re(4): Use MSI if device supports it.
[dragonfly.git] / sys / dev / netif / re / if_re.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2004
3 * Joerg Sonnenberger <joerg@bec.de>. All rights reserved.
4 *
5 * Copyright (c) 1997, 1998-2003
6 * Bill Paul <wpaul@windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36 */
37
38/*
39 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul@windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46/*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
50 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7440, so the max MTU possible with this
110 * driver is 7422 bytes.
111 */
112
113#define _IP_VHL
114
115#include "opt_polling.h"
116
117#include <sys/param.h>
118#include <sys/bus.h>
119#include <sys/endian.h>
120#include <sys/kernel.h>
121#include <sys/in_cksum.h>
122#include <sys/interrupt.h>
123#include <sys/malloc.h>
124#include <sys/mbuf.h>
125#include <sys/rman.h>
126#include <sys/serialize.h>
127#include <sys/socket.h>
128#include <sys/sockio.h>
129#include <sys/sysctl.h>
130
131#include <net/bpf.h>
132#include <net/ethernet.h>
133#include <net/if.h>
134#include <net/ifq_var.h>
135#include <net/if_arp.h>
136#include <net/if_dl.h>
137#include <net/if_media.h>
138#include <net/if_types.h>
139#include <net/vlan/if_vlan_var.h>
140#include <net/vlan/if_vlan_ether.h>
141
142#include <netinet/ip.h>
143
144#include <dev/netif/mii_layer/mii.h>
145#include <dev/netif/mii_layer/miivar.h>
146
147#include <bus/pci/pcidevs.h>
148#include <bus/pci/pcireg.h>
149#include <bus/pci/pcivar.h>
150
151/* "device miibus" required. See GENERIC if you get errors here. */
152#include "miibus_if.h"
153
154#include <dev/netif/re/if_rereg.h>
155#include <dev/netif/re/if_revar.h>
156
157#define RE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
158
159/*
160 * Various supported device vendors/types and their names.
161 */
162static const struct re_type {
163 uint16_t re_vid;
164 uint16_t re_did;
165 const char *re_name;
166} re_devs[] = {
167 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T,
168 "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
169
170 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
171 "RealTek 8139C+ 10/100BaseTX" },
172
173 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E,
174 "RealTek 810x PCIe 10/100baseTX" },
175
176 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168,
177 "RealTek 8111/8168 PCIe Gigabit Ethernet" },
178
179 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169,
180 "RealTek 8110/8169 Gigabit Ethernet" },
181
182 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC,
183 "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
184
185 { PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT,
186 "Corega CG-LAPCIGT Gigabit Ethernet" },
187
188 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
189 "Linksys EG1032 Gigabit Ethernet" },
190
191 { PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902,
192 "US Robotics 997902 Gigabit Ethernet" },
193
194 { PCI_VENDOR_TTTECH, PCI_PRODUCT_TTTECH_MC322,
195 "TTTech MC322 Gigabit Ethernet" },
196
197 { 0, 0, NULL }
198};
199
200static const struct re_hwrev re_hwrevs[] = {
201 { RE_HWREV_8139CPLUS, RE_MACVER_UNKN, ETHERMTU,
202 RE_C_HWCSUM | RE_C_8139CP | RE_C_FASTE },
203
204 { RE_HWREV_8169, RE_MACVER_UNKN, ETHERMTU,
205 RE_C_HWCSUM | RE_C_8169 },
206
207 { RE_HWREV_8110S, RE_MACVER_03, RE_MTU_6K,
208 RE_C_HWCSUM | RE_C_8169 },
209
210 { RE_HWREV_8169S, RE_MACVER_03, RE_MTU_6K,
211 RE_C_HWCSUM | RE_C_8169 },
212
213 { RE_HWREV_8169SB, RE_MACVER_04, RE_MTU_6K,
214 RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
215
216 { RE_HWREV_8169SC1, RE_MACVER_05, RE_MTU_6K,
217 RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
218
219 { RE_HWREV_8169SC2, RE_MACVER_06, RE_MTU_6K,
220 RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
221
222 { RE_HWREV_8168B1, RE_MACVER_21, RE_MTU_6K,
223 RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT },
224
225 { RE_HWREV_8168B2, RE_MACVER_23, RE_MTU_6K,
226 RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
227
228 { RE_HWREV_8168B3, RE_MACVER_23, RE_MTU_6K,
229 RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
230
231 { RE_HWREV_8168C, RE_MACVER_29, RE_MTU_6K,
232 RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
233 RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
234
235 { RE_HWREV_8168CP, RE_MACVER_2B, RE_MTU_6K,
236 RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
237 RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
238
239 { RE_HWREV_8168D, RE_MACVER_2A, RE_MTU_9K,
240 RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
241 RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
242
243 { RE_HWREV_8168DP, RE_MACVER_2D, RE_MTU_9K,
244 RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
245 RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
246
247 { RE_HWREV_8168E, RE_MACVER_UNKN, RE_MTU_9K,
248 RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
249 RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
250
251 { RE_HWREV_8168F, RE_MACVER_UNKN, RE_MTU_9K,
252 RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
253 RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
254
255 { RE_HWREV_8100E, RE_MACVER_UNKN, ETHERMTU,
256 RE_C_HWCSUM | RE_C_FASTE },
257
258 { RE_HWREV_8101E1, RE_MACVER_16, ETHERMTU,
259 RE_C_HWCSUM | RE_C_FASTE },
260
261 { RE_HWREV_8101E2, RE_MACVER_16, ETHERMTU,
262 RE_C_HWCSUM | RE_C_FASTE },
263
264 { RE_HWREV_8102E, RE_MACVER_15, ETHERMTU,
265 RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
266 RE_C_FASTE },
267
268 { RE_HWREV_8102EL, RE_MACVER_15, ETHERMTU,
269 RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
270 RE_C_FASTE },
271
272 { RE_HWREV_8105E, RE_MACVER_UNKN, ETHERMTU,
273 RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
274 RE_C_STOP_RXTX | RE_C_FASTE },
275
276 { RE_HWREV_NULL, 0, 0, 0 }
277};
278
279static int re_probe(device_t);
280static int re_attach(device_t);
281static int re_detach(device_t);
282static int re_suspend(device_t);
283static int re_resume(device_t);
284static void re_shutdown(device_t);
285
286static int re_allocmem(device_t);
287static void re_freemem(device_t);
288static void re_freebufmem(struct re_softc *, int, int);
289static int re_encap(struct re_softc *, struct mbuf **, int *);
290static int re_newbuf_std(struct re_softc *, int, int);
291static int re_newbuf_jumbo(struct re_softc *, int, int);
292static void re_setup_rxdesc(struct re_softc *, int);
293static int re_rx_list_init(struct re_softc *);
294static int re_tx_list_init(struct re_softc *);
295static int re_rxeof(struct re_softc *);
296static int re_txeof(struct re_softc *);
297static int re_tx_collect(struct re_softc *);
298static void re_intr(void *);
299static void re_tick(void *);
300static void re_tick_serialized(void *);
301
302static void re_start(struct ifnet *);
303static int re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
304static void re_init(void *);
305static void re_stop(struct re_softc *);
306static void re_watchdog(struct ifnet *);
307static int re_ifmedia_upd(struct ifnet *);
308static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
309
310static void re_eeprom_putbyte(struct re_softc *, int);
311static void re_eeprom_getword(struct re_softc *, int, u_int16_t *);
312static void re_read_eeprom(struct re_softc *, caddr_t, int, int);
313static void re_get_eewidth(struct re_softc *);
314
315static int re_gmii_readreg(device_t, int, int);
316static int re_gmii_writereg(device_t, int, int, int);
317
318static int re_miibus_readreg(device_t, int, int);
319static int re_miibus_writereg(device_t, int, int, int);
320static void re_miibus_statchg(device_t);
321
322static void re_setmulti(struct re_softc *);
323static void re_reset(struct re_softc *, int);
324static void re_get_eaddr(struct re_softc *, uint8_t *);
325
326static void re_setup_hw_im(struct re_softc *);
327static void re_setup_sim_im(struct re_softc *);
328static void re_disable_hw_im(struct re_softc *);
329static void re_disable_sim_im(struct re_softc *);
330static void re_config_imtype(struct re_softc *, int);
331static void re_setup_intr(struct re_softc *, int, int);
332
333static int re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *);
334static int re_sysctl_rxtime(SYSCTL_HANDLER_ARGS);
335static int re_sysctl_txtime(SYSCTL_HANDLER_ARGS);
336static int re_sysctl_simtime(SYSCTL_HANDLER_ARGS);
337static int re_sysctl_imtype(SYSCTL_HANDLER_ARGS);
338
339static int re_jpool_alloc(struct re_softc *);
340static void re_jpool_free(struct re_softc *);
341static struct re_jbuf *re_jbuf_alloc(struct re_softc *);
342static void re_jbuf_free(void *);
343static void re_jbuf_ref(void *);
344
345#ifdef RE_DIAG
346static int re_diag(struct re_softc *);
347#endif
348
349#ifdef DEVICE_POLLING
350static void re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
351#endif
352
353static device_method_t re_methods[] = {
354 /* Device interface */
355 DEVMETHOD(device_probe, re_probe),
356 DEVMETHOD(device_attach, re_attach),
357 DEVMETHOD(device_detach, re_detach),
358 DEVMETHOD(device_suspend, re_suspend),
359 DEVMETHOD(device_resume, re_resume),
360 DEVMETHOD(device_shutdown, re_shutdown),
361
362 /* bus interface */
363 DEVMETHOD(bus_print_child, bus_generic_print_child),
364 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
365
366 /* MII interface */
367 DEVMETHOD(miibus_readreg, re_miibus_readreg),
368 DEVMETHOD(miibus_writereg, re_miibus_writereg),
369 DEVMETHOD(miibus_statchg, re_miibus_statchg),
370
371 { 0, 0 }
372};
373
374static driver_t re_driver = {
375 "re",
376 re_methods,
377 sizeof(struct re_softc)
378};
379
380static devclass_t re_devclass;
381
382DECLARE_DUMMY_MODULE(if_re);
383MODULE_DEPEND(if_re, miibus, 1, 1, 1);
384DRIVER_MODULE(if_re, pci, re_driver, re_devclass, NULL, NULL);
385DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, NULL, NULL);
386DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, NULL, NULL);
387
388static int re_rx_desc_count = RE_RX_DESC_CNT_DEF;
389static int re_tx_desc_count = RE_TX_DESC_CNT_DEF;
390static int re_msi_enable = 1;
391
392TUNABLE_INT("hw.re.rx_desc_count", &re_rx_desc_count);
393TUNABLE_INT("hw.re.tx_desc_count", &re_tx_desc_count);
394TUNABLE_INT("hw.re.msi.enable", &re_msi_enable);
395
396#define EE_SET(x) \
397 CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
398
399#define EE_CLR(x) \
400 CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
401
402static __inline void
403re_free_rxchain(struct re_softc *sc)
404{
405 if (sc->re_head != NULL) {
406 m_freem(sc->re_head);
407 sc->re_head = sc->re_tail = NULL;
408 }
409}
410
411/*
412 * Send a read command and address to the EEPROM, check for ACK.
413 */
414static void
415re_eeprom_putbyte(struct re_softc *sc, int addr)
416{
417 int d, i;
418
419 d = addr | (RE_9346_READ << sc->re_eewidth);
420
421 /*
422 * Feed in each bit and strobe the clock.
423 */
424 for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
425 if (d & i)
426 EE_SET(RE_EE_DATAIN);
427 else
428 EE_CLR(RE_EE_DATAIN);
429 DELAY(100);
430 EE_SET(RE_EE_CLK);
431 DELAY(150);
432 EE_CLR(RE_EE_CLK);
433 DELAY(100);
434 }
435}
436
437/*
438 * Read a word of data stored in the EEPROM at address 'addr.'
439 */
440static void
441re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
442{
443 int i;
444 uint16_t word = 0;
445
446 /*
447 * Send address of word we want to read.
448 */
449 re_eeprom_putbyte(sc, addr);
450
451 /*
452 * Start reading bits from EEPROM.
453 */
454 for (i = 0x8000; i != 0; i >>= 1) {
455 EE_SET(RE_EE_CLK);
456 DELAY(100);
457 if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
458 word |= i;
459 EE_CLR(RE_EE_CLK);
460 DELAY(100);
461 }
462
463 *dest = word;
464}
465
466/*
467 * Read a sequence of words from the EEPROM.
