kernel - MPSAFE work - Finish tokenizing vm_page.c
[dragonfly.git] / sys / kern / vfs_bio.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 * John S. Dyson.
13 *
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $
16 */
17
18/*
19 * this file contains a new buffer I/O scheme implementing a coherent
20 * VM object and buffer cache scheme. Pains have been taken to make
21 * sure that the performance degradation associated with schemes such
22 * as this is not realized.
23 *
24 * Author: John S. Dyson
25 * Significant help during the development and debugging phases
26 * had been provided by David Greenman, also of the FreeBSD core team.
27 *
28 * see man buf(9) for more info.
29 */
30
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/buf.h>
34#include <sys/conf.h>
35#include <sys/eventhandler.h>
36#include <sys/lock.h>
37#include <sys/malloc.h>
38#include <sys/mount.h>
39#include <sys/kernel.h>
40#include <sys/kthread.h>
41#include <sys/proc.h>
42#include <sys/reboot.h>
43#include <sys/resourcevar.h>
44#include <sys/sysctl.h>
45#include <sys/vmmeter.h>
46#include <sys/vnode.h>
47#include <sys/dsched.h>
48#include <sys/proc.h>
49#include <vm/vm.h>
50#include <vm/vm_param.h>
51#include <vm/vm_kern.h>
52#include <vm/vm_pageout.h>
53#include <vm/vm_page.h>
54#include <vm/vm_object.h>
55#include <vm/vm_extern.h>
56#include <vm/vm_map.h>
57#include <vm/vm_pager.h>
58#include <vm/swap_pager.h>
59
60#include <sys/buf2.h>
61#include <sys/thread2.h>
62#include <sys/spinlock2.h>
63#include <sys/mplock2.h>
64#include <vm/vm_page2.h>
65
66#include "opt_ddb.h"
67#ifdef DDB
68#include <ddb/ddb.h>
69#endif
70
71/*
72 * Buffer queues.
73 */
74enum bufq_type {
75 BQUEUE_NONE, /* not on any queue */
76 BQUEUE_LOCKED, /* locked buffers */
77 BQUEUE_CLEAN, /* non-B_DELWRI buffers */
78 BQUEUE_DIRTY, /* B_DELWRI buffers */
79 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */
80 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */
81 BQUEUE_EMPTY, /* empty buffer headers */
82
83 BUFFER_QUEUES /* number of buffer queues */
84};
85
86typedef enum bufq_type bufq_type_t;
87
88#define BD_WAKE_SIZE 16384
89#define BD_WAKE_MASK (BD_WAKE_SIZE - 1)
90
91TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
92struct spinlock bufspin = SPINLOCK_INITIALIZER(&bufspin);
93
94static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
95
96struct buf *buf; /* buffer header pool */
97
98static void vfs_clean_pages(struct buf *bp);
99static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
100static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
101static void vfs_vmio_release(struct buf *bp);
102static int flushbufqueues(bufq_type_t q);
103static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
104
105static void bd_signal(int totalspace);
106static void buf_daemon(void);
107static void buf_daemon_hw(void);
108
109/*
110 * bogus page -- for I/O to/from partially complete buffers
111 * this is a temporary solution to the problem, but it is not
112 * really that bad. it would be better to split the buffer
113 * for input in the case of buffers partially already in memory,
114 * but the code is intricate enough already.
115 */
116vm_page_t bogus_page;
117
118/*
119 * These are all static, but make the ones we export globals so we do
120 * not need to use compiler magic.
121 */
122int bufspace, maxbufspace,
123 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
124static int bufreusecnt, bufdefragcnt, buffreekvacnt;
125static int lorunningspace, hirunningspace, runningbufreq;
126int dirtybufspace, dirtybufspacehw, lodirtybufspace, hidirtybufspace;
127int dirtybufcount, dirtybufcounthw;
128int runningbufspace, runningbufcount;
129static int getnewbufcalls;
130static int getnewbufrestarts;
131static int recoverbufcalls;
132static int needsbuffer; /* locked by needsbuffer_spin */
133static int bd_request; /* locked by needsbuffer_spin */
134static int bd_request_hw; /* locked by needsbuffer_spin */
135static u_int bd_wake_ary[BD_WAKE_SIZE];
136static u_int bd_wake_index;
137static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
138static struct spinlock needsbuffer_spin;
139static int debug_commit;
140
141static struct thread *bufdaemon_td;
142static struct thread *bufdaemonhw_td;
143
144
145/*
146 * Sysctls for operational control of the buffer cache.
147 */
148SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
149 "Number of dirty buffers to flush before bufdaemon becomes inactive");
150SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
151 "High watermark used to trigger explicit flushing of dirty buffers");
152SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
153 "Minimum amount of buffer space required for active I/O");
154SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
155 "Maximum amount of buffer space to usable for active I/O");
156SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
157 "Recycle pages to active or inactive queue transition pt 0-64");
158/*
159 * Sysctls determining current state of the buffer cache.
160 */
161SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
162 "Total number of buffers in buffer cache");
163SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
164 "Pending bytes of dirty buffers (all)");
165SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
166 "Pending bytes of dirty buffers (heavy weight)");
167SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
168 "Pending number of dirty buffers");
169SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
170 "Pending number of dirty buffers (heavy weight)");
171SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
172 "I/O bytes currently in progress due to asynchronous writes");
173SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
174 "I/O buffers currently in progress due to asynchronous writes");
175SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
176 "Hard limit on maximum amount of memory usable for buffer space");
177SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
178 "Soft limit on maximum amount of memory usable for buffer space");
179SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
180 "Minimum amount of memory to reserve for system buffer space");
181SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
182 "Amount of memory available for buffers");
183SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
184 0, "Maximum amount of memory reserved for buffers using malloc");
185SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
186 "Amount of memory left for buffers using malloc-scheme");
187SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
188 "New buffer header acquisition requests");
189SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
190 0, "New buffer header acquisition restarts");
191SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
192 "Recover VM space in an emergency");
193SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
194 "Buffer acquisition restarts due to fragmented buffer map");
195SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
196 "Amount of time KVA space was deallocated in an arbitrary buffer");
197SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
198 "Amount of time buffer re-use operations were successful");
199SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
200SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
201 "sizeof(struct buf)");
202
203char *buf_wmesg = BUF_WMESG;
204
205#define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
206#define VFS_BIO_NEED_UNUSED02 0x02
207#define VFS_BIO_NEED_UNUSED04 0x04
208#define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
209
210/*
211 * bufspacewakeup:
212 *
213 * Called when buffer space is potentially available for recovery.
214 * getnewbuf() will block on this flag when it is unable to free
215 * sufficient buffer space. Buffer space becomes recoverable when
216 * bp's get placed back in the queues.
217 */
218
219static __inline void
220bufspacewakeup(void)
221{
222 /*
223 * If someone is waiting for BUF space, wake them up. Even
224 * though we haven't freed the kva space yet, the waiting
225 * process will be able to now.
226 */
227 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
228 spin_lock_wr(&needsbuffer_spin);
229 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
230 spin_unlock_wr(&needsbuffer_spin);
231 wakeup(&needsbuffer);
232 }
233}
234
235/*
236 * runningbufwakeup:
237 *
238 * Accounting for I/O in progress.
239 *
240 */
241static __inline void
242runningbufwakeup(struct buf *bp)
243{
244 int totalspace;
245 int limit;
246
247 if ((totalspace = bp->b_runningbufspace) != 0) {
248 atomic_subtract_int(&runningbufspace, totalspace);
249 atomic_subtract_int(&runningbufcount, 1);
250 bp->b_runningbufspace = 0;
251
252 /*
253 * see waitrunningbufspace() for limit test.
254 */
255 limit = hirunningspace * 2 / 3;
256 if (runningbufreq && runningbufspace <= limit) {
257 runningbufreq = 0;
258 wakeup(&runningbufreq);
259 }
260 bd_signal(totalspace);
261 }
262}
263
264/*
265 * bufcountwakeup:
266 *
267 * Called when a buffer has been added to one of the free queues to
268 * account for the buffer and to wakeup anyone waiting for free buffers.
269 * This typically occurs when large amounts of metadata are being handled
270 * by the buffer cache ( else buffer space runs out first, usually ).
271 *
272 * MPSAFE
273 */
274static __inline void
275bufcountwakeup(void)
276{
277 if (needsbuffer) {
278 spin_lock_wr(&needsbuffer_spin);
279 needsbuffer &= ~VFS_BIO_NEED_ANY;
280 spin_unlock_wr(&needsbuffer_spin);
281 wakeup(&needsbuffer);
282 }
283}
284
285/*
286 * waitrunningbufspace()
287 *
288 * Wait for the amount of running I/O to drop to hirunningspace * 2 / 3.
289 * This is the point where write bursting stops so we don't want to wait
290 * for the running amount to drop below it (at least if we still want bioq
291 * to burst writes).
292 *
293 * The caller may be using this function to block in a tight loop, we
294 * must block while runningbufspace is greater then or equal to
295 * hirunningspace * 2 / 3.
296 *
297 * And even with that it may not be enough, due to the presence of
298 * B_LOCKED dirty buffers, so also wait for at least one running buffer
299 * to complete.
300 */
301static __inline void
302waitrunningbufspace(void)
303{
304 int limit = hirunningspace * 2 / 3;
305
306 crit_enter();
307 if (runningbufspace > limit) {
308 while (runningbufspace > limit) {
309 ++runningbufreq;
310 tsleep(&runningbufreq, 0, "wdrn1", 0);
311 }
312 } else if (runningbufspace) {
313 ++runningbufreq;
314 tsleep(&runningbufreq, 0, "wdrn2", 1);
315 }
316 crit_exit();
317}
318
319/*
320 * buf_dirty_count_severe:
321 *
322 * Return true if we have too many dirty buffers.
323 */
324int
325buf_dirty_count_severe(void)
326{
327 return (runningbufspace + dirtybufspace >= hidirtybufspace ||
328 dirtybufcount >= nbuf / 2);
329}
330
331/*
332 * Return true if the amount of running I/O is severe and BIOQ should
333 * start bursting.
334 */
335int
336buf_runningbufspace_severe(void)
337{
338 return (runningbufspace >= hirunningspace * 2 / 3);
339}
340
341/*
342 * vfs_buf_test_cache:
343 *
344 * Called when a buffer is extended. This function clears the B_CACHE
345 * bit if the newly extended portion of the buffer does not contain
346 * valid data.
347 *
348 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
349 * cache buffers. The VM pages remain dirty, as someone had mmap()'d
350 * them while a clean buffer was present.
351 */
352static __inline__
353void
354vfs_buf_test_cache(struct buf *bp,
355 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
356 vm_page_t m)
357{
358 if (bp->b_flags & B_CACHE) {
359 int base = (foff + off) & PAGE_MASK;
360 if (vm_page_is_valid(m, base, size) == 0)
361 bp->b_flags &= ~B_CACHE;
362 }
363}
364
365/*
366 * bd_speedup()
367 *
368 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
369 * low water mark.
370 *
371 * MPSAFE
372 */
373static __inline__
374void
375bd_speedup(void)
376{
377 if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
378 return;
379
380 if (bd_request == 0 &&
381 (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
382 dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
383 spin_lock_wr(&needsbuffer_spin);
384 bd_request = 1;
385 spin_unlock_wr(&needsbuffer_spin);
386 wakeup(&bd_request);
387 }
388 if (bd_request_hw == 0 &&
389 (dirtybufspacehw > lodirtybufspace / 2 ||
390 dirtybufcounthw >= nbuf / 2)) {
391 spin_lock_wr(&needsbuffer_spin);
392 bd_request_hw = 1;
393 spin_unlock_wr(&needsbuffer_spin);
394 wakeup(&bd_request_hw);
395 }
396}
397
398/*
399 * bd_heatup()
400 *
401 * Get the buf_daemon heated up when the number of running and dirty
402 * buffers exceeds the mid-point.
403 *
404 * Return the total number of dirty bytes past the second mid point
405 * as a measure of how much excess dirty data there is in the system.
406 *
407 * MPSAFE
408 */
409int
410bd_heatup(void)
411{
412 int mid1;
413 int mid2;
414 int totalspace;
415
416 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
417
418 totalspace = runningbufspace + dirtybufspace;
419 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
420 bd_speedup();
421 mid2 = mid1 + (hidirtybufspace - mid1) / 2;
422 if (totalspace >= mid2)
423 return(totalspace - mid2);
424 }
425 return(0);
426}
427
428/*
429 * bd_wait()
430 *
431 * Wait for the buffer cache to flush (totalspace) bytes worth of
432 * buffers, then return.
433 *
434 * Regardless this function blocks while the number of dirty buffers
435 * exceeds hidirtybufspace.
436 *
437 * MPSAFE
438 */
439void
440bd_wait(int totalspace)
441{
442 u_int i;
443 int count;
444
445 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
446 return;
447
448 while (totalspace > 0) {
449 bd_heatup();
450 if (totalspace > runningbufspace + dirtybufspace)
451 totalspace = runningbufspace + dirtybufspace;
452 count = totalspace / BKVASIZE;
453 if (count >= BD_WAKE_SIZE)
454 count = BD_WAKE_SIZE - 1;
455
456 spin_lock_wr(&needsbuffer_spin);
457 i = (bd_wake_index + count) & BD_WAKE_MASK;
458 ++bd_wake_ary[i];
459 tsleep_interlock(&bd_wake_ary[i], 0);
460 spin_unlock_wr(&needsbuffer_spin);
461 tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
462
463 totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
464 }
465}
466
467/*
468 * bd_signal()
469 *
470 * This function is called whenever runningbufspace or dirtybufspace
471 * is reduced. Track threads waiting for run+dirty buffer I/O
472 * complete.
473 *
474 * MPSAFE
475 */
476static void
477bd_signal(int totalspace)
478{
479 u_int i;
480
481 if (totalspace > 0) {
482 if (totalspace > BKVASIZE * BD_WAKE_SIZE)
483 totalspace = BKVASIZE * BD_WAKE_SIZE;
484 spin_lock_wr(&needsbuffer_spin);
485 while (totalspace > 0) {
486 i = bd_wake_index++;
487 i &= BD_WAKE_MASK;
488 if (bd_wake_ary[i]) {
489 bd_wake_ary[i] = 0;
490 spin_unlock_wr(&needsbuffer_spin);
491 wakeup(&bd_wake_ary[i]);
492 spin_lock_wr(&needsbuffer_spin);
493 }
494 totalspace -= BKVASIZE;
495 }
496 spin_unlock_wr(&needsbuffer_spin);
497 }
498}
499
500/*
501 * BIO tracking support routines.
502 *
503 * Release a ref on a bio_track. Wakeup requests are atomically released
504 * along with the last reference so bk_active will never wind up set to
505 * only 0x80000000.
506 *
507 * MPSAFE
508 */
509static
510void
511bio_track_rel(struct bio_track *track)
512{
513 int active;
514 int desired;
515
516 /*
517 * Shortcut
518 */
519 active = track->bk_active;
520 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
521 return;
522
523 /*
524 * Full-on. Note that the wait flag is only atomically released on
525 * the 1->0 count transition.
526 *
527 * We check for a negative count transition using bit 30 since bit 31
528 * has a different meaning.
529 */
530 for (;;) {
531 desired = (active & 0x7FFFFFFF) - 1;
532 if (desired)
533 desired |= active & 0x80000000;
534 if (atomic_cmpset_int(&track->bk_active, active, desired)) {
535 if (desired & 0x40000000)
536 panic("bio_track_rel: bad count: %p\n", track);
537 if (active & 0x80000000)
538 wakeup(track);
539 break;
540 }
541 active = track->bk_active;
542 }
543}
544
545/*
546 * Wait for the tracking count to reach 0.
547 *
548 * Use atomic ops such that the wait flag is only set atomically when
549 * bk_active is non-zero.
550 *
551 * MPSAFE
552 */
553int
554bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
555{
556 int active;
557 int desired;
558 int error;
559
560 /*
561 * Shortcut
562 */
563 if (track->bk_active == 0)
564 return(0);
565
566 /*
567 * Full-on. Note that the wait flag may only be atomically set if
568 * the active count is non-zero.
569 */
570 error = 0;
571 while ((active = track->bk_active) != 0) {
572 desired = active | 0x80000000;
573 tsleep_interlock(track, slp_flags);
574 if (active == desired ||
575 atomic_cmpset_int(&track->bk_active, active, desired)) {
576 error = tsleep(track, slp_flags | PINTERLOCKED,
577 "iowait", slp_timo);
578 if (error)
579 break;
580 }
581 }
582 return (error);
583}
584
585/*
586 * bufinit:
587 *
588 * Load time initialisation of the buffer cache, called from machine
589 * dependant initialization code.
590 */
591void
592bufinit(void)
593{
594 struct buf *bp;
595 vm_offset_t bogus_offset;
596 int i;
597
598 spin_init(&needsbuffer_spin);
599
600 /* next, make a null set of free lists */
601 for (i = 0; i < BUFFER_QUEUES; i++)
602 TAILQ_INIT(&bufqueues[i]);
603
604 /* finally, initialize each buffer header and stick on empty q */
605 for (i = 0; i < nbuf; i++) {
606 bp = &buf[i];
607 bzero(bp, sizeof *bp);
608 bp->b_flags = B_INVAL; /* we're just an empty header */
609 bp->b_cmd = BUF_CMD_DONE;
610 bp->b_qindex = BQUEUE_EMPTY;
611 initbufbio(bp);
612 xio_init(&bp->b_xio);
613 buf_dep_init(bp);
614 BUF_LOCKINIT(bp);
615 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
616 }
617
618 /*
619 * maxbufspace is the absolute maximum amount of buffer space we are
620 * allowed to reserve in KVM and in real terms. The absolute maximum
621 * is nominally used by buf_daemon. hibufspace is the nominal maximum
622 * used by most other processes. The differential is required to
623 * ensure that buf_daemon is able to run when other processes might
624 * be blocked waiting for buffer space.
625 *
626 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
627 * this may result in KVM fragmentation which is not handled optimally
628 * by the system.
