Replace the cache-point linear search algorithm for VM map entries with
[dragonfly.git] / sys / vm / vm_map.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65 * $DragonFly: src/sys/vm/vm_map.c,v 1.37 2005/01/20 18:00:38 dillon Exp $
66 */
67
68/*
69 * Virtual memory mapping module.
70 */
71
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/proc.h>
75#include <sys/lock.h>
76#include <sys/vmmeter.h>
77#include <sys/mman.h>
78#include <sys/vnode.h>
79#include <sys/resourcevar.h>
80#include <sys/shm.h>
81#include <sys/tree.h>
82
83#include <vm/vm.h>
84#include <vm/vm_param.h>
85#include <vm/pmap.h>
86#include <vm/vm_map.h>
87#include <vm/vm_page.h>
88#include <vm/vm_object.h>
89#include <vm/vm_pager.h>
90#include <vm/vm_kern.h>
91#include <vm/vm_extern.h>
92#include <vm/swap_pager.h>
93#include <vm/vm_zone.h>
94
95#include <sys/thread2.h>
96
97/*
98 * Virtual memory maps provide for the mapping, protection,
99 * and sharing of virtual memory objects. In addition,
100 * this module provides for an efficient virtual copy of
101 * memory from one map to another.
102 *
103 * Synchronization is required prior to most operations.
104 *
105 * Maps consist of an ordered doubly-linked list of simple
106 * entries; a single hint is used to speed up lookups.
107 *
108 * Since portions of maps are specified by start/end addresses,
109 * which may not align with existing map entries, all
110 * routines merely "clip" entries to these start/end values.
111 * [That is, an entry is split into two, bordering at a
112 * start or end value.] Note that these clippings may not
113 * always be necessary (as the two resulting entries are then
114 * not changed); however, the clipping is done for convenience.
115 *
116 * As mentioned above, virtual copy operations are performed
117 * by copying VM object references from one map to
118 * another, and then marking both regions as copy-on-write.
119 */
120
121/*
122 * vm_map_startup:
123 *
124 * Initialize the vm_map module. Must be called before
125 * any other vm_map routines.
126 *
127 * Map and entry structures are allocated from the general
128 * purpose memory pool with some exceptions:
129 *
130 * - The kernel map and kmem submap are allocated statically.
131 * - Kernel map entries are allocated out of a static pool.
132 *
133 * These restrictions are necessary since malloc() uses the
134 * maps and requires map entries.
135 */
136
137#define VMEPERCPU 2
138
139static struct vm_zone mapentzone_store, mapzone_store;
140static vm_zone_t mapentzone, mapzone, vmspace_zone;
141static struct vm_object mapentobj, mapobj;
142
143static struct vm_map_entry map_entry_init[MAX_MAPENT];
144static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
145static struct vm_map map_init[MAX_KMAP];
146
147static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
148static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
149static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
150static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
151static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
152static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
153static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
154 vm_map_entry_t);
155static void vm_map_split (vm_map_entry_t);
156static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
157
158void
159vm_map_startup(void)
160{
161 mapzone = &mapzone_store;
162 zbootinit(mapzone, "MAP", sizeof (struct vm_map),
163 map_init, MAX_KMAP);
164 mapentzone = &mapentzone_store;
165 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
166 map_entry_init, MAX_MAPENT);
167}
168
169/*
170 * Red black tree functions
171 */
172static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
173RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
174
175/* a->start is address, and the only field has to be initialized */
176static int
177rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
178{
179 if (a->start < b->start)
180 return(-1);
181 else if (a->start > b->start)
182 return(1);
183 return(0);
184}
185
186/*
187 * Allocate a vmspace structure, including a vm_map and pmap,
188 * and initialize those structures. The refcnt is set to 1.
189 * The remaining fields must be initialized by the caller.
190 */
191struct vmspace *
192vmspace_alloc(vm_offset_t min, vm_offset_t max)
193{
194 struct vmspace *vm;
195
196 vm = zalloc(vmspace_zone);
197 vm_map_init(&vm->vm_map, min, max);
198 pmap_pinit(vmspace_pmap(vm));
199 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */
200 vm->vm_refcnt = 1;
201 vm->vm_shm = NULL;
202 vm->vm_exitingcnt = 0;
203 return (vm);
204}
205
206void
207vm_init2(void)
208{
209 zinitna(mapentzone, &mapentobj, NULL, 0, 0,
210 ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
211 zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
212 vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
213 pmap_init2();
214 vm_object_init2();
215}
216
217static __inline void
218vmspace_dofree(struct vmspace *vm)
219{
220 int count;
221
222 /*
223 * Make sure any SysV shm is freed, it might not have in
224 * exit1()
225 */
226 shmexit(vm);
227
228 KKASSERT(vm->vm_upcalls == NULL);
229
230 /*
231 * Lock the map, to wait out all other references to it.
232 * Delete all of the mappings and pages they hold, then call
233 * the pmap module to reclaim anything left.
