Fix type-o's, minor documentation update.
[dragonfly.git] / sys / kern / kern_slaballoc.c
... / ...
CommitLineData
1/*
2 * KERN_SLABALLOC.C - Kernel SLAB memory allocator
3 *
4 * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.13 2003/10/20 16:09:00 dillon Exp $
29 *
30 * This module implements a slab allocator drop-in replacement for the
31 * kernel malloc().
32 *
33 * A slab allocator reserves a ZONE for each chunk size, then lays the
34 * chunks out in an array within the zone. Allocation and deallocation
35 * is nearly instantanious, and fragmentation/overhead losses are limited
36 * to a fixed worst-case amount.
37 *
38 * The downside of this slab implementation is in the chunk size
39 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu.
40 * In a kernel implementation all this memory will be physical so
41 * the zone size is adjusted downward on machines with less physical
42 * memory. The upside is that overhead is bounded... this is the *worst*
43 * case overhead.
44 *
45 * Slab management is done on a per-cpu basis and no locking or mutexes
46 * are required, only a critical section. When one cpu frees memory
47 * belonging to another cpu's slab manager an asynchronous IPI message
48 * will be queued to execute the operation. In addition, both the
49 * high level slab allocator and the low level zone allocator optimize
50 * M_ZERO requests, and the slab allocator does not have to pre initialize
51 * the linked list of chunks.
52 *
53 * XXX Balancing is needed between cpus. Balance will be handled through
54 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
55 *
56 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
57 * the new zone should be restricted to M_USE_RESERVE requests only.
58 *
59 * Alloc Size Chunking Number of zones
60 * 0-127 8 16
61 * 128-255 16 8
62 * 256-511 32 8
63 * 512-1023 64 8
64 * 1024-2047 128 8
65 * 2048-4095 256 8
66 * 4096-8191 512 8
67 * 8192-16383 1024 8
68 * 16384-32767 2048 8
69 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383)
70 *
71 * Allocations >= ZoneLimit go directly to kmem.
72 *
73 * API REQUIREMENTS AND SIDE EFFECTS
74 *
75 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
76 * have remained compatible with the following API requirements:
77 *
78 * + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
79 * + all power-of-2 sized allocations are power-of-2 aligned (twe)
80 * + malloc(0) is allowed and returns non-NULL (ahc driver)
81 * + ability to allocate arbitrarily large chunks of memory
82 */
83
84#include "opt_vm.h"
85
86#include <sys/param.h>
87#include <sys/systm.h>
88#include <sys/kernel.h>
89#include <sys/slaballoc.h>
90#include <sys/mbuf.h>
91#include <sys/vmmeter.h>
92#include <sys/lock.h>
93#include <sys/thread.h>
94#include <sys/globaldata.h>
95
96#include <vm/vm.h>
97#include <vm/vm_param.h>
98#include <vm/vm_kern.h>
99#include <vm/vm_extern.h>
100#include <vm/vm_object.h>
101#include <vm/pmap.h>
102#include <vm/vm_map.h>
103#include <vm/vm_page.h>
104#include <vm/vm_pageout.h>
105
106#include <machine/cpu.h>
107
108#include <sys/thread2.h>
109
110#define arysize(ary) (sizeof(ary)/sizeof((ary)[0]))
111
112/*
113 * Fixed globals (not per-cpu)
114 */
115static int ZoneSize;
116static int ZoneLimit;
117static int ZonePageCount;
118static int ZonePageLimit;
119static int ZoneMask;
120static struct malloc_type *kmemstatistics;
121static struct kmemusage *kmemusage;
122static int32_t weirdary[16];
123
124static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
125static void kmem_slab_free(void *ptr, vm_size_t bytes);
126
127/*
128 * Misc constants. Note that allocations that are exact multiples of
129 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
130 * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
131 */
132#define MIN_CHUNK_SIZE 8 /* in bytes */
133#define MIN_CHUNK_MASK (MIN_CHUNK_SIZE - 1)
134#define ZONE_RELS_THRESH 2 /* threshold number of zones */
135#define IN_SAME_PAGE_MASK (~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
136
137/*
138 * The WEIRD_ADDR is used as known text to copy into free objects to
139 * try to create deterministic failure cases if the data is accessed after
140 * free.
