Upgrade to OpenSSL-1.0.0d.
[dragonfly.git] / secure / lib / libcrypto / man / BN_add.3
... / ...
CommitLineData
1.\" Automatically generated by Pod::Man 2.23 (Pod::Simple 3.14)
2.\"
3.\" Standard preamble:
4.\" ========================================================================
5.de Sp \" Vertical space (when we can't use .PP)
6.if t .sp .5v
7.if n .sp
8..
9.de Vb \" Begin verbatim text
10.ft CW
11.nf
12.ne \\$1
13..
14.de Ve \" End verbatim text
15.ft R
16.fi
17..
18.\" Set up some character translations and predefined strings. \*(-- will
19.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
20.\" double quote, and \*(R" will give a right double quote. \*(C+ will
21.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
22.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
23.\" nothing in troff, for use with C<>.
24.tr \(*W-
25.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
26.ie n \{\
27. ds -- \(*W-
28. ds PI pi
29. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
30. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
31. ds L" ""
32. ds R" ""
33. ds C` ""
34. ds C' ""
35'br\}
36.el\{\
37. ds -- \|\(em\|
38. ds PI \(*p
39. ds L" ``
40. ds R" ''
41'br\}
42.\"
43.\" Escape single quotes in literal strings from groff's Unicode transform.
44.ie \n(.g .ds Aq \(aq
45.el .ds Aq '
46.\"
47.\" If the F register is turned on, we'll generate index entries on stderr for
48.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
49.\" entries marked with X<> in POD. Of course, you'll have to process the
50.\" output yourself in some meaningful fashion.
51.ie \nF \{\
52. de IX
53. tm Index:\\$1\t\\n%\t"\\$2"
54..
55. nr % 0
56. rr F
57.\}
58.el \{\
59. de IX
60..
61.\}
62.\"
63.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
64.\" Fear. Run. Save yourself. No user-serviceable parts.
65. \" fudge factors for nroff and troff
66.if n \{\
67. ds #H 0
68. ds #V .8m
69. ds #F .3m
70. ds #[ \f1
71. ds #] \fP
72.\}
73.if t \{\
74. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
75. ds #V .6m
76. ds #F 0
77. ds #[ \&
78. ds #] \&
79.\}
80. \" simple accents for nroff and troff
81.if n \{\
82. ds ' \&
83. ds ` \&
84. ds ^ \&
85. ds , \&
86. ds ~ ~
87. ds /
88.\}
89.if t \{\
90. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
91. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
92. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
93. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
94. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
95. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
96.\}
97. \" troff and (daisy-wheel) nroff accents
98.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
99.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
100.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
101.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
102.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
103.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
104.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
105.ds ae a\h'-(\w'a'u*4/10)'e
106.ds Ae A\h'-(\w'A'u*4/10)'E
107. \" corrections for vroff
108.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
109.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
110. \" for low resolution devices (crt and lpr)
111.if \n(.H>23 .if \n(.V>19 \
112\{\
113. ds : e
114. ds 8 ss
115. ds o a
116. ds d- d\h'-1'\(ga
117. ds D- D\h'-1'\(hy
118. ds th \o'bp'
119. ds Th \o'LP'
120. ds ae ae
121. ds Ae AE
122.\}
123.rm #[ #] #H #V #F C
124.\" ========================================================================
125.\"
126.IX Title "BN_add 3"
127.TH BN_add 3 "2011-02-08" "1.0.0d" "OpenSSL"
128.\" For nroff, turn off justification. Always turn off hyphenation; it makes
129.\" way too many mistakes in technical documents.
130.if n .ad l
131.nh
132.SH "NAME"
133BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add,
134BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd \-
135arithmetic operations on BIGNUMs
136.SH "SYNOPSIS"
137.IX Header "SYNOPSIS"
138.Vb 1
139\& #include <openssl/bn.h>
140\&
141\& int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
142\&
143\& int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
144\&
145\& int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
146\&
147\& int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
148\&
149\& int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
150\& BN_CTX *ctx);
151\&
152\& int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
153\&
154\& int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
155\&
156\& int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
157\& BN_CTX *ctx);
158\&
159\& int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
160\& BN_CTX *ctx);
161\&
162\& int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
163\& BN_CTX *ctx);
164\&
165\& int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
166\&
167\& int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
168\&
169\& int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
170\& const BIGNUM *m, BN_CTX *ctx);
171\&
172\& int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
173.Ve
174.SH "DESCRIPTION"
175.IX Header "DESCRIPTION"
176\&\fIBN_add()\fR adds \fIa\fR and \fIb\fR and places the result in \fIr\fR (\f(CW\*(C`r=a+b\*(C'\fR).
177\&\fIr\fR may be the same \fB\s-1BIGNUM\s0\fR as \fIa\fR or \fIb\fR.
178.PP
179\&\fIBN_sub()\fR subtracts \fIb\fR from \fIa\fR and places the result in \fIr\fR (\f(CW\*(C`r=a\-b\*(C'\fR).
180.PP
181\&\fIBN_mul()\fR multiplies \fIa\fR and \fIb\fR and places the result in \fIr\fR (\f(CW\*(C`r=a*b\*(C'\fR).