629 */
630 maxbufspace = nbuf * BKVASIZE;
631 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
632 lobufspace = hibufspace - MAXBSIZE;
633
634 lorunningspace = 512 * 1024;
635 /* hirunningspace -- see below */
636
637 /*
638 * Limit the amount of malloc memory since it is wired permanently
639 * into the kernel space. Even though this is accounted for in
640 * the buffer allocation, we don't want the malloced region to grow
641 * uncontrolled. The malloc scheme improves memory utilization
642 * significantly on average (small) directories.
643 */
644 maxbufmallocspace = hibufspace / 20;
645
646 /*
647 * Reduce the chance of a deadlock occuring by limiting the number
648 * of delayed-write dirty buffers we allow to stack up.
649 *
650 * We don't want too much actually queued to the device at once
651 * (XXX this needs to be per-mount!), because the buffers will
652 * wind up locked for a very long period of time while the I/O
653 * drains.
654 */
655 hidirtybufspace = hibufspace / 2; /* dirty + running */
656 hirunningspace = hibufspace / 16; /* locked & queued to device */
657 if (hirunningspace < 1024 * 1024)
658 hirunningspace = 1024 * 1024;
659
660 dirtybufspace = 0;
661 dirtybufspacehw = 0;
662
663 lodirtybufspace = hidirtybufspace / 2;
664
665 /*
666 * Maximum number of async ops initiated per buf_daemon loop. This is
667 * somewhat of a hack at the moment, we really need to limit ourselves
668 * based on the number of bytes of I/O in-transit that were initiated
669 * from buf_daemon.
670 */
671
672 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
673 bogus_page = vm_page_alloc(&kernel_object,
674 (bogus_offset >> PAGE_SHIFT),
675 VM_ALLOC_NORMAL);
676 vmstats.v_wire_count++;
677
678}
679
680/*
681 * Initialize the embedded bio structures
682 */
683void
684initbufbio(struct buf *bp)
685{
686 bp->b_bio1.bio_buf = bp;
687 bp->b_bio1.bio_prev = NULL;
688 bp->b_bio1.bio_offset = NOOFFSET;
689 bp->b_bio1.bio_next = &bp->b_bio2;
690 bp->b_bio1.bio_done = NULL;
691 bp->b_bio1.bio_flags = 0;
692
693 bp->b_bio2.bio_buf = bp;
694 bp->b_bio2.bio_prev = &bp->b_bio1;
695 bp->b_bio2.bio_offset = NOOFFSET;
696 bp->b_bio2.bio_next = NULL;
697 bp->b_bio2.bio_done = NULL;
698 bp->b_bio2.bio_flags = 0;
699}
700
701/*
702 * Reinitialize the embedded bio structures as well as any additional
703 * translation cache layers.
704 */
705void
706reinitbufbio(struct buf *bp)
707{
708 struct bio *bio;
709
710 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
711 bio->bio_done = NULL;
712 bio->bio_offset = NOOFFSET;
713 }
714}
715
716/*
717 * Push another BIO layer onto an existing BIO and return it. The new
718 * BIO layer may already exist, holding cached translation data.
719 */
720struct bio *
721push_bio(struct bio *bio)
722{
723 struct bio *nbio;
724
725 if ((nbio = bio->bio_next) == NULL) {
726 int index = bio - &bio->bio_buf->b_bio_array[0];
727 if (index >= NBUF_BIO - 1) {
728 panic("push_bio: too many layers bp %p\n",
729 bio->bio_buf);
730 }
731 nbio = &bio->bio_buf->b_bio_array[index + 1];
732 bio->bio_next = nbio;
733 nbio->bio_prev = bio;
734 nbio->bio_buf = bio->bio_buf;
735 nbio->bio_offset = NOOFFSET;
736 nbio->bio_done = NULL;
737 nbio->bio_next = NULL;
738 }
739 KKASSERT(nbio->bio_done == NULL);
740 return(nbio);
741}
742
743/*
744 * Pop a BIO translation layer, returning the previous layer. The
745 * must have been previously pushed.
746 */
747struct bio *
748pop_bio(struct bio *bio)
749{
750 return(bio->bio_prev);
751}
752
753void
754clearbiocache(struct bio *bio)
755{
756 while (bio) {
757 bio->bio_offset = NOOFFSET;
758 bio = bio->bio_next;
759 }
760}
761
762/*
763 * bfreekva:
764 *
765 * Free the KVA allocation for buffer 'bp'.
766 *
767 * Must be called from a critical section as this is the only locking for
768 * buffer_map.
769 *
770 * Since this call frees up buffer space, we call bufspacewakeup().
771 *
772 * MPALMOSTSAFE
773 */
774static void
775bfreekva(struct buf *bp)
776{
777 int count;
778
779 if (bp->b_kvasize) {
780 get_mplock();
781 ++buffreekvacnt;
782 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
783 vm_map_lock(&buffer_map);
784 bufspace -= bp->b_kvasize;
785 vm_map_delete(&buffer_map,
786 (vm_offset_t) bp->b_kvabase,
787 (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
788 &count
789 );
790 vm_map_unlock(&buffer_map);
791 vm_map_entry_release(count);
792 bp->b_kvasize = 0;
793 bufspacewakeup();
794 rel_mplock();
795 }
796}
797
798/*
799 * bremfree:
800 *
801 * Remove the buffer from the appropriate free list.
802 */
803static __inline void
804_bremfree(struct buf *bp)
805{
806 if (bp->b_qindex != BQUEUE_NONE) {
807 KASSERT(BUF_REFCNTNB(bp) == 1,
808 ("bremfree: bp %p not locked",bp));
809 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
810 bp->b_qindex = BQUEUE_NONE;
811 } else {
812 if (BUF_REFCNTNB(bp) <= 1)
813 panic("bremfree: removing a buffer not on a queue");
814 }
815}
816
817void
818bremfree(struct buf *bp)
819{
820 spin_lock_wr(&bufspin);
821 _bremfree(bp);
822 spin_unlock_wr(&bufspin);
823}
824
825static void
826bremfree_locked(struct buf *bp)
827{
828 _bremfree(bp);
829}
830
831/*
832 * bread:
833 *
834 * Get a buffer with the specified data. Look in the cache first. We
835 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
836 * is set, the buffer is valid and we do not have to do anything ( see
837 * getblk() ).
838 *
839 * MPALMOSTSAFE
840 */
841int
842bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
843{
844 struct buf *bp;
845
846 bp = getblk(vp, loffset, size, 0, 0);
847 *bpp = bp;
848
849 /* if not found in cache, do some I/O */
850 if ((bp->b_flags & B_CACHE) == 0) {
851 get_mplock();
852 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
853 bp->b_cmd = BUF_CMD_READ;
854 bp->b_bio1.bio_done = biodone_sync;
855 bp->b_bio1.bio_flags |= BIO_SYNC;
856 vfs_busy_pages(vp, bp);
857 vn_strategy(vp, &bp->b_bio1);
858 rel_mplock();
859 return (biowait(&bp->b_bio1, "biord"));
860 }
861 return (0);
862}
863
864/*
865 * breadn:
866 *
867 * Operates like bread, but also starts asynchronous I/O on
868 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior
869 * to initiating I/O . If B_CACHE is set, the buffer is valid
870 * and we do not have to do anything.
871 *
872 * MPALMOSTSAFE
873 */
874int
875breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
876 int *rabsize, int cnt, struct buf **bpp)
877{
878 struct buf *bp, *rabp;
879 int i;
880 int rv = 0, readwait = 0;
881
882 *bpp = bp = getblk(vp, loffset, size, 0, 0);
883
884 /* if not found in cache, do some I/O */
885 if ((bp->b_flags & B_CACHE) == 0) {
886 get_mplock();
887 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
888 bp->b_cmd = BUF_CMD_READ;
889 bp->b_bio1.bio_done = biodone_sync;
890 bp->b_bio1.bio_flags |= BIO_SYNC;
891 vfs_busy_pages(vp, bp);
892 vn_strategy(vp, &bp->b_bio1);
893 ++readwait;
894 rel_mplock();
895 }
896
897 for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
898 if (inmem(vp, *raoffset))
899 continue;
900 rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
901
902 if ((rabp->b_flags & B_CACHE) == 0) {
903 get_mplock();
904 rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
905 rabp->b_cmd = BUF_CMD_READ;
906 vfs_busy_pages(vp, rabp);
907 BUF_KERNPROC(rabp);
908 vn_strategy(vp, &rabp->b_bio1);
909 rel_mplock();
910 } else {
911 brelse(rabp);
912 }
913 }
914 if (readwait)
915 rv = biowait(&bp->b_bio1, "biord");
916 return (rv);
917}
918
919/*
920 * bwrite:
921 *
922 * Synchronous write, waits for completion.
923 *
924 * Write, release buffer on completion. (Done by iodone
925 * if async). Do not bother writing anything if the buffer
926 * is invalid.
927 *
928 * Note that we set B_CACHE here, indicating that buffer is
929 * fully valid and thus cacheable. This is true even of NFS
930 * now so we set it generally. This could be set either here
931 * or in biodone() since the I/O is synchronous. We put it
932 * here.
933 */
934int
935bwrite(struct buf *bp)
936{
937 int error;
938
939 if (bp->b_flags & B_INVAL) {
940 brelse(bp);
941 return (0);
942 }
943 if (BUF_REFCNTNB(bp) == 0)
944 panic("bwrite: buffer is not busy???");
945
946 /* Mark the buffer clean */
947 bundirty(bp);
948
949 bp->b_flags &= ~(B_ERROR | B_EINTR);
950 bp->b_flags |= B_CACHE;
951 bp->b_cmd = BUF_CMD_WRITE;
952 bp->b_bio1.bio_done = biodone_sync;
953 bp->b_bio1.bio_flags |= BIO_SYNC;
954 vfs_busy_pages(bp->b_vp, bp);
955
956 /*
957 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
958 * valid for vnode-backed buffers.
959 */
960 bp->b_runningbufspace = bp->b_bufsize;
961 if (bp->b_runningbufspace) {
962 runningbufspace += bp->b_runningbufspace;
963 ++runningbufcount;
964 }
965
966 vn_strategy(bp->b_vp, &bp->b_bio1);
967 error = biowait(&bp->b_bio1, "biows");
968 brelse(bp);
969 return (error);
970}
971
972/*
973 * bawrite:
974 *
975 * Asynchronous write. Start output on a buffer, but do not wait for
976 * it to complete. The buffer is released when the output completes.
977 *
978 * bwrite() ( or the VOP routine anyway ) is responsible for handling
979 * B_INVAL buffers. Not us.
980 */
981void
982bawrite(struct buf *bp)
983{
984 if (bp->b_flags & B_INVAL) {
985 brelse(bp);
986 return;
987 }
988 if (BUF_REFCNTNB(bp) == 0)
989 panic("bwrite: buffer is not busy???");
990
991 /* Mark the buffer clean */
992 bundirty(bp);
993
994 bp->b_flags &= ~(B_ERROR | B_EINTR);
995 bp->b_flags |= B_CACHE;
996 bp->b_cmd = BUF_CMD_WRITE;
997 KKASSERT(bp->b_bio1.bio_done == NULL);
998 vfs_busy_pages(bp->b_vp, bp);
999
1000 /*
1001 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
1002 * valid for vnode-backed buffers.
1003 */
1004 bp->b_runningbufspace = bp->b_bufsize;
1005 if (bp->b_runningbufspace) {
1006 runningbufspace += bp->b_runningbufspace;
1007 ++runningbufcount;
1008 }
1009
1010 BUF_KERNPROC(bp);
1011 vn_strategy(bp->b_vp, &bp->b_bio1);
1012}
1013
1014/*
1015 * bowrite:
1016 *
1017 * Ordered write. Start output on a buffer, and flag it so that the
1018 * device will write it in the order it was queued. The buffer is
1019 * released when the output completes. bwrite() ( or the VOP routine
1020 * anyway ) is responsible for handling B_INVAL buffers.
1021 */
1022int
1023bowrite(struct buf *bp)
1024{
1025 bp->b_flags |= B_ORDERED;
1026 bawrite(bp);
1027 return (0);
1028}
1029
1030/*
1031 * bdwrite:
1032 *
1033 * Delayed write. (Buffer is marked dirty). Do not bother writing
1034 * anything if the buffer is marked invalid.
1035 *
1036 * Note that since the buffer must be completely valid, we can safely
1037 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
1038 * biodone() in order to prevent getblk from writing the buffer
1039 * out synchronously.
1040 */
1041void
1042bdwrite(struct buf *bp)
1043{
1044 if (BUF_REFCNTNB(bp) == 0)
1045 panic("bdwrite: buffer is not busy");
1046
1047 if (bp->b_flags & B_INVAL) {
1048 brelse(bp);
1049 return;
1050 }
1051 bdirty(bp);
1052
1053 if (dsched_is_clear_buf_priv(bp))
1054 dsched_new_buf(bp);
1055
1056 /*
1057 * Set B_CACHE, indicating that the buffer is fully valid. This is
1058 * true even of NFS now.
1059 */
1060 bp->b_flags |= B_CACHE;
1061
1062 /*
1063 * This bmap keeps the system from needing to do the bmap later,
1064 * perhaps when the system is attempting to do a sync. Since it
1065 * is likely that the indirect block -- or whatever other datastructure
1066 * that the filesystem needs is still in memory now, it is a good
1067 * thing to do this. Note also, that if the pageout daemon is
1068 * requesting a sync -- there might not be enough memory to do
1069 * the bmap then... So, this is important to do.
1070 */
1071 if (bp->b_bio2.bio_offset == NOOFFSET) {
1072 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1073 NULL, NULL, BUF_CMD_WRITE);
1074 }
1075
1076 /*
1077 * Because the underlying pages may still be mapped and
1078 * writable trying to set the dirty buffer (b_dirtyoff/end)
1079 * range here will be inaccurate.
1080 *
1081 * However, we must still clean the pages to satisfy the
1082 * vnode_pager and pageout daemon, so theythink the pages
1083 * have been "cleaned". What has really occured is that
1084 * they've been earmarked for later writing by the buffer
1085 * cache.
1086 *
1087 * So we get the b_dirtyoff/end update but will not actually
1088 * depend on it (NFS that is) until the pages are busied for
1089 * writing later on.
1090 */
1091 vfs_clean_pages(bp);
1092 bqrelse(bp);
1093
1094 /*
1095 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1096 * due to the softdep code.
1097 */
1098}
1099
1100/*
1101 * Fake write - return pages to VM system as dirty, leave the buffer clean.
1102 * This is used by tmpfs.
1103 *
1104 * It is important for any VFS using this routine to NOT use it for
1105 * IO_SYNC or IO_ASYNC operations which occur when the system really
1106 * wants to flush VM pages to backing store.
1107 */
1108void
1109buwrite(struct buf *bp)
1110{
1111 vm_page_t m;
1112 int i;
1113
1114 /*
1115 * Only works for VMIO buffers. If the buffer is already
1116 * marked for delayed-write we can't avoid the bdwrite().
1117 */
1118 if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1119 bdwrite(bp);
1120 return;
1121 }
1122
1123 /*
1124 * Set valid & dirty.
1125 */
1126 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1127 m = bp->b_xio.xio_pages[i];
1128 vfs_dirty_one_page(bp, i, m);
1129 }
1130 bqrelse(bp);
1131}
1132
1133/*
1134 * bdirty:
1135 *
1136 * Turn buffer into delayed write request by marking it B_DELWRI.
1137 * B_RELBUF and B_NOCACHE must be cleared.
1138 *
1139 * We reassign the buffer to itself to properly update it in the
1140 * dirty/clean lists.
1141 *
1142 * Must be called from a critical section.
1143 * The buffer must be on BQUEUE_NONE.
1144 */
1145void
1146bdirty(struct buf *bp)
1147{
1148 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1149 if (bp->b_flags & B_NOCACHE) {
1150 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1151 bp->b_flags &= ~B_NOCACHE;
1152 }
1153 if (bp->b_flags & B_INVAL) {
1154 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1155 }
1156 bp->b_flags &= ~B_RELBUF;
1157
1158 if ((bp->b_flags & B_DELWRI) == 0) {
1159 bp->b_flags |= B_DELWRI;
1160 reassignbuf(bp);
1161 atomic_add_int(&dirtybufcount, 1);
1162 dirtybufspace += bp->b_bufsize;
1163 if (bp->b_flags & B_HEAVY) {
1164 atomic_add_int(&dirtybufcounthw, 1);
1165 atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1166 }
1167 bd_heatup();
1168 }
1169}
1170
1171/*
1172 * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1173 * needs to be flushed with a different buf_daemon thread to avoid
1174 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf().
1175 */
1176void
1177bheavy(struct buf *bp)
1178{
1179 if ((bp->b_flags & B_HEAVY) == 0) {
1180 bp->b_flags |= B_HEAVY;
1181 if (bp->b_flags & B_DELWRI) {
1182 atomic_add_int(&dirtybufcounthw, 1);
1183 atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1184 }
1185 }
1186}
1187
1188/*
1189 * bundirty:
1190 *
1191 * Clear B_DELWRI for buffer.
1192 *
1193 * Must be called from a critical section.
1194 *
1195 * The buffer is typically on BQUEUE_NONE but there is one case in
1196 * brelse() that calls this function after placing the buffer on
1197 * a different queue.
1198 *
1199 * MPSAFE
1200 */
1201void
1202bundirty(struct buf *bp)
1203{
1204 if (bp->b_flags & B_DELWRI) {
1205 bp->b_flags &= ~B_DELWRI;
1206 reassignbuf(bp);
1207 atomic_subtract_int(&dirtybufcount, 1);
1208 atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1209 if (bp->b_flags & B_HEAVY) {
1210 atomic_subtract_int(&dirtybufcounthw, 1);
1211 atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1212 }
1213 bd_signal(bp->b_bufsize);
1214 }
1215 /*
1216 * Since it is now being written, we can clear its deferred write flag.
1217 */
1218 bp->b_flags &= ~B_DEFERRED;
1219}
1220
1221/*
1222 * brelse:
1223 *
1224 * Release a busy buffer and, if requested, free its resources. The
1225 * buffer will be stashed in the appropriate bufqueue[] allowing it
1226 * to be accessed later as a cache entity or reused for other purposes.
