Remove bogus (void *) casts.
[dragonfly.git] / sys / dev / netif / tl / if_tl.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1997, 1998
3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: src/sys/pci/if_tl.c,v 1.51.2.5 2001/12/16 15:46:08 luigi Exp $
33 */
34
35/*
36 * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
37 * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
38 * the National Semiconductor DP83840A physical interface and the
39 * Microchip Technology 24Cxx series serial EEPROM.
40 *
41 * Written using the following four documents:
42 *
43 * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
44 * National Semiconductor DP83840A data sheet (www.national.com)
45 * Microchip Technology 24C02C data sheet (www.microchip.com)
46 * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
47 *
48 * Written by Bill Paul <wpaul@ctr.columbia.edu>
49 * Electrical Engineering Department
50 * Columbia University, New York City
51 */
52
53/*
54 * Some notes about the ThunderLAN:
55 *
56 * The ThunderLAN controller is a single chip containing PCI controller
57 * logic, approximately 3K of on-board SRAM, a LAN controller, and media
58 * independent interface (MII) bus. The MII allows the ThunderLAN chip to
59 * control up to 32 different physical interfaces (PHYs). The ThunderLAN
60 * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
61 * to act as a complete ethernet interface.
62 *
63 * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
64 * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
65 * in full or half duplex. Some of the Compaq Deskpro machines use a
66 * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
67 * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
68 * concert with the ThunderLAN's internal PHY to provide full 10/100
69 * support. This is cheaper than using a standalone external PHY for both
70 * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
71 * A serial EEPROM is also attached to the ThunderLAN chip to provide
72 * power-up default register settings and for storing the adapter's
73 * station address. Although not supported by this driver, the ThunderLAN
74 * chip can also be connected to token ring PHYs.
75 *
76 * The ThunderLAN has a set of registers which can be used to issue
77 * commands, acknowledge interrupts, and to manipulate other internal
78 * registers on its DIO bus. The primary registers can be accessed
79 * using either programmed I/O (inb/outb) or via PCI memory mapping,
80 * depending on how the card is configured during the PCI probing
81 * phase. It is even possible to have both PIO and memory mapped
82 * access turned on at the same time.
83 *
84 * Frame reception and transmission with the ThunderLAN chip is done
85 * using frame 'lists.' A list structure looks more or less like this:
86 *
87 * struct tl_frag {
88 * u_int32_t fragment_address;
89 * u_int32_t fragment_size;
90 * };
91 * struct tl_list {
92 * u_int32_t forward_pointer;
93 * u_int16_t cstat;
94 * u_int16_t frame_size;
95 * struct tl_frag fragments[10];
96 * };
97 *
98 * The forward pointer in the list header can be either a 0 or the address
99 * of another list, which allows several lists to be linked together. Each
100 * list contains up to 10 fragment descriptors. This means the chip allows
101 * ethernet frames to be broken up into up to 10 chunks for transfer to
102 * and from the SRAM. Note that the forward pointer and fragment buffer
103 * addresses are physical memory addresses, not virtual. Note also that
104 * a single ethernet frame can not span lists: if the host wants to
105 * transmit a frame and the frame data is split up over more than 10
106 * buffers, the frame has to collapsed before it can be transmitted.
107 *
108 * To receive frames, the driver sets up a number of lists and populates
109 * the fragment descriptors, then it sends an RX GO command to the chip.
110 * When a frame is received, the chip will DMA it into the memory regions
111 * specified by the fragment descriptors and then trigger an RX 'end of
112 * frame interrupt' when done. The driver may choose to use only one
113 * fragment per list; this may result is slighltly less efficient use
114 * of memory in exchange for improving performance.
115 *
116 * To transmit frames, the driver again sets up lists and fragment
117 * descriptors, only this time the buffers contain frame data that
118 * is to be DMA'ed into the chip instead of out of it. Once the chip
119 * has transfered the data into its on-board SRAM, it will trigger a
120 * TX 'end of frame' interrupt. It will also generate an 'end of channel'
121 * interrupt when it reaches the end of the list.
122 */
123
124/*
125 * Some notes about this driver:
126 *
127 * The ThunderLAN chip provides a couple of different ways to organize
128 * reception, transmission and interrupt handling. The simplest approach
129 * is to use one list each for transmission and reception. In this mode,
130 * the ThunderLAN will generate two interrupts for every received frame
131 * (one RX EOF and one RX EOC) and two for each transmitted frame (one
132 * TX EOF and one TX EOC). This may make the driver simpler but it hurts
133 * performance to have to handle so many interrupts.
134 *
135 * Initially I wanted to create a circular list of receive buffers so
136 * that the ThunderLAN chip would think there was an infinitely long
137 * receive channel and never deliver an RXEOC interrupt. However this
138 * doesn't work correctly under heavy load: while the manual says the
139 * chip will trigger an RXEOF interrupt each time a frame is copied into
140 * memory, you can't count on the chip waiting around for you to acknowledge
141 * the interrupt before it starts trying to DMA the next frame. The result
142 * is that the chip might traverse the entire circular list and then wrap
143 * around before you have a chance to do anything about it. Consequently,
144 * the receive list is terminated (with a 0 in the forward pointer in the
145 * last element). Each time an RXEOF interrupt arrives, the used list
146 * is shifted to the end of the list. This gives the appearance of an
147 * infinitely large RX chain so long as the driver doesn't fall behind
148 * the chip and allow all of the lists to be filled up.
149 *
150 * If all the lists are filled, the adapter will deliver an RX 'end of
151 * channel' interrupt when it hits the 0 forward pointer at the end of
152 * the chain. The RXEOC handler then cleans out the RX chain and resets
153 * the list head pointer in the ch_parm register and restarts the receiver.
154 *
155 * For frame transmission, it is possible to program the ThunderLAN's
156 * transmit interrupt threshold so that the chip can acknowledge multiple
157 * lists with only a single TX EOF interrupt. This allows the driver to
158 * queue several frames in one shot, and only have to handle a total
159 * two interrupts (one TX EOF and one TX EOC) no matter how many frames
160 * are transmitted. Frame transmission is done directly out of the
161 * mbufs passed to the tl_start() routine via the interface send queue.
162 * The driver simply sets up the fragment descriptors in the transmit
163 * lists to point to the mbuf data regions and sends a TX GO command.
164 *
165 * Note that since the RX and TX lists themselves are always used
166 * only by the driver, the are malloc()ed once at driver initialization
167 * time and never free()ed.
168 *
169 * Also, in order to remain as platform independent as possible, this
170 * driver uses memory mapped register access to manipulate the card
171 * as opposed to programmed I/O. This avoids the use of the inb/outb
172 * (and related) instructions which are specific to the i386 platform.
173 *
174 * Using these techniques, this driver achieves very high performance
175 * by minimizing the amount of interrupts generated during large
176 * transfers and by completely avoiding buffer copies. Frame transfer
177 * to and from the ThunderLAN chip is performed entirely by the chip
178 * itself thereby reducing the load on the host CPU.
179 */
180
181#include <sys/param.h>
182#include <sys/systm.h>
183#include <sys/sockio.h>
184#include <sys/mbuf.h>
185#include <sys/malloc.h>
186#include <sys/kernel.h>
187#include <sys/socket.h>
188#include <sys/serialize.h>
189#include <sys/bus.h>
190#include <sys/rman.h>
191#include <sys/thread2.h>
192#include <sys/interrupt.h>
193
194#include <net/if.h>
195#include <net/ifq_var.h>
196#include <net/if_arp.h>
197#include <net/ethernet.h>
198#include <net/if_dl.h>
199#include <net/if_media.h>
200
201#include <net/bpf.h>
202
203#include <vm/vm.h> /* for vtophys */
204#include <vm/pmap.h> /* for vtophys */
205
206#include "../mii_layer/mii.h"
207#include "../mii_layer/miivar.h"
208
209#include <bus/pci/pcireg.h>
210#include <bus/pci/pcivar.h>
211
212/*
213 * Default to using PIO register access mode to pacify certain
214 * laptop docking stations with built-in ThunderLAN chips that
215 * don't seem to handle memory mapped mode properly.
216 */
217#define TL_USEIOSPACE
218
219#include "if_tlreg.h"
220
221/* "controller miibus0" required. See GENERIC if you get errors here. */
222#include "miibus_if.h"
223
224/*
225 * Various supported device vendors/types and their names.