141 */
142#define WEIRD_ADDR 0xdeadc0de
143#define MAX_COPY sizeof(weirdary)
144#define ZERO_LENGTH_PTR ((void *)-8)
145
146/*
147 * Misc global malloc buckets
148 */
149
150MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
151MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
152MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
153
154MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
155MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
156
157/*
158 * Initialize the slab memory allocator. We have to choose a zone size based
159 * on available physical memory. We choose a zone side which is approximately
160 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
161 * 128K. The zone size is limited to the bounds set in slaballoc.h
162 * (typically 32K min, 128K max).
163 */
164static void kmeminit(void *dummy);
165
166SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
167
168static void
169kmeminit(void *dummy)
170{
171 vm_poff_t limsize;
172 int usesize;
173 int i;
174 vm_pindex_t npg;
175
176 limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
177 if (limsize > VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS)
178 limsize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
179
180 usesize = (int)(limsize / 1024); /* convert to KB */
181
182 ZoneSize = ZALLOC_MIN_ZONE_SIZE;
183 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
184 ZoneSize <<= 1;
185 ZoneLimit = ZoneSize / 4;
186 if (ZoneLimit > ZALLOC_ZONE_LIMIT)
187 ZoneLimit = ZALLOC_ZONE_LIMIT;
188 ZoneMask = ZoneSize - 1;
189 ZonePageLimit = PAGE_SIZE * 4;
190 ZonePageCount = ZoneSize / PAGE_SIZE;
191
192 npg = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE;
193 kmemusage = kmem_slab_alloc(npg * sizeof(struct kmemusage), PAGE_SIZE, M_ZERO);
194
195 for (i = 0; i < arysize(weirdary); ++i)
196 weirdary[i] = WEIRD_ADDR;
197
198 if (bootverbose)
199 printf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
200}
201
202/*
203 * Initialize a malloc type tracking structure.
204 */
205void
206malloc_init(void *data)
207{
208 struct malloc_type *type = data;
209 vm_poff_t limsize;
210
211 if (type->ks_magic != M_MAGIC)
212 panic("malloc type lacks magic");
213
214 if (type->ks_limit != 0)
215 return;
216
217 if (vmstats.v_page_count == 0)
218 panic("malloc_init not allowed before vm init");
219
220 limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
221 if (limsize > VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS)
222 limsize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
223 type->ks_limit = limsize / 10;
224
225 type->ks_next = kmemstatistics;
226 kmemstatistics = type;
227}
228
229void
230malloc_uninit(void *data)
231{
232 struct malloc_type *type = data;
233 struct malloc_type *t;
234#ifdef INVARIANTS
235 int i;
236 long ttl;
237#endif
238
239 if (type->ks_magic != M_MAGIC)
240 panic("malloc type lacks magic");
241
242 if (vmstats.v_page_count == 0)
243 panic("malloc_uninit not allowed before vm init");
244
245 if (type->ks_limit == 0)
246 panic("malloc_uninit on uninitialized type");
247
248#ifdef INVARIANTS
249 /*
250 * memuse is only correct in aggregation. Due to memory being allocated
251 * on one cpu and freed on another individual array entries may be
252 * negative or positive (canceling each other out).
253 */
254 for (i = ttl = 0; i < ncpus; ++i)
255 ttl += type->ks_memuse[i];
256 if (ttl) {
257 printf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
258 ttl, type->ks_shortdesc, i);
259 }
260#endif
261 if (type == kmemstatistics) {
262 kmemstatistics = type->ks_next;
263 } else {
264 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
265 if (t->ks_next == type) {
266 t->ks_next = type->ks_next;
267 break;
268 }
269 }
270 }
271 type->ks_next = NULL;
272 type->ks_limit = 0;
273}
274
275/*
276 * Calculate the zone index for the allocation request size and set the
277 * allocation request size to that particular zone's chunk size.