468 */
469static void
470re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
471{
472 int i;
473 uint16_t word = 0, *ptr;
474
475 CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
476 DELAY(100);
477
478 for (i = 0; i < cnt; i++) {
479 CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
480 re_eeprom_getword(sc, off + i, &word);
481 CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
482 ptr = (uint16_t *)(dest + (i * 2));
483 *ptr = word;
484 }
485
486 CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
487}
488
489static void
490re_get_eewidth(struct re_softc *sc)
491{
492 uint16_t re_did = 0;
493
494 sc->re_eewidth = 6;
495 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
496 if (re_did != 0x8129)
497 sc->re_eewidth = 8;
498}
499
500static int
501re_gmii_readreg(device_t dev, int phy, int reg)
502{
503 struct re_softc *sc = device_get_softc(dev);
504 u_int32_t rval;
505 int i;
506
507 if (phy != 1)
508 return(0);
509
510 /* Let the rgephy driver read the GMEDIASTAT register */
511
512 if (reg == RE_GMEDIASTAT)
513 return(CSR_READ_1(sc, RE_GMEDIASTAT));
514
515 CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
516 DELAY(1000);
517
518 for (i = 0; i < RE_TIMEOUT; i++) {
519 rval = CSR_READ_4(sc, RE_PHYAR);
520 if (rval & RE_PHYAR_BUSY)
521 break;
522 DELAY(100);
523 }
524
525 if (i == RE_TIMEOUT) {
526 device_printf(dev, "PHY read failed\n");
527 return(0);
528 }
529
530 return(rval & RE_PHYAR_PHYDATA);
531}
532
533static int
534re_gmii_writereg(device_t dev, int phy, int reg, int data)
535{
536 struct re_softc *sc = device_get_softc(dev);
537 uint32_t rval;
538 int i;
539
540 CSR_WRITE_4(sc, RE_PHYAR,
541 (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
542 DELAY(1000);
543
544 for (i = 0; i < RE_TIMEOUT; i++) {
545 rval = CSR_READ_4(sc, RE_PHYAR);
546 if ((rval & RE_PHYAR_BUSY) == 0)
547 break;
548 DELAY(100);
549 }
550
551 if (i == RE_TIMEOUT)
552 device_printf(dev, "PHY write failed\n");
553
554 return(0);
555}
556
557static int
558re_miibus_readreg(device_t dev, int phy, int reg)
559{
560 struct re_softc *sc = device_get_softc(dev);
561 uint16_t rval = 0;
562 uint16_t re8139_reg = 0;
563
564 if (!RE_IS_8139CP(sc)) {
565 rval = re_gmii_readreg(dev, phy, reg);
566 return(rval);
567 }
568
569 /* Pretend the internal PHY is only at address 0 */
570 if (phy)
571 return(0);
572
573 switch(reg) {
574 case MII_BMCR:
575 re8139_reg = RE_BMCR;
576 break;
577 case MII_BMSR:
578 re8139_reg = RE_BMSR;
579 break;
580 case MII_ANAR:
581 re8139_reg = RE_ANAR;
582 break;
583 case MII_ANER:
584 re8139_reg = RE_ANER;
585 break;
586 case MII_ANLPAR:
587 re8139_reg = RE_LPAR;
588 break;
589 case MII_PHYIDR1:
590 case MII_PHYIDR2:
591 return(0);
592 /*
593 * Allow the rlphy driver to read the media status
594 * register. If we have a link partner which does not
595 * support NWAY, this is the register which will tell
596 * us the results of parallel detection.
597 */
598 case RE_MEDIASTAT:
599 return(CSR_READ_1(sc, RE_MEDIASTAT));
600 default:
601 device_printf(dev, "bad phy register\n");
602 return(0);
603 }
604 rval = CSR_READ_2(sc, re8139_reg);
605 if (re8139_reg == RE_BMCR) {
606 /* 8139C+ has different bit layout. */
607 rval &= ~(BMCR_LOOP | BMCR_ISO);
608 }
609 return(rval);
610}
611
612static int
613re_miibus_writereg(device_t dev, int phy, int reg, int data)
614{
615 struct re_softc *sc= device_get_softc(dev);
616 u_int16_t re8139_reg = 0;
617
618 if (!RE_IS_8139CP(sc))
619 return(re_gmii_writereg(dev, phy, reg, data));
620
621 /* Pretend the internal PHY is only at address 0 */
622 if (phy)
623 return(0);
624
625 switch(reg) {
626 case MII_BMCR:
627 re8139_reg = RE_BMCR;
628 /* 8139C+ has different bit layout. */
629 data &= ~(BMCR_LOOP | BMCR_ISO);
630 break;
631 case MII_BMSR:
632 re8139_reg = RE_BMSR;
633 break;
634 case MII_ANAR:
635 re8139_reg = RE_ANAR;
636 break;
637 case MII_ANER:
638 re8139_reg = RE_ANER;
639 break;
640 case MII_ANLPAR:
641 re8139_reg = RE_LPAR;
642 break;
643 case MII_PHYIDR1:
644 case MII_PHYIDR2:
645 return(0);
646 default:
647 device_printf(dev, "bad phy register\n");
648 return(0);
649 }
650 CSR_WRITE_2(sc, re8139_reg, data);
651 return(0);
652}
653
654static void
655re_miibus_statchg(device_t dev)
656{
657}
658
659/*
660 * Program the 64-bit multicast hash filter.
661 */
662static void
663re_setmulti(struct re_softc *sc)
664{
665 struct ifnet *ifp = &sc->arpcom.ac_if;
666 int h = 0;
667 uint32_t hashes[2] = { 0, 0 };
668 struct ifmultiaddr *ifma;
669 uint32_t rxfilt;
670 int mcnt = 0;
671
672 rxfilt = CSR_READ_4(sc, RE_RXCFG);
673
674 /* Set the individual bit to receive frames for this host only. */
675 rxfilt |= RE_RXCFG_RX_INDIV;
676 /* Set capture broadcast bit to capture broadcast frames. */
677 rxfilt |= RE_RXCFG_RX_BROAD;
678
679 rxfilt &= ~(RE_RXCFG_RX_ALLPHYS | RE_RXCFG_RX_MULTI);
680 if ((ifp->if_flags & IFF_ALLMULTI) || (ifp->if_flags & IFF_PROMISC)) {
681 rxfilt |= RE_RXCFG_RX_MULTI;
682
683 /* If we want promiscuous mode, set the allframes bit. */
684 if (ifp->if_flags & IFF_PROMISC)
685 rxfilt |= RE_RXCFG_RX_ALLPHYS;
686
687 CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
688 CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
689 CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
690 return;
691 }
692
693 /* first, zot all the existing hash bits */
694 CSR_WRITE_4(sc, RE_MAR0, 0);
695 CSR_WRITE_4(sc, RE_MAR4, 0);
696
697 /* now program new ones */
698 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
699 if (ifma->ifma_addr->sa_family != AF_LINK)
700 continue;
701 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
702 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
703 if (h < 32)
704 hashes[0] |= (1 << h);
705 else
706 hashes[1] |= (1 << (h - 32));
707 mcnt++;
708 }
709
710 if (mcnt)
711 rxfilt |= RE_RXCFG_RX_MULTI;
712 else
713 rxfilt &= ~RE_RXCFG_RX_MULTI;
714
715 CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
716
717 /*
718 * For some unfathomable reason, RealTek decided to reverse
719 * the order of the multicast hash registers in the PCI Express
720 * parts. This means we have to write the hash pattern in reverse
721 * order for those devices.
722 */
723 if (sc->re_caps & RE_C_PCIE) {
724 CSR_WRITE_4(sc, RE_MAR0, bswap32(hashes[1]));
725 CSR_WRITE_4(sc, RE_MAR4, bswap32(hashes[0]));
726 } else {
727 CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
728 CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
729 }
730}
731
732static void
733re_reset(struct re_softc *sc, int running)
734{
735 int i;
736
737 if ((sc->re_caps & RE_C_STOP_RXTX) && running) {
738 CSR_WRITE_1(sc, RE_COMMAND,
739 RE_CMD_STOPREQ | RE_CMD_TX_ENB | RE_CMD_RX_ENB);
740 DELAY(100);
741 }
742
743 CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
744
745 for (i = 0; i < RE_TIMEOUT; i++) {
746 DELAY(10);
747 if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
748 break;
749 }
750 if (i == RE_TIMEOUT)
751 if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
752}
753
754#ifdef RE_DIAG
755/*
756 * The following routine is designed to test for a defect on some
757 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
758 * lines connected to the bus, however for a 32-bit only card, they
759 * should be pulled high. The result of this defect is that the
760 * NIC will not work right if you plug it into a 64-bit slot: DMA
761 * operations will be done with 64-bit transfers, which will fail
762 * because the 64-bit data lines aren't connected.
763 *
764 * There's no way to work around this (short of talking a soldering
765 * iron to the board), however we can detect it. The method we use
766 * here is to put the NIC into digital loopback mode, set the receiver
767 * to promiscuous mode, and then try to send a frame. We then compare
768 * the frame data we sent to what was received. If the data matches,
769 * then the NIC is working correctly, otherwise we know the user has
770 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
771 * slot. In the latter case, there's no way the NIC can work correctly,
772 * so we print out a message on the console and abort the device attach.
773 */
774
775static int
776re_diag(struct re_softc *sc)
777{
778 struct ifnet *ifp = &sc->arpcom.ac_if;
779 struct mbuf *m0;
780 struct ether_header *eh;
781 struct re_desc *cur_rx;
782 uint16_t status;
783 uint32_t rxstat;
784 int total_len, i, error = 0, phyaddr;
785 uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
786 uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
787
788 /* Allocate a single mbuf */
789
790 MGETHDR(m0, MB_DONTWAIT, MT_DATA);
791 if (m0 == NULL)
792 return(ENOBUFS);
793
794 /*
795 * Initialize the NIC in test mode. This sets the chip up
796 * so that it can send and receive frames, but performs the
797 * following special functions:
798 * - Puts receiver in promiscuous mode
799 * - Enables digital loopback mode
800 * - Leaves interrupts turned off
801 */
802
803 ifp->if_flags |= IFF_PROMISC;
804 sc->re_flags |= RE_F_TESTMODE;
805 re_init(sc);
806 sc->re_flags |= RE_F_LINKED;
807 if (!RE_IS_8139CP(sc))
808 phyaddr = 1;
809 else
810 phyaddr = 0;
811
812 re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
813 for (i = 0; i < RE_TIMEOUT; i++) {
814 status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
815 if (!(status & BMCR_RESET))
816 break;
817 }
818
819 re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
820 CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
821
822 DELAY(100000);
823
824 /* Put some data in the mbuf */
825
826 eh = mtod(m0, struct ether_header *);
827 bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
828 bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
829 eh->ether_type = htons(ETHERTYPE_IP);
830 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
831
832 /*
833 * Queue the packet, start transmission.
834 * Note: ifq_handoff() ultimately calls re_start() for us.
835 */
836
837 CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
838 error = ifq_handoff(ifp, m0, NULL);
839 if (error) {
840 m0 = NULL;
841 goto done;
842 }
843 m0 = NULL;
844
845 /* Wait for it to propagate through the chip */
846
847 DELAY(100000);
848 for (i = 0; i < RE_TIMEOUT; i++) {
849 status = CSR_READ_2(sc, RE_ISR);
850 CSR_WRITE_2(sc, RE_ISR, status);
851 if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
852 (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
853 break;
854 DELAY(10);
855 }
856
857 if (i == RE_TIMEOUT) {
858 if_printf(ifp, "diagnostic failed to receive packet "
859 "in loopback mode\n");
860 error = EIO;
861 goto done;
862 }
863
864 /*
865 * The packet should have been dumped into the first
866 * entry in the RX DMA ring. Grab it from there.
867 */
868
869 bus_dmamap_sync(sc->re_ldata.re_rx_mtag, sc->re_ldata.re_rx_dmamap[0],
870 BUS_DMASYNC_POSTREAD);
871 bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
872 sc->re_ldata.re_rx_dmamap[0]);
873
874 m0 = sc->re_ldata.re_rx_mbuf[0];
875 sc->re_ldata.re_rx_mbuf[0] = NULL;
876 eh = mtod(m0, struct ether_header *);
877
878 cur_rx = &sc->re_ldata.re_rx_list[0];
879 total_len = RE_RXBYTES(cur_rx);
880 rxstat = le32toh(cur_rx->re_cmdstat);
881
882 if (total_len != ETHER_MIN_LEN) {
883 if_printf(ifp, "diagnostic failed, received short packet\n");
884 error = EIO;
885 goto done;
886 }
887
888 /* Test that the received packet data matches what we sent. */
889
890 if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
891 bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
892 be16toh(eh->ether_type) != ETHERTYPE_IP) {
893 if_printf(ifp, "WARNING, DMA FAILURE!\n");
894 if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
895 dst, ":", src, ":", ETHERTYPE_IP);
896 if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
897 eh->ether_dhost, ":", eh->ether_shost, ":",
898 ntohs(eh->ether_type));
899 if_printf(ifp, "You may have a defective 32-bit NIC plugged "
900 "into a 64-bit PCI slot.\n");
901 if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
902 "for proper operation.\n");
903 if_printf(ifp, "Read the re(4) man page for more details.\n");
904 error = EIO;
905 }
906
907done:
908 /* Turn interface off, release resources */
909
910 sc->re_flags &= ~(RE_F_LINKED | RE_F_TESTMODE);
911 ifp->if_flags &= ~IFF_PROMISC;
912 re_stop(sc);
913 if (m0 != NULL)
914 m_freem(m0);
915
916 return (error);
917}
918#endif /* RE_DIAG */
919
920/*
921 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
922 * IDs against our list and return a device name if we find a match.
923 */
924static int
925re_probe(device_t dev)
926{
927 const struct re_type *t;
928 const struct re_hwrev *hw_rev;
929 struct re_softc *sc;
930 int rid;
931 uint32_t hwrev, macmode, txcfg;
932 uint16_t vendor, product;
933
934 vendor = pci_get_vendor(dev);
935 product = pci_get_device(dev);
936
937 /*
938 * Only attach to rev.3 of the Linksys EG1032 adapter.
939 * Rev.2 is supported by sk(4).
940 */
941 if (vendor == PCI_VENDOR_LINKSYS &&
942 product == PCI_PRODUCT_LINKSYS_EG1032 &&
943 pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
944 return ENXIO;
945
946 if (vendor == PCI_VENDOR_REALTEK &&
947 product == PCI_PRODUCT_REALTEK_RT8139 &&
948 pci_get_revid(dev) != PCI_REVID_REALTEK_RT8139CP) {
949 /* Poor 8139 */
950 return ENXIO;
951 }
952
953 for (t = re_devs; t->re_name != NULL; t++) {
954 if (product == t->re_did && vendor == t->re_vid)
955 break;
956 }
957
958 /*
959 * Check if we found a RealTek device.
960 */
961 if (t->re_name == NULL)
962 return ENXIO;
963
964 /*
965 * Temporarily map the I/O space so we can read the chip ID register.
966 */
967 sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
968 rid = RE_PCI_LOIO;
969 sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
970 RF_ACTIVE);
971 if (sc->re_res == NULL) {
972 device_printf(dev, "couldn't map ports/memory\n");
973 kfree(sc, M_TEMP);
974 return ENXIO;
975 }
976
977 sc->re_btag = rman_get_bustag(sc->re_res);
978 sc->re_bhandle = rman_get_bushandle(sc->re_res);
979
980 txcfg = CSR_READ_4(sc, RE_TXCFG);
981 hwrev = txcfg & RE_TXCFG_HWREV;
982 macmode = txcfg & RE_TXCFG_MACMODE;
983 bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
984 kfree(sc, M_TEMP);
985
986 /*
987 * and continue matching for the specific chip...