226 */
227
228static struct tl_type tl_devs[] = {
229 { TI_VENDORID, TI_DEVICEID_THUNDERLAN,
230 "Texas Instruments ThunderLAN" },
231 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
232 "Compaq Netelligent 10" },
233 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
234 "Compaq Netelligent 10/100" },
235 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
236 "Compaq Netelligent 10/100 Proliant" },
237 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
238 "Compaq Netelligent 10/100 Dual Port" },
239 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
240 "Compaq NetFlex-3/P Integrated" },
241 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
242 "Compaq NetFlex-3/P" },
243 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
244 "Compaq NetFlex 3/P w/ BNC" },
245 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
246 "Compaq Netelligent 10/100 TX Embedded UTP" },
247 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
248 "Compaq Netelligent 10 T/2 PCI UTP/Coax" },
249 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
250 "Compaq Netelligent 10/100 TX UTP" },
251 { OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
252 "Olicom OC-2183/2185" },
253 { OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
254 "Olicom OC-2325" },
255 { OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
256 "Olicom OC-2326 10/100 TX UTP" },
257 { 0, 0, NULL }
258};
259
260static int tl_probe (device_t);
261static int tl_attach (device_t);
262static int tl_detach (device_t);
263static int tl_intvec_rxeoc (void *, u_int32_t);
264static int tl_intvec_txeoc (void *, u_int32_t);
265static int tl_intvec_txeof (void *, u_int32_t);
266static int tl_intvec_rxeof (void *, u_int32_t);
267static int tl_intvec_adchk (void *, u_int32_t);
268static int tl_intvec_netsts (void *, u_int32_t);
269
270static int tl_newbuf (struct tl_softc *,
271 struct tl_chain_onefrag *);
272static void tl_stats_update (void *);
273static void tl_stats_update_serialized(void *);
274static int tl_encap (struct tl_softc *, struct tl_chain *,
275 struct mbuf *);
276
277static void tl_intr (void *);
278static void tl_start (struct ifnet *);
279static int tl_ioctl (struct ifnet *, u_long, caddr_t,
280 struct ucred *);
281static void tl_init (void *);
282static void tl_stop (struct tl_softc *);
283static void tl_watchdog (struct ifnet *);
284static void tl_shutdown (device_t);
285static int tl_ifmedia_upd (struct ifnet *);
286static void tl_ifmedia_sts (struct ifnet *, struct ifmediareq *);
287
288static u_int8_t tl_eeprom_putbyte (struct tl_softc *, int);
289static u_int8_t tl_eeprom_getbyte (struct tl_softc *,
290 int, u_int8_t *);
291static int tl_read_eeprom (struct tl_softc *, caddr_t, int, int);
292
293static void tl_mii_sync (struct tl_softc *);
294static void tl_mii_send (struct tl_softc *, u_int32_t, int);
295static int tl_mii_readreg (struct tl_softc *, struct tl_mii_frame *);
296static int tl_mii_writereg (struct tl_softc *, struct tl_mii_frame *);
297static int tl_miibus_readreg (device_t, int, int);
298static int tl_miibus_writereg (device_t, int, int, int);
299static void tl_miibus_statchg (device_t);
300
301static void tl_setmode (struct tl_softc *, int);
302static int tl_calchash (caddr_t);
303static void tl_setmulti (struct tl_softc *);
304static void tl_setfilt (struct tl_softc *, caddr_t, int);
305static void tl_softreset (struct tl_softc *, int);
306static void tl_hardreset (device_t);
307static int tl_list_rx_init (struct tl_softc *);
308static int tl_list_tx_init (struct tl_softc *);
309
310static u_int8_t tl_dio_read8 (struct tl_softc *, int);
311static u_int16_t tl_dio_read16 (struct tl_softc *, int);
312static u_int32_t tl_dio_read32 (struct tl_softc *, int);
313static void tl_dio_write8 (struct tl_softc *, int, int);
314static void tl_dio_write16 (struct tl_softc *, int, int);
315static void tl_dio_write32 (struct tl_softc *, int, int);
316static void tl_dio_setbit (struct tl_softc *, int, int);
317static void tl_dio_clrbit (struct tl_softc *, int, int);
318static void tl_dio_setbit16 (struct tl_softc *, int, int);
319static void tl_dio_clrbit16 (struct tl_softc *, int, int);
320
321#ifdef TL_USEIOSPACE
322#define TL_RES SYS_RES_IOPORT
323#define TL_RID TL_PCI_LOIO
324#else
325#define TL_RES SYS_RES_MEMORY
326#define TL_RID TL_PCI_LOMEM
327#endif
328
329static device_method_t tl_methods[] = {
330 /* Device interface */
331 DEVMETHOD(device_probe, tl_probe),
332 DEVMETHOD(device_attach, tl_attach),
333 DEVMETHOD(device_detach, tl_detach),
334 DEVMETHOD(device_shutdown, tl_shutdown),
335
336 /* bus interface */
337 DEVMETHOD(bus_print_child, bus_generic_print_child),
338 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
339
340 /* MII interface */
341 DEVMETHOD(miibus_readreg, tl_miibus_readreg),
342 DEVMETHOD(miibus_writereg, tl_miibus_writereg),
343 DEVMETHOD(miibus_statchg, tl_miibus_statchg),
344
345 { 0, 0 }
346};
347
348static driver_t tl_driver = {
349 "tl",
350 tl_methods,
351 sizeof(struct tl_softc)
352};
353
354static devclass_t tl_devclass;
355
356DECLARE_DUMMY_MODULE(if_tl);
357DRIVER_MODULE(if_tl, pci, tl_driver, tl_devclass, NULL, NULL);
358DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, NULL, NULL);
359
360static u_int8_t
361tl_dio_read8(struct tl_softc *sc, int reg)
362{
363 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
364 return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
365}
366
367static u_int16_t
368tl_dio_read16(struct tl_softc *sc, int reg)
369{
370 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
371 return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
372}
373
374static u_int32_t
375tl_dio_read32(struct tl_softc *sc, int reg)
376{
377 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
378 return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
379}
380
381static void
382tl_dio_write8(struct tl_softc *sc, int reg, int val)
383{
384 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
385 CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
386 return;
387}
388
389static void
390tl_dio_write16(struct tl_softc *sc, int reg, int val)
391{
392 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
393 CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
394 return;
395}
396
397static void
398tl_dio_write32(struct tl_softc *sc, int reg, int val)
399{
400 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
401 CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
402 return;
403}
404
405static void
406tl_dio_setbit(struct tl_softc *sc, int reg, int bit)
407{
408 u_int8_t f;
409
410 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
411 f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
412 f |= bit;
413 CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
414
415 return;
416}
417
418static void
419tl_dio_clrbit(struct tl_softc *sc, int reg, int bit)
420{
421 u_int8_t f;
422
423 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
424 f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
425 f &= ~bit;
426 CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
427
428 return;
429}
430
431static void
432tl_dio_setbit16(struct tl_softc *sc, int reg, int bit)
433{
434 u_int16_t f;
435
436 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
437 f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
438 f |= bit;
439 CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
440
441 return;
442}
443
444static void
445tl_dio_clrbit16(struct tl_softc *sc, int reg, int bit)
446{
447 u_int16_t f;
448
449 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
450 f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
451 f &= ~bit;
452 CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
453
454 return;
455}
456
457/*
458 * Send an instruction or address to the EEPROM, check for ACK.
459 */
460static u_int8_t
461tl_eeprom_putbyte(struct tl_softc *sc, int byte)
462{
463 int i, ack = 0;
464
465 /*
466 * Make sure we're in TX mode.
467 */
468 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
469
470 /*
471 * Feed in each bit and stobe the clock.
472 */
473 for (i = 0x80; i; i >>= 1) {
474 if (byte & i) {
475 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
476 } else {
477 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
478 }
479 DELAY(1);
480 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
481 DELAY(1);
482 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
483 }
484
485 /*
486 * Turn off TX mode.
487 */
488 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
489
490 /*
491 * Check for ack.
492 */
493 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
494 ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
495 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
496
497 return(ack);
498}
499
500/*
501 * Read a byte of data stored in the EEPROM at address 'addr.'
502 */
503static u_int8_t
504tl_eeprom_getbyte(struct tl_softc *sc, int addr, u_int8_t *dest)
505{
506 int i;
507 u_int8_t byte = 0;
508
509 tl_dio_write8(sc, TL_NETSIO, 0);
510
511 EEPROM_START;
512
513 /*
514 * Send write control code to EEPROM.