278 */
279static __inline int
280zoneindex(unsigned long *bytes)
281{
282 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */
283 if (n < 128) {
284 *bytes = n = (n + 7) & ~7;
285 return(n / 8 - 1); /* 8 byte chunks, 16 zones */
286 }
287 if (n < 256) {
288 *bytes = n = (n + 15) & ~15;
289 return(n / 16 + 7);
290 }
291 if (n < 8192) {
292 if (n < 512) {
293 *bytes = n = (n + 31) & ~31;
294 return(n / 32 + 15);
295 }
296 if (n < 1024) {
297 *bytes = n = (n + 63) & ~63;
298 return(n / 64 + 23);
299 }
300 if (n < 2048) {
301 *bytes = n = (n + 127) & ~127;
302 return(n / 128 + 31);
303 }
304 if (n < 4096) {
305 *bytes = n = (n + 255) & ~255;
306 return(n / 256 + 39);
307 }
308 *bytes = n = (n + 511) & ~511;
309 return(n / 512 + 47);
310 }
311#if ZALLOC_ZONE_LIMIT > 8192
312 if (n < 16384) {
313 *bytes = n = (n + 1023) & ~1023;
314 return(n / 1024 + 55);
315 }
316#endif
317#if ZALLOC_ZONE_LIMIT > 16384
318 if (n < 32768) {
319 *bytes = n = (n + 2047) & ~2047;
320 return(n / 2048 + 63);
321 }
322#endif
323 panic("Unexpected byte count %d", n);
324 return(0);
325}
326
327/*
328 * malloc() (SLAB ALLOCATOR)
329 *
330 * Allocate memory via the slab allocator. If the request is too large,
331 * or if it page-aligned beyond a certain size, we fall back to the
332 * KMEM subsystem. A SLAB tracking descriptor must be specified, use
333 * &SlabMisc if you don't care.
334 *
335 * M_NOWAIT - return NULL instead of blocking.
336 * M_ZERO - zero the returned memory.
337 * M_USE_RESERVE - allocate out of the system reserve if necessary
338 */
339void *
340malloc(unsigned long size, struct malloc_type *type, int flags)
341{
342 SLZone *z;
343 SLChunk *chunk;
344 SLGlobalData *slgd;
345 struct globaldata *gd;
346 int zi;
347
348 gd = mycpu;
349 slgd = &gd->gd_slab;
350
351 /*
352 * XXX silly to have this in the critical path.
353 */
354 if (type->ks_limit == 0) {
355 crit_enter();
356 if (type->ks_limit == 0)
357 malloc_init(type);
358 crit_exit();
359 }
360 ++type->ks_calls;
361
362 /*
363 * Handle the case where the limit is reached. Panic if can't return
364 * NULL. XXX the original malloc code looped, but this tended to
365 * simply deadlock the computer.
366 */
367 while (type->ks_loosememuse >= type->ks_limit) {
368 int i;
369 long ttl;
370
371 for (i = ttl = 0; i < ncpus; ++i)
372 ttl += type->ks_memuse[i];
373 type->ks_loosememuse = ttl;
374 if (ttl >= type->ks_limit) {
375 if (flags & (M_NOWAIT|M_NULLOK))
376 return(NULL);
377 panic("%s: malloc limit exceeded", type->ks_shortdesc);
378 }
379 }
380
381 /*
382 * Handle the degenerate size == 0 case. Yes, this does happen.
383 * Return a special pointer. This is to maintain compatibility with
384 * the original malloc implementation. Certain devices, such as the
385 * adaptec driver, not only allocate 0 bytes, they check for NULL and
386 * also realloc() later on. Joy.
387 */
388 if (size == 0)
389 return(ZERO_LENGTH_PTR);
390
391 /*
392 * Handle hysteresis from prior frees here in malloc(). We cannot
393 * safely manipulate the kernel_map in free() due to free() possibly
394 * being called via an IPI message or from sensitive interrupt code.
395 */
396 while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_NOWAIT) == 0) {
397 crit_enter();
398 if (slgd->NFreeZones > ZONE_RELS_THRESH) { /* crit sect race */
399 z = slgd->FreeZones;
400 slgd->FreeZones = z->z_Next;
401 --slgd->NFreeZones;
402 kmem_slab_free(z, ZoneSize); /* may block */
403 }
404 crit_exit();
405 }
406 /*
407 * XXX handle oversized frees that were queued from free().