988 */
989 for (hw_rev = re_hwrevs; hw_rev->re_hwrev != RE_HWREV_NULL; hw_rev++) {
990 if (hw_rev->re_hwrev == hwrev) {
991 sc = device_get_softc(dev);
992
993 sc->re_hwrev = hw_rev->re_hwrev;
994 sc->re_macver = hw_rev->re_macver;
995 sc->re_caps = hw_rev->re_caps;
996 sc->re_maxmtu = hw_rev->re_maxmtu;
997
998 /*
999 * Apply chip property fixup
1000 */
1001 switch (sc->re_hwrev) {
1002 case RE_HWREV_8101E1:
1003 case RE_HWREV_8101E2:
1004 if (macmode == 0)
1005 sc->re_macver = RE_MACVER_11;
1006 else if (macmode == 0x200000)
1007 sc->re_macver = RE_MACVER_12;
1008 break;
1009 case RE_HWREV_8102E:
1010 case RE_HWREV_8102EL:
1011 if (macmode == 0)
1012 sc->re_macver = RE_MACVER_13;
1013 else if (macmode == 0x100000)
1014 sc->re_macver = RE_MACVER_14;
1015 break;
1016 case RE_HWREV_8168B2:
1017 case RE_HWREV_8168B3:
1018 if (macmode == 0)
1019 sc->re_macver = RE_MACVER_22;
1020 break;
1021 case RE_HWREV_8168C:
1022 if (macmode == 0)
1023 sc->re_macver = RE_MACVER_24;
1024 else if (macmode == 0x200000)
1025 sc->re_macver = RE_MACVER_25;
1026 else if (macmode == 0x300000)
1027 sc->re_macver = RE_MACVER_27;
1028 break;
1029 case RE_HWREV_8168CP:
1030 if (macmode == 0)
1031 sc->re_macver = RE_MACVER_26;
1032 else if (macmode == 0x100000)
1033 sc->re_macver = RE_MACVER_28;
1034 break;
1035 case RE_HWREV_8168DP:
1036 if (macmode == 0)
1037 sc->re_macver = RE_MACVER_2B;
1038 else if (macmode == 0x200000)
1039 sc->re_macver = RE_MACVER_2C;
1040 break;
1041 case RE_HWREV_8168E:
1042 if (macmode == 0x100000)
1043 sc->re_macver = RE_MACVER_2E;
1044 else if (macmode == 0x200000)
1045 sc->re_macver = RE_MACVER_2F;
1046 break;
1047 case RE_HWREV_8168F:
1048 if (macmode == 0x000000)
1049 sc->re_macver = RE_MACVER_30;
1050 else if (macmode == 0x100000)
1051 sc->re_macver = RE_MACVER_31;
1052 break;
1053 }
1054 if (pci_is_pcie(dev))
1055 sc->re_caps |= RE_C_PCIE;
1056
1057 device_set_desc(dev, t->re_name);
1058 return 0;
1059 }
1060 }
1061
1062 if (bootverbose) {
1063 device_printf(dev, "unknown hwrev 0x%08x, macmode 0x%08x\n",
1064 hwrev, macmode);
1065 }
1066 return ENXIO;
1067}
1068
1069static int
1070re_allocmem(device_t dev)
1071{
1072 struct re_softc *sc = device_get_softc(dev);
1073 bus_dmamem_t dmem;
1074 int error, i;
1075
1076 /*
1077 * Allocate list data
1078 */
1079 sc->re_ldata.re_tx_mbuf =
1080 kmalloc(sc->re_tx_desc_cnt * sizeof(struct mbuf *),
1081 M_DEVBUF, M_ZERO | M_WAITOK);
1082
1083 sc->re_ldata.re_rx_mbuf =
1084 kmalloc(sc->re_rx_desc_cnt * sizeof(struct mbuf *),
1085 M_DEVBUF, M_ZERO | M_WAITOK);
1086
1087 sc->re_ldata.re_rx_paddr =
1088 kmalloc(sc->re_rx_desc_cnt * sizeof(bus_addr_t),
1089 M_DEVBUF, M_ZERO | M_WAITOK);
1090
1091 sc->re_ldata.re_tx_dmamap =
1092 kmalloc(sc->re_tx_desc_cnt * sizeof(bus_dmamap_t),
1093 M_DEVBUF, M_ZERO | M_WAITOK);
1094
1095 sc->re_ldata.re_rx_dmamap =
1096 kmalloc(sc->re_rx_desc_cnt * sizeof(bus_dmamap_t),
1097 M_DEVBUF, M_ZERO | M_WAITOK);
1098
1099 /*
1100 * Allocate the parent bus DMA tag appropriate for PCI.
1101 */
1102 error = bus_dma_tag_create(NULL, /* parent */
1103 1, 0, /* alignment, boundary */
1104 BUS_SPACE_MAXADDR, /* lowaddr */
1105 BUS_SPACE_MAXADDR, /* highaddr */
1106 NULL, NULL, /* filter, filterarg */
1107 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1108 0, /* nsegments */
1109 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1110 0, /* flags */
1111 &sc->re_parent_tag);
1112 if (error) {
1113 device_printf(dev, "could not allocate parent dma tag\n");
1114 return error;
1115 }
1116
1117 /* Allocate TX descriptor list. */
1118 error = bus_dmamem_coherent(sc->re_parent_tag,
1119 RE_RING_ALIGN, 0,
1120 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1121 RE_TX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1122 &dmem);
1123 if (error) {
1124 device_printf(dev, "could not allocate TX ring\n");
1125 return error;
1126 }
1127 sc->re_ldata.re_tx_list_tag = dmem.dmem_tag;
1128 sc->re_ldata.re_tx_list_map = dmem.dmem_map;
1129 sc->re_ldata.re_tx_list = dmem.dmem_addr;
1130 sc->re_ldata.re_tx_list_addr = dmem.dmem_busaddr;
1131
1132 /* Allocate RX descriptor list. */
1133 error = bus_dmamem_coherent(sc->re_parent_tag,
1134 RE_RING_ALIGN, 0,
1135 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1136 RE_RX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1137 &dmem);
1138 if (error) {
1139 device_printf(dev, "could not allocate RX ring\n");
1140 return error;
1141 }
1142 sc->re_ldata.re_rx_list_tag = dmem.dmem_tag;
1143 sc->re_ldata.re_rx_list_map = dmem.dmem_map;
1144 sc->re_ldata.re_rx_list = dmem.dmem_addr;
1145 sc->re_ldata.re_rx_list_addr = dmem.dmem_busaddr;
1146
1147 /* Allocate maps for TX mbufs. */
1148 error = bus_dma_tag_create(sc->re_parent_tag,
1149 1, 0,
1150 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1151 NULL, NULL,
1152 RE_FRAMELEN_MAX, RE_MAXSEGS, MCLBYTES,
1153 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1154 &sc->re_ldata.re_tx_mtag);
1155 if (error) {
1156 device_printf(dev, "could not allocate TX buf dma tag\n");
1157 return(error);
1158 }
1159
1160 /* Create DMA maps for TX buffers */
1161 for (i = 0; i < sc->re_tx_desc_cnt; i++) {
1162 error = bus_dmamap_create(sc->re_ldata.re_tx_mtag,
1163 BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1164 &sc->re_ldata.re_tx_dmamap[i]);
1165 if (error) {
1166 device_printf(dev, "can't create DMA map for TX buf\n");
1167 re_freebufmem(sc, i, 0);
1168 return(error);
1169 }
1170 }
1171
1172 /* Allocate maps for RX mbufs. */
1173 error = bus_dma_tag_create(sc->re_parent_tag,
1174 RE_RXBUF_ALIGN, 0,
1175 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1176 NULL, NULL,
1177 MCLBYTES, 1, MCLBYTES,
1178 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,
1179 &sc->re_ldata.re_rx_mtag);
1180 if (error) {
1181 device_printf(dev, "could not allocate RX buf dma tag\n");
1182 return(error);
1183 }
1184
1185 /* Create spare DMA map for RX */
1186 error = bus_dmamap_create(sc->re_ldata.re_rx_mtag, BUS_DMA_WAITOK,
1187 &sc->re_ldata.re_rx_spare);
1188 if (error) {
1189 device_printf(dev, "can't create spare DMA map for RX\n");
1190 bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1191 sc->re_ldata.re_rx_mtag = NULL;
1192 return error;
1193 }
1194
1195 /* Create DMA maps for RX buffers */
1196 for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1197 error = bus_dmamap_create(sc->re_ldata.re_rx_mtag,
1198 BUS_DMA_WAITOK, &sc->re_ldata.re_rx_dmamap[i]);
1199 if (error) {
1200 device_printf(dev, "can't create DMA map for RX buf\n");
1201 re_freebufmem(sc, sc->re_tx_desc_cnt, i);
1202 return(error);
1203 }
1204 }
1205
1206 /* Create jumbo buffer pool for RX if required */
1207 if (sc->re_caps & RE_C_CONTIGRX) {
1208 error = re_jpool_alloc(sc);
1209 if (error) {
1210 re_jpool_free(sc);
1211 /* Disable jumbo frame support */
1212 sc->re_maxmtu = ETHERMTU;
1213 }
1214 }
1215 return(0);
1216}
1217
1218static void
1219re_freebufmem(struct re_softc *sc, int tx_cnt, int rx_cnt)
1220{
1221 int i;
1222
1223 /* Destroy all the RX and TX buffer maps */
1224 if (sc->re_ldata.re_tx_mtag) {
1225 for (i = 0; i < tx_cnt; i++) {
1226 bus_dmamap_destroy(sc->re_ldata.re_tx_mtag,
1227 sc->re_ldata.re_tx_dmamap[i]);
1228 }
1229 bus_dma_tag_destroy(sc->re_ldata.re_tx_mtag);
1230 sc->re_ldata.re_tx_mtag = NULL;
1231 }
1232
1233 if (sc->re_ldata.re_rx_mtag) {
1234 for (i = 0; i < rx_cnt; i++) {
1235 bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1236 sc->re_ldata.re_rx_dmamap[i]);
1237 }
1238 bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1239 sc->re_ldata.re_rx_spare);
1240 bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1241 sc->re_ldata.re_rx_mtag = NULL;
1242 }
1243}
1244
1245static void
1246re_freemem(device_t dev)
1247{
1248 struct re_softc *sc = device_get_softc(dev);
1249
1250 /* Unload and free the RX DMA ring memory and map */
1251 if (sc->re_ldata.re_rx_list_tag) {
1252 bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1253 sc->re_ldata.re_rx_list_map);
1254 bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1255 sc->re_ldata.re_rx_list,
1256 sc->re_ldata.re_rx_list_map);
1257 bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1258 }
1259
1260 /* Unload and free the TX DMA ring memory and map */
1261 if (sc->re_ldata.re_tx_list_tag) {
1262 bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1263 sc->re_ldata.re_tx_list_map);
1264 bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1265 sc->re_ldata.re_tx_list,
1266 sc->re_ldata.re_tx_list_map);
1267 bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1268 }
1269
1270 /* Free RX/TX buf DMA stuffs */
1271 re_freebufmem(sc, sc->re_tx_desc_cnt, sc->re_rx_desc_cnt);
1272
1273 /* Unload and free the stats buffer and map */
1274 if (sc->re_ldata.re_stag) {
1275 bus_dmamap_unload(sc->re_ldata.re_stag, sc->re_ldata.re_smap);
1276 bus_dmamem_free(sc->re_ldata.re_stag,
1277 sc->re_ldata.re_stats,
1278 sc->re_ldata.re_smap);
1279 bus_dma_tag_destroy(sc->re_ldata.re_stag);
1280 }
1281
1282 if (sc->re_caps & RE_C_CONTIGRX)
1283 re_jpool_free(sc);
1284
1285 if (sc->re_parent_tag)
1286 bus_dma_tag_destroy(sc->re_parent_tag);
1287
1288 if (sc->re_ldata.re_tx_mbuf != NULL)
1289 kfree(sc->re_ldata.re_tx_mbuf, M_DEVBUF);
1290 if (sc->re_ldata.re_rx_mbuf != NULL)
1291 kfree(sc->re_ldata.re_rx_mbuf, M_DEVBUF);
1292 if (sc->re_ldata.re_rx_paddr != NULL)
1293 kfree(sc->re_ldata.re_rx_paddr, M_DEVBUF);
1294 if (sc->re_ldata.re_tx_dmamap != NULL)
1295 kfree(sc->re_ldata.re_tx_dmamap, M_DEVBUF);
1296 if (sc->re_ldata.re_rx_dmamap != NULL)
1297 kfree(sc->re_ldata.re_rx_dmamap, M_DEVBUF);
1298}
1299
1300/*
1301 * Attach the interface. Allocate softc structures, do ifmedia
1302 * setup and ethernet/BPF attach.