515 */
516 if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
517 if_printf(&sc->arpcom.ac_if, "failed to send write command, "
518 "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
519 return(1);
520 }
521
522 /*
523 * Send address of byte we want to read.
524 */
525 if (tl_eeprom_putbyte(sc, addr)) {
526 if_printf(&sc->arpcom.ac_if, "failed to send address, "
527 "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
528 return(1);
529 }
530
531 EEPROM_STOP;
532 EEPROM_START;
533 /*
534 * Send read control code to EEPROM.
535 */
536 if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
537 if_printf(&sc->arpcom.ac_if, "failed to send write command, "
538 "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
539 return(1);
540 }
541
542 /*
543 * Start reading bits from EEPROM.
544 */
545 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
546 for (i = 0x80; i; i >>= 1) {
547 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
548 DELAY(1);
549 if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
550 byte |= i;
551 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
552 DELAY(1);
553 }
554
555 EEPROM_STOP;
556
557 /*
558 * No ACK generated for read, so just return byte.
559 */
560
561 *dest = byte;
562
563 return(0);
564}
565
566/*
567 * Read a sequence of bytes from the EEPROM.
568 */
569static int
570tl_read_eeprom(struct tl_softc *sc, caddr_t dest, int off, int cnt)
571{
572 int err = 0, i;
573 u_int8_t byte = 0;
574
575 for (i = 0; i < cnt; i++) {
576 err = tl_eeprom_getbyte(sc, off + i, &byte);
577 if (err)
578 break;
579 *(dest + i) = byte;
580 }
581
582 return(err ? 1 : 0);
583}
584
585static void
586tl_mii_sync(struct tl_softc *sc)
587{
588 int i;
589
590 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
591
592 for (i = 0; i < 32; i++) {
593 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
594 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
595 }
596
597 return;
598}
599
600static void
601tl_mii_send(struct tl_softc *sc, u_int32_t bits, int cnt)
602{
603 int i;
604
605 for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
606 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
607 if (bits & i) {
608 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
609 } else {
610 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
611 }
612 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
613 }
614}
615
616static int
617tl_mii_readreg(struct tl_softc *sc, struct tl_mii_frame *frame)
618{
619 int i, ack;
620 int minten = 0;
621
622 tl_mii_sync(sc);
623
624 /*
625 * Set up frame for RX.
626 */
627 frame->mii_stdelim = TL_MII_STARTDELIM;
628 frame->mii_opcode = TL_MII_READOP;
629 frame->mii_turnaround = 0;
630 frame->mii_data = 0;
631
632 /*
633 * Turn off MII interrupt by forcing MINTEN low.
634 */
635 minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
636 if (minten) {
637 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
638 }
639
640 /*
641 * Turn on data xmit.
642 */
643 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
644
645 /*
646 * Send command/address info.
647 */
648 tl_mii_send(sc, frame->mii_stdelim, 2);
649 tl_mii_send(sc, frame->mii_opcode, 2);
650 tl_mii_send(sc, frame->mii_phyaddr, 5);
651 tl_mii_send(sc, frame->mii_regaddr, 5);
652
653 /*
654 * Turn off xmit.
655 */
656 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
657
658 /* Idle bit */
659 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
660 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
661
662 /* Check for ack */
663 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
664 ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
665
666 /* Complete the cycle */
667 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
668
669 /*
670 * Now try reading data bits. If the ack failed, we still
671 * need to clock through 16 cycles to keep the PHYs in sync.
672 */
673 if (ack) {
674 for(i = 0; i < 16; i++) {
675 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
676 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
677 }
678 goto fail;
679 }
680
681 for (i = 0x8000; i; i >>= 1) {
682 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
683 if (!ack) {
684 if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
685 frame->mii_data |= i;
686 }
687 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
688 }
689
690fail:
691
692 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
693 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
694
695 /* Reenable interrupts */
696 if (minten) {
697 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
698 }
699
700 if (ack)
701 return(1);
702 return(0);
703}
704
705static int
706tl_mii_writereg(struct tl_softc *sc, struct tl_mii_frame *frame)
707{
708 int minten;
709
710 tl_mii_sync(sc);
711
712 /*
713 * Set up frame for TX.
714 */
715
716 frame->mii_stdelim = TL_MII_STARTDELIM;
717 frame->mii_opcode = TL_MII_WRITEOP;
718 frame->mii_turnaround = TL_MII_TURNAROUND;
719
720 /*
721 * Turn off MII interrupt by forcing MINTEN low.
722 */
723 minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
724 if (minten) {
725 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
726 }
727
728 /*
729 * Turn on data output.
730 */
731 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
732
733 tl_mii_send(sc, frame->mii_stdelim, 2);
734 tl_mii_send(sc, frame->mii_opcode, 2);
735 tl_mii_send(sc, frame->mii_phyaddr, 5);
736 tl_mii_send(sc, frame->mii_regaddr, 5);
737 tl_mii_send(sc, frame->mii_turnaround, 2);
738 tl_mii_send(sc, frame->mii_data, 16);
739
740 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
741 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
742
743 /*
744 * Turn off xmit.
745 */
746 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
747
748 /* Reenable interrupts */
749 if (minten)
750 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
751
752 return(0);
753}
754
755static int
756tl_miibus_readreg(device_t dev, int phy, int reg)
757{
758 struct tl_softc *sc;
759 struct tl_mii_frame frame;
760
761 sc = device_get_softc(dev);
762 bzero((char *)&frame, sizeof(frame));
763
764 frame.mii_phyaddr = phy;
765 frame.mii_regaddr = reg;
766 tl_mii_readreg(sc, &frame);
767
768 return(frame.mii_data);
769}
770
771static int
772tl_miibus_writereg(device_t dev, int phy, int reg, int data)
773{
774 struct tl_softc *sc;
775 struct tl_mii_frame frame;
776
777 sc = device_get_softc(dev);
778 bzero((char *)&frame, sizeof(frame));
779
780 frame.mii_phyaddr = phy;
781 frame.mii_regaddr = reg;
782 frame.mii_data = data;
783
784 tl_mii_writereg(sc, &frame);
785
786 return(0);
787}
788
789static void
790tl_miibus_statchg(device_t dev)
791{
792 struct tl_softc *sc;
793 struct mii_data *mii;
794
795 sc = device_get_softc(dev);
796 mii = device_get_softc(sc->tl_miibus);
797
798 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
799 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
800 } else {
801 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
802 }
803
804 return;
805}
806
807/*
808 * Set modes for bitrate devices.
809 */
810static void
811tl_setmode(struct tl_softc *sc, int media)
812{
813 if (IFM_SUBTYPE(media) == IFM_10_5)
814 tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
815 if (IFM_SUBTYPE(media) == IFM_10_T) {
816 tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
817 if ((media & IFM_GMASK) == IFM_FDX) {
818 tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
819 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
820 } else {
821 tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
822 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
823 }
824 }
825
826 return;
827}
828
829/*
830 * Calculate the hash of a MAC address for programming the multicast hash
831 * table. This hash is simply the address split into 6-bit chunks
832 * XOR'd, e.g.
833 * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
834 * bit: 765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
835 * Bytes 0-2 and 3-5 are symmetrical, so are folded together. Then
836 * the folded 24-bit value is split into 6-bit portions and XOR'd.
837 */
838static int
839tl_calchash(caddr_t addr)
840{
841 int t;
842
843 t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
844 (addr[2] ^ addr[5]);
845 return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
846}
847
848/*
849 * The ThunderLAN has a perfect MAC address filter in addition to
850 * the multicast hash filter. The perfect filter can be programmed
851 * with up to four MAC addresses. The first one is always used to
852 * hold the station address, which leaves us free to use the other
853 * three for multicast addresses.
854 */
855static void
856tl_setfilt(struct tl_softc *sc, caddr_t addr, int slot)
857{
858 int i;
859 u_int16_t regaddr;
860
861 regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
862
863 for (i = 0; i < ETHER_ADDR_LEN; i++)
864 tl_dio_write8(sc, regaddr + i, *(addr + i));
865
866 return;
867}
868
869/*
870 * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
871 * linked list. This is fine, except addresses are added from the head
872 * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
873 * group to always be in the perfect filter, but as more groups are added,
874 * the 224.0.0.1 entry (which is always added first) gets pushed down
875 * the list and ends up at the tail. So after 3 or 4 multicast groups
876 * are added, the all-hosts entry gets pushed out of the perfect filter
877 * and into the hash table.