408 */
409 while (slgd->FreeOvZones && (flags & M_NOWAIT) == 0) {
410 crit_enter();
411 if ((z = slgd->FreeOvZones) != NULL) {
412 KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
413 slgd->FreeOvZones = z->z_Next;
414 kmem_slab_free(z, z->z_ChunkSize); /* may block */
415 }
416 crit_exit();
417 }
418
419 /*
420 * Handle large allocations directly. There should not be very many of
421 * these so performance is not a big issue.
422 *
423 * Guarentee page alignment for allocations in multiples of PAGE_SIZE
424 */
425 if (size >= ZoneLimit || (size & PAGE_MASK) == 0) {
426 struct kmemusage *kup;
427
428 size = round_page(size);
429 chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
430 if (chunk == NULL)
431 return(NULL);
432 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */
433 flags |= M_PASSIVE_ZERO;
434 kup = btokup(chunk);
435 kup->ku_pagecnt = size / PAGE_SIZE;
436 kup->ku_cpu = gd->gd_cpuid;
437 crit_enter();
438 goto done;
439 }
440
441 /*
442 * Attempt to allocate out of an existing zone. First try the free list,
443 * then allocate out of unallocated space. If we find a good zone move
444 * it to the head of the list so later allocations find it quickly
445 * (we might have thousands of zones in the list).
446 *
447 * Note: zoneindex() will panic of size is too large.
448 */
449 zi = zoneindex(&size);
450 KKASSERT(zi < NZONES);
451 crit_enter();
452 if ((z = slgd->ZoneAry[zi]) != NULL) {
453 KKASSERT(z->z_NFree > 0);
454
455 /*
456 * Remove us from the ZoneAry[] when we become empty
457 */
458 if (--z->z_NFree == 0) {
459 slgd->ZoneAry[zi] = z->z_Next;
460 z->z_Next = NULL;
461 }
462
463 /*
464 * Locate a chunk in a free page. This attempts to localize
465 * reallocations into earlier pages without us having to sort
466 * the chunk list. A chunk may still overlap a page boundary.
467 */
468 while (z->z_FirstFreePg < ZonePageCount) {
469 if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) {
470#ifdef DIAGNOSTIC
471 /*
472 * Diagnostic: c_Next is not total garbage.
473 */
474 KKASSERT(chunk->c_Next == NULL ||
475 ((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) ==
476 ((intptr_t)chunk & IN_SAME_PAGE_MASK));
477#endif
478#ifdef INVARIANTS
479 if ((uintptr_t)chunk < VM_MIN_KERNEL_ADDRESS)
480 panic("chunk %p FFPG %d/%d", chunk, z->z_FirstFreePg, ZonePageCount);
481 if (chunk->c_Next && (uintptr_t)chunk->c_Next < VM_MIN_KERNEL_ADDRESS)
482 panic("chunkNEXT %p %p FFPG %d/%d", chunk, chunk->c_Next, z->z_FirstFreePg, ZonePageCount);
483#endif
484 z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next;
485 goto done;
486 }
487 ++z->z_FirstFreePg;
488 }
489
490 /*
491 * No chunks are available but NFree said we had some memory, so
492 * it must be available in the never-before-used-memory area
493 * governed by UIndex. The consequences are very serious if our zone
494 * got corrupted so we use an explicit panic rather then a KASSERT.
495 */
496 if (z->z_UIndex + 1 != z->z_NMax)
497 z->z_UIndex = z->z_UIndex + 1;
498 else
499 z->z_UIndex = 0;
500 if (z->z_UIndex == z->z_UEndIndex)
501 panic("slaballoc: corrupted zone");
502 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
503 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
504 flags &= ~M_ZERO;
505 flags |= M_PASSIVE_ZERO;
506 }
507 goto done;
508 }
509
510 /*
511 * If all zones are exhausted we need to allocate a new zone for this
512 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see
513 * UAlloc use above in regards to M_ZERO. Note that when we are reusing
514 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
515 * we do not pre-zero it because we do not want to mess up the L1 cache.
516 *
517 * At least one subsystem, the tty code (see CROUND) expects power-of-2
518 * allocations to be power-of-2 aligned. We maintain compatibility by
519 * adjusting the base offset below.