1227 *
1228 * MPALMOSTSAFE
1229 */
1230void
1231brelse(struct buf *bp)
1232{
1233#ifdef INVARIANTS
1234 int saved_flags = bp->b_flags;
1235#endif
1236
1237 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1238
1239 /*
1240 * If B_NOCACHE is set we are being asked to destroy the buffer and
1241 * its backing store. Clear B_DELWRI.
1242 *
1243 * B_NOCACHE is set in two cases: (1) when the caller really wants
1244 * to destroy the buffer and backing store and (2) when the caller
1245 * wants to destroy the buffer and backing store after a write
1246 * completes.
1247 */
1248 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1249 bundirty(bp);
1250 }
1251
1252 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1253 /*
1254 * A re-dirtied buffer is only subject to destruction
1255 * by B_INVAL. B_ERROR and B_NOCACHE are ignored.
1256 */
1257 /* leave buffer intact */
1258 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1259 (bp->b_bufsize <= 0)) {
1260 /*
1261 * Either a failed read or we were asked to free or not
1262 * cache the buffer. This path is reached with B_DELWRI
1263 * set only if B_INVAL is already set. B_NOCACHE governs
1264 * backing store destruction.
1265 *
1266 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1267 * buffer cannot be immediately freed.
1268 */
1269 bp->b_flags |= B_INVAL;
1270 if (LIST_FIRST(&bp->b_dep) != NULL) {
1271 get_mplock();
1272 buf_deallocate(bp);
1273 rel_mplock();
1274 }
1275 if (bp->b_flags & B_DELWRI) {
1276 atomic_subtract_int(&dirtybufcount, 1);
1277 atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1278 if (bp->b_flags & B_HEAVY) {
1279 atomic_subtract_int(&dirtybufcounthw, 1);
1280 atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1281 }
1282 bd_signal(bp->b_bufsize);
1283 }
1284 bp->b_flags &= ~(B_DELWRI | B_CACHE);
1285 }
1286
1287 /*
1288 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1289 * If vfs_vmio_release() is called with either bit set, the
1290 * underlying pages may wind up getting freed causing a previous
1291 * write (bdwrite()) to get 'lost' because pages associated with
1292 * a B_DELWRI bp are marked clean. Pages associated with a
1293 * B_LOCKED buffer may be mapped by the filesystem.
1294 *
1295 * If we want to release the buffer ourselves (rather then the
1296 * originator asking us to release it), give the originator a
1297 * chance to countermand the release by setting B_LOCKED.
1298 *
1299 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1300 * if B_DELWRI is set.
1301 *
1302 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1303 * on pages to return pages to the VM page queues.
1304 */
1305 if (bp->b_flags & (B_DELWRI | B_LOCKED)) {
1306 bp->b_flags &= ~B_RELBUF;
1307 } else if (vm_page_count_severe()) {
1308 if (LIST_FIRST(&bp->b_dep) != NULL) {
1309 get_mplock();
1310 buf_deallocate(bp); /* can set B_LOCKED */
1311 rel_mplock();
1312 }
1313 if (bp->b_flags & (B_DELWRI | B_LOCKED))
1314 bp->b_flags &= ~B_RELBUF;
1315 else
1316 bp->b_flags |= B_RELBUF;
1317 }
1318
1319 /*
1320 * Make sure b_cmd is clear. It may have already been cleared by
1321 * biodone().
1322 *
1323 * At this point destroying the buffer is governed by the B_INVAL
1324 * or B_RELBUF flags.
1325 */
1326 bp->b_cmd = BUF_CMD_DONE;
1327 dsched_exit_buf(bp);
1328
1329 /*
1330 * VMIO buffer rundown. Make sure the VM page array is restored
1331 * after an I/O may have replaces some of the pages with bogus pages
1332 * in order to not destroy dirty pages in a fill-in read.
1333 *
1334 * Note that due to the code above, if a buffer is marked B_DELWRI
1335 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1336 * B_INVAL may still be set, however.
1337 *
1338 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1339 * but not the backing store. B_NOCACHE will destroy the backing
1340 * store.
1341 *
1342 * Note that dirty NFS buffers contain byte-granular write ranges
1343 * and should not be destroyed w/ B_INVAL even if the backing store
1344 * is left intact.
1345 */
1346 if (bp->b_flags & B_VMIO) {
1347 /*
1348 * Rundown for VMIO buffers which are not dirty NFS buffers.
1349 */
1350 int i, j, resid;
1351 vm_page_t m;
1352 off_t foff;
1353 vm_pindex_t poff;
1354 vm_object_t obj;
1355 struct vnode *vp;
1356
1357 vp = bp->b_vp;
1358
1359 /*
1360 * Get the base offset and length of the buffer. Note that
1361 * in the VMIO case if the buffer block size is not
1362 * page-aligned then b_data pointer may not be page-aligned.
1363 * But our b_xio.xio_pages array *IS* page aligned.
1364 *
1365 * block sizes less then DEV_BSIZE (usually 512) are not
1366 * supported due to the page granularity bits (m->valid,
1367 * m->dirty, etc...).
1368 *
1369 * See man buf(9) for more information
1370 */
1371
1372 resid = bp->b_bufsize;
1373 foff = bp->b_loffset;
1374
1375 get_mplock();
1376 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1377 m = bp->b_xio.xio_pages[i];
1378 vm_page_flag_clear(m, PG_ZERO);
1379 /*
1380 * If we hit a bogus page, fixup *all* of them
1381 * now. Note that we left these pages wired
1382 * when we removed them so they had better exist,
1383 * and they cannot be ripped out from under us so
1384 * no critical section protection is necessary.
1385 */
1386 if (m == bogus_page) {
1387 obj = vp->v_object;
1388 poff = OFF_TO_IDX(bp->b_loffset);
1389
1390 for (j = i; j < bp->b_xio.xio_npages; j++) {
1391 vm_page_t mtmp;
1392
1393 mtmp = bp->b_xio.xio_pages[j];
1394 if (mtmp == bogus_page) {
1395 mtmp = vm_page_lookup(obj, poff + j);
1396 if (!mtmp) {
1397 panic("brelse: page missing");
1398 }
1399 bp->b_xio.xio_pages[j] = mtmp;
1400 }
1401 }
1402
1403 if ((bp->b_flags & B_INVAL) == 0) {
1404 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1405 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1406 }
1407 m = bp->b_xio.xio_pages[i];
1408 }
1409
1410 /*
1411 * Invalidate the backing store if B_NOCACHE is set
1412 * (e.g. used with vinvalbuf()). If this is NFS
1413 * we impose a requirement that the block size be
1414 * a multiple of PAGE_SIZE and create a temporary
1415 * hack to basically invalidate the whole page. The
1416 * problem is that NFS uses really odd buffer sizes
1417 * especially when tracking piecemeal writes and
1418 * it also vinvalbuf()'s a lot, which would result
1419 * in only partial page validation and invalidation
1420 * here. If the file page is mmap()'d, however,
1421 * all the valid bits get set so after we invalidate
1422 * here we would end up with weird m->valid values
1423 * like 0xfc. nfs_getpages() can't handle this so
1424 * we clear all the valid bits for the NFS case
1425 * instead of just some of them.
1426 *
1427 * The real bug is the VM system having to set m->valid
1428 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1429 * itself is an artifact of the whole 512-byte
1430 * granular mess that exists to support odd block
1431 * sizes and UFS meta-data block sizes (e.g. 6144).
1432 * A complete rewrite is required.
1433 *
1434 * XXX
1435 */
1436 if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1437 int poffset = foff & PAGE_MASK;
1438 int presid;
1439
1440 presid = PAGE_SIZE - poffset;
1441 if (bp->b_vp->v_tag == VT_NFS &&
1442 bp->b_vp->v_type == VREG) {
1443 ; /* entire page */
1444 } else if (presid > resid) {
1445 presid = resid;
1446 }
1447 KASSERT(presid >= 0, ("brelse: extra page"));
1448 vm_page_set_invalid(m, poffset, presid);
1449
1450 /*
1451 * Also make sure any swap cache is removed
1452 * as it is now stale (HAMMER in particular
1453 * uses B_NOCACHE to deal with buffer
1454 * aliasing).
1455 */
1456 swap_pager_unswapped(m);
1457 }
1458 resid -= PAGE_SIZE - (foff & PAGE_MASK);
1459 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1460 }
1461 if (bp->b_flags & (B_INVAL | B_RELBUF))
1462 vfs_vmio_release(bp);
1463 rel_mplock();
1464 } else {
1465 /*
1466 * Rundown for non-VMIO buffers.
1467 */
1468 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1469 get_mplock();
1470 if (bp->b_bufsize)
1471 allocbuf(bp, 0);
1472 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1473 if (bp->b_vp)
1474 brelvp(bp);
1475 rel_mplock();
1476 }
1477 }
1478
1479 if (bp->b_qindex != BQUEUE_NONE)
1480 panic("brelse: free buffer onto another queue???");
1481 if (BUF_REFCNTNB(bp) > 1) {
1482 /* Temporary panic to verify exclusive locking */
1483 /* This panic goes away when we allow shared refs */
1484 panic("brelse: multiple refs");
1485 /* NOT REACHED */
1486 return;
1487 }
1488
1489 /*
1490 * Figure out the correct queue to place the cleaned up buffer on.
1491 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1492 * disassociated from their vnode.
1493 */
1494 spin_lock_wr(&bufspin);
1495 if (bp->b_flags & B_LOCKED) {
1496 /*
1497 * Buffers that are locked are placed in the locked queue
1498 * immediately, regardless of their state.
1499 */
1500 bp->b_qindex = BQUEUE_LOCKED;
1501 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1502 } else if (bp->b_bufsize == 0) {
1503 /*
1504 * Buffers with no memory. Due to conditionals near the top
1505 * of brelse() such buffers should probably already be
1506 * marked B_INVAL and disassociated from their vnode.
1507 */
1508 bp->b_flags |= B_INVAL;
1509 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1510 KKASSERT((bp->b_flags & B_HASHED) == 0);
1511 if (bp->b_kvasize) {
1512 bp->b_qindex = BQUEUE_EMPTYKVA;
1513 } else {
1514 bp->b_qindex = BQUEUE_EMPTY;
1515 }
1516 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1517 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1518 /*
1519 * Buffers with junk contents. Again these buffers had better
1520 * already be disassociated from their vnode.
1521 */
1522 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1523 KKASSERT((bp->b_flags & B_HASHED) == 0);
1524 bp->b_flags |= B_INVAL;
1525 bp->b_qindex = BQUEUE_CLEAN;
1526 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1527 } else {
1528 /*
1529 * Remaining buffers. These buffers are still associated with
1530 * their vnode.
1531 */
1532 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1533 case B_DELWRI:
1534 bp->b_qindex = BQUEUE_DIRTY;
1535 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1536 break;
1537 case B_DELWRI | B_HEAVY:
1538 bp->b_qindex = BQUEUE_DIRTY_HW;
1539 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1540 b_freelist);
1541 break;
1542 default:
1543 /*
1544 * NOTE: Buffers are always placed at the end of the
1545 * queue. If B_AGE is not set the buffer will cycle
1546 * through the queue twice.
1547 */
1548 bp->b_qindex = BQUEUE_CLEAN;
1549 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1550 break;
1551 }
1552 }
1553 spin_unlock_wr(&bufspin);
1554
1555 /*
1556 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1557 * on the correct queue.
1558 */
1559 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1560 bundirty(bp);
1561
1562 /*
1563 * The bp is on an appropriate queue unless locked. If it is not
1564 * locked or dirty we can wakeup threads waiting for buffer space.
1565 *
1566 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1567 * if B_INVAL is set ).
1568 */
1569 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1570 bufcountwakeup();
1571
1572 /*
1573 * Something we can maybe free or reuse
1574 */
1575 if (bp->b_bufsize || bp->b_kvasize)
1576 bufspacewakeup();
1577
1578 /*
1579 * Clean up temporary flags and unlock the buffer.
1580 */
1581 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1582 BUF_UNLOCK(bp);
1583}
1584
1585/*
1586 * bqrelse:
1587 *
1588 * Release a buffer back to the appropriate queue but do not try to free
1589 * it. The buffer is expected to be used again soon.
1590 *
1591 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1592 * biodone() to requeue an async I/O on completion. It is also used when
1593 * known good buffers need to be requeued but we think we may need the data
1594 * again soon.
1595 *
1596 * XXX we should be able to leave the B_RELBUF hint set on completion.
1597 *
1598 * MPSAFE
1599 */
1600void
1601bqrelse(struct buf *bp)
1602{
1603 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1604
1605 if (bp->b_qindex != BQUEUE_NONE)
1606 panic("bqrelse: free buffer onto another queue???");
1607 if (BUF_REFCNTNB(bp) > 1) {
1608 /* do not release to free list */
1609 panic("bqrelse: multiple refs");
1610 return;
1611 }
1612
1613 buf_act_advance(bp);
1614
1615 spin_lock_wr(&bufspin);
1616 if (bp->b_flags & B_LOCKED) {
1617 /*
1618 * Locked buffers are released to the locked queue. However,
1619 * if the buffer is dirty it will first go into the dirty
1620 * queue and later on after the I/O completes successfully it
1621 * will be released to the locked queue.
1622 */
1623 bp->b_qindex = BQUEUE_LOCKED;
1624 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1625 } else if (bp->b_flags & B_DELWRI) {
1626 bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1627 BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1628 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1629 } else if (vm_page_count_severe()) {
1630 /*
1631 * We are too low on memory, we have to try to free the
1632 * buffer (most importantly: the wired pages making up its
1633 * backing store) *now*.
1634 */
1635 spin_unlock_wr(&bufspin);
1636 brelse(bp);
1637 return;
1638 } else {
1639 bp->b_qindex = BQUEUE_CLEAN;
1640 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1641 }
1642 spin_unlock_wr(&bufspin);
1643
1644 if ((bp->b_flags & B_LOCKED) == 0 &&
1645 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1646 bufcountwakeup();
1647 }
1648
1649 /*
1650 * Something we can maybe free or reuse.
1651 */
1652 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1653 bufspacewakeup();
1654
1655 /*
1656 * Final cleanup and unlock. Clear bits that are only used while a
1657 * buffer is actively locked.
1658 */
1659 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1660 dsched_exit_buf(bp);
1661 BUF_UNLOCK(bp);
1662}
1663
1664/*
1665 * vfs_vmio_release:
1666 *
1667 * Return backing pages held by the buffer 'bp' back to the VM system
1668 * if possible. The pages are freed if they are no longer valid or
1669 * attempt to free if it was used for direct I/O otherwise they are
1670 * sent to the page cache.
1671 *
1672 * Pages that were marked busy are left alone and skipped.
1673 *
1674 * The KVA mapping (b_data) for the underlying pages is removed by
1675 * this function.
1676 */
1677static void
1678vfs_vmio_release(struct buf *bp)
1679{
1680 int i;
1681 vm_page_t m;
1682
1683 lwkt_gettoken(&vm_token);
1684 crit_enter();
1685 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1686 m = bp->b_xio.xio_pages[i];
1687 bp->b_xio.xio_pages[i] = NULL;
1688
1689 /*
1690 * The VFS is telling us this is not a meta-data buffer
1691 * even if it is backed by a block device.
1692 */
1693 if (bp->b_flags & B_NOTMETA)
1694 vm_page_flag_set(m, PG_NOTMETA);
1695
1696 /*
1697 * This is a very important bit of code. We try to track
1698 * VM page use whether the pages are wired into the buffer
1699 * cache or not. While wired into the buffer cache the
1700 * bp tracks the act_count.
1701 *
1702 * We can choose to place unwired pages on the inactive
1703 * queue (0) or active queue (1). If we place too many
1704 * on the active queue the queue will cycle the act_count
1705 * on pages we'd like to keep, just from single-use pages
1706 * (such as when doing a tar-up or file scan).
1707 */
1708 if (bp->b_act_count < vm_cycle_point)
1709 vm_page_unwire(m, 0);
1710 else
1711 vm_page_unwire(m, 1);
1712
1713 /*
1714 * We don't mess with busy pages, it is
1715 * the responsibility of the process that
1716 * busied the pages to deal with them.
1717 */
1718 if ((m->flags & PG_BUSY) || (m->busy != 0))
1719 continue;
1720
1721 if (m->wire_count == 0) {
1722 vm_page_flag_clear(m, PG_ZERO);
1723 /*
1724 * Might as well free the page if we can and it has
1725 * no valid data. We also free the page if the
1726 * buffer was used for direct I/O.
1727 */
1728#if 0
1729 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1730 m->hold_count == 0) {
1731 vm_page_busy(m);
1732 vm_page_protect(m, VM_PROT_NONE);
1733 vm_page_free(m);
1734 } else
1735#endif
1736 if (bp->b_flags & B_DIRECT) {
1737 vm_page_try_to_free(m);
1738 } else if (vm_page_count_severe()) {
1739 m->act_count = bp->b_act_count;
1740 vm_page_try_to_cache(m);
1741 } else {
1742 m->act_count = bp->b_act_count;
1743 }
1744 }
1745 }
1746 crit_exit();
1747 lwkt_reltoken(&vm_token);
1748 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1749 if (bp->b_bufsize) {
1750 bufspacewakeup();
1751 bp->b_bufsize = 0;
1752 }
1753 bp->b_xio.xio_npages = 0;
1754 bp->b_flags &= ~B_VMIO;
1755 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1756 if (bp->b_vp) {
1757 get_mplock();
1758 brelvp(bp);
1759 rel_mplock();
1760 }
1761}
1762
1763/*
1764 * vfs_bio_awrite:
1765 *
1766 * Implement clustered async writes for clearing out B_DELWRI buffers.
1767 * This is much better then the old way of writing only one buffer at
1768 * a time. Note that we may not be presented with the buffers in the
1769 * correct order, so we search for the cluster in both directions.
1770 *
1771 * The buffer is locked on call.
1772 */
1773int
1774vfs_bio_awrite(struct buf *bp)
1775{
1776 int i;
1777 int j;
1778 off_t loffset = bp->b_loffset;
1779 struct vnode *vp = bp->b_vp;
1780 int nbytes;
1781 struct buf *bpa;
1782 int nwritten;
1783 int size;
1784
1785 /*
1786 * right now we support clustered writing only to regular files. If
1787 * we find a clusterable block we could be in the middle of a cluster
1788 * rather then at the beginning.