234 */
235 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
236 vm_map_lock(&vm->vm_map);
237 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
238 vm->vm_map.max_offset, &count);
239 vm_map_unlock(&vm->vm_map);
240 vm_map_entry_release(count);
241
242 pmap_release(vmspace_pmap(vm));
243 zfree(vmspace_zone, vm);
244}
245
246void
247vmspace_free(struct vmspace *vm)
248{
249 if (vm->vm_refcnt == 0)
250 panic("vmspace_free: attempt to free already freed vmspace");
251
252 if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
253 vmspace_dofree(vm);
254}
255
256void
257vmspace_exitfree(struct proc *p)
258{
259 struct vmspace *vm;
260
261 vm = p->p_vmspace;
262 p->p_vmspace = NULL;
263
264 /*
265 * cleanup by parent process wait()ing on exiting child. vm_refcnt
266 * may not be 0 (e.g. fork() and child exits without exec()ing).
267 * exitingcnt may increment above 0 and drop back down to zero
268 * several times while vm_refcnt is held non-zero. vm_refcnt
269 * may also increment above 0 and drop back down to zero several
270 * times while vm_exitingcnt is held non-zero.
271 *
272 * The last wait on the exiting child's vmspace will clean up
273 * the remainder of the vmspace.
274 */
275 if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
276 vmspace_dofree(vm);
277}
278
279/*
280 * vmspace_swap_count() - count the approximate swap useage in pages for a
281 * vmspace.
282 *
283 * Swap useage is determined by taking the proportional swap used by
284 * VM objects backing the VM map. To make up for fractional losses,
285 * if the VM object has any swap use at all the associated map entries
286 * count for at least 1 swap page.
287 */
288int
289vmspace_swap_count(struct vmspace *vmspace)
290{
291 vm_map_t map = &vmspace->vm_map;
292 vm_map_entry_t cur;
293 int count = 0;
294
295 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
296 vm_object_t object;
297
298 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
299 (object = cur->object.vm_object) != NULL &&
300 object->type == OBJT_SWAP
301 ) {
302 int n = (cur->end - cur->start) / PAGE_SIZE;
303
304 if (object->un_pager.swp.swp_bcount) {
305 count += object->un_pager.swp.swp_bcount *
306 SWAP_META_PAGES * n / object->size + 1;
307 }
308 }
309 }
310 return(count);
311}
312
313
314/*
315 * vm_map_create:
316 *
317 * Creates and returns a new empty VM map with
318 * the given physical map structure, and having
319 * the given lower and upper address bounds.
320 */
321vm_map_t
322vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
323{
324 vm_map_t result;
325
326 result = zalloc(mapzone);
327 vm_map_init(result, min, max);
328 result->pmap = pmap;
329 return (result);
330}
331
332/*
333 * Initialize an existing vm_map structure
334 * such as that in the vmspace structure.
335 * The pmap is set elsewhere.
336 */
337void
338vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max)
339{
340 map->header.next = map->header.prev = &map->header;
341 RB_INIT(&map->rb_root);
342 map->nentries = 0;
343 map->size = 0;
344 map->system_map = 0;
345 map->infork = 0;
346 map->min_offset = min;
347 map->max_offset = max;
348 map->first_free = &map->header;
349 map->hint = &map->header;
350 map->timestamp = 0;
351 lockinit(&map->lock, 0, "thrd_sleep", 0, LK_NOPAUSE);
352}
353
354/*
355 * vm_map_entry_reserve_cpu_init:
356 *
357 * Set an initial negative count so the first attempt to reserve
358 * space preloads a bunch of vm_map_entry's for this cpu. Also
359 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
360 * map a new page for vm_map_entry structures. SMP systems are
361 * particularly sensitive.
362 *
363 * This routine is called in early boot so we cannot just call
364 * vm_map_entry_reserve().
365 *
366 * May be called for a gd other then mycpu, but may only be called
367 * during early boot.
368 */
369void
370vm_map_entry_reserve_cpu_init(globaldata_t gd)
371{
372 vm_map_entry_t entry;
373 int i;
374
375 gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
376 entry = &cpu_map_entry_init[gd->gd_cpuid][0];
377 for (i = 0; i < VMEPERCPU; ++i, ++entry) {
378 entry->next = gd->gd_vme_base;
379 gd->gd_vme_base = entry;
380 }
381}
382
383/*
384 * vm_map_entry_reserve:
385 *
386 * Reserves vm_map_entry structures so code later on can manipulate
387 * map_entry structures within a locked map without blocking trying
388 * to allocate a new vm_map_entry.
389 */
390int
391vm_map_entry_reserve(int count)
392{
393 struct globaldata *gd = mycpu;
394 vm_map_entry_t entry;
395
396 crit_enter();
397
398 /*
399 * Make sure we have enough structures in gd_vme_base to handle
400 * the reservation request.