520 */
521 {
522 int off;
523
524 if ((z = slgd->FreeZones) != NULL) {
525 slgd->FreeZones = z->z_Next;
526 --slgd->NFreeZones;
527 bzero(z, sizeof(SLZone));
528 z->z_Flags |= SLZF_UNOTZEROD;
529 } else {
530 z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
531 if (z == NULL)
532 goto fail;
533 }
534
535 /*
536 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
537 * Otherwise just 8-byte align the data.
538 */
539 if ((size | (size - 1)) + 1 == (size << 1))
540 off = (sizeof(SLZone) + size - 1) & ~(size - 1);
541 else
542 off = (sizeof(SLZone) + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
543 z->z_Magic = ZALLOC_SLAB_MAGIC;
544 z->z_ZoneIndex = zi;
545 z->z_NMax = (ZoneSize - off) / size;
546 z->z_NFree = z->z_NMax - 1;
547 z->z_BasePtr = (char *)z + off;
548 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
549 z->z_ChunkSize = size;
550 z->z_FirstFreePg = ZonePageCount;
551 z->z_Cpu = gd->gd_cpuid;
552 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
553 z->z_Next = slgd->ZoneAry[zi];
554 slgd->ZoneAry[zi] = z;
555 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
556 flags &= ~M_ZERO; /* already zero'd */
557 flags |= M_PASSIVE_ZERO;
558 }
559
560 /*
561 * Slide the base index for initial allocations out of the next
562 * zone we create so we do not over-weight the lower part of the
563 * cpu memory caches.
564 */
565 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
566 & (ZALLOC_MAX_ZONE_SIZE - 1);
567 }
568done:
569 ++type->ks_inuse[gd->gd_cpuid];
570 type->ks_memuse[gd->gd_cpuid] += size;
571 type->ks_loosememuse += size;
572 crit_exit();
573 if (flags & M_ZERO)
574 bzero(chunk, size);
575#ifdef INVARIANTS
576 else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0)
577 chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
578#endif
579 return(chunk);
580fail:
581 crit_exit();
582 return(NULL);
583}
584
585void *
586realloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
587{
588 SLZone *z;
589 void *nptr;
590 unsigned long osize;
591
592 if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
593 return(malloc(size, type, flags));
594 if (size == 0) {
595 free(ptr, type);
596 return(NULL);
597 }
598
599 /*
600 * Handle oversized allocations. XXX we really should require that a
601 * size be passed to free() instead of this nonsense.
602 */
603 {
604 struct kmemusage *kup;
605
606 kup = btokup(ptr);
607 if (kup->ku_pagecnt) {
608 osize = kup->ku_pagecnt << PAGE_SHIFT;
609 if (osize == round_page(size))
610 return(ptr);
611 if ((nptr = malloc(size, type, flags)) == NULL)
612 return(NULL);
613 bcopy(ptr, nptr, min(size, osize));
614 free(ptr, type);
615 return(nptr);
616 }
617 }
618
619 /*
620 * Get the original allocation's zone. If the new request winds up
621 * using the same chunk size we do not have to do anything.
622 */
623 z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
624 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
625
626 zoneindex(&size);
627 if (z->z_ChunkSize == size)
628 return(ptr);
629
630 /*
631 * Allocate memory for the new request size. Note that zoneindex has
632 * already adjusted the request size to the appropriate chunk size, which
633 * should optimize our bcopy(). Then copy and return the new pointer.
634 */
635 if ((nptr = malloc(size, type, flags)) == NULL)
636 return(NULL);
637 bcopy(ptr, nptr, min(size, z->z_ChunkSize));
638 free(ptr, type);
639 return(nptr);
640}
641
642#ifdef SMP
643/*
644 * free() (SLAB ALLOCATOR)
645 *
646 * Free the specified chunk of memory.
647 */
648static
649void
650free_remote(void *ptr)
651{
652 free(ptr, *(struct malloc_type **)ptr);
653}
654
655#endif
656
657void
658free(void *ptr, struct malloc_type *type)
659{
660 SLZone *z;
661 SLChunk *chunk;
662 SLGlobalData *slgd;
663 struct globaldata *gd;
664 int pgno;
665
666 gd = mycpu;
667 slgd = &gd->gd_slab;
668
669 /*
670 * Handle special 0-byte allocations
671 */
672 if (ptr == ZERO_LENGTH_PTR)
673 return;
674
675 /*
676 * Handle oversized allocations. XXX we really should require that a
677 * size be passed to free() instead of this nonsense.