1789 *
1790 * NOTE: b_bio1 contains the logical loffset and is aliased
1791 * to b_loffset. b_bio2 contains the translated block number.
1792 */
1793 if ((vp->v_type == VREG) &&
1794 (vp->v_mount != 0) && /* Only on nodes that have the size info */
1795 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1796
1797 size = vp->v_mount->mnt_stat.f_iosize;
1798
1799 for (i = size; i < MAXPHYS; i += size) {
1800 if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) &&
1801 BUF_REFCNT(bpa) == 0 &&
1802 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1803 (B_DELWRI | B_CLUSTEROK)) &&
1804 (bpa->b_bufsize == size)) {
1805 if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1806 (bpa->b_bio2.bio_offset !=
1807 bp->b_bio2.bio_offset + i))
1808 break;
1809 } else {
1810 break;
1811 }
1812 }
1813 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1814 if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) &&
1815 BUF_REFCNT(bpa) == 0 &&
1816 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1817 (B_DELWRI | B_CLUSTEROK)) &&
1818 (bpa->b_bufsize == size)) {
1819 if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1820 (bpa->b_bio2.bio_offset !=
1821 bp->b_bio2.bio_offset - j))
1822 break;
1823 } else {
1824 break;
1825 }
1826 }
1827 j -= size;
1828 nbytes = (i + j);
1829
1830 /*
1831 * this is a possible cluster write
1832 */
1833 if (nbytes != size) {
1834 BUF_UNLOCK(bp);
1835 nwritten = cluster_wbuild(vp, size,
1836 loffset - j, nbytes);
1837 return nwritten;
1838 }
1839 }
1840
1841 /*
1842 * default (old) behavior, writing out only one block
1843 *
1844 * XXX returns b_bufsize instead of b_bcount for nwritten?
1845 */
1846 nwritten = bp->b_bufsize;
1847 bremfree(bp);
1848 bawrite(bp);
1849
1850 return nwritten;
1851}
1852
1853/*
1854 * getnewbuf:
1855 *
1856 * Find and initialize a new buffer header, freeing up existing buffers
1857 * in the bufqueues as necessary. The new buffer is returned locked.
1858 *
1859 * Important: B_INVAL is not set. If the caller wishes to throw the
1860 * buffer away, the caller must set B_INVAL prior to calling brelse().
1861 *
1862 * We block if:
1863 * We have insufficient buffer headers
1864 * We have insufficient buffer space
1865 * buffer_map is too fragmented ( space reservation fails )
1866 * If we have to flush dirty buffers ( but we try to avoid this )
1867 *
1868 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1869 * Instead we ask the buf daemon to do it for us. We attempt to
1870 * avoid piecemeal wakeups of the pageout daemon.
1871 *
1872 * MPALMOSTSAFE
1873 */
1874static struct buf *
1875getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1876{
1877 struct buf *bp;
1878 struct buf *nbp;
1879 int defrag = 0;
1880 int nqindex;
1881 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1882 static int flushingbufs;
1883
1884 /*
1885 * We can't afford to block since we might be holding a vnode lock,
1886 * which may prevent system daemons from running. We deal with
1887 * low-memory situations by proactively returning memory and running
1888 * async I/O rather then sync I/O.
1889 */
1890
1891 ++getnewbufcalls;
1892 --getnewbufrestarts;
1893restart:
1894 ++getnewbufrestarts;
1895
1896 /*
1897 * Setup for scan. If we do not have enough free buffers,
1898 * we setup a degenerate case that immediately fails. Note
1899 * that if we are specially marked process, we are allowed to
1900 * dip into our reserves.
1901 *
1902 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
1903 *
1904 * We start with EMPTYKVA. If the list is empty we backup to EMPTY.
1905 * However, there are a number of cases (defragging, reusing, ...)
1906 * where we cannot backup.
1907 */
1908 nqindex = BQUEUE_EMPTYKVA;
1909 spin_lock_wr(&bufspin);
1910 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1911
1912 if (nbp == NULL) {
1913 /*
1914 * If no EMPTYKVA buffers and we are either
1915 * defragging or reusing, locate a CLEAN buffer
1916 * to free or reuse. If bufspace useage is low
1917 * skip this step so we can allocate a new buffer.
1918 */
1919 if (defrag || bufspace >= lobufspace) {
1920 nqindex = BQUEUE_CLEAN;
1921 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1922 }
1923
1924 /*
1925 * If we could not find or were not allowed to reuse a
1926 * CLEAN buffer, check to see if it is ok to use an EMPTY
1927 * buffer. We can only use an EMPTY buffer if allocating
1928 * its KVA would not otherwise run us out of buffer space.
1929 */
1930 if (nbp == NULL && defrag == 0 &&
1931 bufspace + maxsize < hibufspace) {
1932 nqindex = BQUEUE_EMPTY;
1933 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1934 }
1935 }
1936
1937 /*
1938 * Run scan, possibly freeing data and/or kva mappings on the fly
1939 * depending.
1940 *
1941 * WARNING! bufspin is held!
1942 */
1943 while ((bp = nbp) != NULL) {
1944 int qindex = nqindex;
1945
1946 nbp = TAILQ_NEXT(bp, b_freelist);
1947
1948 /*
1949 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
1950 * cycles through the queue twice before being selected.
1951 */
1952 if (qindex == BQUEUE_CLEAN &&
1953 (bp->b_flags & B_AGE) == 0 && nbp) {
1954 bp->b_flags |= B_AGE;
1955 TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
1956 TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
1957 continue;
1958 }
1959
1960 /*
1961 * Calculate next bp ( we can only use it if we do not block
1962 * or do other fancy things ).
1963 */
1964 if (nbp == NULL) {
1965 switch(qindex) {
1966 case BQUEUE_EMPTY:
1967 nqindex = BQUEUE_EMPTYKVA;
1968 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1969 break;
1970 /* fall through */
1971 case BQUEUE_EMPTYKVA:
1972 nqindex = BQUEUE_CLEAN;
1973 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1974 break;
1975 /* fall through */
1976 case BQUEUE_CLEAN:
1977 /*
1978 * nbp is NULL.
1979 */
1980 break;
1981 }
1982 }
1983
1984 /*
1985 * Sanity Checks
1986 */
1987 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1988
1989 /*
1990 * Note: we no longer distinguish between VMIO and non-VMIO
1991 * buffers.
1992 */
1993
1994 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1995
1996 /*
1997 * If we are defragging then we need a buffer with
1998 * b_kvasize != 0. XXX this situation should no longer
1999 * occur, if defrag is non-zero the buffer's b_kvasize
2000 * should also be non-zero at this point. XXX
2001 */
2002 if (defrag && bp->b_kvasize == 0) {
2003 kprintf("Warning: defrag empty buffer %p\n", bp);
2004 continue;
2005 }
2006
2007 /*
2008 * Start freeing the bp. This is somewhat involved. nbp
2009 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers
2010 * on the clean list must be disassociated from their
2011 * current vnode. Buffers on the empty[kva] lists have
2012 * already been disassociated.
2013 */
2014
2015 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2016 spin_unlock_wr(&bufspin);
2017 tsleep(&bd_request, 0, "gnbxxx", hz / 100);
2018 goto restart;
2019 }
2020 if (bp->b_qindex != qindex) {
2021 spin_unlock_wr(&bufspin);
2022 kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
2023 BUF_UNLOCK(bp);
2024 goto restart;
2025 }
2026 bremfree_locked(bp);
2027 spin_unlock_wr(&bufspin);
2028
2029 /*
2030 * Dependancies must be handled before we disassociate the
2031 * vnode.
2032 *
2033 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2034 * be immediately disassociated. HAMMER then becomes
2035 * responsible for releasing the buffer.
2036 *
2037 * NOTE: bufspin is UNLOCKED now.
2038 */
2039 if (LIST_FIRST(&bp->b_dep) != NULL) {
2040 get_mplock();
2041 buf_deallocate(bp);
2042 rel_mplock();
2043 if (bp->b_flags & B_LOCKED) {
2044 bqrelse(bp);
2045 goto restart;
2046 }
2047 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2048 }
2049
2050 if (qindex == BQUEUE_CLEAN) {
2051 get_mplock();
2052 if (bp->b_flags & B_VMIO) {
2053 get_mplock();
2054 vfs_vmio_release(bp);
2055 rel_mplock();
2056 }
2057 if (bp->b_vp)
2058 brelvp(bp);
2059 rel_mplock();
2060 }
2061
2062 /*
2063 * NOTE: nbp is now entirely invalid. We can only restart
2064 * the scan from this point on.
2065 *
2066 * Get the rest of the buffer freed up. b_kva* is still
2067 * valid after this operation.
2068 */
2069
2070 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
2071 KKASSERT((bp->b_flags & B_HASHED) == 0);
2072
2073 /*
2074 * critical section protection is not required when
2075 * scrapping a buffer's contents because it is already
2076 * wired.
2077 */
2078 if (bp->b_bufsize) {
2079 get_mplock();
2080 allocbuf(bp, 0);
2081 rel_mplock();
2082 }
2083
2084 bp->b_flags = B_BNOCLIP;
2085 bp->b_cmd = BUF_CMD_DONE;
2086 bp->b_vp = NULL;
2087 bp->b_error = 0;
2088 bp->b_resid = 0;
2089 bp->b_bcount = 0;
2090 bp->b_xio.xio_npages = 0;
2091 bp->b_dirtyoff = bp->b_dirtyend = 0;
2092 bp->b_act_count = ACT_INIT;
2093 reinitbufbio(bp);
2094 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2095 buf_dep_init(bp);
2096 if (blkflags & GETBLK_BHEAVY)
2097 bp->b_flags |= B_HEAVY;
2098
2099 /*
2100 * If we are defragging then free the buffer.
2101 */
2102 if (defrag) {
2103 bp->b_flags |= B_INVAL;
2104 bfreekva(bp);
2105 brelse(bp);
2106 defrag = 0;
2107 goto restart;
2108 }
2109
2110 /*
2111 * If we are overcomitted then recover the buffer and its
2112 * KVM space. This occurs in rare situations when multiple
2113 * processes are blocked in getnewbuf() or allocbuf().
2114 */
2115 if (bufspace >= hibufspace)
2116 flushingbufs = 1;
2117 if (flushingbufs && bp->b_kvasize != 0) {
2118 bp->b_flags |= B_INVAL;
2119 bfreekva(bp);
2120 brelse(bp);
2121 goto restart;
2122 }
2123 if (bufspace < lobufspace)
2124 flushingbufs = 0;
2125 break;
2126 /* NOT REACHED, bufspin not held */
2127 }
2128
2129 /*
2130 * If we exhausted our list, sleep as appropriate. We may have to
2131 * wakeup various daemons and write out some dirty buffers.
2132 *
2133 * Generally we are sleeping due to insufficient buffer space.
2134 *
2135 * NOTE: bufspin is held if bp is NULL, else it is not held.
2136 */
2137 if (bp == NULL) {
2138 int flags;
2139 char *waitmsg;
2140
2141 spin_unlock_wr(&bufspin);
2142 if (defrag) {
2143 flags = VFS_BIO_NEED_BUFSPACE;
2144 waitmsg = "nbufkv";
2145 } else if (bufspace >= hibufspace) {
2146 waitmsg = "nbufbs";
2147 flags = VFS_BIO_NEED_BUFSPACE;
2148 } else {
2149 waitmsg = "newbuf";
2150 flags = VFS_BIO_NEED_ANY;
2151 }
2152
2153 needsbuffer |= flags;
2154 bd_speedup(); /* heeeelp */
2155 while (needsbuffer & flags) {
2156 if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo))
2157 return (NULL);
2158 }
2159 } else {
2160 /*
2161 * We finally have a valid bp. We aren't quite out of the
2162 * woods, we still have to reserve kva space. In order
2163 * to keep fragmentation sane we only allocate kva in
2164 * BKVASIZE chunks.
2165 *
2166 * (bufspin is not held)
2167 */
2168 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2169
2170 if (maxsize != bp->b_kvasize) {
2171 vm_offset_t addr = 0;
2172 int count;
2173
2174 bfreekva(bp);
2175
2176 get_mplock();
2177 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2178 vm_map_lock(&buffer_map);
2179
2180 if (vm_map_findspace(&buffer_map,
2181 vm_map_min(&buffer_map), maxsize,
2182 maxsize, 0, &addr)) {
2183 /*
2184 * Uh oh. Buffer map is too fragmented. We
2185 * must defragment the map.
2186 */
2187 vm_map_unlock(&buffer_map);
2188 vm_map_entry_release(count);
2189 ++bufdefragcnt;
2190 defrag = 1;
2191 bp->b_flags |= B_INVAL;
2192 rel_mplock();
2193 brelse(bp);
2194 goto restart;
2195 }
2196 if (addr) {
2197 vm_map_insert(&buffer_map, &count,
2198 NULL, 0,
2199 addr, addr + maxsize,
2200 VM_MAPTYPE_NORMAL,
2201 VM_PROT_ALL, VM_PROT_ALL,
2202 MAP_NOFAULT);
2203
2204 bp->b_kvabase = (caddr_t) addr;
2205 bp->b_kvasize = maxsize;
2206 bufspace += bp->b_kvasize;
2207 ++bufreusecnt;
2208 }
2209 vm_map_unlock(&buffer_map);
2210 vm_map_entry_release(count);
2211 rel_mplock();
2212 }
2213 bp->b_data = bp->b_kvabase;
2214 }
2215 return(bp);
2216}
2217
2218/*
2219 * This routine is called in an emergency to recover VM pages from the
2220 * buffer cache by cashing in clean buffers. The idea is to recover
2221 * enough pages to be able to satisfy a stuck bio_page_alloc().
2222 */
2223static int
2224recoverbufpages(void)
2225{
2226 struct buf *bp;
2227 int bytes = 0;
2228
2229 ++recoverbufcalls;
2230
2231 spin_lock_wr(&bufspin);
2232 while (bytes < MAXBSIZE) {
2233 bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2234 if (bp == NULL)
2235 break;
2236
2237 /*
2238 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
2239 * cycles through the queue twice before being selected.
2240 */
2241 if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2242 bp->b_flags |= B_AGE;
2243 TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2244 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2245 bp, b_freelist);
2246 continue;
2247 }
2248
2249 /*
2250 * Sanity Checks
2251 */
2252 KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2253 KKASSERT((bp->b_flags & B_DELWRI) == 0);
2254
2255 /*
2256 * Start freeing the bp. This is somewhat involved.
2257 *
2258 * Buffers on the clean list must be disassociated from
2259 * their current vnode
2260 */
2261
2262 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2263 kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp);
2264 tsleep(&bd_request, 0, "gnbxxx", hz / 100);
2265 continue;
2266 }
2267 if (bp->b_qindex != BQUEUE_CLEAN) {
2268 kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp, bp->b_qindex);
2269 BUF_UNLOCK(bp);
2270 continue;
2271 }
2272 bremfree_locked(bp);
2273 spin_unlock_wr(&bufspin);
2274
2275 /*
2276 * Dependancies must be handled before we disassociate the
2277 * vnode.
2278 *
2279 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2280 * be immediately disassociated. HAMMER then becomes
2281 * responsible for releasing the buffer.
2282 */
2283 if (LIST_FIRST(&bp->b_dep) != NULL) {
2284 buf_deallocate(bp);
2285 if (bp->b_flags & B_LOCKED) {
2286 bqrelse(bp);
2287 spin_lock_wr(&bufspin);
2288 continue;
2289 }
2290 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2291 }
2292
2293 bytes += bp->b_bufsize;
2294
2295 get_mplock();
2296 if (bp->b_flags & B_VMIO) {
2297 bp->b_flags |= B_DIRECT; /* try to free pages */
2298 vfs_vmio_release(bp);
2299 }
2300 if (bp->b_vp)
2301 brelvp(bp);
2302
2303 KKASSERT(bp->b_vp == NULL);
2304 KKASSERT((bp->b_flags & B_HASHED) == 0);
2305
2306 /*
2307 * critical section protection is not required when
2308 * scrapping a buffer's contents because it is already
2309 * wired.
2310 */
2311 if (bp->b_bufsize)
2312 allocbuf(bp, 0);
2313 rel_mplock();
2314
2315 bp->b_flags = B_BNOCLIP;
2316 bp->b_cmd = BUF_CMD_DONE;
2317 bp->b_vp = NULL;
2318 bp->b_error = 0;
2319 bp->b_resid = 0;
2320 bp->b_bcount = 0;
2321 bp->b_xio.xio_npages = 0;
2322 bp->b_dirtyoff = bp->b_dirtyend = 0;
2323 reinitbufbio(bp);
2324 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2325 buf_dep_init(bp);
2326 bp->b_flags |= B_INVAL;
2327 /* bfreekva(bp); */
2328 brelse(bp);
2329 spin_lock_wr(&bufspin);
2330 }
2331 spin_unlock_wr(&bufspin);
2332 return(bytes);
2333}
2334
2335/*
2336 * buf_daemon:
2337 *
2338 * Buffer flushing daemon. Buffers are normally flushed by the
2339 * update daemon but if it cannot keep up this process starts to
2340 * take the load in an attempt to prevent getnewbuf() from blocking.
2341 *
2342 * Once a flush is initiated it does not stop until the number
2343 * of buffers falls below lodirtybuffers, but we will wake up anyone
2344 * waiting at the mid-point.
2345 */
2346
2347static struct kproc_desc buf_kp = {
2348 "bufdaemon",
2349 buf_daemon,
2350 &bufdaemon_td
2351};
2352SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2353 kproc_start, &buf_kp)
2354
2355static struct kproc_desc bufhw_kp = {
2356 "bufdaemon_hw",
2357 buf_daemon_hw,
2358 &bufdaemonhw_td
2359};
2360SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2361 kproc_start, &bufhw_kp)
2362
2363static void
2364buf_daemon(void)
2365{
2366 int limit;
2367
2368 /*
2369 * This process needs to be suspended prior to shutdown sync.