401 */
402 while (gd->gd_vme_avail < count) {
403 entry = zalloc(mapentzone);
404 entry->next = gd->gd_vme_base;
405 gd->gd_vme_base = entry;
406 ++gd->gd_vme_avail;
407 }
408 gd->gd_vme_avail -= count;
409 crit_exit();
410 return(count);
411}
412
413/*
414 * vm_map_entry_release:
415 *
416 * Releases previously reserved vm_map_entry structures that were not
417 * used. If we have too much junk in our per-cpu cache clean some of
418 * it out.
419 */
420void
421vm_map_entry_release(int count)
422{
423 struct globaldata *gd = mycpu;
424 vm_map_entry_t entry;
425
426 crit_enter();
427 gd->gd_vme_avail += count;
428 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
429 entry = gd->gd_vme_base;
430 KKASSERT(entry != NULL);
431 gd->gd_vme_base = entry->next;
432 --gd->gd_vme_avail;
433 crit_exit();
434 zfree(mapentzone, entry);
435 crit_enter();
436 }
437 crit_exit();
438}
439
440/*
441 * vm_map_entry_kreserve:
442 *
443 * Reserve map entry structures for use in kernel_map itself. These
444 * entries have *ALREADY* been reserved on a per-cpu basis when the map
445 * was inited. This function is used by zalloc() to avoid a recursion
446 * when zalloc() itself needs to allocate additional kernel memory.
447 *
448 * This function works like the normal reserve but does not load the
449 * vm_map_entry cache (because that would result in an infinite
450 * recursion). Note that gd_vme_avail may go negative. This is expected.
451 *
452 * Any caller of this function must be sure to renormalize after
453 * potentially eating entries to ensure that the reserve supply
454 * remains intact.
455 */
456int
457vm_map_entry_kreserve(int count)
458{
459 struct globaldata *gd = mycpu;
460
461 crit_enter();
462 gd->gd_vme_avail -= count;
463 crit_exit();
464 KASSERT(gd->gd_vme_base != NULL, ("no reserved entries left, gd_vme_avail = %d\n", gd->gd_vme_avail));
465 return(count);
466}
467
468/*
469 * vm_map_entry_krelease:
470 *
471 * Release previously reserved map entries for kernel_map. We do not
472 * attempt to clean up like the normal release function as this would
473 * cause an unnecessary (but probably not fatal) deep procedure call.
474 */
475void
476vm_map_entry_krelease(int count)
477{
478 struct globaldata *gd = mycpu;
479
480 crit_enter();
481 gd->gd_vme_avail += count;
482 crit_exit();
483}
484
485/*
486 * vm_map_entry_create: [ internal use only ]
487 *
488 * Allocates a VM map entry for insertion. No entry fields are filled
489 * in.
490 *
491 * This routine may be called from an interrupt thread but not a FAST
492 * interrupt. This routine may recurse the map lock.
493 */
494static vm_map_entry_t
495vm_map_entry_create(vm_map_t map, int *countp)
496{
497 struct globaldata *gd = mycpu;
498 vm_map_entry_t entry;
499
500 KKASSERT(*countp > 0);
501 --*countp;
502 crit_enter();
503 entry = gd->gd_vme_base;
504 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
505 gd->gd_vme_base = entry->next;
506 crit_exit();
507 return(entry);
508}
509
510/*
511 * vm_map_entry_dispose: [ internal use only ]
512 *
513 * Dispose of a vm_map_entry that is no longer being referenced. This
514 * function may be called from an interrupt.
515 */
516static void
517vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
518{
519 struct globaldata *gd = mycpu;
520
521 KKASSERT(map->hint != entry);
522 KKASSERT(map->first_free != entry);
523
524 ++*countp;
525 crit_enter();
526 entry->next = gd->gd_vme_base;
527 gd->gd_vme_base = entry;
528 crit_exit();
529}
530
531
532/*
533 * vm_map_entry_{un,}link:
534 *
535 * Insert/remove entries from maps.
536 */
537static __inline void
538vm_map_entry_link(vm_map_t map,
539 vm_map_entry_t after_where,
540 vm_map_entry_t entry)
541{
542 map->nentries++;
543 entry->prev = after_where;
544 entry->next = after_where->next;
545 entry->next->prev = entry;
546 after_where->next = entry;
547 vm_map_rb_tree_RB_INSERT(&map->rb_root, entry);
548}
549
550static __inline void
551vm_map_entry_unlink(vm_map_t map,
552 vm_map_entry_t entry)
553{
554 vm_map_entry_t prev;
555 vm_map_entry_t next;
556
557 if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
558 panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
559 prev = entry->prev;
560 next = entry->next;
561 next->prev = prev;
562 prev->next = next;
563 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
564 map->nentries--;
565}
566
567/*
568 * vm_map_lookup_entry: [ internal use only ]
569 *
570 * Finds the map entry containing (or
571 * immediately preceding) the specified address
572 * in the given map; the entry is returned
573 * in the "entry" parameter. The boolean
574 * result indicates whether the address is
575 * actually contained in the map.