678 *
679 * This code is never called via an ipi.
680 */
681 {
682 struct kmemusage *kup;
683 unsigned long size;
684
685 kup = btokup(ptr);
686 if (kup->ku_pagecnt) {
687 size = kup->ku_pagecnt << PAGE_SHIFT;
688 kup->ku_pagecnt = 0;
689#ifdef INVARIANTS
690 KKASSERT(sizeof(weirdary) <= size);
691 bcopy(weirdary, ptr, sizeof(weirdary));
692#endif
693 /*
694 * note: we always adjust our cpu's slot, not the originating
695 * cpu (kup->ku_cpuid). The statistics are in aggregate.
696 */
697 crit_enter();
698 --type->ks_inuse[gd->gd_cpuid];
699 type->ks_memuse[gd->gd_cpuid] -= size;
700 if (mycpu->gd_intr_nesting_level) {
701 z = (SLZone *)ptr;
702 z->z_Magic = ZALLOC_OVSZ_MAGIC;
703 z->z_Next = slgd->FreeOvZones;
704 z->z_ChunkSize = size;
705 slgd->FreeOvZones = z;
706 crit_exit();
707 } else {
708 crit_exit();
709 kmem_slab_free(ptr, size); /* may block */
710 }
711 return;
712 }
713 }
714
715 /*
716 * Zone case. Figure out the zone based on the fact that it is
717 * ZoneSize aligned.
718 */
719 z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
720 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
721
722 /*
723 * If we do not own the zone then forward the request to the
724 * cpu that does. The freeing code does not need the byte count
725 * unless DIAGNOSTIC is set.
726 */
727 if (z->z_Cpu != gd->gd_cpuid) {
728 *(struct malloc_type **)ptr = type;
729#ifdef SMP
730 lwkt_send_ipiq(z->z_Cpu, free_remote, ptr);
731#else
732 panic("Corrupt SLZone");
733#endif
734 return;
735 }
736
737 if (type->ks_magic != M_MAGIC)
738 panic("free: malloc type lacks magic");
739
740 crit_enter();
741 pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT;
742 chunk = ptr;
743
744#ifdef INVARIANTS
745 /*
746 * Attempt to detect a double-free. To reduce overhead we only check
747 * if there appears to be link pointer at the base of the data.
748 */
749 if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) {
750 SLChunk *scan;
751 for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) {
752 if (scan == chunk)
753 panic("Double free at %p", chunk);
754 }
755 }
756#endif
757
758 /*
759 * Put weird data into the memory to detect modifications after freeing,
760 * illegal pointer use after freeing (we should fault on the odd address),
761 * and so forth. XXX needs more work, see the old malloc code.
762 */
763#ifdef INVARIANTS
764 if (z->z_ChunkSize < sizeof(weirdary))
765 bcopy(weirdary, chunk, z->z_ChunkSize);
766 else
767 bcopy(weirdary, chunk, sizeof(weirdary));
768#endif
769
770 /*
771 * Add this free non-zero'd chunk to a linked list for reuse, adjust
772 * z_FirstFreePg.
773 */
774#ifdef INVARIANTS
775 if ((uintptr_t)chunk < VM_MIN_KERNEL_ADDRESS)
776 panic("BADFREE %p\n", chunk);
777#endif
778 chunk->c_Next = z->z_PageAry[pgno];
779 z->z_PageAry[pgno] = chunk;
780#ifdef INVARIANTS
781 if (chunk->c_Next && (uintptr_t)chunk->c_Next < VM_MIN_KERNEL_ADDRESS)
782 panic("BADFREE2");
783#endif
784 if (z->z_FirstFreePg > pgno)
785 z->z_FirstFreePg = pgno;
786
787 /*
788 * Bump the number of free chunks. If it becomes non-zero the zone
789 * must be added back onto the appropriate list.
790 */
791 if (z->z_NFree++ == 0) {
792 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
793 slgd->ZoneAry[z->z_ZoneIndex] = z;
794 }
795
796 --type->ks_inuse[z->z_Cpu];
797 type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
798
799 /*
800 * If the zone becomes totally free, and there are other zones we
801 * can allocate from, move this zone to the FreeZones list. Since
802 * this code can be called from an IPI callback, do *NOT* try to mess
803 * with kernel_map here. Hysteresis will be performed at malloc() time.