1303 */
1304static int
1305re_attach(device_t dev)
1306{
1307 struct re_softc *sc = device_get_softc(dev);
1308 struct ifnet *ifp;
1309 uint8_t eaddr[ETHER_ADDR_LEN];
1310 int error = 0, rid, qlen;
1311 u_int irq_flags;
1312
1313 callout_init(&sc->re_timer);
1314 sc->re_dev = dev;
1315
1316 if (RE_IS_8139CP(sc)) {
1317 sc->re_rx_desc_cnt = RE_RX_DESC_CNT_8139CP;
1318 sc->re_tx_desc_cnt = RE_TX_DESC_CNT_8139CP;
1319 } else {
1320 sc->re_rx_desc_cnt = re_rx_desc_count;
1321 if (sc->re_rx_desc_cnt > RE_RX_DESC_CNT_MAX)
1322 sc->re_rx_desc_cnt = RE_RX_DESC_CNT_MAX;
1323
1324 sc->re_tx_desc_cnt = re_tx_desc_count;
1325 if (sc->re_tx_desc_cnt > RE_TX_DESC_CNT_MAX)
1326 sc->re_tx_desc_cnt = RE_TX_DESC_CNT_MAX;
1327 }
1328
1329 qlen = RE_IFQ_MAXLEN;
1330 if (sc->re_tx_desc_cnt > qlen)
1331 qlen = sc->re_tx_desc_cnt;
1332
1333 sc->re_rxbuf_size = MCLBYTES;
1334 sc->re_newbuf = re_newbuf_std;
1335
1336 sc->re_tx_time = 5; /* 125us */
1337 sc->re_rx_time = 2; /* 50us */
1338 if (sc->re_caps & RE_C_PCIE)
1339 sc->re_sim_time = 75; /* 75us */
1340 else
1341 sc->re_sim_time = 125; /* 125us */
1342 if (!RE_IS_8139CP(sc)) {
1343 /* simulated interrupt moderation */
1344 sc->re_imtype = RE_IMTYPE_SIM;
1345 } else {
1346 sc->re_imtype = RE_IMTYPE_NONE;
1347 }
1348 re_config_imtype(sc, sc->re_imtype);
1349
1350 sysctl_ctx_init(&sc->re_sysctl_ctx);
1351 sc->re_sysctl_tree = SYSCTL_ADD_NODE(&sc->re_sysctl_ctx,
1352 SYSCTL_STATIC_CHILDREN(_hw),
1353 OID_AUTO,
1354 device_get_nameunit(dev),
1355 CTLFLAG_RD, 0, "");
1356 if (sc->re_sysctl_tree == NULL) {
1357 device_printf(dev, "can't add sysctl node\n");
1358 error = ENXIO;
1359 goto fail;
1360 }
1361 SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1362 SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1363 "rx_desc_count", CTLFLAG_RD, &sc->re_rx_desc_cnt,
1364 0, "RX desc count");
1365 SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1366 SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1367 "tx_desc_count", CTLFLAG_RD, &sc->re_tx_desc_cnt,
1368 0, "TX desc count");
1369 SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1370 SYSCTL_CHILDREN(sc->re_sysctl_tree),
1371 OID_AUTO, "sim_time",
1372 CTLTYPE_INT | CTLFLAG_RW,
1373 sc, 0, re_sysctl_simtime, "I",
1374 "Simulated interrupt moderation time (usec).");
1375 SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1376 SYSCTL_CHILDREN(sc->re_sysctl_tree),
1377 OID_AUTO, "imtype",
1378 CTLTYPE_INT | CTLFLAG_RW,
1379 sc, 0, re_sysctl_imtype, "I",
1380 "Interrupt moderation type -- "
1381 "0:disable, 1:simulated, "
1382 "2:hardware(if supported)");
1383 if (sc->re_caps & RE_C_HWIM) {
1384 SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1385 SYSCTL_CHILDREN(sc->re_sysctl_tree),
1386 OID_AUTO, "hw_rxtime",
1387 CTLTYPE_INT | CTLFLAG_RW,
1388 sc, 0, re_sysctl_rxtime, "I",
1389 "Hardware interrupt moderation time "
1390 "(unit: 25usec).");
1391 SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1392 SYSCTL_CHILDREN(sc->re_sysctl_tree),
1393 OID_AUTO, "hw_txtime",
1394 CTLTYPE_INT | CTLFLAG_RW,
1395 sc, 0, re_sysctl_txtime, "I",
1396 "Hardware interrupt moderation time "
1397 "(unit: 25usec).");
1398 }
1399
1400#ifndef BURN_BRIDGES
1401 /*
1402 * Handle power management nonsense.
1403 */
1404
1405 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1406 uint32_t membase, irq;
1407
1408 /* Save important PCI config data. */
1409 membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1410 irq = pci_read_config(dev, PCIR_INTLINE, 4);
1411
1412 /* Reset the power state. */
1413 device_printf(dev, "chip is in D%d power mode "
1414 "-- setting to D0\n", pci_get_powerstate(dev));
1415
1416 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1417
1418 /* Restore PCI config data. */
1419 pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1420 pci_write_config(dev, PCIR_INTLINE, irq, 4);
1421 }
1422#endif
1423 /*
1424 * Map control/status registers.
1425 */
1426 pci_enable_busmaster(dev);
1427
1428 rid = RE_PCI_LOIO;
1429 sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1430 RF_ACTIVE);
1431
1432 if (sc->re_res == NULL) {
1433 device_printf(dev, "couldn't map ports\n");
1434 error = ENXIO;
1435 goto fail;
1436 }
1437
1438 sc->re_btag = rman_get_bustag(sc->re_res);
1439 sc->re_bhandle = rman_get_bushandle(sc->re_res);
1440
1441 /* Allocate interrupt */
1442 sc->re_irq_type = pci_alloc_1intr(dev, re_msi_enable,
1443 &sc->re_irq_rid, &irq_flags);
1444
1445 sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->re_irq_rid,
1446 irq_flags);
1447 if (sc->re_irq == NULL) {
1448 device_printf(dev, "couldn't map interrupt\n");
1449 error = ENXIO;
1450 goto fail;
1451 }
1452
1453 /* Reset the adapter. */
1454 re_reset(sc, 0);
1455
1456 if (RE_IS_8139CP(sc)) {
1457 sc->re_bus_speed = 33; /* XXX */
1458 } else if (sc->re_caps & RE_C_PCIE) {
1459 sc->re_bus_speed = 125;
1460 } else {
1461 uint8_t cfg2;
1462
1463 cfg2 = CSR_READ_1(sc, RE_CFG2);
1464 switch (cfg2 & RE_CFG2_PCICLK_MASK) {
1465 case RE_CFG2_PCICLK_33MHZ:
1466 sc->re_bus_speed = 33;
1467 break;
1468 case RE_CFG2_PCICLK_66MHZ:
1469 sc->re_bus_speed = 66;
1470 break;
1471 default:
1472 device_printf(dev, "unknown bus speed, assume 33MHz\n");
1473 sc->re_bus_speed = 33;
1474 break;
1475 }
1476 if (cfg2 & RE_CFG2_PCI64)
1477 sc->re_caps |= RE_C_PCI64;
1478 }
1479 device_printf(dev, "Hardware rev. 0x%08x; MAC ver. 0x%02x; "
1480 "PCI%s %dMHz\n",
1481 sc->re_hwrev, sc->re_macver,
1482 (sc->re_caps & RE_C_PCIE) ?
1483 "-E" : ((sc->re_caps & RE_C_PCI64) ? "64" : "32"),
1484 sc->re_bus_speed);
1485
1486 /*
1487 * NOTE:
1488 * DO NOT try to adjust config1 and config5 which was spotted in
1489 * Realtek's Linux drivers. It will _permanently_ damage certain
1490 * cards EEPROM, e.g. one of my 8168B (0x38000000) card ...
1491 */
1492
1493 re_get_eaddr(sc, eaddr);
1494
1495 if (!RE_IS_8139CP(sc)) {
1496 /* Set RX length mask */
1497 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1498 sc->re_txstart = RE_GTXSTART;
1499 } else {
1500 /* Set RX length mask */
1501 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1502 sc->re_txstart = RE_TXSTART;
1503 }
1504
1505 /* Allocate DMA stuffs */
1506 error = re_allocmem(dev);
1507 if (error)
1508 goto fail;
1509
1510 /*
1511 * Apply some magic PCI settings from Realtek ...
1512 */
1513 if (RE_IS_8169(sc)) {
1514 CSR_WRITE_1(sc, 0x82, 1);
1515 pci_write_config(dev, PCIR_CACHELNSZ, 0x8, 1);
1516 }
1517 pci_write_config(dev, PCIR_LATTIMER, 0x40, 1);
1518
1519 if (sc->re_caps & RE_C_MAC2) {
1520 /*
1521 * Following part is extracted from Realtek BSD driver v176.
1522 * However, this does _not_ make much/any sense:
1523 * 8168C's PCI Express device control is located at 0x78,
1524 * so the reading from 0x79 (higher part of 0x78) and setting
1525 * the 4~6bits intend to enlarge the "max read request size"
1526 * (we will do it). The content of the rest part of this
1527 * register is not meaningful to other PCI registers, so
1528 * writing the value to 0x54 could be completely wrong.
1529 * 0x80 is the lower part of PCI Express device status, non-
1530 * reserved bits are RW1C, writing 0 to them will not have
1531 * any effect at all.
1532 */
1533#ifdef foo
1534 uint8_t val;
1535
1536 val = pci_read_config(dev, 0x79, 1);
1537 val = (val & ~0x70) | 0x50;
1538 pci_write_config(dev, 0x54, val, 1);
1539 pci_write_config(dev, 0x80, 0, 1);
1540#endif
1541 }
1542
1543 /*
1544 * Apply some PHY fixup from Realtek ...
1545 */
1546 if (sc->re_hwrev == RE_HWREV_8110S) {
1547 CSR_WRITE_1(sc, 0x82, 1);
1548 re_miibus_writereg(dev, 1, 0xb, 0);
1549 }
1550 if (sc->re_caps & RE_C_PHYPMGT) {
1551 /* Power up PHY */
1552 re_miibus_writereg(dev, 1, 0x1f, 0);
1553 re_miibus_writereg(dev, 1, 0xe, 0);
1554 }
1555
1556 /* Do MII setup */
1557 if (mii_phy_probe(dev, &sc->re_miibus,
1558 re_ifmedia_upd, re_ifmedia_sts)) {
1559 device_printf(dev, "MII without any phy!\n");
1560 error = ENXIO;
1561 goto fail;
1562 }
1563
1564 ifp = &sc->arpcom.ac_if;
1565 ifp->if_softc = sc;
1566 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1567 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1568 ifp->if_ioctl = re_ioctl;
1569 ifp->if_start = re_start;
1570#ifdef DEVICE_POLLING
1571 ifp->if_poll = re_poll;
1572#endif
1573 ifp->if_watchdog = re_watchdog;
1574 ifp->if_init = re_init;
1575 if (!RE_IS_8139CP(sc)) /* XXX */
1576 ifp->if_baudrate = 1000000000;
1577 else
1578 ifp->if_baudrate = 100000000;
1579 ifq_set_maxlen(&ifp->if_snd, qlen);
1580 ifq_set_ready(&ifp->if_snd);
1581
1582 ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1583 if (sc->re_caps & RE_C_HWCSUM)
1584 ifp->if_capabilities |= IFCAP_HWCSUM;
1585
1586 ifp->if_capenable = ifp->if_capabilities;
1587 if (ifp->if_capabilities & IFCAP_HWCSUM)
1588 ifp->if_hwassist = RE_CSUM_FEATURES;
1589 else
1590 ifp->if_hwassist = 0;
1591
1592 /*
1593 * Call MI attach routine.
1594 */
1595 ether_ifattach(ifp, eaddr, NULL);
1596
1597#ifdef RE_DIAG
1598 /*
1599 * Perform hardware diagnostic on the original RTL8169.
1600 * Some 32-bit cards were incorrectly wired and would
1601 * malfunction if plugged into a 64-bit slot.
1602 */
1603 if (sc->re_hwrev == RE_HWREV_8169) {
1604 lwkt_serialize_enter(ifp->if_serializer);
1605 error = re_diag(sc);
1606 lwkt_serialize_exit(ifp->if_serializer);
1607
1608 if (error) {
1609 device_printf(dev, "hardware diagnostic failure\n");
1610 ether_ifdetach(ifp);
1611 goto fail;
1612 }
1613 }
1614#endif /* RE_DIAG */
1615
1616 /* Hook interrupt last to avoid having to lock softc */
1617 error = bus_setup_intr(dev, sc->re_irq, INTR_MPSAFE, re_intr, sc,
1618 &sc->re_intrhand, ifp->if_serializer);
1619
1620 if (error) {
1621 device_printf(dev, "couldn't set up irq\n");
1622 ether_ifdetach(ifp);
1623 goto fail;
1624 }
1625
1626 ifp->if_cpuid = rman_get_cpuid(sc->re_irq);
1627 KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1628
1629fail:
1630 if (error)
1631 re_detach(dev);
1632
1633 return (error);
1634}
1635
1636/*
1637 * Shutdown hardware and free up resources. This can be called any
1638 * time after the mutex has been initialized. It is called in both
1639 * the error case in attach and the normal detach case so it needs
1640 * to be careful about only freeing resources that have actually been
1641 * allocated.
