2479
2480 /* Program multicast filter. */
2481 bge_setmulti(sc);
2482
2483 /* Init RX ring. */
2484 bge_init_rx_ring_std(sc);
2485
2486 /*
2487 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2488 * memory to insure that the chip has in fact read the first
2489 * entry of the ring.
2490 */
2491 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2492 uint32_t v, i;
2493 for (i = 0; i < 10; i++) {
2494 DELAY(20);
2495 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2496 if (v == (MCLBYTES - ETHER_ALIGN))
2497 break;
2498 }
2499 if (i == 10)
2500 if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2501 }
2502
2503 /* Init jumbo RX ring. */
2504 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2505 bge_init_rx_ring_jumbo(sc);
2506
2507 /* Init our RX return ring index */
2508 sc->bge_rx_saved_considx = 0;
2509
2510 /* Init TX ring. */
2511 bge_init_tx_ring(sc);
2512
2513 /* Turn on transmitter */
2514 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2515
2516 /* Turn on receiver */
2517 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2518
2519 /* Tell firmware we're alive. */
2520 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2521
2522 /* Enable host interrupts. */
2523 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2524 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2525 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2526
2527 bge_ifmedia_upd(ifp);
2528
2529 ifp->if_flags |= IFF_RUNNING;
2530 ifp->if_flags &= ~IFF_OACTIVE;
2531
2532 callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2533
2534 crit_exit();
2535}
2536
2537/*
2538 * Set media options.
2539 */
2540static int
2541bge_ifmedia_upd(struct ifnet *ifp)
2542{
2543 struct bge_softc *sc = ifp->if_softc;
2544 struct ifmedia *ifm = &sc->bge_ifmedia;
2545 struct mii_data *mii;
2546
2547 /* If this is a 1000baseX NIC, enable the TBI port. */
2548 if (sc->bge_tbi) {
2549 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2550 return(EINVAL);
2551 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2552 case IFM_AUTO:
2553#ifndef BGE_FAKE_AUTONEG
2554 /*
2555 * The BCM5704 ASIC appears to have a special
2556 * mechanism for programming the autoneg
2557 * advertisement registers in TBI mode.
2558 */
2559 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2560 uint32_t sgdig;
2561
2562 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
2563 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
2564 sgdig |= BGE_SGDIGCFG_AUTO |
2565 BGE_SGDIGCFG_PAUSE_CAP |
2566 BGE_SGDIGCFG_ASYM_PAUSE;
2567 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
2568 sgdig | BGE_SGDIGCFG_SEND);
2569 DELAY(5);
2570 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
2571 }
2572#endif /* !BEG_FAKE_AUTONEG */
2573 break;
2574 case IFM_1000_SX:
2575 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2576 BGE_CLRBIT(sc, BGE_MAC_MODE,
2577 BGE_MACMODE_HALF_DUPLEX);
2578 } else {
2579 BGE_SETBIT(sc, BGE_MAC_MODE,
2580 BGE_MACMODE_HALF_DUPLEX);
2581 }
2582 break;
2583 default:
2584 return(EINVAL);
2585 }
2586 return(0);
2587 }
2588
2589 mii = device_get_softc(sc->bge_miibus);
2590 sc->bge_link = 0;
2591 if (mii->mii_instance) {
2592 struct mii_softc *miisc;
2593 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2594 miisc = LIST_NEXT(miisc, mii_list))
2595 mii_phy_reset(miisc);
2596 }
2597 mii_mediachg(mii);
2598
2599 return(0);
2600}
2601
2602/*
2603 * Report current media status.
2604 */
2605static void
2606bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2607{
2608 struct bge_softc *sc = ifp->if_softc;
2609 struct mii_data *mii;
2610
2611 if (sc->bge_tbi) {
2612 ifmr->ifm_status = IFM_AVALID;
2613 ifmr->ifm_active = IFM_ETHER;
2614 if (CSR_READ_4(sc, BGE_MAC_STS) &
2615 BGE_MACSTAT_TBI_PCS_SYNCHED)
2616 ifmr->ifm_status |= IFM_ACTIVE;
2617 ifmr->ifm_active |= IFM_1000_SX;
2618 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2619 ifmr->ifm_active |= IFM_HDX;
2620 else
2621 ifmr->ifm_active |= IFM_FDX;
2622 return;
2623 }
2624
2625 mii = device_get_softc(sc->bge_miibus);
2626 mii_pollstat(mii);
2627 ifmr->ifm_active = mii->mii_media_active;
2628 ifmr->ifm_status = mii->mii_media_status;
2629}
2630
2631static int
2632bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2633{
2634 struct bge_softc *sc = ifp->if_softc;
2635 struct ifreq *ifr = (struct ifreq *) data;
2636 int mask, error = 0;
2637 struct mii_data *mii;
2638
2639 crit_enter();
2640
2641 switch(command) {
2642 case SIOCSIFMTU:
2643 /* Disallow jumbo frames on 5705/5750. */
2644 if (((sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
2645 sc->bge_asicrev == BGE_ASICREV_BCM5750) &&
2646 ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU)
2647 error = EINVAL;
2648 else {
2649 ifp->if_mtu = ifr->ifr_mtu;
2650 ifp->if_flags &= ~IFF_RUNNING;
2651 bge_init(sc);
2652 }
2653 break;
2654 case SIOCSIFFLAGS:
2655 if (ifp->if_flags & IFF_UP) {
2656 /*
2657 * If only the state of the PROMISC flag changed,
2658 * then just use the 'set promisc mode' command
2659 * instead of reinitializing the entire NIC. Doing
2660 * a full re-init means reloading the firmware and
2661 * waiting for it to start up, which may take a
2662 * second or two.