576 */
577boolean_t
578vm_map_lookup_entry(vm_map_t map, vm_offset_t address,
579 vm_map_entry_t *entry /* OUT */)
580{
581 vm_map_entry_t tmp;
582 vm_map_entry_t last;
583
584#if 0
585 /*
586 * XXX TEMPORARILY DISABLED. For some reason our attempt to revive
587 * the hint code with the red-black lookup meets with system crashes
588 * and lockups. We do not yet know why.
589 *
590 * It is possible that the problem is related to the setting
591 * of the hint during map_entry deletion, in the code specified
592 * at the GGG comment later on in this file.
593 */
594 /*
595 * Quickly check the cached hint, there's a good chance of a match.
596 */
597 if (map->hint != &map->header) {
598 tmp = map->hint;
599 if (address >= tmp->start && address < tmp->end) {
600 *entry = tmp;
601 return(TRUE);
602 }
603 }
604#endif
605
606 /*
607 * Locate the record from the top of the tree. 'last' tracks the
608 * closest prior record and is returned if no match is found, which
609 * in binary tree terms means tracking the most recent right-branch
610 * taken. If there is no prior record, &map->header is returned.
611 */
612 last = &map->header;
613 tmp = RB_ROOT(&map->rb_root);
614
615 while (tmp) {
616 if (address >= tmp->start) {
617 if (address < tmp->end) {
618 *entry = tmp;
619 map->hint = tmp;
620 return(TRUE);
621 }
622 last = tmp;
623 tmp = RB_RIGHT(tmp, rb_entry);
624 } else {
625 tmp = RB_LEFT(tmp, rb_entry);
626 }
627 *entry = last;
628 }
629 *entry = last;
630 return (FALSE);
631}
632
633/*
634 * vm_map_insert:
635 *
636 * Inserts the given whole VM object into the target
637 * map at the specified address range. The object's
638 * size should match that of the address range.
639 *
640 * Requires that the map be locked, and leaves it so. Requires that
641 * sufficient vm_map_entry structures have been reserved and tracks
642 * the use via countp.
643 *
644 * If object is non-NULL, ref count must be bumped by caller
645 * prior to making call to account for the new entry.
646 */
647int
648vm_map_insert(vm_map_t map, int *countp,
649 vm_object_t object, vm_ooffset_t offset,
650 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
651 int cow)
652{
653 vm_map_entry_t new_entry;
654 vm_map_entry_t prev_entry;
655 vm_map_entry_t temp_entry;
656 vm_eflags_t protoeflags;
657
658 /*
659 * Check that the start and end points are not bogus.
660 */
661
662 if ((start < map->min_offset) || (end > map->max_offset) ||
663 (start >= end))
664 return (KERN_INVALID_ADDRESS);
665
666 /*
667 * Find the entry prior to the proposed starting address; if it's part
668 * of an existing entry, this range is bogus.
669 */
670
671 if (vm_map_lookup_entry(map, start, &temp_entry))
672 return (KERN_NO_SPACE);
673
674 prev_entry = temp_entry;
675
676 /*
677 * Assert that the next entry doesn't overlap the end point.
678 */
679
680 if ((prev_entry->next != &map->header) &&
681 (prev_entry->next->start < end))
682 return (KERN_NO_SPACE);
683
684 protoeflags = 0;
685
686 if (cow & MAP_COPY_ON_WRITE)
687 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
688
689 if (cow & MAP_NOFAULT) {
690 protoeflags |= MAP_ENTRY_NOFAULT;
691
692 KASSERT(object == NULL,
693 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
694 }
695 if (cow & MAP_DISABLE_SYNCER)
696 protoeflags |= MAP_ENTRY_NOSYNC;
697 if (cow & MAP_DISABLE_COREDUMP)
698 protoeflags |= MAP_ENTRY_NOCOREDUMP;
699
700 if (object) {
701 /*
702 * When object is non-NULL, it could be shared with another
703 * process. We have to set or clear OBJ_ONEMAPPING
704 * appropriately.
705 */
706 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
707 vm_object_clear_flag(object, OBJ_ONEMAPPING);
708 }
709 }
710 else if ((prev_entry != &map->header) &&
711 (prev_entry->eflags == protoeflags) &&
712 (prev_entry->end == start) &&
713 (prev_entry->wired_count == 0) &&
714 ((prev_entry->object.vm_object == NULL) ||
715 vm_object_coalesce(prev_entry->object.vm_object,
716 OFF_TO_IDX(prev_entry->offset),
717 (vm_size_t)(prev_entry->end - prev_entry->start),
718 (vm_size_t)(end - prev_entry->end)))) {
719 /*
720 * We were able to extend the object. Determine if we
721 * can extend the previous map entry to include the
722 * new range as well.