878 *
879 * Because the multicast list is a doubly-linked list as opposed to a
880 * circular queue, we don't have the ability to just grab the tail of
881 * the list and traverse it backwards. Instead, we have to traverse
882 * the list once to find the tail, then traverse it again backwards to
883 * update the multicast filter.
884 */
885static void
886tl_setmulti(struct tl_softc *sc)
887{
888 struct ifnet *ifp;
889 u_int32_t hashes[2] = { 0, 0 };
890 int h, i;
891 struct ifmultiaddr *ifma;
892 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
893 ifp = &sc->arpcom.ac_if;
894
895 /* First, zot all the existing filters. */
896 for (i = 1; i < 4; i++)
897 tl_setfilt(sc, (caddr_t)&dummy, i);
898 tl_dio_write32(sc, TL_HASH1, 0);
899 tl_dio_write32(sc, TL_HASH2, 0);
900
901 /* Now program new ones. */
902 if (ifp->if_flags & IFF_ALLMULTI) {
903 hashes[0] = 0xFFFFFFFF;
904 hashes[1] = 0xFFFFFFFF;
905 } else {
906 i = 1;
907 TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
908 if (ifma->ifma_addr->sa_family != AF_LINK)
909 continue;
910 /*
911 * Program the first three multicast groups
912 * into the perfect filter. For all others,
913 * use the hash table.
914 */
915 if (i < 4) {
916 tl_setfilt(sc,
917 LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
918 i++;
919 continue;
920 }
921
922 h = tl_calchash(
923 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
924 if (h < 32)
925 hashes[0] |= (1 << h);
926 else
927 hashes[1] |= (1 << (h - 32));
928 }
929 }
930
931 tl_dio_write32(sc, TL_HASH1, hashes[0]);
932 tl_dio_write32(sc, TL_HASH2, hashes[1]);
933
934 return;
935}
936
937/*
938 * This routine is recommended by the ThunderLAN manual to insure that
939 * the internal PHY is powered up correctly. It also recommends a one
940 * second pause at the end to 'wait for the clocks to start' but in my
941 * experience this isn't necessary.
942 */
943static void
944tl_hardreset(device_t dev)
945{
946 struct tl_softc *sc;
947 int i;
948 u_int16_t flags;
949
950 sc = device_get_softc(dev);
951
952 tl_mii_sync(sc);
953
954 flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
955
956 for (i = 0; i < MII_NPHY; i++)
957 tl_miibus_writereg(dev, i, MII_BMCR, flags);
958
959 tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
960 DELAY(50000);
961 tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
962 tl_mii_sync(sc);
963 while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
964
965 DELAY(50000);
966 return;
967}
968
969static void
970tl_softreset(struct tl_softc *sc, int internal)
971{
972 u_int32_t cmd, dummy, i;
973
974 /* Assert the adapter reset bit. */
975 CMD_SET(sc, TL_CMD_ADRST);
976
977 /* Turn off interrupts */
978 CMD_SET(sc, TL_CMD_INTSOFF);
979
980 /* First, clear the stats registers. */
981 for (i = 0; i < 5; i++)
982 dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
983
984 /* Clear Areg and Hash registers */
985 for (i = 0; i < 8; i++)
986 tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
987
988 /*
989 * Set up Netconfig register. Enable one channel and
990 * one fragment mode.
991 */
992 tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
993 if (internal && !sc->tl_bitrate) {
994 tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
995 } else {
996 tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
997 }
998
999 /* Handle cards with bitrate devices. */
1000 if (sc->tl_bitrate)
1001 tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
1002
1003 /*
1004 * Load adapter irq pacing timer and tx threshold.
1005 * We make the transmit threshold 1 initially but we may
1006 * change that later.
1007 */
1008 cmd = CSR_READ_4(sc, TL_HOSTCMD);
1009 cmd |= TL_CMD_NES;
1010 cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
1011 CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
1012 CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
1013
1014 /* Unreset the MII */
1015 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
1016
1017 /* Take the adapter out of reset */
1018 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
1019
1020 /* Wait for things to settle down a little. */
1021 DELAY(500);
1022
1023 return;
1024}
1025
1026/*
1027 * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
1028 * against our list and return its name if we find a match.
1029 */
1030static int
1031tl_probe(device_t dev)
1032{
1033 struct tl_type *t;
1034
1035 t = tl_devs;
1036
1037 while(t->tl_name != NULL) {
1038 if ((pci_get_vendor(dev) == t->tl_vid) &&
1039 (pci_get_device(dev) == t->tl_did)) {
1040 device_set_desc(dev, t->tl_name);
1041 return(0);
1042 }
1043 t++;
1044 }
1045
1046 return(ENXIO);
1047}
1048
1049static int
1050tl_attach(device_t dev)
1051{
1052 int i;
1053 u_int16_t did, vid;
1054 struct tl_type *t;
1055 struct ifnet *ifp;
1056 struct tl_softc *sc;
1057 int error = 0, rid;
1058 uint8_t eaddr[ETHER_ADDR_LEN];
1059
1060 vid = pci_get_vendor(dev);
1061 did = pci_get_device(dev);
1062 sc = device_get_softc(dev);
1063
1064 t = tl_devs;
1065 while(t->tl_name != NULL) {
1066 if (vid == t->tl_vid && did == t->tl_did)
1067 break;
1068 t++;
1069 }
1070
1071 KKASSERT(t->tl_name != NULL);
1072
1073 pci_enable_busmaster(dev);
1074
1075#ifdef TL_USEIOSPACE
1076 rid = TL_PCI_LOIO;
1077 sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1078 RF_ACTIVE);
1079
1080 /*
1081 * Some cards have the I/O and memory mapped address registers
1082 * reversed. Try both combinations before giving up.
1083 */
1084 if (sc->tl_res == NULL) {
1085 rid = TL_PCI_LOMEM;
1086 sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1087 RF_ACTIVE);
1088 }
1089#else
1090 rid = TL_PCI_LOMEM;
1091 sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1092 RF_ACTIVE);
1093 if (sc->tl_res == NULL) {
1094 rid = TL_PCI_LOIO;
1095 sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1096 RF_ACTIVE);
1097 }
1098#endif
1099
1100 if (sc->tl_res == NULL) {
1101 device_printf(dev, "couldn't map ports/memory\n");
1102 error = ENXIO;
1103 return(error);
1104 }
1105
1106 sc->tl_btag = rman_get_bustag(sc->tl_res);
1107 sc->tl_bhandle = rman_get_bushandle(sc->tl_res);
1108
1109#ifdef notdef
1110 /*
1111 * The ThunderLAN manual suggests jacking the PCI latency
1112 * timer all the way up to its maximum value. I'm not sure
1113 * if this is really necessary, but what the manual wants,
1114 * the manual gets.
1115 */
1116 command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
1117 command |= 0x0000FF00;
1118 pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
1119#endif
1120
1121 /* Allocate interrupt */
1122 rid = 0;
1123 sc->tl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1124 RF_SHAREABLE | RF_ACTIVE);
1125
1126 if (sc->tl_irq == NULL) {
1127 device_printf(dev, "couldn't map interrupt\n");
1128 error = ENXIO;
1129 goto fail;
1130 }
1131
1132 /*
1133 * Now allocate memory for the TX and RX lists.
1134 */
1135 sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
1136 M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
1137
1138 if (sc->tl_ldata == NULL) {
1139 device_printf(dev, "no memory for list buffers!\n");
1140 error = ENXIO;
1141 goto fail;
1142 }
1143
1144 sc->tl_dinfo = t;
1145 if (t->tl_vid == COMPAQ_VENDORID || t->tl_vid == TI_VENDORID)
1146 sc->tl_eeaddr = TL_EEPROM_EADDR;
1147 if (t->tl_vid == OLICOM_VENDORID)
1148 sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
1149
1150 /* Reset the adapter. */
1151 tl_softreset(sc, 1);
1152 tl_hardreset(dev);
1153 tl_softreset(sc, 1);
1154
1155 ifp = &sc->arpcom.ac_if;
1156 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1157
1158 /*
1159 * Get station address from the EEPROM.