2663 */
2664 if (ifp->if_flags & IFF_RUNNING &&
2665 ifp->if_flags & IFF_PROMISC &&
2666 !(sc->bge_if_flags & IFF_PROMISC)) {
2667 BGE_SETBIT(sc, BGE_RX_MODE,
2668 BGE_RXMODE_RX_PROMISC);
2669 } else if (ifp->if_flags & IFF_RUNNING &&
2670 !(ifp->if_flags & IFF_PROMISC) &&
2671 sc->bge_if_flags & IFF_PROMISC) {
2672 BGE_CLRBIT(sc, BGE_RX_MODE,
2673 BGE_RXMODE_RX_PROMISC);
2674 } else
2675 bge_init(sc);
2676 } else {
2677 if (ifp->if_flags & IFF_RUNNING) {
2678 bge_stop(sc);
2679 }
2680 }
2681 sc->bge_if_flags = ifp->if_flags;
2682 error = 0;
2683 break;
2684 case SIOCADDMULTI:
2685 case SIOCDELMULTI:
2686 if (ifp->if_flags & IFF_RUNNING) {
2687 bge_setmulti(sc);
2688 error = 0;
2689 }
2690 break;
2691 case SIOCSIFMEDIA:
2692 case SIOCGIFMEDIA:
2693 if (sc->bge_tbi) {
2694 error = ifmedia_ioctl(ifp, ifr,
2695 &sc->bge_ifmedia, command);
2696 } else {
2697 mii = device_get_softc(sc->bge_miibus);
2698 error = ifmedia_ioctl(ifp, ifr,
2699 &mii->mii_media, command);
2700 }
2701 break;
2702 case SIOCSIFCAP:
2703 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2704 if (mask & IFCAP_HWCSUM) {
2705 if (IFCAP_HWCSUM & ifp->if_capenable)
2706 ifp->if_capenable &= ~IFCAP_HWCSUM;
2707 else
2708 ifp->if_capenable |= IFCAP_HWCSUM;
2709 }
2710 error = 0;
2711 break;
2712 default:
2713 error = ether_ioctl(ifp, command, data);
2714 break;
2715 }
2716
2717 crit_exit();
2718
2719 return(error);
2720}
2721
2722static void
2723bge_watchdog(struct ifnet *ifp)
2724{
2725 struct bge_softc *sc = ifp->if_softc;
2726
2727 if_printf(ifp, "watchdog timeout -- resetting\n");
2728
2729 ifp->if_flags &= ~IFF_RUNNING;
2730 bge_init(sc);
2731
2732 ifp->if_oerrors++;
2733}
2734
2735/*
2736 * Stop the adapter and free any mbufs allocated to the
2737 * RX and TX lists.
2738 */
2739static void
2740bge_stop(struct bge_softc *sc)
2741{
2742 struct ifnet *ifp = &sc->arpcom.ac_if;
2743 struct ifmedia_entry *ifm;
2744 struct mii_data *mii = NULL;
2745 int mtmp, itmp;
2746
2747 if (!sc->bge_tbi)
2748 mii = device_get_softc(sc->bge_miibus);
2749
2750 callout_stop(&sc->bge_stat_timer);
2751
2752 /*
2753 * Disable all of the receiver blocks
2754 */
2755 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2756 BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2757 BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2758 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2759 sc->bge_asicrev != BGE_ASICREV_BCM5750)
2760 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2761 BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2762 BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2763 BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2764
2765 /*
2766 * Disable all of the transmit blocks
2767 */
2768 BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2769 BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2770 BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2771 BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2772 BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2773 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2774 sc->bge_asicrev != BGE_ASICREV_BCM5750)
2775 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2776 BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2777
2778 /*
2779 * Shut down all of the memory managers and related
2780 * state machines.
2781 */
2782 BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2783 BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2784 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2785 sc->bge_asicrev != BGE_ASICREV_BCM5750)
2786 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2787 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2788 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2789 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2790 sc->bge_asicrev != BGE_ASICREV_BCM5750) {
2791 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2792 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2793 }
2794
2795 /* Disable host interrupts. */
2796 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2797 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2798
2799 /*
2800 * Tell firmware we're shutting down.
2801 */
2802 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2803
2804 /* Free the RX lists. */
2805 bge_free_rx_ring_std(sc);
2806
2807 /* Free jumbo RX list. */
2808 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2809 sc->bge_asicrev != BGE_ASICREV_BCM5750)
2810 bge_free_rx_ring_jumbo(sc);
2811
2812 /* Free TX buffers. */
2813 bge_free_tx_ring(sc);
2814
2815 /*
2816 * Isolate/power down the PHY, but leave the media selection
2817 * unchanged so that things will be put back to normal when
2818 * we bring the interface back up.
2819 */
2820 if (!sc->bge_tbi) {
2821 itmp = ifp->if_flags;
2822 ifp->if_flags |= IFF_UP;
2823 ifm = mii->mii_media.ifm_cur;
2824 mtmp = ifm->ifm_media;
2825 ifm->ifm_media = IFM_ETHER|IFM_NONE;
2826 mii_mediachg(mii);
2827 ifm->ifm_media = mtmp;
2828 ifp->if_flags = itmp;
2829 }
2830
2831 sc->bge_link = 0;
2832
2833 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2834
2835 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2836}
2837
2838/*
2839 * Stop all chip I/O so that the kernel's probe routines don't
2840 * get confused by errant DMAs when rebooting.
2841 */
2842static void
2843bge_shutdown(device_t dev)
2844{
2845 struct bge_softc *sc = device_get_softc(dev);
2846
2847 bge_stop(sc);
2848 bge_reset(sc);
2849}