804 */
805 if (z->z_NFree == z->z_NMax &&
806 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z)
807 ) {
808 SLZone **pz;
809
810 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
811 ;
812 *pz = z->z_Next;
813 z->z_Magic = -1;
814 z->z_Next = slgd->FreeZones;
815 slgd->FreeZones = z;
816 ++slgd->NFreeZones;
817 }
818 crit_exit();
819}
820
821/*
822 * kmem_slab_alloc()
823 *
824 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
825 * specified alignment. M_* flags are expected in the flags field.
826 *
827 * Alignment must be a multiple of PAGE_SIZE.
828 *
829 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
830 * but when we move zalloc() over to use this function as its backend
831 * we will have to switch to kreserve/krelease and call reserve(0)
832 * after the new space is made available.
833 */
834static void *
835kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
836{
837 vm_size_t i;
838 vm_offset_t addr;
839 vm_offset_t offset;
840 int count;
841 vm_map_t map = kernel_map;
842
843 size = round_page(size);
844 addr = vm_map_min(map);
845
846 /*
847 * Reserve properly aligned space from kernel_map
848 */
849 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
850 crit_enter();
851 vm_map_lock(map);
852 if (vm_map_findspace(map, vm_map_min(map), size, align, &addr)) {
853 vm_map_unlock(map);
854 if ((flags & (M_NOWAIT|M_NULLOK)) == 0)
855 panic("kmem_slab_alloc(): kernel_map ran out of space!");
856 crit_exit();
857 vm_map_entry_release(count);
858 return(NULL);
859 }
860 offset = addr - VM_MIN_KERNEL_ADDRESS;
861 vm_object_reference(kernel_object);
862 vm_map_insert(map, &count,
863 kernel_object, offset, addr, addr + size,
864 VM_PROT_ALL, VM_PROT_ALL, 0);
865
866 /*
867 * Allocate the pages. Do not mess with the PG_ZERO flag yet.
868 */
869 for (i = 0; i < size; i += PAGE_SIZE) {
870 vm_page_t m;
871 vm_pindex_t idx = OFF_TO_IDX(offset + i);
872 int zero = (flags & M_ZERO) ? VM_ALLOC_ZERO : 0;
873
874 if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
875 m = vm_page_alloc(kernel_object, idx, VM_ALLOC_INTERRUPT|zero);
876 else
877 m = vm_page_alloc(kernel_object, idx, VM_ALLOC_SYSTEM|zero);
878 if (m == NULL) {
879 if ((flags & M_NOWAIT) == 0) {
880 vm_map_unlock(map);
881 vm_wait();
882 vm_map_lock(map);
883 i -= PAGE_SIZE; /* retry */
884 continue;
885 }
886 while (i != 0) {
887 i -= PAGE_SIZE;
888 m = vm_page_lookup(kernel_object, OFF_TO_IDX(offset + i));
889 vm_page_free(m);
890 }
891 vm_map_delete(map, addr, addr + size, &count);
892 vm_map_unlock(map);
893 crit_exit();
894 vm_map_entry_release(count);
895 return(NULL);
896 }
897 }
898
899 /*
900 * Mark the map entry as non-pageable using a routine that allows us to
901 * populate the underlying pages.
902 */
903 vm_map_set_wired_quick(map, addr, size, &count);
904 crit_exit();
905
906 /*
907 * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
908 */
909 for (i = 0; i < size; i += PAGE_SIZE) {
910 vm_page_t m;
911
912 m = vm_page_lookup(kernel_object, OFF_TO_IDX(offset + i));
913 m->valid = VM_PAGE_BITS_ALL;
914 vm_page_wire(m);
915 vm_page_wakeup(m);
916 pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
917 if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
918 bzero((char *)addr + i, PAGE_SIZE);
919 vm_page_flag_clear(m, PG_ZERO);
920 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
921 }
922 vm_map_unlock(map);
923 vm_map_entry_release(count);
924 return((void *)addr);
925}
926
927static void
928kmem_slab_free(void *ptr, vm_size_t size)
929{
930 crit_enter();
931 vm_map_remove(kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
932 crit_exit();
933}
934