1642 */
1643static int
1644re_detach(device_t dev)
1645{
1646 struct re_softc *sc = device_get_softc(dev);
1647 struct ifnet *ifp = &sc->arpcom.ac_if;
1648
1649 /* These should only be active if attach succeeded */
1650 if (device_is_attached(dev)) {
1651 lwkt_serialize_enter(ifp->if_serializer);
1652 re_stop(sc);
1653 bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1654 lwkt_serialize_exit(ifp->if_serializer);
1655
1656 ether_ifdetach(ifp);
1657 }
1658 if (sc->re_miibus)
1659 device_delete_child(dev, sc->re_miibus);
1660 bus_generic_detach(dev);
1661
1662 if (sc->re_sysctl_tree != NULL)
1663 sysctl_ctx_free(&sc->re_sysctl_ctx);
1664
1665 if (sc->re_irq)
1666 bus_release_resource(dev, SYS_RES_IRQ, sc->re_irq_rid,
1667 sc->re_irq);
1668
1669 if (sc->re_irq_type == PCI_INTR_TYPE_MSI)
1670 pci_release_msi(dev);
1671
1672 if (sc->re_res) {
1673 bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO,
1674 sc->re_res);
1675 }
1676
1677 /* Free DMA stuffs */
1678 re_freemem(dev);
1679
1680 return(0);
1681}
1682
1683static void
1684re_setup_rxdesc(struct re_softc *sc, int idx)
1685{
1686 bus_addr_t paddr;
1687 uint32_t cmdstat;
1688 struct re_desc *d;
1689
1690 paddr = sc->re_ldata.re_rx_paddr[idx];
1691 d = &sc->re_ldata.re_rx_list[idx];
1692
1693 d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddr));
1694 d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddr));
1695
1696 cmdstat = sc->re_rxbuf_size | RE_RDESC_CMD_OWN;
1697 if (idx == (sc->re_rx_desc_cnt - 1))
1698 cmdstat |= RE_RDESC_CMD_EOR;
1699 d->re_cmdstat = htole32(cmdstat);
1700}
1701
1702static int
1703re_newbuf_std(struct re_softc *sc, int idx, int init)
1704{
1705 bus_dma_segment_t seg;
1706 bus_dmamap_t map;
1707 struct mbuf *m;
1708 int error, nsegs;
1709
1710 m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1711 if (m == NULL) {
1712 error = ENOBUFS;
1713
1714 if (init) {
1715 if_printf(&sc->arpcom.ac_if, "m_getcl failed\n");
1716 return error;
1717 } else {
1718 goto back;
1719 }
1720 }
1721 m->m_len = m->m_pkthdr.len = MCLBYTES;
1722
1723 /*
1724 * NOTE:
1725 * re(4) chips need address of the receive buffer to be 8-byte
1726 * aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1727 */
1728
1729 error = bus_dmamap_load_mbuf_segment(sc->re_ldata.re_rx_mtag,
1730 sc->re_ldata.re_rx_spare, m,
1731 &seg, 1, &nsegs, BUS_DMA_NOWAIT);
1732 if (error) {
1733 m_freem(m);
1734 if (init) {
1735 if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
1736 return error;
1737 } else {
1738 goto back;
1739 }
1740 }
1741
1742 if (!init) {
1743 bus_dmamap_sync(sc->re_ldata.re_rx_mtag,
1744 sc->re_ldata.re_rx_dmamap[idx],
1745 BUS_DMASYNC_POSTREAD);
1746 bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
1747 sc->re_ldata.re_rx_dmamap[idx]);
1748 }
1749 sc->re_ldata.re_rx_mbuf[idx] = m;
1750 sc->re_ldata.re_rx_paddr[idx] = seg.ds_addr;
1751
1752 map = sc->re_ldata.re_rx_dmamap[idx];
1753 sc->re_ldata.re_rx_dmamap[idx] = sc->re_ldata.re_rx_spare;
1754 sc->re_ldata.re_rx_spare = map;
1755back:
1756 re_setup_rxdesc(sc, idx);
1757 return error;
1758}
1759
1760static int
1761re_newbuf_jumbo(struct re_softc *sc, int idx, int init)
1762{
1763 struct mbuf *m;
1764 struct re_jbuf *jbuf;
1765 int error = 0;
1766
1767 MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1768 if (m == NULL) {
1769 error = ENOBUFS;
1770 if (init) {
1771 if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
1772 return error;
1773 } else {
1774 goto back;
1775 }
1776 }
1777
1778 jbuf = re_jbuf_alloc(sc);
1779 if (jbuf == NULL) {
1780 m_freem(m);
1781
1782 error = ENOBUFS;
1783 if (init) {
1784 if_printf(&sc->arpcom.ac_if, "jpool is empty\n");
1785 return error;
1786 } else {
1787 goto back;
1788 }
1789 }
1790
1791 m->m_ext.ext_arg = jbuf;
1792 m->m_ext.ext_buf = jbuf->re_buf;
1793 m->m_ext.ext_free = re_jbuf_free;
1794 m->m_ext.ext_ref = re_jbuf_ref;
1795 m->m_ext.ext_size = sc->re_rxbuf_size;
1796
1797 m->m_data = m->m_ext.ext_buf;
1798 m->m_flags |= M_EXT;
1799 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1800
1801 /*
1802 * NOTE:
1803 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1804 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1805 */
1806
1807 sc->re_ldata.re_rx_mbuf[idx] = m;
1808 sc->re_ldata.re_rx_paddr[idx] = jbuf->re_paddr;
1809back:
1810 re_setup_rxdesc(sc, idx);
1811 return error;
1812}
1813
1814static int
1815re_tx_list_init(struct re_softc *sc)
1816{
1817 bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1818
1819 sc->re_ldata.re_tx_prodidx = 0;
1820 sc->re_ldata.re_tx_considx = 0;
1821 sc->re_ldata.re_tx_free = sc->re_tx_desc_cnt;
1822
1823 return(0);
1824}
1825
1826static int
1827re_rx_list_init(struct re_softc *sc)
1828{
1829 int i, error;
1830
1831 bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc));
1832
1833 for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1834 error = sc->re_newbuf(sc, i, 1);
1835 if (error)
1836 return(error);
1837 }
1838
1839 sc->re_ldata.re_rx_prodidx = 0;
1840 sc->re_head = sc->re_tail = NULL;
1841
1842 return(0);
1843}
1844
1845#define RE_IP4_PACKET 0x1
1846#define RE_TCP_PACKET 0x2
1847#define RE_UDP_PACKET 0x4
1848
1849static __inline uint8_t
1850re_packet_type(struct re_softc *sc, uint32_t rxstat, uint32_t rxctrl)
1851{
1852 uint8_t packet_type = 0;
1853
1854 if (sc->re_caps & RE_C_MAC2) {
1855 if (rxctrl & RE_RDESC_CTL_PROTOIP4)
1856 packet_type |= RE_IP4_PACKET;
1857 } else {
1858 if (rxstat & RE_RDESC_STAT_PROTOID)
1859 packet_type |= RE_IP4_PACKET;
1860 }
1861 if (RE_TCPPKT(rxstat))
1862 packet_type |= RE_TCP_PACKET;
1863 else if (RE_UDPPKT(rxstat))
1864 packet_type |= RE_UDP_PACKET;
1865 return packet_type;
1866}
1867
1868/*
1869 * RX handler for C+ and 8169. For the gigE chips, we support
1870 * the reception of jumbo frames that have been fragmented
1871 * across multiple 2K mbuf cluster buffers.
1872 */
1873static int
1874re_rxeof(struct re_softc *sc)
1875{
1876 struct ifnet *ifp = &sc->arpcom.ac_if;
1877 struct mbuf *m;
1878 struct re_desc *cur_rx;
1879 uint32_t rxstat, rxctrl;
1880 int i, total_len, rx = 0;
1881
1882 for (i = sc->re_ldata.re_rx_prodidx;
1883 RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0; RE_RXDESC_INC(sc, i)) {
1884 cur_rx = &sc->re_ldata.re_rx_list[i];
1885 m = sc->re_ldata.re_rx_mbuf[i];
1886 total_len = RE_RXBYTES(cur_rx);
1887 rxstat = le32toh(cur_rx->re_cmdstat);
1888 rxctrl = le32toh(cur_rx->re_control);
1889
1890 rx = 1;
1891
1892#ifdef INVARIANTS
1893 if (sc->re_flags & RE_F_USE_JPOOL)
1894 KKASSERT(rxstat & RE_RDESC_STAT_EOF);
1895#endif
1896
1897 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1898 if (sc->re_flags & RE_F_DROP_RXFRAG) {
1899 re_setup_rxdesc(sc, i);
1900 continue;
1901 }
1902
1903 if (sc->re_newbuf(sc, i, 0)) {
1904 /* Drop upcoming fragments */
1905 sc->re_flags |= RE_F_DROP_RXFRAG;
1906 continue;
1907 }
1908
1909 m->m_len = MCLBYTES;
1910 if (sc->re_head == NULL) {
1911 sc->re_head = sc->re_tail = m;
1912 } else {
1913 sc->re_tail->m_next = m;
1914 sc->re_tail = m;
1915 }
1916 continue;
1917 } else if (sc->re_flags & RE_F_DROP_RXFRAG) {
1918 /*
1919 * Last fragment of a multi-fragment packet.
1920 *
1921 * Since error already happened, this fragment
1922 * must be dropped as well as the fragment chain.
1923 */
1924 re_setup_rxdesc(sc, i);
1925 re_free_rxchain(sc);
1926 sc->re_flags &= ~RE_F_DROP_RXFRAG;
1927 continue;
1928 }
1929
1930 /*
1931 * NOTE: for the 8139C+, the frame length field
1932 * is always 12 bits in size, but for the gigE chips,
1933 * it is 13 bits (since the max RX frame length is 16K).
1934 * Unfortunately, all 32 bits in the status word
1935 * were already used, so to make room for the extra
1936 * length bit, RealTek took out the 'frame alignment
1937 * error' bit and shifted the other status bits
1938 * over one slot. The OWN, EOR, FS and LS bits are
1939 * still in the same places. We have already extracted
1940 * the frame length and checked the OWN bit, so rather
1941 * than using an alternate bit mapping, we shift the
1942 * status bits one space to the right so we can evaluate
1943 * them using the 8169 status as though it was in the
1944 * same format as that of the 8139C+.
1945 */
1946 if (!RE_IS_8139CP(sc))
1947 rxstat >>= 1;
1948
1949 if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1950 ifp->if_ierrors++;
1951 /*
1952 * If this is part of a multi-fragment packet,
1953 * discard all the pieces.
1954 */
1955 re_free_rxchain(sc);
1956 re_setup_rxdesc(sc, i);
1957 continue;
1958 }
1959
1960 /*
1961 * If allocating a replacement mbuf fails,
1962 * reload the current one.
1963 */
1964
1965 if (sc->re_newbuf(sc, i, 0)) {
1966 ifp->if_ierrors++;
1967 continue;
1968 }
1969
1970 if (sc->re_head != NULL) {
1971 m->m_len = total_len % MCLBYTES;
1972 /*
1973 * Special case: if there's 4 bytes or less
1974 * in this buffer, the mbuf can be discarded:
1975 * the last 4 bytes is the CRC, which we don't
1976 * care about anyway.
1977 */
1978 if (m->m_len <= ETHER_CRC_LEN) {
1979 sc->re_tail->m_len -=
1980 (ETHER_CRC_LEN - m->m_len);
1981 m_freem(m);
1982 } else {
1983 m->m_len -= ETHER_CRC_LEN;
1984 sc->re_tail->m_next = m;
1985 }
1986 m = sc->re_head;
1987 sc->re_head = sc->re_tail = NULL;
1988 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1989 } else {
1990 m->m_pkthdr.len = m->m_len =
1991 (total_len - ETHER_CRC_LEN);
1992 }
1993
1994 ifp->if_ipackets++;
1995 m->m_pkthdr.rcvif = ifp;
1996
1997 /* Do RX checksumming if enabled */
1998
1999 if (ifp->if_capenable & IFCAP_RXCSUM) {
2000 uint8_t packet_type;
2001
2002 packet_type = re_packet_type(sc, rxstat, rxctrl);
2003
2004 /* Check IP header checksum */
2005 if (packet_type & RE_IP4_PACKET) {
2006 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2007 if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
2008 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2009 }
2010
2011 /* Check TCP/UDP checksum */
2012 if (((packet_type & RE_TCP_PACKET) &&
2013 (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
2014 ((packet_type & RE_UDP_PACKET) &&
2015 (rxstat & RE_RDESC_STAT_UDPSUMBAD) == 0)) {
2016 m->m_pkthdr.csum_flags |=
2017 CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
2018 CSUM_FRAG_NOT_CHECKED;
2019 m->m_pkthdr.csum_data = 0xffff;
2020 }
2021 }
2022
2023 if (rxctrl & RE_RDESC_CTL_HASTAG) {
2024 m->m_flags |= M_VLANTAG;
2025 m->m_pkthdr.ether_vlantag =
2026 be16toh((rxctrl & RE_RDESC_CTL_TAGDATA));
2027 }
2028 ifp->if_input(ifp, m);
2029 }
2030
2031 sc->re_ldata.re_rx_prodidx = i;
2032
2033 return rx;
2034}
2035
2036#undef RE_IP4_PACKET
2037#undef RE_TCP_PACKET
2038#undef RE_UDP_PACKET
2039
2040static int
2041re_tx_collect(struct re_softc *sc)
2042{
2043 struct ifnet *ifp = &sc->arpcom.ac_if;
2044 uint32_t txstat;
2045 int idx, tx = 0;
2046
2047 for (idx = sc->re_ldata.re_tx_considx;
2048 sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt;
2049 RE_TXDESC_INC(sc, idx)) {
2050 txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
2051 if (txstat & RE_TDESC_CMD_OWN)
2052 break;
2053
2054 tx = 1;
2055
2056 sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
2057
2058 /*
2059 * We only stash mbufs in the last descriptor
2060 * in a fragment chain, which also happens to
2061 * be the only place where the TX status bits
2062 * are valid.
2063 */
2064 if (txstat & RE_TDESC_CMD_EOF) {
2065 bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2066 sc->re_ldata.re_tx_dmamap[idx]);
2067 m_freem(sc->re_ldata.re_tx_mbuf[idx]);
2068 sc->re_ldata.re_tx_mbuf[idx] = NULL;
2069 if (txstat & (RE_TDESC_STAT_EXCESSCOL|
2070 RE_TDESC_STAT_COLCNT))
2071 ifp->if_collisions++;
2072 if (txstat & RE_TDESC_STAT_TXERRSUM)
2073 ifp->if_oerrors++;
2074 else
2075 ifp->if_opackets++;
2076 }
2077 sc->re_ldata.re_tx_free++;
2078 }
2079 sc->re_ldata.re_tx_considx = idx;
2080
2081 return tx;
2082}
2083
2084static int
2085re_txeof(struct re_softc *sc)
2086{
2087 struct ifnet *ifp = &sc->arpcom.ac_if;
2088 int tx;
2089
2090 tx = re_tx_collect(sc);
2091
2092 /* There is enough free TX descs */
2093 if (sc->re_ldata.re_tx_free > RE_TXDESC_SPARE)
2094 ifp->if_flags &= ~IFF_OACTIVE;
2095
2096 /*
2097 * Some chips will ignore a second TX request issued while an
2098 * existing transmission is in progress. If the transmitter goes
2099 * idle but there are still packets waiting to be sent, we need
2100 * to restart the channel here to flush them out. This only seems
2101 * to be required with the PCIe devices.