723 */
724 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
725 (prev_entry->protection == prot) &&
726 (prev_entry->max_protection == max)) {
727 map->size += (end - prev_entry->end);
728 prev_entry->end = end;
729 vm_map_simplify_entry(map, prev_entry, countp);
730 return (KERN_SUCCESS);
731 }
732
733 /*
734 * If we can extend the object but cannot extend the
735 * map entry, we have to create a new map entry. We
736 * must bump the ref count on the extended object to
737 * account for it. object may be NULL.
738 */
739 object = prev_entry->object.vm_object;
740 offset = prev_entry->offset +
741 (prev_entry->end - prev_entry->start);
742 vm_object_reference(object);
743 }
744
745 /*
746 * NOTE: if conditionals fail, object can be NULL here. This occurs
747 * in things like the buffer map where we manage kva but do not manage
748 * backing objects.
749 */
750
751 /*
752 * Create a new entry
753 */
754
755 new_entry = vm_map_entry_create(map, countp);
756 new_entry->start = start;
757 new_entry->end = end;
758
759 new_entry->eflags = protoeflags;
760 new_entry->object.vm_object = object;
761 new_entry->offset = offset;
762 new_entry->avail_ssize = 0;
763
764 new_entry->inheritance = VM_INHERIT_DEFAULT;
765 new_entry->protection = prot;
766 new_entry->max_protection = max;
767 new_entry->wired_count = 0;
768
769 /*
770 * Insert the new entry into the list
771 */
772
773 vm_map_entry_link(map, prev_entry, new_entry);
774 map->size += new_entry->end - new_entry->start;
775
776 /*
777 * Update the free space hint
778 */
779 if ((map->first_free == prev_entry) &&
780 (prev_entry->end >= new_entry->start)) {
781 map->first_free = new_entry;
782 }
783
784#if 0
785 /*
786 * Temporarily removed to avoid MAP_STACK panic, due to
787 * MAP_STACK being a huge hack. Will be added back in
788 * when MAP_STACK (and the user stack mapping) is fixed.
789 */
790 /*
791 * It may be possible to simplify the entry
792 */
793 vm_map_simplify_entry(map, new_entry, countp);
794#endif
795
796 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
797 pmap_object_init_pt(map->pmap, start, prot,
798 object, OFF_TO_IDX(offset), end - start,
799 cow & MAP_PREFAULT_PARTIAL);
800 }
801
802 return (KERN_SUCCESS);
803}
804
805/*
806 * Find sufficient space for `length' bytes in the given map, starting at
807 * `start'. The map must be locked. Returns 0 on success, 1 on no space.
808 *
809 * This function will returned an arbitrarily aligned pointer. If no
810 * particular alignment is required you should pass align as 1. Note that
811 * the map may return PAGE_SIZE aligned pointers if all the lengths used in
812 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
813 * argument.
814 *
815 * 'align' should be a power of 2 but is not required to be.
816 */
817int
818vm_map_findspace(
819 vm_map_t map,
820 vm_offset_t start,
821 vm_size_t length,
822 vm_offset_t align,
823 vm_offset_t *addr)
824{
825 vm_map_entry_t entry, next;
826 vm_offset_t end;
827 vm_offset_t align_mask;
828
829 if (start < map->min_offset)
830 start = map->min_offset;
831 if (start > map->max_offset)
832 return (1);
833
834 /*
835 * If the alignment is not a power of 2 we will have to use
836 * a mod/division, set align_mask to a special value.
837 */
838 if ((align | (align - 1)) + 1 != (align << 1))
839 align_mask = (vm_offset_t)-1;
840 else
841 align_mask = align - 1;
842
843retry:
844 /*
845 * Look for the first possible address; if there's already something
846 * at this address, we have to start after it.
847 */
848 if (start == map->min_offset) {
849 if ((entry = map->first_free) != &map->header)
850 start = entry->end;
851 } else {
852 vm_map_entry_t tmp;
853
854 if (vm_map_lookup_entry(map, start, &tmp))
855 start = tmp->end;
856 entry = tmp;
857 }
858
859 /*
860 * Look through the rest of the map, trying to fit a new region in the
861 * gap between existing regions, or after the very last region.
862 */
863 for (;; start = (entry = next)->end) {
864 /*
865 * Adjust the proposed start by the requested alignment,
866 * be sure that we didn't wrap the address.
867 */
868 if (align_mask == (vm_offset_t)-1)
869 end = ((start + align - 1) / align) * align;
870 else
871 end = (start + align_mask) & ~align_mask;
872 if (end < start)
873 return (1);
874 start = end;
875 /*
876 * Find the end of the proposed new region. Be sure we didn't
877 * go beyond the end of the map, or wrap around the address.
878 * Then check to see if this is the last entry or if the
879 * proposed end fits in the gap between this and the next
880 * entry.