1160 */
1161 if (tl_read_eeprom(sc, eaddr, sc->tl_eeaddr, ETHER_ADDR_LEN)) {
1162 device_printf(dev, "failed to read station address\n");
1163 error = ENXIO;
1164 goto fail;
1165 }
1166
1167 /*
1168 * XXX Olicom, in its desire to be different from the
1169 * rest of the world, has done strange things with the
1170 * encoding of the station address in the EEPROM. First
1171 * of all, they store the address at offset 0xF8 rather
1172 * than at 0x83 like the ThunderLAN manual suggests.
1173 * Second, they store the address in three 16-bit words in
1174 * network byte order, as opposed to storing it sequentially
1175 * like all the other ThunderLAN cards. In order to get
1176 * the station address in a form that matches what the Olicom
1177 * diagnostic utility specifies, we have to byte-swap each
1178 * word. To make things even more confusing, neither 00:00:28
1179 * nor 00:00:24 appear in the IEEE OUI database.
1180 */
1181 if (sc->tl_dinfo->tl_vid == OLICOM_VENDORID) {
1182 for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1183 u_int16_t *p;
1184 p = (u_int16_t *)&eaddr[i];
1185 *p = ntohs(*p);
1186 }
1187 }
1188
1189 ifp->if_softc = sc;
1190 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1191 ifp->if_ioctl = tl_ioctl;
1192 ifp->if_start = tl_start;
1193 ifp->if_watchdog = tl_watchdog;
1194 ifp->if_init = tl_init;
1195 ifp->if_mtu = ETHERMTU;
1196 ifq_set_maxlen(&ifp->if_snd, TL_TX_LIST_CNT - 1);
1197 ifq_set_ready(&ifp->if_snd);
1198 callout_init(&sc->tl_stat_timer);
1199
1200 /* Reset the adapter again. */
1201 tl_softreset(sc, 1);
1202 tl_hardreset(dev);
1203 tl_softreset(sc, 1);
1204
1205 /*
1206 * Do MII setup. If no PHYs are found, then this is a
1207 * bitrate ThunderLAN chip that only supports 10baseT
1208 * and AUI/BNC.
1209 */
1210 if (mii_phy_probe(dev, &sc->tl_miibus,
1211 tl_ifmedia_upd, tl_ifmedia_sts)) {
1212 struct ifmedia *ifm;
1213 sc->tl_bitrate = 1;
1214 ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
1215 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1216 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
1217 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1218 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
1219 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
1220 /* Reset again, this time setting bitrate mode. */
1221 tl_softreset(sc, 1);
1222 ifm = &sc->ifmedia;
1223 ifm->ifm_media = ifm->ifm_cur->ifm_media;
1224 tl_ifmedia_upd(ifp);
1225 }
1226
1227 /*
1228 * Call MI attach routine.
1229 */
1230 ether_ifattach(ifp, eaddr, NULL);
1231
1232 error = bus_setup_intr(dev, sc->tl_irq, INTR_MPSAFE,
1233 tl_intr, sc, &sc->tl_intrhand,
1234 ifp->if_serializer);
1235
1236 if (error) {
1237 ether_ifdetach(ifp);
1238 device_printf(dev, "couldn't set up irq\n");
1239 goto fail;
1240 }
1241
1242 ifp->if_cpuid = rman_get_cpuid(sc->tl_irq);
1243 KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1244
1245 return(0);
1246
1247fail:
1248 tl_detach(dev);
1249 return(error);
1250}
1251
1252static int
1253tl_detach(device_t dev)
1254{
1255 struct tl_softc *sc = device_get_softc(dev);
1256 struct ifnet *ifp = &sc->arpcom.ac_if;
1257
1258 if (device_is_attached(dev)) {
1259 lwkt_serialize_enter(ifp->if_serializer);
1260 tl_stop(sc);
1261 bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1262 lwkt_serialize_exit(ifp->if_serializer);
1263
1264 ether_ifdetach(ifp);
1265 }
1266
1267 if (sc->tl_miibus)
1268 device_delete_child(dev, sc->tl_miibus);
1269 bus_generic_detach(dev);
1270
1271 if (sc->tl_ldata)
1272 contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
1273 if (sc->tl_bitrate)
1274 ifmedia_removeall(&sc->ifmedia);
1275 if (sc->tl_irq)
1276 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1277 if (sc->tl_res)
1278 bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1279
1280 return(0);
1281}
1282
1283/*
1284 * Initialize the transmit lists.
1285 */
1286static int
1287tl_list_tx_init(struct tl_softc *sc)
1288{
1289 struct tl_chain_data *cd;
1290 struct tl_list_data *ld;
1291 int i;
1292
1293 cd = &sc->tl_cdata;
1294 ld = sc->tl_ldata;
1295 for (i = 0; i < TL_TX_LIST_CNT; i++) {
1296 cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
1297 if (i == (TL_TX_LIST_CNT - 1))
1298 cd->tl_tx_chain[i].tl_next = NULL;
1299 else
1300 cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
1301 }
1302
1303 cd->tl_tx_free = &cd->tl_tx_chain[0];
1304 cd->tl_tx_tail = cd->tl_tx_head = NULL;
1305 sc->tl_txeoc = 1;
1306
1307 return(0);
1308}
1309
1310/*
1311 * Initialize the RX lists and allocate mbufs for them.
1312 */
1313static int
1314tl_list_rx_init(struct tl_softc *sc)
1315{
1316 struct tl_chain_data *cd;
1317 struct tl_list_data *ld;
1318 int i;
1319
1320 cd = &sc->tl_cdata;
1321 ld = sc->tl_ldata;
1322
1323 for (i = 0; i < TL_RX_LIST_CNT; i++) {
1324 cd->tl_rx_chain[i].tl_ptr =
1325 (struct tl_list_onefrag *)&ld->tl_rx_list[i];
1326 if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
1327 return(ENOBUFS);
1328 if (i == (TL_RX_LIST_CNT - 1)) {
1329 cd->tl_rx_chain[i].tl_next = NULL;
1330 ld->tl_rx_list[i].tlist_fptr = 0;
1331 } else {
1332 cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
1333 ld->tl_rx_list[i].tlist_fptr =
1334 vtophys(&ld->tl_rx_list[i + 1]);
1335 }
1336 }
1337
1338 cd->tl_rx_head = &cd->tl_rx_chain[0];
1339 cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1340
1341 return(0);
1342}
1343
1344static int
1345tl_newbuf(struct tl_softc *sc, struct tl_chain_onefrag *c)
1346{
1347 struct mbuf *m_new;
1348
1349 m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1350 if (m_new == NULL)
1351 return (ENOBUFS);
1352
1353 c->tl_mbuf = m_new;
1354 c->tl_next = NULL;
1355 c->tl_ptr->tlist_frsize = MCLBYTES;
1356 c->tl_ptr->tlist_fptr = 0;
1357 c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
1358 c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1359 c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1360
1361 return(0);
1362}
1363
1364/*
1365 * Interrupt handler for RX 'end of frame' condition (EOF). This
1366 * tells us that a full ethernet frame has been captured and we need
1367 * to handle it.
1368 *
1369 * Reception is done using 'lists' which consist of a header and a
1370 * series of 10 data count/data address pairs that point to buffers.
1371 * Initially you're supposed to create a list, populate it with pointers
1372 * to buffers, then load the physical address of the list into the
1373 * ch_parm register. The adapter is then supposed to DMA the received
1374 * frame into the buffers for you.
1375 *
1376 * To make things as fast as possible, we have the chip DMA directly
1377 * into mbufs. This saves us from having to do a buffer copy: we can
1378 * just hand the mbufs directly to ether_input(). Once the frame has
1379 * been sent on its way, the 'list' structure is assigned a new buffer
1380 * and moved to the end of the RX chain. As long we we stay ahead of
1381 * the chip, it will always think it has an endless receive channel.
1382 *
1383 * If we happen to fall behind and the chip manages to fill up all of
1384 * the buffers, it will generate an end of channel interrupt and wait
1385 * for us to empty the chain and restart the receiver.