2102 */
2103 if (sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt)
2104 CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2105 else
2106 ifp->if_timer = 0;
2107
2108 return tx;
2109}
2110
2111static void
2112re_tick(void *xsc)
2113{
2114 struct re_softc *sc = xsc;
2115
2116 lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
2117 re_tick_serialized(xsc);
2118 lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
2119}
2120
2121static void
2122re_tick_serialized(void *xsc)
2123{
2124 struct re_softc *sc = xsc;
2125 struct ifnet *ifp = &sc->arpcom.ac_if;
2126 struct mii_data *mii;
2127
2128 ASSERT_SERIALIZED(ifp->if_serializer);
2129
2130 mii = device_get_softc(sc->re_miibus);
2131 mii_tick(mii);
2132 if (sc->re_flags & RE_F_LINKED) {
2133 if (!(mii->mii_media_status & IFM_ACTIVE))
2134 sc->re_flags &= ~RE_F_LINKED;
2135 } else {
2136 if (mii->mii_media_status & IFM_ACTIVE &&
2137 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2138 sc->re_flags |= RE_F_LINKED;
2139 if (!ifq_is_empty(&ifp->if_snd))
2140 if_devstart(ifp);
2141 }
2142 }
2143
2144 callout_reset(&sc->re_timer, hz, re_tick, sc);
2145}
2146
2147#ifdef DEVICE_POLLING
2148
2149static void
2150re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2151{
2152 struct re_softc *sc = ifp->if_softc;
2153
2154 ASSERT_SERIALIZED(ifp->if_serializer);
2155
2156 switch(cmd) {
2157 case POLL_REGISTER:
2158 /* disable interrupts */
2159 re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2160 break;
2161
2162 case POLL_DEREGISTER:
2163 /* enable interrupts */
2164 re_setup_intr(sc, 1, sc->re_imtype);
2165 break;
2166
2167 default:
2168 sc->rxcycles = count;
2169 re_rxeof(sc);
2170 re_txeof(sc);
2171
2172 if (!ifq_is_empty(&ifp->if_snd))
2173 if_devstart(ifp);
2174
2175 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2176 uint16_t status;
2177
2178 status = CSR_READ_2(sc, RE_ISR);
2179 if (status == 0xffff)
2180 return;
2181 if (status)
2182 CSR_WRITE_2(sc, RE_ISR, status);
2183
2184 /*
2185 * XXX check behaviour on receiver stalls.
2186 */
2187
2188 if (status & RE_ISR_SYSTEM_ERR)
2189 re_init(sc);
2190 }
2191 break;
2192 }
2193}
2194#endif /* DEVICE_POLLING */
2195
2196static void
2197re_intr(void *arg)
2198{
2199 struct re_softc *sc = arg;
2200 struct ifnet *ifp = &sc->arpcom.ac_if;
2201 uint16_t status;
2202 int rx, tx;
2203
2204 ASSERT_SERIALIZED(ifp->if_serializer);
2205
2206 if ((sc->re_flags & RE_F_SUSPENDED) ||
2207 (ifp->if_flags & IFF_RUNNING) == 0)
2208 return;
2209
2210 rx = tx = 0;
2211 for (;;) {
2212 status = CSR_READ_2(sc, RE_ISR);
2213 /* If the card has gone away the read returns 0xffff. */
2214 if (status == 0xffff)
2215 break;
2216 if (status)
2217 CSR_WRITE_2(sc, RE_ISR, status);
2218
2219 if ((status & sc->re_intrs) == 0)
2220 break;
2221
2222 if (status & (sc->re_rx_ack | RE_ISR_RX_ERR))
2223 rx |= re_rxeof(sc);
2224
2225 if (status & (sc->re_tx_ack | RE_ISR_TX_ERR))
2226 tx |= re_txeof(sc);
2227
2228 if (status & RE_ISR_SYSTEM_ERR)
2229 re_init(sc);
2230
2231 if (status & RE_ISR_LINKCHG) {
2232 callout_stop(&sc->re_timer);
2233 re_tick_serialized(sc);
2234 }
2235 }
2236
2237 if (sc->re_imtype == RE_IMTYPE_SIM) {
2238 if ((sc->re_flags & RE_F_TIMER_INTR)) {
2239 if ((tx | rx) == 0) {
2240 /*
2241 * Nothing needs to be processed, fallback
2242 * to use TX/RX interrupts.
2243 */
2244 re_setup_intr(sc, 1, RE_IMTYPE_NONE);
2245
2246 /*
2247 * Recollect, mainly to avoid the possible
2248 * race introduced by changing interrupt
2249 * masks.
2250 */
2251 re_rxeof(sc);
2252 tx = re_txeof(sc);
2253 } else {
2254 CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
2255 }
2256 } else if (tx | rx) {
2257 /*
2258 * Assume that using simulated interrupt moderation
2259 * (hardware timer based) could reduce the interript
2260 * rate.
2261 */
2262 re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2263 }
2264 }
2265
2266 if (tx && !ifq_is_empty(&ifp->if_snd))
2267 if_devstart(ifp);
2268}
2269
2270static int
2271re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx0)
2272{
2273 struct mbuf *m = *m_head;
2274 bus_dma_segment_t segs[RE_MAXSEGS];
2275 bus_dmamap_t map;
2276 int error, maxsegs, idx, i, nsegs;
2277 struct re_desc *d, *tx_ring;
2278 uint32_t cmd_csum, ctl_csum, vlantag;
2279
2280 KASSERT(sc->re_ldata.re_tx_free > RE_TXDESC_SPARE,
2281 ("not enough free TX desc"));
2282
2283 map = sc->re_ldata.re_tx_dmamap[*idx0];
2284
2285 /*
2286 * Set up checksum offload. Note: checksum offload bits must
2287 * appear in all descriptors of a multi-descriptor transmit
2288 * attempt. (This is according to testing done with an 8169
2289 * chip. I'm not sure if this is a requirement or a bug.)
2290 */
2291 cmd_csum = ctl_csum = 0;
2292 if (m->m_pkthdr.csum_flags & CSUM_IP) {
2293 cmd_csum |= RE_TDESC_CMD_IPCSUM;
2294 ctl_csum |= RE_TDESC_CTL_IPCSUM;
2295 }
2296 if (m->m_pkthdr.csum_flags & CSUM_TCP) {
2297 cmd_csum |= RE_TDESC_CMD_TCPCSUM;
2298 ctl_csum |= RE_TDESC_CTL_TCPCSUM;
2299 }
2300 if (m->m_pkthdr.csum_flags & CSUM_UDP) {
2301 cmd_csum |= RE_TDESC_CMD_UDPCSUM;
2302 ctl_csum |= RE_TDESC_CTL_UDPCSUM;
2303 }
2304
2305 /* For MAC2 chips, csum flags are set on re_control */
2306 if (sc->re_caps & RE_C_MAC2)
2307 cmd_csum = 0;
2308 else
2309 ctl_csum = 0;
2310
2311 if ((sc->re_caps & RE_C_AUTOPAD) == 0) {
2312 /*
2313 * With some of the RealTek chips, using the checksum offload
2314 * support in conjunction with the autopadding feature results
2315 * in the transmission of corrupt frames. For example, if we
2316 * need to send a really small IP fragment that's less than 60
2317 * bytes in size, and IP header checksumming is enabled, the
2318 * resulting ethernet frame that appears on the wire will
2319 * have garbled payload. To work around this, if TX checksum
2320 * offload is enabled, we always manually pad short frames out
2321 * to the minimum ethernet frame size.
2322 *
2323 * Note: this appears unnecessary for TCP, and doing it for TCP
2324 * with PCIe adapters seems to result in bad checksums.
2325 */
2326 if ((m->m_pkthdr.csum_flags &
2327 (CSUM_DELAY_IP | CSUM_DELAY_DATA)) &&
2328 (m->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2329 m->m_pkthdr.len < RE_MIN_FRAMELEN) {
2330 error = m_devpad(m, RE_MIN_FRAMELEN);
2331 if (error)
2332 goto back;
2333 }
2334 }
2335
2336 vlantag = 0;
2337 if (m->m_flags & M_VLANTAG) {
2338 vlantag = htobe16(m->m_pkthdr.ether_vlantag) |
2339 RE_TDESC_CTL_INSTAG;
2340 }
2341
2342 maxsegs = sc->re_ldata.re_tx_free;
2343 if (maxsegs > RE_MAXSEGS)
2344 maxsegs = RE_MAXSEGS;
2345
2346 error = bus_dmamap_load_mbuf_defrag(sc->re_ldata.re_tx_mtag, map,
2347 m_head, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2348 if (error)
2349 goto back;
2350
2351 m = *m_head;
2352 bus_dmamap_sync(sc->re_ldata.re_tx_mtag, map, BUS_DMASYNC_PREWRITE);
2353
2354 /*
2355 * Map the segment array into descriptors. We also keep track
2356 * of the end of the ring and set the end-of-ring bits as needed,
2357 * and we set the ownership bits in all except the very first
2358 * descriptor, whose ownership bits will be turned on later.
2359 */
2360 tx_ring = sc->re_ldata.re_tx_list;
2361 idx = *idx0;
2362 i = 0;
2363 for (;;) {
2364 uint32_t cmdstat;
2365
2366 d = &tx_ring[idx];
2367
2368 cmdstat = segs[i].ds_len;
2369 d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
2370 d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
2371 if (i == 0)
2372 cmdstat |= RE_TDESC_CMD_SOF;
2373 else
2374 cmdstat |= RE_TDESC_CMD_OWN;
2375 if (idx == (sc->re_tx_desc_cnt - 1))
2376 cmdstat |= RE_TDESC_CMD_EOR;
2377 d->re_cmdstat = htole32(cmdstat | cmd_csum);
2378 d->re_control = htole32(ctl_csum | vlantag);
2379
2380 i++;
2381 if (i == nsegs)
2382 break;
2383 RE_TXDESC_INC(sc, idx);
2384 }
2385 d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
2386
2387 /* Transfer ownership of packet to the chip. */
2388 d->re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2389 if (*idx0 != idx)
2390 tx_ring[*idx0].re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2391
2392 /*
2393 * Insure that the map for this transmission
2394 * is placed at the array index of the last descriptor
2395 * in this chain.
2396 */
2397 sc->re_ldata.re_tx_dmamap[*idx0] = sc->re_ldata.re_tx_dmamap[idx];
2398 sc->re_ldata.re_tx_dmamap[idx] = map;
2399
2400 sc->re_ldata.re_tx_mbuf[idx] = m;
2401 sc->re_ldata.re_tx_free -= nsegs;
2402
2403 RE_TXDESC_INC(sc, idx);
2404 *idx0 = idx;
2405back:
2406 if (error) {
2407 m_freem(*m_head);
2408 *m_head = NULL;
2409 }
2410 return error;
2411}
2412
2413/*
2414 * Main transmit routine for C+ and gigE NICs.
2415 */
2416
2417static void
2418re_start(struct ifnet *ifp)
2419{
2420 struct re_softc *sc = ifp->if_softc;
2421 struct mbuf *m_head;
2422 int idx, need_trans, oactive, error;
2423
2424 ASSERT_SERIALIZED(ifp->if_serializer);
2425
2426 if ((sc->re_flags & RE_F_LINKED) == 0) {
2427 ifq_purge(&ifp->if_snd);
2428 return;
2429 }
2430
2431 if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
2432 return;
2433
2434 idx = sc->re_ldata.re_tx_prodidx;
2435
2436 need_trans = 0;
2437 oactive = 0;
2438 while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
2439 if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2440 if (!oactive) {
2441 if (re_tx_collect(sc)) {
2442 oactive = 1;
2443 continue;
2444 }
2445 }
2446 ifp->if_flags |= IFF_OACTIVE;
2447 break;
2448 }
2449
2450 m_head = ifq_dequeue(&ifp->if_snd, NULL);
2451 if (m_head == NULL)
2452 break;
2453
2454 error = re_encap(sc, &m_head, &idx);
2455 if (error) {
2456 /* m_head is freed by re_encap(), if we reach here */
2457 ifp->if_oerrors++;
2458
2459 if (error == EFBIG && !oactive) {
2460 if (re_tx_collect(sc)) {
2461 oactive = 1;
2462 continue;
2463 }
2464 }
2465 ifp->if_flags |= IFF_OACTIVE;
2466 break;
2467 }
2468
2469 oactive = 0;
2470 need_trans = 1;
2471
2472 /*
2473 * If there's a BPF listener, bounce a copy of this frame
2474 * to him.
2475 */
2476 ETHER_BPF_MTAP(ifp, m_head);
2477 }
2478
2479 /*
2480 * If sc->re_ldata.re_tx_mbuf[idx] is not NULL it is possible
2481 * for IFF_OACTIVE to not be properly set when we also do not
2482 * have sufficient free tx descriptors, leaving packet in
2483 * ifp->if_send. This can cause if_start_dispatch() to loop
2484 * infinitely so make sure IFF_OACTIVE is set properly.
2485 */
2486 if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2487 if ((ifp->if_flags & IFF_OACTIVE) == 0) {
2488 device_printf(sc->re_dev,
2489 "Debug: IFF_OACTIVE was not set when"
2490 " re_tx_free was below minimum!\n");
2491 ifp->if_flags |= IFF_OACTIVE;
2492 }
2493 }
2494 if (!need_trans)
2495 return;
2496
2497 sc->re_ldata.re_tx_prodidx = idx;
2498
2499 /*
2500 * RealTek put the TX poll request register in a different
2501 * location on the 8169 gigE chip. I don't know why.
2502 */
2503 CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2504
2505 /*
2506 * Set a timeout in case the chip goes out to lunch.
2507 */
2508 ifp->if_timer = 5;
2509}
2510
2511static void
2512re_init(void *xsc)
2513{
2514 struct re_softc *sc = xsc;
2515 struct ifnet *ifp = &sc->arpcom.ac_if;
2516 struct mii_data *mii;
2517 int error, framelen;
2518
2519 ASSERT_SERIALIZED(ifp->if_serializer);
2520
2521 mii = device_get_softc(sc->re_miibus);
2522
2523 /*
2524 * Cancel pending I/O and free all RX/TX buffers.