2370 */
2371 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2372 bufdaemon_td, SHUTDOWN_PRI_LAST);
2373 curthread->td_flags |= TDF_SYSTHREAD;
2374
2375 /*
2376 * This process is allowed to take the buffer cache to the limit
2377 */
2378 crit_enter();
2379
2380 for (;;) {
2381 kproc_suspend_loop();
2382
2383 /*
2384 * Do the flush as long as the number of dirty buffers
2385 * (including those running) exceeds lodirtybufspace.
2386 *
2387 * When flushing limit running I/O to hirunningspace
2388 * Do the flush. Limit the amount of in-transit I/O we
2389 * allow to build up, otherwise we would completely saturate
2390 * the I/O system. Wakeup any waiting processes before we
2391 * normally would so they can run in parallel with our drain.
2392 *
2393 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2394 * but because we split the operation into two threads we
2395 * have to cut it in half for each thread.
2396 */
2397 waitrunningbufspace();
2398 limit = lodirtybufspace / 2;
2399 while (runningbufspace + dirtybufspace > limit ||
2400 dirtybufcount - dirtybufcounthw >= nbuf / 2) {
2401 if (flushbufqueues(BQUEUE_DIRTY) == 0)
2402 break;
2403 if (runningbufspace < hirunningspace)
2404 continue;
2405 waitrunningbufspace();
2406 }
2407
2408 /*
2409 * We reached our low water mark, reset the
2410 * request and sleep until we are needed again.
2411 * The sleep is just so the suspend code works.
2412 */
2413 spin_lock_wr(&needsbuffer_spin);
2414 if (bd_request == 0) {
2415 ssleep(&bd_request, &needsbuffer_spin, 0,
2416 "psleep", hz);
2417 }
2418 bd_request = 0;
2419 spin_unlock_wr(&needsbuffer_spin);
2420 }
2421}
2422
2423static void
2424buf_daemon_hw(void)
2425{
2426 int limit;
2427
2428 /*
2429 * This process needs to be suspended prior to shutdown sync.
2430 */
2431 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2432 bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2433 curthread->td_flags |= TDF_SYSTHREAD;
2434
2435 /*
2436 * This process is allowed to take the buffer cache to the limit
2437 */
2438 crit_enter();
2439
2440 for (;;) {
2441 kproc_suspend_loop();
2442
2443 /*
2444 * Do the flush. Limit the amount of in-transit I/O we
2445 * allow to build up, otherwise we would completely saturate
2446 * the I/O system. Wakeup any waiting processes before we
2447 * normally would so they can run in parallel with our drain.
2448 *
2449 * Once we decide to flush push the queued I/O up to
2450 * hirunningspace in order to trigger bursting by the bioq
2451 * subsystem.
2452 *
2453 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2454 * but because we split the operation into two threads we
2455 * have to cut it in half for each thread.
2456 */
2457 waitrunningbufspace();
2458 limit = lodirtybufspace / 2;
2459 while (runningbufspace + dirtybufspacehw > limit ||
2460 dirtybufcounthw >= nbuf / 2) {
2461 if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2462 break;
2463 if (runningbufspace < hirunningspace)
2464 continue;
2465 waitrunningbufspace();
2466 }
2467
2468 /*
2469 * We reached our low water mark, reset the
2470 * request and sleep until we are needed again.
2471 * The sleep is just so the suspend code works.
2472 */
2473 spin_lock_wr(&needsbuffer_spin);
2474 if (bd_request_hw == 0) {
2475 ssleep(&bd_request_hw, &needsbuffer_spin, 0,
2476 "psleep", hz);
2477 }
2478 bd_request_hw = 0;
2479 spin_unlock_wr(&needsbuffer_spin);
2480 }
2481}
2482
2483/*
2484 * flushbufqueues:
2485 *
2486 * Try to flush a buffer in the dirty queue. We must be careful to
2487 * free up B_INVAL buffers instead of write them, which NFS is
2488 * particularly sensitive to.
2489 *
2490 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate
2491 * that we really want to try to get the buffer out and reuse it
2492 * due to the write load on the machine.
2493 */
2494static int
2495flushbufqueues(bufq_type_t q)
2496{
2497 struct buf *bp;
2498 int r = 0;
2499 int spun;
2500
2501 spin_lock_wr(&bufspin);
2502 spun = 1;
2503
2504 bp = TAILQ_FIRST(&bufqueues[q]);
2505 while (bp) {
2506 KASSERT((bp->b_flags & B_DELWRI),
2507 ("unexpected clean buffer %p", bp));
2508
2509 if (bp->b_flags & B_DELWRI) {
2510 if (bp->b_flags & B_INVAL) {
2511 spin_unlock_wr(&bufspin);
2512 spun = 0;
2513 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2514 panic("flushbufqueues: locked buf");
2515 bremfree(bp);
2516 brelse(bp);
2517 ++r;
2518 break;
2519 }
2520 if (LIST_FIRST(&bp->b_dep) != NULL &&
2521 (bp->b_flags & B_DEFERRED) == 0 &&
2522 buf_countdeps(bp, 0)) {
2523 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2524 TAILQ_INSERT_TAIL(&bufqueues[q], bp,
2525 b_freelist);
2526 bp->b_flags |= B_DEFERRED;
2527 bp = TAILQ_FIRST(&bufqueues[q]);
2528 continue;
2529 }
2530
2531 /*
2532 * Only write it out if we can successfully lock
2533 * it. If the buffer has a dependancy,
2534 * buf_checkwrite must also return 0 for us to
2535 * be able to initate the write.
2536 *
2537 * If the buffer is flagged B_ERROR it may be
2538 * requeued over and over again, we try to
2539 * avoid a live lock.
2540 */
2541 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2542 spin_unlock_wr(&bufspin);
2543 spun = 0;
2544 if (LIST_FIRST(&bp->b_dep) != NULL &&
2545 buf_checkwrite(bp)) {
2546 bremfree(bp);
2547 brelse(bp);
2548 } else if (bp->b_flags & B_ERROR) {
2549 tsleep(bp, 0, "bioer", 1);
2550 bp->b_flags &= ~B_AGE;
2551 vfs_bio_awrite(bp);
2552 } else {
2553 bp->b_flags |= B_AGE;
2554 vfs_bio_awrite(bp);
2555 }
2556 ++r;
2557 break;
2558 }
2559 }
2560 bp = TAILQ_NEXT(bp, b_freelist);
2561 }
2562 if (spun)
2563 spin_unlock_wr(&bufspin);
2564 return (r);
2565}
2566
2567/*
2568 * inmem:
2569 *
2570 * Returns true if no I/O is needed to access the associated VM object.
2571 * This is like findblk except it also hunts around in the VM system for
2572 * the data.
2573 *
2574 * Note that we ignore vm_page_free() races from interrupts against our
2575 * lookup, since if the caller is not protected our return value will not
2576 * be any more valid then otherwise once we exit the critical section.
2577 */
2578int
2579inmem(struct vnode *vp, off_t loffset)
2580{
2581 vm_object_t obj;
2582 vm_offset_t toff, tinc, size;
2583 vm_page_t m;
2584
2585 if (findblk(vp, loffset, FINDBLK_TEST))
2586 return 1;
2587 if (vp->v_mount == NULL)
2588 return 0;
2589 if ((obj = vp->v_object) == NULL)
2590 return 0;
2591
2592 size = PAGE_SIZE;
2593 if (size > vp->v_mount->mnt_stat.f_iosize)
2594 size = vp->v_mount->mnt_stat.f_iosize;
2595
2596 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2597 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2598 if (m == NULL)
2599 return 0;
2600 tinc = size;
2601 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2602 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2603 if (vm_page_is_valid(m,
2604 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2605 return 0;
2606 }
2607 return 1;
2608}
2609
2610/*
2611 * findblk:
2612 *
2613 * Locate and return the specified buffer. Unless flagged otherwise,
2614 * a locked buffer will be returned if it exists or NULL if it does not.
2615 *
2616 * findblk()'d buffers are still on the bufqueues and if you intend
2617 * to use your (locked NON-TEST) buffer you need to bremfree(bp)
2618 * and possibly do other stuff to it.
2619 *
2620 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible
2621 * for locking the buffer and ensuring that it remains
2622 * the desired buffer after locking.
2623 *
2624 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable
2625 * to acquire the lock we return NULL, even if the
2626 * buffer exists.
2627 *
2628 * (0) - Lock the buffer blocking.
2629 *
2630 * MPSAFE
2631 */
2632struct buf *
2633findblk(struct vnode *vp, off_t loffset, int flags)
2634{
2635 struct buf *bp;
2636 int lkflags;
2637
2638 lkflags = LK_EXCLUSIVE;
2639 if (flags & FINDBLK_NBLOCK)
2640 lkflags |= LK_NOWAIT;
2641
2642 for (;;) {
2643 lwkt_gettoken(&vp->v_token);
2644 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2645 lwkt_reltoken(&vp->v_token);
2646 if (bp == NULL || (flags & FINDBLK_TEST))
2647 break;
2648 if (BUF_LOCK(bp, lkflags)) {
2649 bp = NULL;
2650 break;
2651 }
2652 if (bp->b_vp == vp && bp->b_loffset == loffset)
2653 break;
2654 BUF_UNLOCK(bp);
2655 }
2656 return(bp);
2657}
2658
2659/*
2660 * getcacheblk:
2661 *
2662 * Similar to getblk() except only returns the buffer if it is
2663 * B_CACHE and requires no other manipulation. Otherwise NULL
2664 * is returned.
2665 *
2666 * If B_RAM is set the buffer might be just fine, but we return
2667 * NULL anyway because we want the code to fall through to the
2668 * cluster read. Otherwise read-ahead breaks.
2669 */
2670struct buf *
2671getcacheblk(struct vnode *vp, off_t loffset)
2672{
2673 struct buf *bp;
2674
2675 bp = findblk(vp, loffset, 0);
2676 if (bp) {
2677 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) {
2678 bp->b_flags &= ~B_AGE;
2679 bremfree(bp);
2680 } else {
2681 BUF_UNLOCK(bp);
2682 bp = NULL;
2683 }
2684 }
2685 return (bp);
2686}
2687
2688/*
2689 * getblk:
2690 *
2691 * Get a block given a specified block and offset into a file/device.
2692 * B_INVAL may or may not be set on return. The caller should clear
2693 * B_INVAL prior to initiating a READ.
2694 *
2695 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2696 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2697 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2698 * without doing any of those things the system will likely believe
2699 * the buffer to be valid (especially if it is not B_VMIO), and the
2700 * next getblk() will return the buffer with B_CACHE set.
2701 *
2702 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2703 * an existing buffer.
2704 *
2705 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2706 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2707 * and then cleared based on the backing VM. If the previous buffer is
2708 * non-0-sized but invalid, B_CACHE will be cleared.
2709 *
2710 * If getblk() must create a new buffer, the new buffer is returned with
2711 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2712 * case it is returned with B_INVAL clear and B_CACHE set based on the
2713 * backing VM.
2714 *
2715 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2716 * B_CACHE bit is clear.
2717 *
2718 * What this means, basically, is that the caller should use B_CACHE to
2719 * determine whether the buffer is fully valid or not and should clear
2720 * B_INVAL prior to issuing a read. If the caller intends to validate
2721 * the buffer by loading its data area with something, the caller needs
2722 * to clear B_INVAL. If the caller does this without issuing an I/O,
2723 * the caller should set B_CACHE ( as an optimization ), else the caller
2724 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2725 * a write attempt or if it was a successfull read. If the caller
2726 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2727 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2728 *
2729 * getblk flags:
2730 *
2731 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2732 * GETBLK_BHEAVY - heavy-weight buffer cache buffer
2733 *
2734 * MPALMOSTSAFE
2735 */
2736struct buf *
2737getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2738{
2739 struct buf *bp;
2740 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2741 int error;
2742 int lkflags;
2743
2744 if (size > MAXBSIZE)
2745 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2746 if (vp->v_object == NULL)
2747 panic("getblk: vnode %p has no object!", vp);
2748
2749loop:
2750 if ((bp = findblk(vp, loffset, FINDBLK_TEST)) != NULL) {
2751 /*
2752 * The buffer was found in the cache, but we need to lock it.
2753 * Even with LK_NOWAIT the lockmgr may break our critical
2754 * section, so double-check the validity of the buffer
2755 * once the lock has been obtained.
2756 */
2757 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2758 if (blkflags & GETBLK_NOWAIT)
2759 return(NULL);
2760 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2761 if (blkflags & GETBLK_PCATCH)
2762 lkflags |= LK_PCATCH;
2763 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2764 if (error) {
2765 if (error == ENOLCK)
2766 goto loop;
2767 return (NULL);
2768 }
2769 /* buffer may have changed on us */
2770 }
2771
2772 /*
2773 * Once the buffer has been locked, make sure we didn't race
2774 * a buffer recyclement. Buffers that are no longer hashed
2775 * will have b_vp == NULL, so this takes care of that check
2776 * as well.
2777 */
2778 if (bp->b_vp != vp || bp->b_loffset != loffset) {
2779 kprintf("Warning buffer %p (vp %p loffset %lld) "
2780 "was recycled\n",
2781 bp, vp, (long long)loffset);
2782 BUF_UNLOCK(bp);
2783 goto loop;
2784 }
2785
2786 /*
2787 * If SZMATCH any pre-existing buffer must be of the requested
2788 * size or NULL is returned. The caller absolutely does not
2789 * want getblk() to bwrite() the buffer on a size mismatch.
2790 */
2791 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2792 BUF_UNLOCK(bp);
2793 return(NULL);
2794 }
2795
2796 /*
2797 * All vnode-based buffers must be backed by a VM object.
2798 */
2799 KKASSERT(bp->b_flags & B_VMIO);
2800 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2801 bp->b_flags &= ~B_AGE;
2802
2803 /*
2804 * Make sure that B_INVAL buffers do not have a cached
2805 * block number translation.
2806 */
2807 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2808 kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2809 " did not have cleared bio_offset cache\n",
2810 bp, vp, (long long)loffset);
2811 clearbiocache(&bp->b_bio2);
2812 }
2813
2814 /*
2815 * The buffer is locked. B_CACHE is cleared if the buffer is
2816 * invalid.
2817 */
2818 if (bp->b_flags & B_INVAL)
2819 bp->b_flags &= ~B_CACHE;
2820 bremfree(bp);
2821
2822 /*
2823 * Any size inconsistancy with a dirty buffer or a buffer
2824 * with a softupdates dependancy must be resolved. Resizing
2825 * the buffer in such circumstances can lead to problems.
2826 *
2827 * Dirty or dependant buffers are written synchronously.
2828 * Other types of buffers are simply released and
2829 * reconstituted as they may be backed by valid, dirty VM
2830 * pages (but not marked B_DELWRI).
2831 *
2832 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2833 * and may be left over from a prior truncation (and thus
2834 * no longer represent the actual EOF point), so we
2835 * definitely do not want to B_NOCACHE the backing store.
2836 */
2837 if (size != bp->b_bcount) {
2838 get_mplock();
2839 if (bp->b_flags & B_DELWRI) {
2840 bp->b_flags |= B_RELBUF;
2841 bwrite(bp);
2842 } else if (LIST_FIRST(&bp->b_dep)) {
2843 bp->b_flags |= B_RELBUF;
2844 bwrite(bp);
2845 } else {
2846 bp->b_flags |= B_RELBUF;
2847 brelse(bp);
2848 }
2849 rel_mplock();
2850 goto loop;
2851 }
2852 KKASSERT(size <= bp->b_kvasize);
2853 KASSERT(bp->b_loffset != NOOFFSET,
2854 ("getblk: no buffer offset"));
2855
2856 /*
2857 * A buffer with B_DELWRI set and B_CACHE clear must
2858 * be committed before we can return the buffer in
2859 * order to prevent the caller from issuing a read
2860 * ( due to B_CACHE not being set ) and overwriting
2861 * it.
2862 *
2863 * Most callers, including NFS and FFS, need this to
2864 * operate properly either because they assume they
2865 * can issue a read if B_CACHE is not set, or because
2866 * ( for example ) an uncached B_DELWRI might loop due
2867 * to softupdates re-dirtying the buffer. In the latter
2868 * case, B_CACHE is set after the first write completes,
2869 * preventing further loops.
2870 *
2871 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2872 * above while extending the buffer, we cannot allow the
2873 * buffer to remain with B_CACHE set after the write
2874 * completes or it will represent a corrupt state. To
2875 * deal with this we set B_NOCACHE to scrap the buffer
2876 * after the write.
2877 *
2878 * XXX Should this be B_RELBUF instead of B_NOCACHE?
2879 * I'm not even sure this state is still possible
2880 * now that getblk() writes out any dirty buffers
2881 * on size changes.
2882 *
2883 * We might be able to do something fancy, like setting
2884 * B_CACHE in bwrite() except if B_DELWRI is already set,
2885 * so the below call doesn't set B_CACHE, but that gets real
2886 * confusing. This is much easier.
2887 */
2888
2889 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2890 get_mplock();
2891 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
2892 "and CACHE clear, b_flags %08x\n",
2893 bp, (intmax_t)bp->b_loffset, bp->b_flags);
2894 bp->b_flags |= B_NOCACHE;
2895 bwrite(bp);
2896 rel_mplock();
2897 goto loop;
2898 }
2899 } else {
2900 /*
2901 * Buffer is not in-core, create new buffer. The buffer
2902 * returned by getnewbuf() is locked. Note that the returned
2903 * buffer is also considered valid (not marked B_INVAL).
2904 *
2905 * Calculating the offset for the I/O requires figuring out
2906 * the block size. We use DEV_BSIZE for VBLK or VCHR and
2907 * the mount's f_iosize otherwise. If the vnode does not
2908 * have an associated mount we assume that the passed size is
2909 * the block size.
2910 *
2911 * Note that vn_isdisk() cannot be used here since it may
2912 * return a failure for numerous reasons. Note that the
2913 * buffer size may be larger then the block size (the caller
2914 * will use block numbers with the proper multiple). Beware
2915 * of using any v_* fields which are part of unions. In
2916 * particular, in DragonFly the mount point overloading
2917 * mechanism uses the namecache only and the underlying
2918 * directory vnode is not a special case.