881 */
882 end = start + length;
883 if (end > map->max_offset || end < start)
884 return (1);
885 next = entry->next;
886 if (next == &map->header || next->start >= end)
887 break;
888 }
889 map->hint = entry;
890 if (map == kernel_map) {
891 vm_offset_t ksize;
892 if ((ksize = round_page(start + length)) > kernel_vm_end) {
893 pmap_growkernel(ksize);
894 goto retry;
895 }
896 }
897 *addr = start;
898 return (0);
899}
900
901/*
902 * vm_map_find finds an unallocated region in the target address
903 * map with the given length. The search is defined to be
904 * first-fit from the specified address; the region found is
905 * returned in the same parameter.
906 *
907 * If object is non-NULL, ref count must be bumped by caller
908 * prior to making call to account for the new entry.
909 */
910int
911vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
912 vm_offset_t *addr, /* IN/OUT */
913 vm_size_t length, boolean_t find_space, vm_prot_t prot,
914 vm_prot_t max, int cow)
915{
916 vm_offset_t start;
917 int result;
918 int count;
919
920 start = *addr;
921
922 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
923 vm_map_lock(map);
924 if (find_space) {
925 if (vm_map_findspace(map, start, length, 1, addr)) {
926 vm_map_unlock(map);
927 vm_map_entry_release(count);
928 return (KERN_NO_SPACE);
929 }
930 start = *addr;
931 }
932 result = vm_map_insert(map, &count, object, offset,
933 start, start + length, prot, max, cow);
934 vm_map_unlock(map);
935 vm_map_entry_release(count);
936
937 return (result);
938}
939
940/*
941 * vm_map_simplify_entry:
942 *
943 * Simplify the given map entry by merging with either neighbor. This
944 * routine also has the ability to merge with both neighbors.
945 *
946 * The map must be locked.
947 *
948 * This routine guarentees that the passed entry remains valid (though
949 * possibly extended). When merging, this routine may delete one or
950 * both neighbors. No action is taken on entries which have their
951 * in-transition flag set.
952 */
953void
954vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
955{
956 vm_map_entry_t next, prev;
957 vm_size_t prevsize, esize;
958
959 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) {
960 ++mycpu->gd_cnt.v_intrans_coll;
961 return;
962 }
963
964 prev = entry->prev;
965 if (prev != &map->header) {
966 prevsize = prev->end - prev->start;
967 if ( (prev->end == entry->start) &&
968 (prev->object.vm_object == entry->object.vm_object) &&
969 (!prev->object.vm_object ||
970 (prev->offset + prevsize == entry->offset)) &&
971 (prev->eflags == entry->eflags) &&
972 (prev->protection == entry->protection) &&
973 (prev->max_protection == entry->max_protection) &&
974 (prev->inheritance == entry->inheritance) &&
975 (prev->wired_count == entry->wired_count)) {
976 if (map->first_free == prev)
977 map->first_free = entry;
978 if (map->hint == prev)
979 map->hint = entry;
980 vm_map_entry_unlink(map, prev);
981 entry->start = prev->start;
982 entry->offset = prev->offset;
983 if (prev->object.vm_object)
984 vm_object_deallocate(prev->object.vm_object);
985 vm_map_entry_dispose(map, prev, countp);
986 }
987 }
988
989 next = entry->next;
990 if (next != &map->header) {
991 esize = entry->end - entry->start;
992 if ((entry->end == next->start) &&
993 (next->object.vm_object == entry->object.vm_object) &&
994 (!entry->object.vm_object ||
995 (entry->offset + esize == next->offset)) &&
996 (next->eflags == entry->eflags) &&
997 (next->protection == entry->protection) &&
998 (next->max_protection == entry->max_protection) &&
999 (next->inheritance == entry->inheritance) &&
1000 (next->wired_count == entry->wired_count)) {
1001 if (map->first_free == next)
1002 map->first_free = entry;
1003 if (map->hint == next)
1004 map->hint = entry;
1005 vm_map_entry_unlink(map, next);
1006 entry->end = next->end;
1007 if (next->object.vm_object)
1008 vm_object_deallocate(next->object.vm_object);
1009 vm_map_entry_dispose(map, next, countp);
1010 }
1011 }
1012}
1013/*
1014 * vm_map_clip_start: [ internal use only ]
1015 *
1016 * Asserts that the given entry begins at or after
1017 * the specified address; if necessary,
1018 * it splits the entry into two.
1019 */
1020#define vm_map_clip_start(map, entry, startaddr, countp) \
1021{ \
1022 if (startaddr > entry->start) \
1023 _vm_map_clip_start(map, entry, startaddr, countp); \
1024}
1025
1026/*
1027 * This routine is called only when it is known that
1028 * the entry must be split.
1029 */
1030static void
1031_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1032{
1033 vm_map_entry_t new_entry;
1034
1035 /*
1036 * Split off the front portion -- note that we must insert the new
1037 * entry BEFORE this one, so that this entry has the specified
1038 * starting address.