2525 */
2526 re_stop(sc);
2527
2528 if (sc->re_caps & RE_C_CONTIGRX) {
2529 if (ifp->if_mtu > ETHERMTU) {
2530 KKASSERT(sc->re_ldata.re_jbuf != NULL);
2531 sc->re_flags |= RE_F_USE_JPOOL;
2532 sc->re_rxbuf_size = RE_FRAMELEN_MAX;
2533 sc->re_newbuf = re_newbuf_jumbo;
2534 } else {
2535 sc->re_flags &= ~RE_F_USE_JPOOL;
2536 sc->re_rxbuf_size = MCLBYTES;
2537 sc->re_newbuf = re_newbuf_std;
2538 }
2539 }
2540
2541 /*
2542 * Adjust max read request size according to MTU; mainly to
2543 * improve TX performance for common case (ETHERMTU) on GigE
2544 * NICs. However, this could _not_ be done on 10/100 only
2545 * NICs; their DMA engines will malfunction using non-default
2546 * max read request size.
2547 */
2548 if ((sc->re_caps & (RE_C_PCIE | RE_C_FASTE)) == RE_C_PCIE) {
2549 if (ifp->if_mtu > ETHERMTU) {
2550 /*
2551 * 512 seems to be the only value that works
2552 * reliably with jumbo frame
2553 */
2554 pcie_set_max_readrq(sc->re_dev,
2555 PCIEM_DEVCTL_MAX_READRQ_512);
2556 } else {
2557 pcie_set_max_readrq(sc->re_dev,
2558 PCIEM_DEVCTL_MAX_READRQ_4096);
2559 }
2560 }
2561
2562 /*
2563 * Enable C+ RX and TX mode, as well as VLAN stripping and
2564 * RX checksum offload. We must configure the C+ register
2565 * before all others.
2566 */
2567 CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
2568 RE_CPLUSCMD_PCI_MRW |
2569 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING ?
2570 RE_CPLUSCMD_VLANSTRIP : 0) |
2571 (ifp->if_capenable & IFCAP_RXCSUM ?
2572 RE_CPLUSCMD_RXCSUM_ENB : 0));
2573
2574 /*
2575 * Init our MAC address. Even though the chipset
2576 * documentation doesn't mention it, we need to enter "Config
2577 * register write enable" mode to modify the ID registers.
2578 */
2579 CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
2580 CSR_WRITE_4(sc, RE_IDR0,
2581 htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
2582 CSR_WRITE_2(sc, RE_IDR4,
2583 htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
2584 CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
2585
2586 /*
2587 * For C+ mode, initialize the RX descriptors and mbufs.
2588 */
2589 error = re_rx_list_init(sc);
2590 if (error) {
2591 re_stop(sc);
2592 return;
2593 }
2594 error = re_tx_list_init(sc);
2595 if (error) {
2596 re_stop(sc);
2597 return;
2598 }
2599
2600 /*
2601 * Load the addresses of the RX and TX lists into the chip.
2602 */
2603 CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2604 RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2605 CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2606 RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2607
2608 CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2609 RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2610 CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2611 RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2612
2613 /*
2614 * Enable transmit and receive.
2615 */
2616 CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2617
2618 /*
2619 * Set the initial TX and RX configuration.
2620 */
2621 if (sc->re_flags & RE_F_TESTMODE) {
2622 if (!RE_IS_8139CP(sc))
2623 CSR_WRITE_4(sc, RE_TXCFG,
2624 RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
2625 else
2626 CSR_WRITE_4(sc, RE_TXCFG,
2627 RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
2628 } else
2629 CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
2630
2631 framelen = RE_FRAMELEN(ifp->if_mtu);
2632 if (framelen < MCLBYTES)
2633 CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(MCLBYTES, 128));
2634 else
2635 CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(framelen, 128));
2636
2637 CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
2638
2639 /*
2640 * Program the multicast filter, if necessary.
2641 */
2642 re_setmulti(sc);
2643
2644#ifdef DEVICE_POLLING
2645 /*
2646 * Disable interrupts if we are polling.
2647 */
2648 if (ifp->if_flags & IFF_POLLING)
2649 re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2650 else /* otherwise ... */
2651#endif /* DEVICE_POLLING */
2652 /*
2653 * Enable interrupts.
2654 */
2655 if (sc->re_flags & RE_F_TESTMODE)
2656 CSR_WRITE_2(sc, RE_IMR, 0);
2657 else
2658 re_setup_intr(sc, 1, sc->re_imtype);
2659 CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
2660
2661 /* Start RX/TX process. */
2662 CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2663
2664#ifdef notdef
2665 /* Enable receiver and transmitter. */
2666 CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2667#endif
2668
2669 /*
2670 * For 8169 gigE NICs, set the max allowed RX packet
2671 * size so we can receive jumbo frames.
2672 */
2673 if (!RE_IS_8139CP(sc)) {
2674 if (sc->re_caps & RE_C_CONTIGRX)
2675 CSR_WRITE_2(sc, RE_MAXRXPKTLEN, sc->re_rxbuf_size);
2676 else
2677 CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2678 }
2679
2680 if (sc->re_flags & RE_F_TESTMODE)
2681 return;
2682
2683 mii_mediachg(mii);
2684
2685 CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2686
2687 ifp->if_flags |= IFF_RUNNING;
2688 ifp->if_flags &= ~IFF_OACTIVE;
2689
2690 callout_reset(&sc->re_timer, hz, re_tick, sc);
2691}
2692
2693/*
2694 * Set media options.
2695 */
2696static int
2697re_ifmedia_upd(struct ifnet *ifp)
2698{
2699 struct re_softc *sc = ifp->if_softc;
2700 struct mii_data *mii;
2701
2702 ASSERT_SERIALIZED(ifp->if_serializer);
2703
2704 mii = device_get_softc(sc->re_miibus);
2705 mii_mediachg(mii);
2706
2707 return(0);
2708}
2709
2710/*
2711 * Report current media status.
2712 */
2713static void
2714re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2715{
2716 struct re_softc *sc = ifp->if_softc;
2717 struct mii_data *mii;
2718
2719 ASSERT_SERIALIZED(ifp->if_serializer);
2720
2721 mii = device_get_softc(sc->re_miibus);
2722
2723 mii_pollstat(mii);
2724 ifmr->ifm_active = mii->mii_media_active;
2725 ifmr->ifm_status = mii->mii_media_status;
2726}
2727
2728static int
2729re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2730{
2731 struct re_softc *sc = ifp->if_softc;
2732 struct ifreq *ifr = (struct ifreq *) data;
2733 struct mii_data *mii;
2734 int error = 0, mask;
2735
2736 ASSERT_SERIALIZED(ifp->if_serializer);
2737
2738 switch(command) {
2739 case SIOCSIFMTU:
2740 if (ifr->ifr_mtu > sc->re_maxmtu) {
2741 error = EINVAL;
2742 } else if (ifp->if_mtu != ifr->ifr_mtu) {
2743 ifp->if_mtu = ifr->ifr_mtu;
2744 if (ifp->if_flags & IFF_RUNNING)
2745 ifp->if_init(sc);
2746 }
2747 break;
2748
2749 case SIOCSIFFLAGS:
2750 if (ifp->if_flags & IFF_UP) {
2751 if (ifp->if_flags & IFF_RUNNING) {
2752 if ((ifp->if_flags ^ sc->re_if_flags) &
2753 (IFF_PROMISC | IFF_ALLMULTI))
2754 re_setmulti(sc);
2755 } else {
2756 re_init(sc);
2757 }
2758 } else if (ifp->if_flags & IFF_RUNNING) {
2759 re_stop(sc);
2760 }
2761 sc->re_if_flags = ifp->if_flags;
2762 break;
2763
2764 case SIOCADDMULTI:
2765 case SIOCDELMULTI:
2766 re_setmulti(sc);
2767 break;
2768
2769 case SIOCGIFMEDIA:
2770 case SIOCSIFMEDIA:
2771 mii = device_get_softc(sc->re_miibus);
2772 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2773 break;
2774
2775 case SIOCSIFCAP:
2776 mask = (ifr->ifr_reqcap ^ ifp->if_capenable) &
2777 ifp->if_capabilities;
2778 ifp->if_capenable ^= mask;
2779
2780 if (mask & IFCAP_HWCSUM) {
2781 if (ifp->if_capenable & IFCAP_TXCSUM)
2782 ifp->if_hwassist = RE_CSUM_FEATURES;
2783 else
2784 ifp->if_hwassist = 0;
2785 }
2786 if (mask && (ifp->if_flags & IFF_RUNNING))
2787 re_init(sc);
2788 break;
2789
2790 default:
2791 error = ether_ioctl(ifp, command, data);
2792 break;
2793 }
2794 return(error);
2795}
2796
2797static void
2798re_watchdog(struct ifnet *ifp)
2799{
2800 struct re_softc *sc = ifp->if_softc;
2801
2802 ASSERT_SERIALIZED(ifp->if_serializer);
2803
2804 if_printf(ifp, "watchdog timeout\n");
2805
2806 ifp->if_oerrors++;
2807
2808 re_txeof(sc);
2809 re_rxeof(sc);
2810
2811 re_init(sc);
2812
2813 if (!ifq_is_empty(&ifp->if_snd))
2814 if_devstart(ifp);
2815}
2816
2817/*
2818 * Stop the adapter and free any mbufs allocated to the
2819 * RX and TX lists.
2820 */
2821static void
2822re_stop(struct re_softc *sc)
2823{
2824 struct ifnet *ifp = &sc->arpcom.ac_if;
2825 int i;
2826
2827 ASSERT_SERIALIZED(ifp->if_serializer);
2828
2829 /* Reset the adapter. */
2830 re_reset(sc, ifp->if_flags & IFF_RUNNING);
2831
2832 ifp->if_timer = 0;
2833 callout_stop(&sc->re_timer);
2834
2835 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2836 sc->re_flags &= ~(RE_F_TIMER_INTR | RE_F_DROP_RXFRAG | RE_F_LINKED);
2837
2838 CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2839 CSR_WRITE_2(sc, RE_IMR, 0x0000);
2840 CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
2841
2842 re_free_rxchain(sc);
2843
2844 /* Free the TX list buffers. */
2845 for (i = 0; i < sc->re_tx_desc_cnt; i++) {
2846 if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2847 bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2848 sc->re_ldata.re_tx_dmamap[i]);
2849 m_freem(sc->re_ldata.re_tx_mbuf[i]);
2850 sc->re_ldata.re_tx_mbuf[i] = NULL;
2851 }
2852 }
2853
2854 /* Free the RX list buffers. */
2855 for (i = 0; i < sc->re_rx_desc_cnt; i++) {
2856 if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2857 if ((sc->re_flags & RE_F_USE_JPOOL) == 0) {
2858 bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
2859 sc->re_ldata.re_rx_dmamap[i]);
2860 }
2861 m_freem(sc->re_ldata.re_rx_mbuf[i]);
2862 sc->re_ldata.re_rx_mbuf[i] = NULL;
2863 }
2864 }
2865}
2866
2867/*
2868 * Device suspend routine. Stop the interface and save some PCI
2869 * settings in case the BIOS doesn't restore them properly on
2870 * resume.
2871 */
2872static int
2873re_suspend(device_t dev)
2874{
2875#ifndef BURN_BRIDGES
2876 int i;
2877#endif
2878 struct re_softc *sc = device_get_softc(dev);
2879 struct ifnet *ifp = &sc->arpcom.ac_if;
2880
2881 lwkt_serialize_enter(ifp->if_serializer);
2882
2883 re_stop(sc);
2884
2885#ifndef BURN_BRIDGES
2886 for (i = 0; i < 5; i++)
2887 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2888 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2889 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2890 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2891 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2892#endif
2893
2894 sc->re_flags |= RE_F_SUSPENDED;
2895
2896 lwkt_serialize_exit(ifp->if_serializer);
2897
2898 return (0);
2899}
2900
2901/*
2902 * Device resume routine. Restore some PCI settings in case the BIOS
2903 * doesn't, re-enable busmastering, and restart the interface if
2904 * appropriate.
2905 */
2906static int
2907re_resume(device_t dev)
2908{
2909 struct re_softc *sc = device_get_softc(dev);
2910 struct ifnet *ifp = &sc->arpcom.ac_if;
2911#ifndef BURN_BRIDGES
2912 int i;
2913#endif
2914
2915 lwkt_serialize_enter(ifp->if_serializer);
2916
2917#ifndef BURN_BRIDGES
2918 /* better way to do this? */
2919 for (i = 0; i < 5; i++)
2920 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2921 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2922 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2923 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2924 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2925
2926 /* reenable busmastering */
2927 pci_enable_busmaster(dev);
2928 pci_enable_io(dev, SYS_RES_IOPORT);
2929#endif
2930
2931 /* reinitialize interface if necessary */
2932 if (ifp->if_flags & IFF_UP)
2933 re_init(sc);
2934
2935 sc->re_flags &= ~RE_F_SUSPENDED;
2936
2937 lwkt_serialize_exit(ifp->if_serializer);
2938
2939 return (0);
2940}
2941
2942/*
2943 * Stop all chip I/O so that the kernel's probe routines don't
2944 * get confused by errant DMAs when rebooting.