2919 */
2920 int bsize, maxsize;
2921
2922 if (vp->v_type == VBLK || vp->v_type == VCHR)
2923 bsize = DEV_BSIZE;
2924 else if (vp->v_mount)
2925 bsize = vp->v_mount->mnt_stat.f_iosize;
2926 else
2927 bsize = size;
2928
2929 maxsize = size + (loffset & PAGE_MASK);
2930 maxsize = imax(maxsize, bsize);
2931
2932 bp = getnewbuf(blkflags, slptimeo, size, maxsize);
2933 if (bp == NULL) {
2934 if (slpflags || slptimeo)
2935 return NULL;
2936 goto loop;
2937 }
2938
2939 /*
2940 * Atomically insert the buffer into the hash, so that it can
2941 * be found by findblk().
2942 *
2943 * If bgetvp() returns non-zero a collision occured, and the
2944 * bp will not be associated with the vnode.
2945 *
2946 * Make sure the translation layer has been cleared.
2947 */
2948 bp->b_loffset = loffset;
2949 bp->b_bio2.bio_offset = NOOFFSET;
2950 /* bp->b_bio2.bio_next = NULL; */
2951
2952 if (bgetvp(vp, bp)) {
2953 bp->b_flags |= B_INVAL;
2954 brelse(bp);
2955 goto loop;
2956 }
2957
2958 /*
2959 * All vnode-based buffers must be backed by a VM object.
2960 */
2961 KKASSERT(vp->v_object != NULL);
2962 bp->b_flags |= B_VMIO;
2963 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2964
2965 get_mplock();
2966 allocbuf(bp, size);
2967 rel_mplock();
2968 }
2969 KKASSERT(dsched_is_clear_buf_priv(bp));
2970 return (bp);
2971}
2972
2973/*
2974 * regetblk(bp)
2975 *
2976 * Reacquire a buffer that was previously released to the locked queue,
2977 * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2978 * set B_LOCKED (which handles the acquisition race).
2979 *
2980 * To this end, either B_LOCKED must be set or the dependancy list must be
2981 * non-empty.
2982 *
2983 * MPSAFE
2984 */
2985void
2986regetblk(struct buf *bp)
2987{
2988 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
2989 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
2990 bremfree(bp);
2991}
2992
2993/*
2994 * geteblk:
2995 *
2996 * Get an empty, disassociated buffer of given size. The buffer is
2997 * initially set to B_INVAL.
2998 *
2999 * critical section protection is not required for the allocbuf()
3000 * call because races are impossible here.
3001 *
3002 * MPALMOSTSAFE
3003 */
3004struct buf *
3005geteblk(int size)
3006{
3007 struct buf *bp;
3008 int maxsize;
3009
3010 maxsize = (size + BKVAMASK) & ~BKVAMASK;
3011
3012 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
3013 ;
3014 get_mplock();
3015 allocbuf(bp, size);
3016 rel_mplock();
3017 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
3018 KKASSERT(dsched_is_clear_buf_priv(bp));
3019 return (bp);
3020}
3021
3022
3023/*
3024 * allocbuf:
3025 *
3026 * This code constitutes the buffer memory from either anonymous system
3027 * memory (in the case of non-VMIO operations) or from an associated
3028 * VM object (in the case of VMIO operations). This code is able to
3029 * resize a buffer up or down.
3030 *
3031 * Note that this code is tricky, and has many complications to resolve
3032 * deadlock or inconsistant data situations. Tread lightly!!!
3033 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3034 * the caller. Calling this code willy nilly can result in the loss of data.
3035 *
3036 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
3037 * B_CACHE for the non-VMIO case.
3038 *
3039 * This routine does not need to be called from a critical section but you
3040 * must own the buffer.
3041 *
3042 * NOTMPSAFE
3043 */
3044int
3045allocbuf(struct buf *bp, int size)
3046{
3047 int newbsize, mbsize;
3048 int i;
3049
3050 if (BUF_REFCNT(bp) == 0)
3051 panic("allocbuf: buffer not busy");
3052
3053 if (bp->b_kvasize < size)
3054 panic("allocbuf: buffer too small");
3055
3056 if ((bp->b_flags & B_VMIO) == 0) {
3057 caddr_t origbuf;
3058 int origbufsize;
3059 /*
3060 * Just get anonymous memory from the kernel. Don't
3061 * mess with B_CACHE.
3062 */
3063 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3064 if (bp->b_flags & B_MALLOC)
3065 newbsize = mbsize;
3066 else
3067 newbsize = round_page(size);
3068
3069 if (newbsize < bp->b_bufsize) {
3070 /*
3071 * Malloced buffers are not shrunk
3072 */
3073 if (bp->b_flags & B_MALLOC) {
3074 if (newbsize) {
3075 bp->b_bcount = size;
3076 } else {
3077 kfree(bp->b_data, M_BIOBUF);
3078 if (bp->b_bufsize) {
3079 bufmallocspace -= bp->b_bufsize;
3080 bufspacewakeup();
3081 bp->b_bufsize = 0;
3082 }
3083 bp->b_data = bp->b_kvabase;
3084 bp->b_bcount = 0;
3085 bp->b_flags &= ~B_MALLOC;
3086 }
3087 return 1;
3088 }
3089 vm_hold_free_pages(
3090 bp,
3091 (vm_offset_t) bp->b_data + newbsize,
3092 (vm_offset_t) bp->b_data + bp->b_bufsize);
3093 } else if (newbsize > bp->b_bufsize) {
3094 /*
3095 * We only use malloced memory on the first allocation.
3096 * and revert to page-allocated memory when the buffer
3097 * grows.
3098 */
3099 if ((bufmallocspace < maxbufmallocspace) &&
3100 (bp->b_bufsize == 0) &&
3101 (mbsize <= PAGE_SIZE/2)) {
3102
3103 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3104 bp->b_bufsize = mbsize;
3105 bp->b_bcount = size;
3106 bp->b_flags |= B_MALLOC;
3107 bufmallocspace += mbsize;
3108 return 1;
3109 }
3110 origbuf = NULL;
3111 origbufsize = 0;
3112 /*
3113 * If the buffer is growing on its other-than-first
3114 * allocation, then we revert to the page-allocation
3115 * scheme.
3116 */
3117 if (bp->b_flags & B_MALLOC) {
3118 origbuf = bp->b_data;
3119 origbufsize = bp->b_bufsize;
3120 bp->b_data = bp->b_kvabase;
3121 if (bp->b_bufsize) {
3122 bufmallocspace -= bp->b_bufsize;
3123 bufspacewakeup();
3124 bp->b_bufsize = 0;
3125 }
3126 bp->b_flags &= ~B_MALLOC;
3127 newbsize = round_page(newbsize);
3128 }
3129 vm_hold_load_pages(
3130 bp,
3131 (vm_offset_t) bp->b_data + bp->b_bufsize,
3132 (vm_offset_t) bp->b_data + newbsize);
3133 if (origbuf) {
3134 bcopy(origbuf, bp->b_data, origbufsize);
3135 kfree(origbuf, M_BIOBUF);
3136 }
3137 }
3138 } else {
3139 vm_page_t m;
3140 int desiredpages;
3141
3142 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3143 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3144 newbsize + PAGE_MASK) >> PAGE_SHIFT;
3145 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3146
3147 if (bp->b_flags & B_MALLOC)
3148 panic("allocbuf: VMIO buffer can't be malloced");
3149 /*
3150 * Set B_CACHE initially if buffer is 0 length or will become
3151 * 0-length.
3152 */
3153 if (size == 0 || bp->b_bufsize == 0)
3154 bp->b_flags |= B_CACHE;
3155
3156 if (newbsize < bp->b_bufsize) {
3157 /*
3158 * DEV_BSIZE aligned new buffer size is less then the
3159 * DEV_BSIZE aligned existing buffer size. Figure out
3160 * if we have to remove any pages.
3161 */
3162 if (desiredpages < bp->b_xio.xio_npages) {
3163 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3164 /*
3165 * the page is not freed here -- it
3166 * is the responsibility of
3167 * vnode_pager_setsize
3168 */
3169 m = bp->b_xio.xio_pages[i];
3170 KASSERT(m != bogus_page,
3171 ("allocbuf: bogus page found"));
3172 while (vm_page_sleep_busy(m, TRUE, "biodep"))
3173 ;
3174
3175 bp->b_xio.xio_pages[i] = NULL;
3176 vm_page_unwire(m, 0);
3177 }
3178 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3179 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3180 bp->b_xio.xio_npages = desiredpages;
3181 }
3182 } else if (size > bp->b_bcount) {
3183 /*
3184 * We are growing the buffer, possibly in a
3185 * byte-granular fashion.
3186 */
3187 struct vnode *vp;
3188 vm_object_t obj;
3189 vm_offset_t toff;
3190 vm_offset_t tinc;
3191
3192 /*
3193 * Step 1, bring in the VM pages from the object,
3194 * allocating them if necessary. We must clear
3195 * B_CACHE if these pages are not valid for the
3196 * range covered by the buffer.
3197 *
3198 * critical section protection is required to protect
3199 * against interrupts unbusying and freeing pages
3200 * between our vm_page_lookup() and our
3201 * busycheck/wiring call.
3202 */
3203 vp = bp->b_vp;
3204 obj = vp->v_object;
3205
3206 crit_enter();
3207 while (bp->b_xio.xio_npages < desiredpages) {
3208 vm_page_t m;
3209 vm_pindex_t pi;
3210
3211 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
3212 if ((m = vm_page_lookup(obj, pi)) == NULL) {
3213 /*
3214 * note: must allocate system pages
3215 * since blocking here could intefere
3216 * with paging I/O, no matter which
3217 * process we are.
3218 */
3219 m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3220 if (m) {
3221 vm_page_wire(m);
3222 vm_page_wakeup(m);
3223 vm_page_flag_clear(m, PG_ZERO);
3224 bp->b_flags &= ~B_CACHE;
3225 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3226 ++bp->b_xio.xio_npages;
3227 }
3228 continue;
3229 }
3230
3231 /*
3232 * We found a page. If we have to sleep on it,
3233 * retry because it might have gotten freed out
3234 * from under us.
3235 *
3236 * We can only test PG_BUSY here. Blocking on
3237 * m->busy might lead to a deadlock:
3238 *
3239 * vm_fault->getpages->cluster_read->allocbuf
3240 *
3241 */
3242
3243 if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
3244 continue;
3245 vm_page_flag_clear(m, PG_ZERO);
3246 vm_page_wire(m);
3247 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3248 ++bp->b_xio.xio_npages;
3249 if (bp->b_act_count < m->act_count)
3250 bp->b_act_count = m->act_count;
3251 }
3252 crit_exit();
3253
3254 /*
3255 * Step 2. We've loaded the pages into the buffer,
3256 * we have to figure out if we can still have B_CACHE
3257 * set. Note that B_CACHE is set according to the
3258 * byte-granular range ( bcount and size ), not the
3259 * aligned range ( newbsize ).
3260 *
3261 * The VM test is against m->valid, which is DEV_BSIZE
3262 * aligned. Needless to say, the validity of the data
3263 * needs to also be DEV_BSIZE aligned. Note that this
3264 * fails with NFS if the server or some other client
3265 * extends the file's EOF. If our buffer is resized,
3266 * B_CACHE may remain set! XXX
3267 */
3268
3269 toff = bp->b_bcount;
3270 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3271
3272 while ((bp->b_flags & B_CACHE) && toff < size) {
3273 vm_pindex_t pi;
3274
3275 if (tinc > (size - toff))
3276 tinc = size - toff;
3277
3278 pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3279 PAGE_SHIFT;
3280
3281 vfs_buf_test_cache(
3282 bp,
3283 bp->b_loffset,
3284 toff,
3285 tinc,
3286 bp->b_xio.xio_pages[pi]
3287 );
3288 toff += tinc;
3289 tinc = PAGE_SIZE;
3290 }
3291
3292 /*
3293 * Step 3, fixup the KVM pmap. Remember that
3294 * bp->b_data is relative to bp->b_loffset, but
3295 * bp->b_loffset may be offset into the first page.
3296 */
3297
3298 bp->b_data = (caddr_t)
3299 trunc_page((vm_offset_t)bp->b_data);
3300 pmap_qenter(
3301 (vm_offset_t)bp->b_data,
3302 bp->b_xio.xio_pages,
3303 bp->b_xio.xio_npages
3304 );
3305 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3306 (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3307 }
3308 }
3309
3310 /* adjust space use on already-dirty buffer */
3311 if (bp->b_flags & B_DELWRI) {
3312 dirtybufspace += newbsize - bp->b_bufsize;
3313 if (bp->b_flags & B_HEAVY)
3314 dirtybufspacehw += newbsize - bp->b_bufsize;
3315 }
3316 if (newbsize < bp->b_bufsize)
3317 bufspacewakeup();
3318 bp->b_bufsize = newbsize; /* actual buffer allocation */
3319 bp->b_bcount = size; /* requested buffer size */
3320 return 1;
3321}
3322
3323/*
3324 * biowait:
3325 *
3326 * Wait for buffer I/O completion, returning error status. B_EINTR
3327 * is converted into an EINTR error but not cleared (since a chain
3328 * of biowait() calls may occur).
3329 *
3330 * On return bpdone() will have been called but the buffer will remain
3331 * locked and will not have been brelse()'d.
3332 *
3333 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is
3334 * likely still in progress on return.
3335 *
3336 * NOTE! This operation is on a BIO, not a BUF.
3337 *
3338 * NOTE! BIO_DONE is cleared by vn_strategy()
3339 *
3340 * MPSAFE
3341 */
3342static __inline int
3343_biowait(struct bio *bio, const char *wmesg, int to)
3344{
3345 struct buf *bp = bio->bio_buf;
3346 u_int32_t flags;
3347 u_int32_t nflags;
3348 int error;
3349
3350 KKASSERT(bio == &bp->b_bio1);
3351 for (;;) {
3352 flags = bio->bio_flags;
3353 if (flags & BIO_DONE)
3354 break;
3355 tsleep_interlock(bio, 0);
3356 nflags = flags | BIO_WANT;
3357 tsleep_interlock(bio, 0);
3358 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3359 if (wmesg)
3360 error = tsleep(bio, PINTERLOCKED, wmesg, to);
3361 else if (bp->b_cmd == BUF_CMD_READ)
3362 error = tsleep(bio, PINTERLOCKED, "biord", to);
3363 else
3364 error = tsleep(bio, PINTERLOCKED, "biowr", to);
3365 if (error) {
3366 kprintf("tsleep error biowait %d\n", error);
3367 return (error);
3368 }
3369 }
3370 }
3371
3372 /*
3373 * Finish up.
3374 */
3375 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3376 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3377 if (bp->b_flags & B_EINTR)
3378 return (EINTR);
3379 if (bp->b_flags & B_ERROR)
3380 return (bp->b_error ? bp->b_error : EIO);
3381 return (0);
3382}
3383
3384int
3385biowait(struct bio *bio, const char *wmesg)
3386{
3387 return(_biowait(bio, wmesg, 0));
3388}
3389
3390int
3391biowait_timeout(struct bio *bio, const char *wmesg, int to)
3392{
3393 return(_biowait(bio, wmesg, to));
3394}
3395
3396/*
3397 * This associates a tracking count with an I/O. vn_strategy() and
3398 * dev_dstrategy() do this automatically but there are a few cases
3399 * where a vnode or device layer is bypassed when a block translation
3400 * is cached. In such cases bio_start_transaction() may be called on
3401 * the bypassed layers so the system gets an I/O in progress indication
3402 * for those higher layers.
3403 */
3404void
3405bio_start_transaction(struct bio *bio, struct bio_track *track)
3406{
3407 bio->bio_track = track;
3408 if (dsched_is_clear_buf_priv(bio->bio_buf))
3409 dsched_new_buf(bio->bio_buf);
3410 bio_track_ref(track);
3411}
3412
3413/*
3414 * Initiate I/O on a vnode.
3415 *
3416 * SWAPCACHE OPERATION:
3417 *
3418 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately
3419 * devfs also uses b_vp for fake buffers so we also have to check
3420 * that B_PAGING is 0. In this case the passed 'vp' is probably the
3421 * underlying block device. The swap assignments are related to the
3422 * buffer cache buffer's b_vp, not the passed vp.
3423 *
3424 * The passed vp == bp->b_vp only in the case where the strategy call
3425 * is made on the vp itself for its own buffers (a regular file or
3426 * block device vp). The filesystem usually then re-calls vn_strategy()
3427 * after translating the request to an underlying device.
3428 *
3429 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3430 * underlying buffer cache buffers.
3431 *
3432 * We can only deal with page-aligned buffers at the moment, because
3433 * we can't tell what the real dirty state for pages straddling a buffer
3434 * are.
3435 *
3436 * In order to call swap_pager_strategy() we must provide the VM object
3437 * and base offset for the underlying buffer cache pages so it can find
3438 * the swap blocks.
3439 */
3440void
3441vn_strategy(struct vnode *vp, struct bio *bio)
3442{
3443 struct bio_track *track;
3444 struct buf *bp = bio->bio_buf;
3445
3446 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3447
3448 /*
3449 * Handle the swap cache intercept.
3450 */
3451 if (vn_cache_strategy(vp, bio))
3452 return;
3453
3454 /*
3455 * Otherwise do the operation through the filesystem
3456 */
3457 if (bp->b_cmd == BUF_CMD_READ)
3458 track = &vp->v_track_read;
3459 else
3460 track = &vp->v_track_write;
3461 KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3462 bio->bio_track = track;
3463 if (dsched_is_clear_buf_priv(bio->bio_buf))
3464 dsched_new_buf(bio->bio_buf);
3465 bio_track_ref(track);
3466 vop_strategy(*vp->v_ops, vp, bio);
3467}
3468
3469int
3470vn_cache_strategy(struct vnode *vp, struct bio *bio)
3471{
3472 struct buf *bp = bio->bio_buf;
3473 struct bio *nbio;
3474 vm_object_t object;
3475 vm_page_t m;
3476 int i;
3477
3478 /*
3479 * Is this buffer cache buffer suitable for reading from
3480 * the swap cache?
3481 */
3482 if (vm_swapcache_read_enable == 0 ||
3483 bp->b_cmd != BUF_CMD_READ ||
3484 ((bp->b_flags & B_CLUSTER) == 0 &&
3485 (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3486 ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3487 (bp->b_bcount & PAGE_MASK) != 0) {
3488 return(0);
3489 }
3490
3491 /*
3492 * Figure out the original VM object (it will match the underlying
3493 * VM pages). Note that swap cached data uses page indices relative
3494 * to that object, not relative to bio->bio_offset.