1386 */
1387static int
1388tl_intvec_rxeof(void *xsc, u_int32_t type)
1389{
1390 struct tl_softc *sc;
1391 int r = 0, total_len = 0;
1392 struct ether_header *eh;
1393 struct mbuf *m;
1394 struct ifnet *ifp;
1395 struct tl_chain_onefrag *cur_rx;
1396
1397 sc = xsc;
1398 ifp = &sc->arpcom.ac_if;
1399
1400 while(sc->tl_cdata.tl_rx_head != NULL) {
1401 cur_rx = sc->tl_cdata.tl_rx_head;
1402 if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1403 break;
1404 r++;
1405 sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
1406 m = cur_rx->tl_mbuf;
1407 total_len = cur_rx->tl_ptr->tlist_frsize;
1408
1409 if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
1410 ifp->if_ierrors++;
1411 cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
1412 cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1413 cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1414 continue;
1415 }
1416
1417 sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
1418 vtophys(cur_rx->tl_ptr);
1419 sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
1420 sc->tl_cdata.tl_rx_tail = cur_rx;
1421
1422 eh = mtod(m, struct ether_header *);
1423 m->m_pkthdr.rcvif = ifp;
1424 m->m_pkthdr.len = m->m_len = total_len;
1425
1426 /*
1427 * Note: when the ThunderLAN chip is in 'capture all
1428 * frames' mode, it will receive its own transmissions.
1429 * We drop don't need to process our own transmissions,
1430 * so we drop them here and continue.
1431 */
1432 /*if (ifp->if_flags & IFF_PROMISC && */
1433 if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr,
1434 ETHER_ADDR_LEN)) {
1435 m_freem(m);
1436 continue;
1437 }
1438
1439 ifp->if_input(ifp, m);
1440 }
1441
1442 return(r);
1443}
1444
1445/*
1446 * The RX-EOC condition hits when the ch_parm address hasn't been
1447 * initialized or the adapter reached a list with a forward pointer
1448 * of 0 (which indicates the end of the chain). In our case, this means
1449 * the card has hit the end of the receive buffer chain and we need to
1450 * empty out the buffers and shift the pointer back to the beginning again.
1451 */
1452static int
1453tl_intvec_rxeoc(void *xsc, u_int32_t type)
1454{
1455 struct tl_softc *sc;
1456 int r;
1457 struct tl_chain_data *cd;
1458
1459
1460 sc = xsc;
1461 cd = &sc->tl_cdata;
1462
1463 /* Flush out the receive queue and ack RXEOF interrupts. */
1464 r = tl_intvec_rxeof(xsc, type);
1465 CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
1466 r = 1;
1467 cd->tl_rx_head = &cd->tl_rx_chain[0];
1468 cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1469 CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
1470 r |= (TL_CMD_GO|TL_CMD_RT);
1471 return(r);
1472}
1473
1474static int
1475tl_intvec_txeof(void *xsc, u_int32_t type)
1476{
1477 struct tl_softc *sc;
1478 int r = 0;
1479 struct tl_chain *cur_tx;
1480
1481 sc = xsc;
1482
1483 /*
1484 * Go through our tx list and free mbufs for those
1485 * frames that have been sent.
1486 */
1487 while (sc->tl_cdata.tl_tx_head != NULL) {
1488 cur_tx = sc->tl_cdata.tl_tx_head;
1489 if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1490 break;
1491 sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
1492
1493 r++;
1494 m_freem(cur_tx->tl_mbuf);
1495 cur_tx->tl_mbuf = NULL;
1496
1497 cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
1498 sc->tl_cdata.tl_tx_free = cur_tx;
1499 if (!cur_tx->tl_ptr->tlist_fptr)
1500 break;
1501 }
1502
1503 return(r);
1504}
1505
1506/*
1507 * The transmit end of channel interrupt. The adapter triggers this
1508 * interrupt to tell us it hit the end of the current transmit list.
1509 *
1510 * A note about this: it's possible for a condition to arise where
1511 * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
1512 * You have to avoid this since the chip expects things to go in a
1513 * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
1514 * When the TXEOF handler is called, it will free all of the transmitted
1515 * frames and reset the tx_head pointer to NULL. However, a TXEOC
1516 * interrupt should be received and acknowledged before any more frames
1517 * are queued for transmission. If tl_statrt() is called after TXEOF
1518 * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
1519 * it could attempt to issue a transmit command prematurely.
1520 *
1521 * To guard against this, tl_start() will only issue transmit commands
1522 * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
1523 * can set this flag once tl_start() has cleared it.
1524 */
1525static int
1526tl_intvec_txeoc(void *xsc, u_int32_t type)
1527{
1528 struct tl_softc *sc;
1529 struct ifnet *ifp;
1530 u_int32_t cmd;
1531
1532 sc = xsc;
1533 ifp = &sc->arpcom.ac_if;
1534
1535 /* Clear the timeout timer. */
1536 ifp->if_timer = 0;
1537
1538 if (sc->tl_cdata.tl_tx_head == NULL) {
1539 ifp->if_flags &= ~IFF_OACTIVE;
1540 sc->tl_cdata.tl_tx_tail = NULL;
1541 sc->tl_txeoc = 1;
1542 } else {
1543 sc->tl_txeoc = 0;
1544 /* First we have to ack the EOC interrupt. */
1545 CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
1546 /* Then load the address of the next TX list. */
1547 CSR_WRITE_4(sc, TL_CH_PARM,
1548 vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
1549 /* Restart TX channel. */
1550 cmd = CSR_READ_4(sc, TL_HOSTCMD);
1551 cmd &= ~TL_CMD_RT;
1552 cmd |= TL_CMD_GO|TL_CMD_INTSON;
1553 CMD_PUT(sc, cmd);
1554 return(0);
1555 }
1556
1557 return(1);
1558}
1559
1560static int
1561tl_intvec_adchk(void *xsc, u_int32_t type)
1562{
1563 struct tl_softc *sc;
1564
1565 sc = xsc;
1566
1567 if (type) {
1568 if_printf(&sc->arpcom.ac_if, "adapter check: %x\n",
1569 (unsigned int)CSR_READ_4(sc, TL_CH_PARM));
1570 }
1571
1572 tl_softreset(sc, 1);
1573 tl_stop(sc);
1574 tl_init(sc);
1575 CMD_SET(sc, TL_CMD_INTSON);
1576
1577 return(0);
1578}
1579
1580static int
1581tl_intvec_netsts(void *xsc, u_int32_t type)
1582{
1583 struct tl_softc *sc;
1584 u_int16_t netsts;
1585
1586 sc = xsc;
1587
1588 netsts = tl_dio_read16(sc, TL_NETSTS);
1589 tl_dio_write16(sc, TL_NETSTS, netsts);
1590
1591 if_printf(&sc->arpcom.ac_if, "network status: %x\n", netsts);
1592
1593 return(1);
1594}
1595
1596static void
1597tl_intr(void *xsc)
1598{
1599 struct tl_softc *sc;
1600 struct ifnet *ifp;
1601 int r = 0;
1602 u_int32_t type = 0;
1603 u_int16_t ints = 0;
1604 u_int8_t ivec = 0;
1605
1606 sc = xsc;
1607
1608 /* Disable interrupts */
1609 ints = CSR_READ_2(sc, TL_HOST_INT);
1610 CSR_WRITE_2(sc, TL_HOST_INT, ints);
1611 type = (ints << 16) & 0xFFFF0000;
1612 ivec = (ints & TL_VEC_MASK) >> 5;
1613 ints = (ints & TL_INT_MASK) >> 2;
1614
1615 ifp = &sc->arpcom.ac_if;
1616
1617 switch(ints) {
1618 case (TL_INTR_INVALID):
1619#ifdef DIAGNOSTIC
1620 if_printf(ifp, "got an invalid interrupt!\n");
1621#endif
1622 /* Re-enable interrupts but don't ack this one. */
1623 CMD_PUT(sc, type);
1624 r = 0;
1625 break;
1626 case (TL_INTR_TXEOF):
1627 r = tl_intvec_txeof(sc, type);
1628 break;
1629 case (TL_INTR_TXEOC):
1630 r = tl_intvec_txeoc(sc, type);
1631 break;
1632 case (TL_INTR_STATOFLOW):
1633 tl_stats_update_serialized(sc);
1634 r = 1;
1635 break;
1636 case (TL_INTR_RXEOF):
1637 r = tl_intvec_rxeof(sc, type);
1638 break;
1639 case (TL_INTR_DUMMY):
1640 if_printf(ifp, "got a dummy interrupt\n");
1641 r = 1;
1642 break;