182\&\fIr\fR may be the same \fB\s-1BIGNUM\s0\fR as \fIa\fR or \fIb\fR.
183For multiplication by powers of 2, use \fIBN_lshift\fR\|(3).
184.PP
185\&\fIBN_sqr()\fR takes the square of \fIa\fR and places the result in \fIr\fR
186(\f(CW\*(C`r=a^2\*(C'\fR). \fIr\fR and \fIa\fR may be the same \fB\s-1BIGNUM\s0\fR.
187This function is faster than BN_mul(r,a,a).
188.PP
189\&\fIBN_div()\fR divides \fIa\fR by \fId\fR and places the result in \fIdv\fR and the
190remainder in \fIrem\fR (\f(CW\*(C`dv=a/d, rem=a%d\*(C'\fR). Either of \fIdv\fR and \fIrem\fR may
191be \fB\s-1NULL\s0\fR, in which case the respective value is not returned.
192The result is rounded towards zero; thus if \fIa\fR is negative, the
193remainder will be zero or negative.
194For division by powers of 2, use \fIBN_rshift\fR\|(3).
195.PP
196\&\fIBN_mod()\fR corresponds to \fIBN_div()\fR with \fIdv\fR set to \fB\s-1NULL\s0\fR.
197.PP
198\&\fIBN_nnmod()\fR reduces \fIa\fR modulo \fIm\fR and places the non-negative
199remainder in \fIr\fR.
200.PP
201\&\fIBN_mod_add()\fR adds \fIa\fR to \fIb\fR modulo \fIm\fR and places the non-negative
202result in \fIr\fR.
203.PP
204\&\fIBN_mod_sub()\fR subtracts \fIb\fR from \fIa\fR modulo \fIm\fR and places the
205non-negative result in \fIr\fR.
206.PP
207\&\fIBN_mod_mul()\fR multiplies \fIa\fR by \fIb\fR and finds the non-negative
208remainder respective to modulus \fIm\fR (\f(CW\*(C`r=(a*b) mod m\*(C'\fR). \fIr\fR may be
209the same \fB\s-1BIGNUM\s0\fR as \fIa\fR or \fIb\fR. For more efficient algorithms for
210repeated computations using the same modulus, see
211\&\fIBN_mod_mul_montgomery\fR\|(3) and
212\&\fIBN_mod_mul_reciprocal\fR\|(3).
213.PP
214\&\fIBN_mod_sqr()\fR takes the square of \fIa\fR modulo \fBm\fR and places the
215result in \fIr\fR.
216.PP
217\&\fIBN_exp()\fR raises \fIa\fR to the \fIp\fR\-th power and places the result in \fIr\fR
218(\f(CW\*(C`r=a^p\*(C'\fR). This function is faster than repeated applications of
219\&\fIBN_mul()\fR.
220.PP
221\&\fIBN_mod_exp()\fR computes \fIa\fR to the \fIp\fR\-th power modulo \fIm\fR (\f(CW\*(C`r=a^p %
222m\*(C'\fR). This function uses less time and space than \fIBN_exp()\fR.
223.PP
224\&\fIBN_gcd()\fR computes the greatest common divisor of \fIa\fR and \fIb\fR and
225places the result in \fIr\fR. \fIr\fR may be the same \fB\s-1BIGNUM\s0\fR as \fIa\fR or
226\&\fIb\fR.
227.PP
228For all functions, \fIctx\fR is a previously allocated \fB\s-1BN_CTX\s0\fR used for
229temporary variables; see \fIBN_CTX_new\fR\|(3).
230.PP
231Unless noted otherwise, the result \fB\s-1BIGNUM\s0\fR must be different from
232the arguments.
233.SH "RETURN VALUES"
234.IX Header "RETURN VALUES"
235For all functions, 1 is returned for success, 0 on error. The return
236value should always be checked (e.g., \f(CW\*(C`if (!BN_add(r,a,b)) goto err;\*(C'\fR).
237The error codes can be obtained by \fIERR_get_error\fR\|(3).
238.SH "SEE ALSO"
239.IX Header "SEE ALSO"
240\&\fIbn\fR\|(3), \fIERR_get_error\fR\|(3), \fIBN_CTX_new\fR\|(3),
241\&\fIBN_add_word\fR\|(3), \fIBN_set_bit\fR\|(3)
242.SH "HISTORY"
243.IX Header "HISTORY"
244\&\fIBN_add()\fR, \fIBN_sub()\fR, \fIBN_sqr()\fR, \fIBN_div()\fR, \fIBN_mod()\fR, \fIBN_mod_mul()\fR,
245\&\fIBN_mod_exp()\fR and \fIBN_gcd()\fR are available in all versions of SSLeay and
246OpenSSL. The \fIctx\fR argument to \fIBN_mul()\fR was added in SSLeay
2470.9.1b. \fIBN_exp()\fR appeared in SSLeay 0.9.0.
248\&\fIBN_nnmod()\fR, \fIBN_mod_add()\fR, \fIBN_mod_sub()\fR, and \fIBN_mod_sqr()\fR were added in
249OpenSSL 0.9.7.