3495 */
3496 if (bp->b_flags & B_CLUSTER)
3497 object = vp->v_object;
3498 else
3499 object = bp->b_vp->v_object;
3500
3501 /*
3502 * In order to be able to use the swap cache all underlying VM
3503 * pages must be marked as such, and we can't have any bogus pages.
3504 */
3505 for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3506 m = bp->b_xio.xio_pages[i];
3507 if ((m->flags & PG_SWAPPED) == 0)
3508 break;
3509 if (m == bogus_page)
3510 break;
3511 }
3512
3513 /*
3514 * If we are good then issue the I/O using swap_pager_strategy()
3515 */
3516 if (i == bp->b_xio.xio_npages) {
3517 m = bp->b_xio.xio_pages[0];
3518 nbio = push_bio(bio);
3519 nbio->bio_offset = ptoa(m->pindex);
3520 KKASSERT(m->object == object);
3521 swap_pager_strategy(object, nbio);
3522 return(1);
3523 }
3524 return(0);
3525}
3526
3527/*
3528 * bpdone:
3529 *
3530 * Finish I/O on a buffer after all BIOs have been processed.
3531 * Called when the bio chain is exhausted or by biowait. If called
3532 * by biowait, elseit is typically 0.
3533 *
3534 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3535 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
3536 * assuming B_INVAL is clear.
3537 *
3538 * For the VMIO case, we set B_CACHE if the op was a read and no
3539 * read error occured, or if the op was a write. B_CACHE is never
3540 * set if the buffer is invalid or otherwise uncacheable.
3541 *
3542 * bpdone does not mess with B_INVAL, allowing the I/O routine or the
3543 * initiator to leave B_INVAL set to brelse the buffer out of existance
3544 * in the biodone routine.
3545 */
3546void
3547bpdone(struct buf *bp, int elseit)
3548{
3549 buf_cmd_t cmd;
3550
3551 KASSERT(BUF_REFCNTNB(bp) > 0,
3552 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3553 KASSERT(bp->b_cmd != BUF_CMD_DONE,
3554 ("biodone: bp %p already done!", bp));
3555
3556 /*
3557 * No more BIOs are left. All completion functions have been dealt
3558 * with, now we clean up the buffer.
3559 */
3560 cmd = bp->b_cmd;
3561 bp->b_cmd = BUF_CMD_DONE;
3562
3563 /*
3564 * Only reads and writes are processed past this point.
3565 */
3566 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3567 if (cmd == BUF_CMD_FREEBLKS)
3568 bp->b_flags |= B_NOCACHE;
3569 if (elseit)
3570 brelse(bp);
3571 return;
3572 }
3573
3574 /*
3575 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3576 * a lot worse. XXX - move this above the clearing of b_cmd
3577 */
3578 if (LIST_FIRST(&bp->b_dep) != NULL)
3579 buf_complete(bp);
3580
3581 /*
3582 * A failed write must re-dirty the buffer unless B_INVAL
3583 * was set. Only applicable to normal buffers (with VPs).
3584 * vinum buffers may not have a vp.
3585 */
3586 if (cmd == BUF_CMD_WRITE &&
3587 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3588 bp->b_flags &= ~B_NOCACHE;
3589 if (bp->b_vp)
3590 bdirty(bp);
3591 }
3592
3593 if (bp->b_flags & B_VMIO) {
3594 int i;
3595 vm_ooffset_t foff;
3596 vm_page_t m;
3597 vm_object_t obj;
3598 int iosize;
3599 struct vnode *vp = bp->b_vp;
3600
3601 obj = vp->v_object;
3602
3603#if defined(VFS_BIO_DEBUG)
3604 if (vp->v_auxrefs == 0)
3605 panic("biodone: zero vnode hold count");
3606 if ((vp->v_flag & VOBJBUF) == 0)
3607 panic("biodone: vnode is not setup for merged cache");
3608#endif
3609
3610 foff = bp->b_loffset;
3611 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3612 KASSERT(obj != NULL, ("biodone: missing VM object"));
3613
3614#if defined(VFS_BIO_DEBUG)
3615 if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3616 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3617 obj->paging_in_progress, bp->b_xio.xio_npages);
3618 }
3619#endif
3620
3621 /*
3622 * Set B_CACHE if the op was a normal read and no error
3623 * occured. B_CACHE is set for writes in the b*write()
3624 * routines.
3625 */
3626 iosize = bp->b_bcount - bp->b_resid;
3627 if (cmd == BUF_CMD_READ &&
3628 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3629 bp->b_flags |= B_CACHE;
3630 }
3631
3632 crit_enter();
3633 get_mplock();
3634 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3635 int bogusflag = 0;
3636 int resid;
3637
3638 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3639 if (resid > iosize)
3640 resid = iosize;
3641
3642 /*
3643 * cleanup bogus pages, restoring the originals. Since
3644 * the originals should still be wired, we don't have
3645 * to worry about interrupt/freeing races destroying
3646 * the VM object association.
3647 */
3648 m = bp->b_xio.xio_pages[i];
3649 if (m == bogus_page) {
3650 bogusflag = 1;
3651 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3652 if (m == NULL)
3653 panic("biodone: page disappeared");
3654 bp->b_xio.xio_pages[i] = m;
3655 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3656 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3657 }
3658#if defined(VFS_BIO_DEBUG)
3659 if (OFF_TO_IDX(foff) != m->pindex) {
3660 kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3661 "mismatch\n",
3662 (unsigned long)foff, (long)m->pindex);
3663 }
3664#endif
3665
3666 /*
3667 * In the write case, the valid and clean bits are
3668 * already changed correctly (see bdwrite()), so we
3669 * only need to do this here in the read case.
3670 */
3671 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3672 vfs_clean_one_page(bp, i, m);
3673 }
3674 vm_page_flag_clear(m, PG_ZERO);
3675
3676 /*
3677 * when debugging new filesystems or buffer I/O
3678 * methods, this is the most common error that pops
3679 * up. if you see this, you have not set the page
3680 * busy flag correctly!!!
3681 */
3682 if (m->busy == 0) {
3683 kprintf("biodone: page busy < 0, "
3684 "pindex: %d, foff: 0x(%x,%x), "
3685 "resid: %d, index: %d\n",
3686 (int) m->pindex, (int)(foff >> 32),
3687 (int) foff & 0xffffffff, resid, i);
3688 if (!vn_isdisk(vp, NULL))
3689 kprintf(" iosize: %ld, loffset: %lld, "
3690 "flags: 0x%08x, npages: %d\n",
3691 bp->b_vp->v_mount->mnt_stat.f_iosize,
3692 (long long)bp->b_loffset,
3693 bp->b_flags, bp->b_xio.xio_npages);
3694 else
3695 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3696 (long long)bp->b_loffset,
3697 bp->b_flags, bp->b_xio.xio_npages);
3698 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3699 m->valid, m->dirty, m->wire_count);
3700 panic("biodone: page busy < 0");
3701 }
3702 vm_page_io_finish(m);
3703 vm_object_pip_subtract(obj, 1);
3704 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3705 iosize -= resid;
3706 }
3707 if (obj)
3708 vm_object_pip_wakeupn(obj, 0);
3709 rel_mplock();
3710 crit_exit();
3711 }
3712
3713 /*
3714 * Finish up by releasing the buffer. There are no more synchronous
3715 * or asynchronous completions, those were handled by bio_done
3716 * callbacks.
3717 */
3718 if (elseit) {
3719 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3720 brelse(bp);
3721 else
3722 bqrelse(bp);
3723 }
3724}
3725
3726/*
3727 * Normal biodone.
3728 */
3729void
3730biodone(struct bio *bio)
3731{
3732 struct buf *bp = bio->bio_buf;
3733
3734 runningbufwakeup(bp);
3735
3736 /*
3737 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
3738 */
3739 while (bio) {
3740 biodone_t *done_func;
3741 struct bio_track *track;
3742
3743 /*
3744 * BIO tracking. Most but not all BIOs are tracked.
3745 */
3746 if ((track = bio->bio_track) != NULL) {
3747 bio_track_rel(track);
3748 bio->bio_track = NULL;
3749 }
3750
3751 /*
3752 * A bio_done function terminates the loop. The function
3753 * will be responsible for any further chaining and/or
3754 * buffer management.
3755 *
3756 * WARNING! The done function can deallocate the buffer!
3757 */
3758 if ((done_func = bio->bio_done) != NULL) {
3759 bio->bio_done = NULL;
3760 done_func(bio);
3761 return;
3762 }
3763 bio = bio->bio_prev;
3764 }
3765
3766 /*
3767 * If we've run out of bio's do normal [a]synchronous completion.
3768 */
3769 bpdone(bp, 1);
3770}
3771
3772/*
3773 * Synchronous biodone - this terminates a synchronous BIO.
3774 *
3775 * bpdone() is called with elseit=FALSE, leaving the buffer completed
3776 * but still locked. The caller must brelse() the buffer after waiting
3777 * for completion.
3778 */
3779void
3780biodone_sync(struct bio *bio)
3781{
3782 struct buf *bp = bio->bio_buf;
3783 int flags;
3784 int nflags;
3785
3786 KKASSERT(bio == &bp->b_bio1);
3787 bpdone(bp, 0);
3788
3789 for (;;) {
3790 flags = bio->bio_flags;
3791 nflags = (flags | BIO_DONE) & ~BIO_WANT;
3792
3793 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3794 if (flags & BIO_WANT)
3795 wakeup(bio);
3796 break;
3797 }
3798 }
3799}
3800
3801/*
3802 * vfs_unbusy_pages:
3803 *
3804 * This routine is called in lieu of iodone in the case of
3805 * incomplete I/O. This keeps the busy status for pages
3806 * consistant.
3807 */
3808void
3809vfs_unbusy_pages(struct buf *bp)
3810{
3811 int i;
3812
3813 runningbufwakeup(bp);
3814 if (bp->b_flags & B_VMIO) {
3815 struct vnode *vp = bp->b_vp;
3816 vm_object_t obj;
3817
3818 obj = vp->v_object;
3819
3820 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3821 vm_page_t m = bp->b_xio.xio_pages[i];
3822
3823 /*
3824 * When restoring bogus changes the original pages
3825 * should still be wired, so we are in no danger of
3826 * losing the object association and do not need
3827 * critical section protection particularly.
3828 */
3829 if (m == bogus_page) {
3830 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3831 if (!m) {
3832 panic("vfs_unbusy_pages: page missing");
3833 }
3834 bp->b_xio.xio_pages[i] = m;
3835 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3836 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3837 }
3838 vm_object_pip_subtract(obj, 1);
3839 vm_page_flag_clear(m, PG_ZERO);
3840 vm_page_io_finish(m);
3841 }
3842 vm_object_pip_wakeupn(obj, 0);
3843 }
3844}
3845
3846/*
3847 * vfs_busy_pages:
3848 *
3849 * This routine is called before a device strategy routine.
3850 * It is used to tell the VM system that paging I/O is in
3851 * progress, and treat the pages associated with the buffer
3852 * almost as being PG_BUSY. Also the object 'paging_in_progress'
3853 * flag is handled to make sure that the object doesn't become
3854 * inconsistant.
3855 *
3856 * Since I/O has not been initiated yet, certain buffer flags
3857 * such as B_ERROR or B_INVAL may be in an inconsistant state
3858 * and should be ignored.
3859 */
3860void
3861vfs_busy_pages(struct vnode *vp, struct buf *bp)
3862{
3863 int i, bogus;
3864 struct lwp *lp = curthread->td_lwp;
3865
3866 /*
3867 * The buffer's I/O command must already be set. If reading,
3868 * B_CACHE must be 0 (double check against callers only doing
3869 * I/O when B_CACHE is 0).
3870 */
3871 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3872 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3873
3874 if (bp->b_flags & B_VMIO) {
3875 vm_object_t obj;
3876
3877 obj = vp->v_object;
3878 KASSERT(bp->b_loffset != NOOFFSET,
3879 ("vfs_busy_pages: no buffer offset"));
3880
3881 /*
3882 * Loop until none of the pages are busy.
3883 */
3884retry:
3885 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3886 vm_page_t m = bp->b_xio.xio_pages[i];
3887
3888 if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3889 goto retry;
3890 }
3891
3892 /*
3893 * Setup for I/O, soft-busy the page right now because
3894 * the next loop may block.
3895 */
3896 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3897 vm_page_t m = bp->b_xio.xio_pages[i];
3898
3899 vm_page_flag_clear(m, PG_ZERO);
3900 if ((bp->b_flags & B_CLUSTER) == 0) {
3901 vm_object_pip_add(obj, 1);
3902 vm_page_io_start(m);
3903 }
3904 }
3905
3906 /*
3907 * Adjust protections for I/O and do bogus-page mapping.
3908 * Assume that vm_page_protect() can block (it can block
3909 * if VM_PROT_NONE, don't take any chances regardless).
3910 *
3911 * In particular note that for writes we must incorporate
3912 * page dirtyness from the VM system into the buffer's
3913 * dirty range.
3914 *
3915 * For reads we theoretically must incorporate page dirtyness
3916 * from the VM system to determine if the page needs bogus
3917 * replacement, but we shortcut the test by simply checking
3918 * that all m->valid bits are set, indicating that the page
3919 * is fully valid and does not need to be re-read. For any
3920 * VM system dirtyness the page will also be fully valid
3921 * since it was mapped at one point.
3922 */
3923 bogus = 0;
3924 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3925 vm_page_t m = bp->b_xio.xio_pages[i];
3926
3927 vm_page_flag_clear(m, PG_ZERO); /* XXX */
3928 if (bp->b_cmd == BUF_CMD_WRITE) {
3929 /*
3930 * When readying a vnode-backed buffer for
3931 * a write we must zero-fill any invalid
3932 * portions of the backing VM pages, mark
3933 * it valid and clear related dirty bits.
3934 *
3935 * vfs_clean_one_page() incorporates any
3936 * VM dirtyness and updates the b_dirtyoff
3937 * range (after we've made the page RO).
3938 *
3939 * It is also expected that the pmap modified
3940 * bit has already been cleared by the
3941 * vm_page_protect(). We may not be able
3942 * to clear all dirty bits for a page if it
3943 * was also memory mapped (NFS).
3944 *
3945 * Finally be sure to unassign any swap-cache
3946 * backing store as it is now stale.
3947 */
3948 vm_page_protect(m, VM_PROT_READ);
3949 vfs_clean_one_page(bp, i, m);
3950 swap_pager_unswapped(m);
3951 } else if (m->valid == VM_PAGE_BITS_ALL) {
3952 /*
3953 * When readying a vnode-backed buffer for
3954 * read we must replace any dirty pages with
3955 * a bogus page so dirty data is not destroyed
3956 * when filling gaps.
3957 *
3958 * To avoid testing whether the page is
3959 * dirty we instead test that the page was
3960 * at some point mapped (m->valid fully
3961 * valid) with the understanding that
3962 * this also covers the dirty case.
3963 */
3964 bp->b_xio.xio_pages[i] = bogus_page;
3965 bogus++;
3966 } else if (m->valid & m->dirty) {
3967 /*
3968 * This case should not occur as partial
3969 * dirtyment can only happen if the buffer
3970 * is B_CACHE, and this code is not entered
3971 * if the buffer is B_CACHE.
3972 */
3973 kprintf("Warning: vfs_busy_pages - page not "
3974 "fully valid! loff=%jx bpf=%08x "
3975 "idx=%d val=%02x dir=%02x\n",
3976 (intmax_t)bp->b_loffset, bp->b_flags,
3977 i, m->valid, m->dirty);
3978 vm_page_protect(m, VM_PROT_NONE);
3979 } else {
3980 /*
3981 * The page is not valid and can be made
3982 * part of the read.
3983 */
3984 vm_page_protect(m, VM_PROT_NONE);
3985 }
3986 }
3987 if (bogus) {
3988 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3989 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3990 }
3991 }
3992
3993 /*
3994 * This is the easiest place to put the process accounting for the I/O
3995 * for now.
3996 */
3997 if (lp != NULL) {
3998 if (bp->b_cmd == BUF_CMD_READ)
3999 lp->lwp_ru.ru_inblock++;
4000 else
4001 lp->lwp_ru.ru_oublock++;
4002 }
4003}
4004
4005/*
4006 * vfs_clean_pages:
4007 *
4008 * Tell the VM system that the pages associated with this buffer
4009 * are clean. This is used for delayed writes where the data is
4010 * going to go to disk eventually without additional VM intevention.
4011 *
4012 * Note that while we only really need to clean through to b_bcount, we
4013 * just go ahead and clean through to b_bufsize.
4014 */
4015static void
4016vfs_clean_pages(struct buf *bp)
4017{
4018 vm_page_t m;
4019 int i;
4020
4021 if ((bp->b_flags & B_VMIO) == 0)
4022 return;
4023
4024 KASSERT(bp->b_loffset != NOOFFSET,
4025 ("vfs_clean_pages: no buffer offset"));
4026
4027 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4028 m = bp->b_xio.xio_pages[i];
4029 vfs_clean_one_page(bp, i, m);
4030 }
4031}
4032
4033/*
4034 * vfs_clean_one_page:
4035 *
4036 * Set the valid bits and clear the dirty bits in a page within a
4037 * buffer. The range is restricted to the buffer's size and the
4038 * buffer's logical offset might index into the first page.
4039 *
4040 * The caller has busied or soft-busied the page and it is not mapped,
4041 * test and incorporate the dirty bits into b_dirtyoff/end before
4042 * clearing them. Note that we need to clear the pmap modified bits
4043 * after determining the the page was dirty, vm_page_set_validclean()
4044 * does not do it for us.
4045 *
4046 * This routine is typically called after a read completes (dirty should
4047 * be zero in that case as we are not called on bogus-replace pages),
4048 * or before a write is initiated.
4049 */
4050static void
4051vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4052{
4053 int bcount;
4054 int xoff;
4055 int soff;
4056 int eoff;
4057
4058 /*
4059 * Calculate offset range within the page but relative to buffer's
4060 * loffset. loffset might be offset into the first page.