1643 case (TL_INTR_ADCHK):
1644 if (ivec)
1645 r = tl_intvec_adchk(sc, type);
1646 else
1647 r = tl_intvec_netsts(sc, type);
1648 break;
1649 case (TL_INTR_RXEOC):
1650 r = tl_intvec_rxeoc(sc, type);
1651 break;
1652 default:
1653 if_printf(ifp, "bogus interrupt type\n");
1654 break;
1655 }
1656
1657 /* Re-enable interrupts */
1658 if (r) {
1659 CMD_PUT(sc, TL_CMD_ACK | r | type);
1660 }
1661
1662 if (!ifq_is_empty(&ifp->if_snd))
1663 if_devstart(ifp);
1664}
1665
1666static
1667void
1668tl_stats_update(void *xsc)
1669{
1670 struct tl_softc *sc = xsc;
1671 struct ifnet *ifp = &sc->arpcom.ac_if;
1672
1673 lwkt_serialize_enter(ifp->if_serializer);
1674 tl_stats_update_serialized(xsc);
1675 lwkt_serialize_exit(ifp->if_serializer);
1676}
1677
1678static
1679void
1680tl_stats_update_serialized(void *xsc)
1681{
1682 struct tl_softc *sc;
1683 struct ifnet *ifp;
1684 struct tl_stats tl_stats;
1685 struct mii_data *mii;
1686 u_int32_t *p;
1687
1688 bzero((char *)&tl_stats, sizeof(struct tl_stats));
1689
1690 sc = xsc;
1691 ifp = &sc->arpcom.ac_if;
1692
1693 p = (u_int32_t *)&tl_stats;
1694
1695 CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
1696 *p++ = CSR_READ_4(sc, TL_DIO_DATA);
1697 *p++ = CSR_READ_4(sc, TL_DIO_DATA);
1698 *p++ = CSR_READ_4(sc, TL_DIO_DATA);
1699 *p++ = CSR_READ_4(sc, TL_DIO_DATA);
1700 *p++ = CSR_READ_4(sc, TL_DIO_DATA);
1701
1702 ifp->if_opackets += tl_tx_goodframes(tl_stats);
1703 ifp->if_collisions += tl_stats.tl_tx_single_collision +
1704 tl_stats.tl_tx_multi_collision;
1705 ifp->if_ipackets += tl_rx_goodframes(tl_stats);
1706 ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
1707 tl_rx_overrun(tl_stats);
1708 ifp->if_oerrors += tl_tx_underrun(tl_stats);
1709
1710 if (tl_tx_underrun(tl_stats)) {
1711 u_int8_t tx_thresh;
1712 tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
1713 if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
1714 tx_thresh >>= 4;
1715 tx_thresh++;
1716 if_printf(ifp, "tx underrun -- increasing "
1717 "tx threshold to %d bytes\n",
1718 (64 * (tx_thresh * 4)));
1719 tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1720 tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
1721 }
1722 }
1723
1724 callout_reset(&sc->tl_stat_timer, hz, tl_stats_update, sc);
1725
1726 if (!sc->tl_bitrate) {
1727 mii = device_get_softc(sc->tl_miibus);
1728 mii_tick(mii);
1729 }
1730}
1731
1732/*
1733 * Encapsulate an mbuf chain in a list by coupling the mbuf data
1734 * pointers to the fragment pointers.
1735 */
1736static int
1737tl_encap(struct tl_softc *sc, struct tl_chain *c, struct mbuf *m_head)
1738{
1739 int frag = 0;
1740 struct tl_frag *f = NULL;
1741 int total_len;
1742 struct mbuf *m;
1743
1744 /*
1745 * Start packing the mbufs in this chain into
1746 * the fragment pointers. Stop when we run out
1747 * of fragments or hit the end of the mbuf chain.
1748 */
1749 total_len = 0;
1750
1751 for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1752 if (m->m_len != 0) {
1753 if (frag == TL_MAXFRAGS)
1754 break;
1755 total_len+= m->m_len;
1756 c->tl_ptr->tl_frag[frag].tlist_dadr =
1757 vtophys(mtod(m, vm_offset_t));
1758 c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
1759 frag++;
1760 }
1761 }
1762
1763 /*
1764 * Handle special cases.
1765 * Special case #1: we used up all 10 fragments, but
1766 * we have more mbufs left in the chain. Copy the
1767 * data into an mbuf cluster. Note that we don't
1768 * bother clearing the values in the other fragment
1769 * pointers/counters; it wouldn't gain us anything,
1770 * and would waste cycles.
1771 */
1772 if (m != NULL) {
1773 struct mbuf *m_new;
1774
1775 m_new = m_getl(m_head->m_pkthdr.len, MB_DONTWAIT, MT_DATA,
1776 M_PKTHDR, NULL);
1777 if (m_new == NULL) {
1778 if_printf(&sc->arpcom.ac_if, "no memory for tx list\n");
1779 return (1);
1780 }
1781 m_copydata(m_head, 0, m_head->m_pkthdr.len,
1782 mtod(m_new, caddr_t));
1783 m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1784 m_freem(m_head);
1785 m_head = m_new;
1786 f = &c->tl_ptr->tl_frag[0];
1787 f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
1788 f->tlist_dcnt = total_len = m_new->m_len;
1789 frag = 1;
1790 }
1791
1792 /*
1793 * Special case #2: the frame is smaller than the minimum
1794 * frame size. We have to pad it to make the chip happy.
1795 */
1796 if (total_len < TL_MIN_FRAMELEN) {
1797 if (frag == TL_MAXFRAGS) {
1798 if_printf(&sc->arpcom.ac_if, "all frags filled but "
1799 "frame still to small!\n");
1800 }
1801 f = &c->tl_ptr->tl_frag[frag];
1802 f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
1803 f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
1804 total_len += f->tlist_dcnt;
1805 frag++;
1806 }
1807
1808 c->tl_mbuf = m_head;
1809 c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
1810 c->tl_ptr->tlist_frsize = total_len;
1811 c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1812 c->tl_ptr->tlist_fptr = 0;
1813
1814 return(0);
1815}
1816
1817/*
1818 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1819 * to the mbuf data regions directly in the transmit lists. We also save a
1820 * copy of the pointers since the transmit list fragment pointers are
1821 * physical addresses.
1822 */
1823static void
1824tl_start(struct ifnet *ifp)
1825{
1826 struct tl_softc *sc;
1827 struct mbuf *m_head = NULL;
1828 u_int32_t cmd;
1829 struct tl_chain *prev = NULL, *cur_tx = NULL, *start_tx;
1830
1831 sc = ifp->if_softc;
1832
1833 /*
1834 * Check for an available queue slot. If there are none,
1835 * punt.
1836 */
1837 if (sc->tl_cdata.tl_tx_free == NULL) {
1838 ifp->if_flags |= IFF_OACTIVE;
1839 return;
1840 }
1841
1842 start_tx = sc->tl_cdata.tl_tx_free;
1843
1844 while(sc->tl_cdata.tl_tx_free != NULL) {
1845 m_head = ifq_dequeue(&ifp->if_snd, NULL);
1846 if (m_head == NULL)
1847 break;
1848
1849 /* Pick a chain member off the free list. */
1850 cur_tx = sc->tl_cdata.tl_tx_free;
1851 sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
1852
1853 cur_tx->tl_next = NULL;
1854
1855 /* Pack the data into the list. */
1856 tl_encap(sc, cur_tx, m_head);
1857
1858 /* Chain it together */
1859 if (prev != NULL) {
1860 prev->tl_next = cur_tx;
1861 prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
1862 }
1863 prev = cur_tx;
1864
1865 BPF_MTAP(ifp, cur_tx->tl_mbuf);
1866 }
1867
1868 /*
1869 * If there are no packets queued, bail.
1870 */
1871 if (cur_tx == NULL)
1872 return;
1873
1874 /*
1875 * That's all we can stands, we can't stands no more.
1876 * If there are no other transfers pending, then issue the
1877 * TX GO command to the adapter to start things moving.
1878 * Otherwise, just leave the data in the queue and let
1879 * the EOF/EOC interrupt handler send.
1880 */
1881 if (sc->tl_cdata.tl_tx_head == NULL) {
1882 sc->tl_cdata.tl_tx_head = start_tx;
1883 sc->tl_cdata.tl_tx_tail = cur_tx;
1884
1885 if (sc->tl_txeoc) {
1886 sc->tl_txeoc = 0;
1887 CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
1888 cmd = CSR_READ_4(sc, TL_HOSTCMD);
1889 cmd &= ~TL_CMD_RT;
1890 cmd |= TL_CMD_GO|TL_CMD_INTSON;
1891 CMD_PUT(sc, cmd);
1892 }
1893 } else {
1894 sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
1895 sc->tl_cdata.tl_tx_tail = cur_tx;
1896 }
1897
1898 /*
1899 * Set a timeout in case the chip goes out to lunch.