1039 */
1040
1041 vm_map_simplify_entry(map, entry, countp);
1042
1043 /*
1044 * If there is no object backing this entry, we might as well create
1045 * one now. If we defer it, an object can get created after the map
1046 * is clipped, and individual objects will be created for the split-up
1047 * map. This is a bit of a hack, but is also about the best place to
1048 * put this improvement.
1049 */
1050
1051 if (entry->object.vm_object == NULL && !map->system_map) {
1052 vm_object_t object;
1053 object = vm_object_allocate(OBJT_DEFAULT,
1054 atop(entry->end - entry->start));
1055 entry->object.vm_object = object;
1056 entry->offset = 0;
1057 }
1058
1059 new_entry = vm_map_entry_create(map, countp);
1060 *new_entry = *entry;
1061
1062 new_entry->end = start;
1063 entry->offset += (start - entry->start);
1064 entry->start = start;
1065
1066 vm_map_entry_link(map, entry->prev, new_entry);
1067
1068 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1069 vm_object_reference(new_entry->object.vm_object);
1070 }
1071}
1072
1073/*
1074 * vm_map_clip_end: [ internal use only ]
1075 *
1076 * Asserts that the given entry ends at or before
1077 * the specified address; if necessary,
1078 * it splits the entry into two.
1079 */
1080
1081#define vm_map_clip_end(map, entry, endaddr, countp) \
1082{ \
1083 if (endaddr < entry->end) \
1084 _vm_map_clip_end(map, entry, endaddr, countp); \
1085}
1086
1087/*
1088 * This routine is called only when it is known that
1089 * the entry must be split.
1090 */
1091static void
1092_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1093{
1094 vm_map_entry_t new_entry;
1095
1096 /*
1097 * If there is no object backing this entry, we might as well create
1098 * one now. If we defer it, an object can get created after the map
1099 * is clipped, and individual objects will be created for the split-up
1100 * map. This is a bit of a hack, but is also about the best place to
1101 * put this improvement.
1102 */
1103
1104 if (entry->object.vm_object == NULL && !map->system_map) {
1105 vm_object_t object;
1106 object = vm_object_allocate(OBJT_DEFAULT,
1107 atop(entry->end - entry->start));
1108 entry->object.vm_object = object;
1109 entry->offset = 0;
1110 }
1111
1112 /*
1113 * Create a new entry and insert it AFTER the specified entry
1114 */
1115
1116 new_entry = vm_map_entry_create(map, countp);
1117 *new_entry = *entry;
1118
1119 new_entry->start = entry->end = end;
1120 new_entry->offset += (end - entry->start);
1121
1122 vm_map_entry_link(map, entry, new_entry);
1123
1124 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1125 vm_object_reference(new_entry->object.vm_object);
1126 }
1127}
1128
1129/*
1130 * VM_MAP_RANGE_CHECK: [ internal use only ]
1131 *
1132 * Asserts that the starting and ending region
1133 * addresses fall within the valid range of the map.
1134 */
1135#define VM_MAP_RANGE_CHECK(map, start, end) \
1136 { \
1137 if (start < vm_map_min(map)) \
1138 start = vm_map_min(map); \
1139 if (end > vm_map_max(map)) \
1140 end = vm_map_max(map); \
1141 if (start > end) \
1142 start = end; \
1143 }
1144
1145/*
1146 * vm_map_transition_wait: [ kernel use only ]
1147 *
1148 * Used to block when an in-transition collison occurs. The map
1149 * is unlocked for the sleep and relocked before the return.
1150 */
1151static
1152void
1153vm_map_transition_wait(vm_map_t map)
1154{
1155 vm_map_unlock(map);
1156 tsleep(map, 0, "vment", 0);
1157 vm_map_lock(map);
1158}
1159
1160/*
1161 * CLIP_CHECK_BACK
1162 * CLIP_CHECK_FWD
1163 *
1164 * When we do blocking operations with the map lock held it is
1165 * possible that a clip might have occured on our in-transit entry,
1166 * requiring an adjustment to the entry in our loop. These macros
1167 * help the pageable and clip_range code deal with the case. The
1168 * conditional costs virtually nothing if no clipping has occured.
1169 */
1170
1171#define CLIP_CHECK_BACK(entry, save_start) \
1172 do { \
1173 while (entry->start != save_start) { \
1174 entry = entry->prev; \
1175 KASSERT(entry != &map->header, ("bad entry clip")); \
1176 } \
1177 } while(0)
1178
1179#define CLIP_CHECK_FWD(entry, save_end) \
1180 do { \
1181 while (entry->end != save_end) { \
1182 entry = entry->next; \
1183 KASSERT(entry != &map->header, ("bad entry clip")); \
1184 } \
1185 } while(0)
1186
1187
1188/*
1189 * vm_map_clip_range: [ kernel use only ]
1190 *
1191 * Clip the specified range and return the base entry. The
1192 * range may cover several entries starting at the returned base
1193 * and the first and last entry in the covering sequence will be
1194 * properly clipped to the requested start and end address.