4061 */
4062 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */
4063 bcount = bp->b_bcount + xoff; /* offset adjusted */
4064
4065 if (pageno == 0) {
4066 soff = xoff;
4067 eoff = PAGE_SIZE;
4068 } else {
4069 soff = (pageno << PAGE_SHIFT);
4070 eoff = soff + PAGE_SIZE;
4071 }
4072 if (eoff > bcount)
4073 eoff = bcount;
4074 if (soff >= eoff)
4075 return;
4076
4077 /*
4078 * Test dirty bits and adjust b_dirtyoff/end.
4079 *
4080 * If dirty pages are incorporated into the bp any prior
4081 * B_NEEDCOMMIT state (NFS) must be cleared because the
4082 * caller has not taken into account the new dirty data.
4083 *
4084 * If the page was memory mapped the dirty bits might go beyond the
4085 * end of the buffer, but we can't really make the assumption that
4086 * a file EOF straddles the buffer (even though this is the case for
4087 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing
4088 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4089 * This also saves some console spam.
4090 *
4091 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4092 * NFS can handle huge commits but not huge writes.
4093 */
4094 vm_page_test_dirty(m);
4095 if (m->dirty) {
4096 if ((bp->b_flags & B_NEEDCOMMIT) &&
4097 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4098 if (debug_commit)
4099 kprintf("Warning: vfs_clean_one_page: bp %p "
4100 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4101 " cmd %d vd %02x/%02x x/s/e %d %d %d "
4102 "doff/end %d %d\n",
4103 bp, (intmax_t)bp->b_loffset, bp->b_bcount,
4104 bp->b_flags, bp->b_cmd,
4105 m->valid, m->dirty, xoff, soff, eoff,
4106 bp->b_dirtyoff, bp->b_dirtyend);
4107 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4108 if (debug_commit)
4109 print_backtrace(-1);
4110 }
4111 /*
4112 * Only clear the pmap modified bits if ALL the dirty bits
4113 * are set, otherwise the system might mis-clear portions
4114 * of a page.
4115 */
4116 if (m->dirty == VM_PAGE_BITS_ALL &&
4117 (bp->b_flags & B_NEEDCOMMIT) == 0) {
4118 pmap_clear_modify(m);
4119 }
4120 if (bp->b_dirtyoff > soff - xoff)
4121 bp->b_dirtyoff = soff - xoff;
4122 if (bp->b_dirtyend < eoff - xoff)
4123 bp->b_dirtyend = eoff - xoff;
4124 }
4125
4126 /*
4127 * Set related valid bits, clear related dirty bits.
4128 * Does not mess with the pmap modified bit.
4129 *
4130 * WARNING! We cannot just clear all of m->dirty here as the
4131 * buffer cache buffers may use a DEV_BSIZE'd aligned
4132 * block size, or have an odd size (e.g. NFS at file EOF).
4133 * The putpages code can clear m->dirty to 0.
4134 *
4135 * If a VOP_WRITE generates a buffer cache buffer which
4136 * covers the same space as mapped writable pages the
4137 * buffer flush might not be able to clear all the dirty
4138 * bits and still require a putpages from the VM system
4139 * to finish it off.
4140 */
4141 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4142}
4143
4144/*
4145 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4146 * The page data is assumed to be valid (there is no zeroing here).
4147 */
4148static void
4149vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4150{
4151 int bcount;
4152 int xoff;
4153 int soff;
4154 int eoff;
4155
4156 /*
4157 * Calculate offset range within the page but relative to buffer's
4158 * loffset. loffset might be offset into the first page.
4159 */
4160 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */
4161 bcount = bp->b_bcount + xoff; /* offset adjusted */
4162
4163 if (pageno == 0) {
4164 soff = xoff;
4165 eoff = PAGE_SIZE;
4166 } else {
4167 soff = (pageno << PAGE_SHIFT);
4168 eoff = soff + PAGE_SIZE;
4169 }
4170 if (eoff > bcount)
4171 eoff = bcount;
4172 if (soff >= eoff)
4173 return;
4174 vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4175}
4176
4177/*
4178 * vfs_bio_clrbuf:
4179 *
4180 * Clear a buffer. This routine essentially fakes an I/O, so we need
4181 * to clear B_ERROR and B_INVAL.
4182 *
4183 * Note that while we only theoretically need to clear through b_bcount,
4184 * we go ahead and clear through b_bufsize.
4185 */
4186
4187void
4188vfs_bio_clrbuf(struct buf *bp)
4189{
4190 int i, mask = 0;
4191 caddr_t sa, ea;
4192 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4193 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4194 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4195 (bp->b_loffset & PAGE_MASK) == 0) {
4196 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4197 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4198 bp->b_resid = 0;
4199 return;
4200 }
4201 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
4202 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
4203 bzero(bp->b_data, bp->b_bufsize);
4204 bp->b_xio.xio_pages[0]->valid |= mask;
4205 bp->b_resid = 0;
4206 return;
4207 }
4208 }
4209 sa = bp->b_data;
4210 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4211 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4212 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4213 ea = (caddr_t)(vm_offset_t)ulmin(
4214 (u_long)(vm_offset_t)ea,
4215 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4216 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4217 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4218 continue;
4219 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4220 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4221 bzero(sa, ea - sa);
4222 }
4223 } else {
4224 for (; sa < ea; sa += DEV_BSIZE, j++) {
4225 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4226 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4227 bzero(sa, DEV_BSIZE);
4228 }
4229 }
4230 bp->b_xio.xio_pages[i]->valid |= mask;
4231 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4232 }
4233 bp->b_resid = 0;
4234 } else {
4235 clrbuf(bp);
4236 }
4237}
4238
4239/*
4240 * vm_hold_load_pages:
4241 *
4242 * Load pages into the buffer's address space. The pages are
4243 * allocated from the kernel object in order to reduce interference
4244 * with the any VM paging I/O activity. The range of loaded
4245 * pages will be wired.
4246 *
4247 * If a page cannot be allocated, the 'pagedaemon' is woken up to
4248 * retrieve the full range (to - from) of pages.
4249 *
4250 */
4251void
4252vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4253{
4254 vm_offset_t pg;
4255 vm_page_t p;
4256 int index;
4257
4258 to = round_page(to);
4259 from = round_page(from);
4260 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4261
4262 pg = from;
4263 while (pg < to) {
4264 /*
4265 * Note: must allocate system pages since blocking here
4266 * could intefere with paging I/O, no matter which
4267 * process we are.
4268 */
4269 p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
4270 (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4271 if (p) {
4272 vm_page_wire(p);
4273 p->valid = VM_PAGE_BITS_ALL;
4274 vm_page_flag_clear(p, PG_ZERO);
4275 pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4276 bp->b_xio.xio_pages[index] = p;
4277 vm_page_wakeup(p);
4278
4279 pg += PAGE_SIZE;
4280 ++index;
4281 }
4282 }
4283 bp->b_xio.xio_npages = index;
4284}
4285
4286/*
4287 * Allocate pages for a buffer cache buffer.
4288 *
4289 * Under extremely severe memory conditions even allocating out of the
4290 * system reserve can fail. If this occurs we must allocate out of the
4291 * interrupt reserve to avoid a deadlock with the pageout daemon.
4292 *
4293 * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf).
4294 * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock
4295 * against the pageout daemon if pages are not freed from other sources.
4296 */
4297static
4298vm_page_t
4299bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
4300{
4301 vm_page_t p;
4302
4303 /*
4304 * Try a normal allocation, allow use of system reserve.
4305 */
4306 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
4307 if (p)
4308 return(p);
4309
4310 /*
4311 * The normal allocation failed and we clearly have a page
4312 * deficit. Try to reclaim some clean VM pages directly
4313 * from the buffer cache.
4314 */
4315 vm_pageout_deficit += deficit;
4316 recoverbufpages();
4317
4318 /*
4319 * We may have blocked, the caller will know what to do if the
4320 * page now exists.
4321 */
4322 if (vm_page_lookup(obj, pg))
4323 return(NULL);
4324
4325 /*
4326 * Allocate and allow use of the interrupt reserve.
4327 *
4328 * If after all that we still can't allocate a VM page we are
4329 * in real trouble, but we slog on anyway hoping that the system
4330 * won't deadlock.
4331 */
4332 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
4333 VM_ALLOC_INTERRUPT);
4334 if (p) {
4335 if (vm_page_count_severe()) {
4336 kprintf("bio_page_alloc: WARNING emergency page "
4337 "allocation\n");
4338 vm_wait(hz / 20);
4339 }
4340 } else {
4341 kprintf("bio_page_alloc: WARNING emergency page "
4342 "allocation failed\n");
4343 vm_wait(hz * 5);
4344 }
4345 return(p);
4346}
4347
4348/*
4349 * vm_hold_free_pages:
4350 *
4351 * Return pages associated with the buffer back to the VM system.
4352 *
4353 * The range of pages underlying the buffer's address space will
4354 * be unmapped and un-wired.
4355 */
4356void
4357vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4358{
4359 vm_offset_t pg;
4360 vm_page_t p;
4361 int index, newnpages;
4362
4363 from = round_page(from);
4364 to = round_page(to);
4365 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4366 newnpages = index;
4367
4368 lwkt_gettoken(&vm_token);
4369 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4370 p = bp->b_xio.xio_pages[index];
4371 if (p && (index < bp->b_xio.xio_npages)) {
4372 if (p->busy) {
4373 kprintf("vm_hold_free_pages: doffset: %lld, "
4374 "loffset: %lld\n",
4375 (long long)bp->b_bio2.bio_offset,
4376 (long long)bp->b_loffset);
4377 }
4378 bp->b_xio.xio_pages[index] = NULL;
4379 pmap_kremove(pg);
4380 vm_page_busy(p);
4381 vm_page_unwire(p, 0);
4382 vm_page_free(p);
4383 }
4384 }
4385 bp->b_xio.xio_npages = newnpages;
4386 lwkt_reltoken(&vm_token);
4387}
4388
4389/*
4390 * vmapbuf:
4391 *
4392 * Map a user buffer into KVM via a pbuf. On return the buffer's
4393 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4394 * initialized.
4395 */
4396int
4397vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4398{
4399 caddr_t addr;
4400 vm_offset_t va;
4401 vm_page_t m;
4402 int vmprot;
4403 int error;
4404 int pidx;
4405 int i;
4406
4407 /*
4408 * bp had better have a command and it better be a pbuf.
4409 */
4410 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4411 KKASSERT(bp->b_flags & B_PAGING);
4412
4413 if (bytes < 0)
4414 return (-1);
4415
4416 /*
4417 * Map the user data into KVM. Mappings have to be page-aligned.
4418 */
4419 addr = (caddr_t)trunc_page((vm_offset_t)udata);
4420 pidx = 0;
4421
4422 vmprot = VM_PROT_READ;
4423 if (bp->b_cmd == BUF_CMD_READ)
4424 vmprot |= VM_PROT_WRITE;
4425
4426 while (addr < udata + bytes) {
4427 /*
4428 * Do the vm_fault if needed; do the copy-on-write thing
4429 * when reading stuff off device into memory.
4430 *
4431 * vm_fault_page*() returns a held VM page.
4432 */
4433 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4434 va = trunc_page(va);
4435
4436 m = vm_fault_page_quick(va, vmprot, &error);
4437 if (m == NULL) {
4438 for (i = 0; i < pidx; ++i) {
4439 vm_page_unhold(bp->b_xio.xio_pages[i]);
4440 bp->b_xio.xio_pages[i] = NULL;
4441 }
4442 return(-1);
4443 }
4444 bp->b_xio.xio_pages[pidx] = m;
4445 addr += PAGE_SIZE;
4446 ++pidx;
4447 }
4448
4449 /*
4450 * Map the page array and set the buffer fields to point to
4451 * the mapped data buffer.
4452 */
4453 if (pidx > btoc(MAXPHYS))
4454 panic("vmapbuf: mapped more than MAXPHYS");
4455 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4456
4457 bp->b_xio.xio_npages = pidx;
4458 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4459 bp->b_bcount = bytes;
4460 bp->b_bufsize = bytes;
4461 return(0);
4462}
4463
4464/*
4465 * vunmapbuf:
4466 *
4467 * Free the io map PTEs associated with this IO operation.
4468 * We also invalidate the TLB entries and restore the original b_addr.
4469 */
4470void
4471vunmapbuf(struct buf *bp)
4472{
4473 int pidx;
4474 int npages;
4475
4476 KKASSERT(bp->b_flags & B_PAGING);
4477
4478 npages = bp->b_xio.xio_npages;
4479 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4480 for (pidx = 0; pidx < npages; ++pidx) {
4481 vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4482 bp->b_xio.xio_pages[pidx] = NULL;
4483 }
4484 bp->b_xio.xio_npages = 0;
4485 bp->b_data = bp->b_kvabase;
4486}
4487
4488/*
4489 * Scan all buffers in the system and issue the callback.
4490 */
4491int
4492scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4493{
4494 int count = 0;
4495 int error;
4496 int n;
4497
4498 for (n = 0; n < nbuf; ++n) {
4499 if ((error = callback(&buf[n], info)) < 0) {
4500 count = error;
4501 break;
4502 }
4503 count += error;
4504 }
4505 return (count);
4506}
4507
4508/*
4509 * nestiobuf_iodone: biodone callback for nested buffers and propagate
4510 * completion to the master buffer.
4511 */
4512static void
4513nestiobuf_iodone(struct bio *bio)
4514{
4515 struct bio *mbio;
4516 struct buf *mbp, *bp;
4517 int error;
4518 int donebytes;
4519
4520 bp = bio->bio_buf;
4521 mbio = bio->bio_caller_info1.ptr;
4522 mbp = mbio->bio_buf;
4523
4524 KKASSERT(bp->b_bcount <= bp->b_bufsize);
4525 KKASSERT(mbp != bp);
4526
4527 error = bp->b_error;
4528 if (bp->b_error == 0 &&
4529 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4530 /*
4531 * Not all got transfered, raise an error. We have no way to
4532 * propagate these conditions to mbp.
4533 */
4534 error = EIO;
4535 }
4536
4537 donebytes = bp->b_bufsize;
4538
4539 relpbuf(bp, NULL);
4540 nestiobuf_done(mbio, donebytes, error);
4541}
4542
4543void
4544nestiobuf_done(struct bio *mbio, int donebytes, int error)
4545{
4546 struct buf *mbp;
4547
4548 mbp = mbio->bio_buf;
4549
4550 /* If this buf didn't do anything, we are done. */
4551 if (donebytes == 0)
4552 return;
4553
4554 KKASSERT(mbp->b_resid >= donebytes);
4555
4556 /* If an error occured, propagate it to the master buffer */
4557 if (error)
4558 mbp->b_error = error;
4559
4560 /*
4561 * Decrement the master buf b_resid according to our donebytes, and
4562 * also check if this is the last missing bit for the whole nestio
4563 * mess to complete. If so, call biodone() on the master buf mbp.
4564 */
4565 if (atomic_fetchadd_int(&mbp->b_resid, -donebytes) == donebytes) {
4566 biodone(mbio);
4567 }
4568}
4569
4570/*
4571 * nestiobuf_setup: setup a "nested" buffer.
4572 *
4573 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4574 * => 'bp' should be a buffer allocated by getiobuf.
4575 * => 'offset' is a byte offset in the master buffer.
4576 * => 'size' is a size in bytes of this nested buffer.
4577 */
4578void
4579nestiobuf_setup(struct bio *bio, struct buf *bp, int offset, size_t size)
4580{
4581 struct buf *mbp = bio->bio_buf;
4582 struct vnode *vp = mbp->b_vp;
4583
4584 KKASSERT(mbp->b_bcount >= offset + size);
4585
4586 /* kernel needs to own the lock for it to be released in biodone */
4587 BUF_KERNPROC(bp);
4588 bp->b_vp = vp;
4589 bp->b_cmd = mbp->b_cmd;
4590 bp->b_bio1.bio_done = nestiobuf_iodone;
4591 bp->b_data = (char *)mbp->b_data + offset;
4592 bp->b_resid = bp->b_bcount = size;
4593 bp->b_bufsize = bp->b_bcount;
4594
4595 bp->b_bio1.bio_track = NULL;
4596 bp->b_bio1.bio_caller_info1.ptr = bio;
4597}
4598
4599/*
4600 * print out statistics from the current status of the buffer pool
4601 * this can be toggeled by the system control option debug.syncprt
4602 */
4603#ifdef DEBUG
4604void
4605vfs_bufstats(void)
4606{
4607 int i, j, count;
4608 struct buf *bp;
4609 struct bqueues *dp;
4610 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4611 static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4612
4613 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4614 count = 0;
4615 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4616 counts[j] = 0;
4617 crit_enter();
4618 TAILQ_FOREACH(bp, dp, b_freelist) {
4619 counts[bp->b_bufsize/PAGE_SIZE]++;
4620 count++;
4621 }
4622 crit_exit();
4623 kprintf("%s: total-%d", bname[i], count);
4624 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4625 if (counts[j] != 0)
4626 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4627 kprintf("\n");
4628 }
4629}
4630#endif
4631
4632#ifdef DDB
4633
4634DB_SHOW_COMMAND(buffer, db_show_buffer)
4635{
4636 /* get args */
4637 struct buf *bp = (struct buf *)addr;
4638
4639 if (!have_addr) {
4640 db_printf("usage: show buffer <addr>\n");
4641 return;
4642 }
4643
4644 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4645 db_printf("b_cmd = %d\n", bp->b_cmd);
4646 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4647 "b_resid = %d\n, b_data = %p, "
4648 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4649 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4650 bp->b_data,
4651 (long long)bp->b_bio2.bio_offset,
4652 (long long)(bp->b_bio2.bio_next ?
4653 bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4654 if (bp->b_xio.xio_npages) {
4655 int i;
4656 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4657 bp->b_xio.xio_npages);
4658 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4659 vm_page_t m;
4660 m = bp->b_xio.xio_pages[i];
4661 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4662 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4663 if ((i + 1) < bp->b_xio.xio_npages)
4664 db_printf(",");
4665 }
4666 db_printf("\n");
4667 }
4668}
4669#endif /* DDB */