2945 */
2946static void
2947re_shutdown(device_t dev)
2948{
2949 struct re_softc *sc = device_get_softc(dev);
2950 struct ifnet *ifp = &sc->arpcom.ac_if;
2951
2952 lwkt_serialize_enter(ifp->if_serializer);
2953 re_stop(sc);
2954 lwkt_serialize_exit(ifp->if_serializer);
2955}
2956
2957static int
2958re_sysctl_rxtime(SYSCTL_HANDLER_ARGS)
2959{
2960 struct re_softc *sc = arg1;
2961
2962 return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_rx_time);
2963}
2964
2965static int
2966re_sysctl_txtime(SYSCTL_HANDLER_ARGS)
2967{
2968 struct re_softc *sc = arg1;
2969
2970 return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_tx_time);
2971}
2972
2973static int
2974re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *hwtime)
2975{
2976 struct re_softc *sc = arg1;
2977 struct ifnet *ifp = &sc->arpcom.ac_if;
2978 int error, v;
2979
2980 lwkt_serialize_enter(ifp->if_serializer);
2981
2982 v = *hwtime;
2983 error = sysctl_handle_int(oidp, &v, 0, req);
2984 if (error || req->newptr == NULL)
2985 goto back;
2986
2987 if (v <= 0) {
2988 error = EINVAL;
2989 goto back;
2990 }
2991
2992 if (v != *hwtime) {
2993 *hwtime = v;
2994
2995 if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
2996 IFF_RUNNING && sc->re_imtype == RE_IMTYPE_HW)
2997 re_setup_hw_im(sc);
2998 }
2999back:
3000 lwkt_serialize_exit(ifp->if_serializer);
3001 return error;
3002}
3003
3004static int
3005re_sysctl_simtime(SYSCTL_HANDLER_ARGS)
3006{
3007 struct re_softc *sc = arg1;
3008 struct ifnet *ifp = &sc->arpcom.ac_if;
3009 int error, v;
3010
3011 lwkt_serialize_enter(ifp->if_serializer);
3012
3013 v = sc->re_sim_time;
3014 error = sysctl_handle_int(oidp, &v, 0, req);
3015 if (error || req->newptr == NULL)
3016 goto back;
3017
3018 if (v <= 0) {
3019 error = EINVAL;
3020 goto back;
3021 }
3022
3023 if (v != sc->re_sim_time) {
3024 sc->re_sim_time = v;
3025
3026 if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3027 IFF_RUNNING && sc->re_imtype == RE_IMTYPE_SIM) {
3028#ifdef foo
3029 int reg;
3030
3031 /*
3032 * Following code causes various strange
3033 * performance problems. Hmm ...
3034 */
3035 CSR_WRITE_2(sc, RE_IMR, 0);
3036 if (!RE_IS_8139CP(sc))
3037 reg = RE_TIMERINT_8169;
3038 else
3039 reg = RE_TIMERINT;
3040 CSR_WRITE_4(sc, reg, 0);
3041 CSR_READ_4(sc, reg); /* flush */
3042
3043 CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3044 re_setup_sim_im(sc);
3045#else
3046 re_setup_intr(sc, 0, RE_IMTYPE_NONE);
3047 DELAY(10);
3048 re_setup_intr(sc, 1, RE_IMTYPE_SIM);
3049#endif
3050 }
3051 }
3052back:
3053 lwkt_serialize_exit(ifp->if_serializer);
3054 return error;
3055}
3056
3057static int
3058re_sysctl_imtype(SYSCTL_HANDLER_ARGS)
3059{
3060 struct re_softc *sc = arg1;
3061 struct ifnet *ifp = &sc->arpcom.ac_if;
3062 int error, v;
3063
3064 lwkt_serialize_enter(ifp->if_serializer);
3065
3066 v = sc->re_imtype;
3067 error = sysctl_handle_int(oidp, &v, 0, req);
3068 if (error || req->newptr == NULL)
3069 goto back;
3070
3071 if (v != RE_IMTYPE_HW && v != RE_IMTYPE_SIM && v != RE_IMTYPE_NONE) {
3072 error = EINVAL;
3073 goto back;
3074 }
3075 if (v == RE_IMTYPE_HW && (sc->re_caps & RE_C_HWIM) == 0) {
3076 /* Can't do hardware interrupt moderation */
3077 error = EOPNOTSUPP;
3078 goto back;
3079 }
3080
3081 if (v != sc->re_imtype) {
3082 sc->re_imtype = v;
3083 if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3084 IFF_RUNNING)
3085 re_setup_intr(sc, 1, sc->re_imtype);
3086 }
3087back:
3088 lwkt_serialize_exit(ifp->if_serializer);
3089 return error;
3090}
3091
3092static void
3093re_setup_hw_im(struct re_softc *sc)
3094{
3095 KKASSERT(sc->re_caps & RE_C_HWIM);
3096
3097 /*
3098 * Interrupt moderation
3099 *
3100 * 0xABCD
3101 * A - unknown (maybe TX related)
3102 * B - TX timer (unit: 25us)
3103 * C - unknown (maybe RX related)
3104 * D - RX timer (unit: 25us)
3105 *
3106 *
3107 * re(4)'s interrupt moderation is actually controlled by
3108 * two variables, like most other NICs (bge, bce etc.)
3109 * o timer
3110 * o number of packets [P]
3111 *
3112 * The logic relationship between these two variables is
3113 * similar to other NICs too:
3114 * if (timer expire || packets > [P])
3115 * Interrupt is delivered
3116 *
3117 * Currently we only know how to set 'timer', but not
3118 * 'number of packets', which should be ~30, as far as I
3119 * tested (sink ~900Kpps, interrupt rate is 30KHz)
3120 */
3121 CSR_WRITE_2(sc, RE_IM,
3122 RE_IM_RXTIME(sc->re_rx_time) |
3123 RE_IM_TXTIME(sc->re_tx_time) |
3124 RE_IM_MAGIC);
3125}
3126
3127static void
3128re_disable_hw_im(struct re_softc *sc)
3129{
3130 if (sc->re_caps & RE_C_HWIM)
3131 CSR_WRITE_2(sc, RE_IM, 0);
3132}
3133
3134static void
3135re_setup_sim_im(struct re_softc *sc)
3136{
3137 if (!RE_IS_8139CP(sc)) {
3138 uint32_t ticks;
3139
3140 /*
3141 * Datasheet says tick decreases at bus speed,
3142 * but it seems the clock runs a little bit
3143 * faster, so we do some compensation here.
3144 */
3145 ticks = (sc->re_sim_time * sc->re_bus_speed * 8) / 5;
3146 CSR_WRITE_4(sc, RE_TIMERINT_8169, ticks);
3147 } else {
3148 CSR_WRITE_4(sc, RE_TIMERINT, 0x400); /* XXX */
3149 }
3150 CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
3151 sc->re_flags |= RE_F_TIMER_INTR;
3152}
3153
3154static void
3155re_disable_sim_im(struct re_softc *sc)
3156{
3157 if (!RE_IS_8139CP(sc))
3158 CSR_WRITE_4(sc, RE_TIMERINT_8169, 0);
3159 else
3160 CSR_WRITE_4(sc, RE_TIMERINT, 0);
3161 sc->re_flags &= ~RE_F_TIMER_INTR;
3162}
3163
3164static void
3165re_config_imtype(struct re_softc *sc, int imtype)
3166{
3167 switch (imtype) {
3168 case RE_IMTYPE_HW:
3169 KKASSERT(sc->re_caps & RE_C_HWIM);
3170 /* FALL THROUGH */
3171 case RE_IMTYPE_NONE:
3172 sc->re_intrs = RE_INTRS;
3173 sc->re_rx_ack = RE_ISR_RX_OK | RE_ISR_FIFO_OFLOW |
3174 RE_ISR_RX_OVERRUN;
3175 sc->re_tx_ack = RE_ISR_TX_OK;
3176 break;
3177
3178 case RE_IMTYPE_SIM:
3179 sc->re_intrs = RE_INTRS_TIMER;
3180 sc->re_rx_ack = RE_ISR_TIMEOUT_EXPIRED;
3181 sc->re_tx_ack = RE_ISR_TIMEOUT_EXPIRED;
3182 break;
3183
3184 default:
3185 panic("%s: unknown imtype %d",
3186 sc->arpcom.ac_if.if_xname, imtype);
3187 }
3188}
3189
3190static void
3191re_setup_intr(struct re_softc *sc, int enable_intrs, int imtype)
3192{
3193 re_config_imtype(sc, imtype);
3194
3195 if (enable_intrs)
3196 CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3197 else
3198 CSR_WRITE_2(sc, RE_IMR, 0);
3199
3200 switch (imtype) {
3201 case RE_IMTYPE_NONE:
3202 re_disable_sim_im(sc);
3203 re_disable_hw_im(sc);
3204 break;
3205
3206 case RE_IMTYPE_HW:
3207 KKASSERT(sc->re_caps & RE_C_HWIM);
3208 re_disable_sim_im(sc);
3209 re_setup_hw_im(sc);
3210 break;
3211
3212 case RE_IMTYPE_SIM:
3213 re_disable_hw_im(sc);
3214 re_setup_sim_im(sc);
3215 break;
3216
3217 default:
3218 panic("%s: unknown imtype %d",
3219 sc->arpcom.ac_if.if_xname, imtype);
3220 }
3221}
3222
3223static void
3224re_get_eaddr(struct re_softc *sc, uint8_t *eaddr)
3225{
3226 int i;
3227
3228 if (sc->re_macver == RE_MACVER_11 ||
3229 sc->re_macver == RE_MACVER_12 ||
3230 sc->re_macver == RE_MACVER_30 ||
3231 sc->re_macver == RE_MACVER_31) {
3232 uint16_t re_did;
3233
3234 re_get_eewidth(sc);
3235 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
3236 if (re_did == 0x8128) {
3237 uint16_t as[ETHER_ADDR_LEN / 2];
3238 int eaddr_off;
3239
3240 if (sc->re_macver == RE_MACVER_30 ||
3241 sc->re_macver == RE_MACVER_31)
3242 eaddr_off = RE_EE_EADDR1;
3243 else
3244 eaddr_off = RE_EE_EADDR0;
3245
3246 /*
3247 * Get station address from the EEPROM.
3248 */
3249 re_read_eeprom(sc, (caddr_t)as, eaddr_off, 3);
3250 for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
3251 as[i] = le16toh(as[i]);
3252 bcopy(as, eaddr, ETHER_ADDR_LEN);
3253 return;
3254 }
3255 }
3256
3257 /*
3258 * Get station address from IDRx.
3259 */
3260 for (i = 0; i < ETHER_ADDR_LEN; ++i)
3261 eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
3262}
3263
3264static int
3265re_jpool_alloc(struct re_softc *sc)
3266{
3267 struct re_list_data *ldata = &sc->re_ldata;
3268 struct re_jbuf *jbuf;
3269 bus_addr_t paddr;
3270 bus_size_t jpool_size;
3271 bus_dmamem_t dmem;
3272 caddr_t buf;
3273 int i, error;
3274
3275 lwkt_serialize_init(&ldata->re_jbuf_serializer);
3276
3277 ldata->re_jbuf = kmalloc(sizeof(struct re_jbuf) * RE_JBUF_COUNT(sc),
3278 M_DEVBUF, M_WAITOK | M_ZERO);
3279
3280 jpool_size = RE_JBUF_COUNT(sc) * RE_JBUF_SIZE;
3281
3282 error = bus_dmamem_coherent(sc->re_parent_tag,
3283 RE_RXBUF_ALIGN, 0,
3284 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3285 jpool_size, BUS_DMA_WAITOK, &dmem);
3286 if (error) {
3287 device_printf(sc->re_dev, "could not allocate jumbo memory\n");
3288 return error;
3289 }
3290 ldata->re_jpool_tag = dmem.dmem_tag;
3291 ldata->re_jpool_map = dmem.dmem_map;
3292 ldata->re_jpool = dmem.dmem_addr;
3293 paddr = dmem.dmem_busaddr;
3294
3295 /* ..and split it into 9KB chunks */
3296 SLIST_INIT(&ldata->re_jbuf_free);
3297
3298 buf = ldata->re_jpool;
3299 for (i = 0; i < RE_JBUF_COUNT(sc); i++) {
3300 jbuf = &ldata->re_jbuf[i];
3301
3302 jbuf->re_sc = sc;
3303 jbuf->re_inuse = 0;
3304 jbuf->re_slot = i;
3305 jbuf->re_buf = buf;
3306 jbuf->re_paddr = paddr;
3307
3308 SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3309
3310 buf += RE_JBUF_SIZE;
3311 paddr += RE_JBUF_SIZE;
3312 }
3313 return 0;
3314}
3315
3316static void
3317re_jpool_free(struct re_softc *sc)
3318{
3319 struct re_list_data *ldata = &sc->re_ldata;
3320
3321 if (ldata->re_jpool_tag != NULL) {
3322 bus_dmamap_unload(ldata->re_jpool_tag, ldata->re_jpool_map);
3323 bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3324 ldata->re_jpool_map);
3325 bus_dma_tag_destroy(ldata->re_jpool_tag);
3326 ldata->re_jpool_tag = NULL;
3327 }
3328
3329 if (ldata->re_jbuf != NULL) {
3330 kfree(ldata->re_jbuf, M_DEVBUF);
3331 ldata->re_jbuf = NULL;
3332 }
3333}
3334
3335static struct re_jbuf *
3336re_jbuf_alloc(struct re_softc *sc)
3337{
3338 struct re_list_data *ldata = &sc->re_ldata;
3339 struct re_jbuf *jbuf;
3340
3341 lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3342
3343 jbuf = SLIST_FIRST(&ldata->re_jbuf_free);
3344 if (jbuf != NULL) {
3345 SLIST_REMOVE_HEAD(&ldata->re_jbuf_free, re_link);
3346 jbuf->re_inuse = 1;
3347 }
3348
3349 lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3350
3351 return jbuf;
3352}
3353
3354static void
3355re_jbuf_free(void *arg)
3356{
3357 struct re_jbuf *jbuf = arg;
3358 struct re_softc *sc = jbuf->re_sc;
3359 struct re_list_data *ldata = &sc->re_ldata;
3360
3361 if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3362 panic("%s: free wrong jumbo buffer",
3363 sc->arpcom.ac_if.if_xname);
3364 } else if (jbuf->re_inuse == 0) {
3365 panic("%s: jumbo buffer already freed",
3366 sc->arpcom.ac_if.if_xname);
3367 }
3368
3369 lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3370 atomic_subtract_int(&jbuf->re_inuse, 1);
3371 if (jbuf->re_inuse == 0)
3372 SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3373 lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3374}
3375
3376static void
3377re_jbuf_ref(void *arg)
3378{
3379 struct re_jbuf *jbuf = arg;
3380 struct re_softc *sc = jbuf->re_sc;
3381 struct re_list_data *ldata = &sc->re_ldata;
3382
3383 if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3384 panic("%s: ref wrong jumbo buffer",
3385 sc->arpcom.ac_if.if_xname);
3386 } else if (jbuf->re_inuse == 0) {
3387 panic("%s: jumbo buffer already freed",
3388 sc->arpcom.ac_if.if_xname);
3389 }
3390 atomic_add_int(&jbuf->re_inuse, 1);
3391}