1900 */
1901 ifp->if_timer = 5;
1902
1903 return;
1904}
1905
1906static void
1907tl_init(void *xsc)
1908{
1909 struct tl_softc *sc = xsc;
1910 struct ifnet *ifp = &sc->arpcom.ac_if;
1911 struct mii_data *mii;
1912
1913 /*
1914 * Cancel pending I/O.
1915 */
1916 tl_stop(sc);
1917
1918 /* Initialize TX FIFO threshold */
1919 tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1920 tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
1921
1922 /* Set PCI burst size */
1923 tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
1924
1925 /*
1926 * Set 'capture all frames' bit for promiscuous mode.
1927 */
1928 if (ifp->if_flags & IFF_PROMISC)
1929 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
1930 else
1931 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
1932
1933 /*
1934 * Set capture broadcast bit to capture broadcast frames.
1935 */
1936 if (ifp->if_flags & IFF_BROADCAST)
1937 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
1938 else
1939 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
1940
1941 tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
1942
1943 /* Init our MAC address */
1944 tl_setfilt(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0);
1945
1946 /* Init multicast filter, if needed. */
1947 tl_setmulti(sc);
1948
1949 /* Init circular RX list. */
1950 if (tl_list_rx_init(sc) == ENOBUFS) {
1951 if_printf(ifp, "initialization failed: no "
1952 "memory for rx buffers\n");
1953 tl_stop(sc);
1954 return;
1955 }
1956
1957 /* Init TX pointers. */
1958 tl_list_tx_init(sc);
1959
1960 /* Enable PCI interrupts. */
1961 CMD_SET(sc, TL_CMD_INTSON);
1962
1963 /* Load the address of the rx list */
1964 CMD_SET(sc, TL_CMD_RT);
1965 CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
1966
1967 if (!sc->tl_bitrate) {
1968 if (sc->tl_miibus != NULL) {
1969 mii = device_get_softc(sc->tl_miibus);
1970 mii_mediachg(mii);
1971 }
1972 }
1973
1974 /* Send the RX go command */
1975 CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
1976
1977 ifp->if_flags |= IFF_RUNNING;
1978 ifp->if_flags &= ~IFF_OACTIVE;
1979
1980 /* Start the stats update counter */
1981 callout_reset(&sc->tl_stat_timer, hz, tl_stats_update, sc);
1982}
1983
1984/*
1985 * Set media options.
1986 */
1987static int
1988tl_ifmedia_upd(struct ifnet *ifp)
1989{
1990 struct tl_softc *sc;
1991 struct mii_data *mii = NULL;
1992
1993 sc = ifp->if_softc;
1994
1995 if (sc->tl_bitrate)
1996 tl_setmode(sc, sc->ifmedia.ifm_media);
1997 else {
1998 mii = device_get_softc(sc->tl_miibus);
1999 mii_mediachg(mii);
2000 }
2001
2002 return(0);
2003}
2004
2005/*
2006 * Report current media status.
2007 */
2008static void
2009tl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2010{
2011 struct tl_softc *sc;
2012 struct mii_data *mii;
2013
2014 sc = ifp->if_softc;
2015
2016 ifmr->ifm_active = IFM_ETHER;
2017
2018 if (sc->tl_bitrate) {
2019 if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
2020 ifmr->ifm_active = IFM_ETHER|IFM_10_5;
2021 else
2022 ifmr->ifm_active = IFM_ETHER|IFM_10_T;
2023 if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
2024 ifmr->ifm_active |= IFM_HDX;
2025 else
2026 ifmr->ifm_active |= IFM_FDX;
2027 return;
2028 } else {
2029 mii = device_get_softc(sc->tl_miibus);
2030 mii_pollstat(mii);
2031 ifmr->ifm_active = mii->mii_media_active;
2032 ifmr->ifm_status = mii->mii_media_status;
2033 }
2034
2035 return;
2036}
2037
2038static int
2039tl_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2040{
2041 struct tl_softc *sc = ifp->if_softc;
2042 struct ifreq *ifr = (struct ifreq *) data;
2043 int error = 0;
2044
2045 switch(command) {
2046 case SIOCSIFFLAGS:
2047 if (ifp->if_flags & IFF_UP) {
2048 if (ifp->if_flags & IFF_RUNNING &&
2049 ifp->if_flags & IFF_PROMISC &&
2050 !(sc->tl_if_flags & IFF_PROMISC)) {
2051 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2052 tl_setmulti(sc);
2053 } else if (ifp->if_flags & IFF_RUNNING &&
2054 !(ifp->if_flags & IFF_PROMISC) &&
2055 sc->tl_if_flags & IFF_PROMISC) {
2056 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2057 tl_setmulti(sc);
2058 } else
2059 tl_init(sc);
2060 } else {
2061 if (ifp->if_flags & IFF_RUNNING) {
2062 tl_stop(sc);
2063 }
2064 }
2065 sc->tl_if_flags = ifp->if_flags;
2066 error = 0;
2067 break;
2068 case SIOCADDMULTI:
2069 case SIOCDELMULTI:
2070 tl_setmulti(sc);
2071 error = 0;
2072 break;
2073 case SIOCSIFMEDIA:
2074 case SIOCGIFMEDIA:
2075 if (sc->tl_bitrate)
2076 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2077 else {
2078 struct mii_data *mii;
2079 mii = device_get_softc(sc->tl_miibus);
2080 error = ifmedia_ioctl(ifp, ifr,
2081 &mii->mii_media, command);
2082 }
2083 break;
2084 default:
2085 error = ether_ioctl(ifp, command, data);
2086 break;
2087 }
2088 return(error);
2089}
2090
2091static void
2092tl_watchdog(struct ifnet *ifp)
2093{
2094 struct tl_softc *sc;
2095
2096 sc = ifp->if_softc;
2097
2098 if_printf(ifp, "device timeout\n");
2099
2100 ifp->if_oerrors++;
2101
2102 tl_softreset(sc, 1);
2103 tl_init(sc);
2104
2105 return;
2106}
2107
2108/*
2109 * Stop the adapter and free any mbufs allocated to the
2110 * RX and TX lists.
2111 */
2112static void
2113tl_stop(struct tl_softc *sc)
2114{
2115 int i;
2116 struct ifnet *ifp;
2117
2118 ifp = &sc->arpcom.ac_if;
2119
2120 /* Stop the stats updater. */
2121 callout_stop(&sc->tl_stat_timer);
2122
2123 /* Stop the transmitter */
2124 CMD_CLR(sc, TL_CMD_RT);
2125 CMD_SET(sc, TL_CMD_STOP);
2126 CSR_WRITE_4(sc, TL_CH_PARM, 0);
2127
2128 /* Stop the receiver */
2129 CMD_SET(sc, TL_CMD_RT);
2130 CMD_SET(sc, TL_CMD_STOP);
2131 CSR_WRITE_4(sc, TL_CH_PARM, 0);
2132
2133 /*
2134 * Disable host interrupts.
2135 */
2136 CMD_SET(sc, TL_CMD_INTSOFF);
2137
2138 /*
2139 * Clear list pointer.
2140 */
2141 CSR_WRITE_4(sc, TL_CH_PARM, 0);
2142
2143 /*
2144 * Free the RX lists.
2145 */
2146 for (i = 0; i < TL_RX_LIST_CNT; i++) {
2147 if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
2148 m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
2149 sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
2150 }
2151 }
2152 bzero((char *)&sc->tl_ldata->tl_rx_list,
2153 sizeof(sc->tl_ldata->tl_rx_list));
2154
2155 /*
2156 * Free the TX list buffers.
2157 */
2158 for (i = 0; i < TL_TX_LIST_CNT; i++) {
2159 if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
2160 m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
2161 sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
2162 }
2163 }
2164 bzero((char *)&sc->tl_ldata->tl_tx_list,
2165 sizeof(sc->tl_ldata->tl_tx_list));
2166
2167 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2168
2169 return;
2170}
2171
2172/*
2173 * Stop all chip I/O so that the kernel's probe routines don't
2174 * get confused by errant DMAs when rebooting.
2175 */
2176static void
2177tl_shutdown(device_t dev)
2178{
2179 struct tl_softc *sc;
2180
2181 sc = device_get_softc(dev);
2182
2183 tl_stop(sc);
2184
2185 return;
2186}