1195 *
1196 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1197 * flag.
1198 *
1199 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1200 * covered by the requested range.
1201 *
1202 * The map must be exclusively locked on entry and will remain locked
1203 * on return. If no range exists or the range contains holes and you
1204 * specified that no holes were allowed, NULL will be returned. This
1205 * routine may temporarily unlock the map in order avoid a deadlock when
1206 * sleeping.
1207 */
1208static
1209vm_map_entry_t
1210vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1211 int *countp, int flags)
1212{
1213 vm_map_entry_t start_entry;
1214 vm_map_entry_t entry;
1215
1216 /*
1217 * Locate the entry and effect initial clipping. The in-transition
1218 * case does not occur very often so do not try to optimize it.
1219 */
1220again:
1221 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1222 return (NULL);
1223 entry = start_entry;
1224 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1225 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1226 ++mycpu->gd_cnt.v_intrans_coll;
1227 ++mycpu->gd_cnt.v_intrans_wait;
1228 vm_map_transition_wait(map);
1229 /*
1230 * entry and/or start_entry may have been clipped while
1231 * we slept, or may have gone away entirely. We have
1232 * to restart from the lookup.
1233 */
1234 goto again;
1235 }
1236 /*
1237 * Since we hold an exclusive map lock we do not have to restart
1238 * after clipping, even though clipping may block in zalloc.
1239 */
1240 vm_map_clip_start(map, entry, start, countp);
1241 vm_map_clip_end(map, entry, end, countp);
1242 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1243
1244 /*
1245 * Scan entries covered by the range. When working on the next
1246 * entry a restart need only re-loop on the current entry which
1247 * we have already locked, since 'next' may have changed. Also,
1248 * even though entry is safe, it may have been clipped so we
1249 * have to iterate forwards through the clip after sleeping.
1250 */
1251 while (entry->next != &map->header && entry->next->start < end) {
1252 vm_map_entry_t next = entry->next;
1253
1254 if (flags & MAP_CLIP_NO_HOLES) {
1255 if (next->start > entry->end) {
1256 vm_map_unclip_range(map, start_entry,
1257 start, entry->end, countp, flags);
1258 return(NULL);
1259 }
1260 }
1261
1262 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1263 vm_offset_t save_end = entry->end;
1264 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1265 ++mycpu->gd_cnt.v_intrans_coll;
1266 ++mycpu->gd_cnt.v_intrans_wait;
1267 vm_map_transition_wait(map);
1268
1269 /*
1270 * clips might have occured while we blocked.
1271 */
1272 CLIP_CHECK_FWD(entry, save_end);
1273 CLIP_CHECK_BACK(start_entry, start);
1274 continue;
1275 }
1276 /*
1277 * No restart necessary even though clip_end may block, we
1278 * are holding the map lock.
1279 */
1280 vm_map_clip_end(map, next, end, countp);
1281 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1282 entry = next;
1283 }
1284 if (flags & MAP_CLIP_NO_HOLES) {
1285 if (entry->end != end) {
1286 vm_map_unclip_range(map, start_entry,
1287 start, entry->end, countp, flags);
1288 return(NULL);
1289 }
1290 }
1291 return(start_entry);
1292}
1293
1294/*
1295 * vm_map_unclip_range: [ kernel use only ]
1296 *
1297 * Undo the effect of vm_map_clip_range(). You should pass the same
1298 * flags and the same range that you passed to vm_map_clip_range().
1299 * This code will clear the in-transition flag on the entries and
1300 * wake up anyone waiting. This code will also simplify the sequence
1301 * and attempt to merge it with entries before and after the sequence.
1302 *
1303 * The map must be locked on entry and will remain locked on return.
1304 *
1305 * Note that you should also pass the start_entry returned by
1306 * vm_map_clip_range(). However, if you block between the two calls
1307 * with the map unlocked please be aware that the start_entry may
1308 * have been clipped and you may need to scan it backwards to find
1309 * the entry corresponding with the original start address. You are
1310 * responsible for this, vm_map_unclip_range() expects the correct
1311 * start_entry to be passed to it and will KASSERT otherwise.
1312 */
1313static
1314void
1315vm_map_unclip_range(
1316 vm_map_t map,
1317 vm_map_entry_t start_entry,
1318 vm_offset_t start,
1319 vm_offset_t end,
1320 int *countp,
1321 int flags)
1322{
1323 vm_map_entry_t entry;
1324
1325 entry = start_entry;
1326
1327 KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1328 while (entry != &map->header && entry->start < end) {
1329 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1330 KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1331 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1332 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1333 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1334 wakeup(map);
1335 }
1336 entry = entry->next;
1337 }
1338
1339 /*
1340 * Simplification does not block so there is no restart case.
1341 */
1342 entry = start_entry;
1343 while (entry != &map->header && entry->start < end) {
1344 vm_map_simplify_entry(map, entry, countp);
1345 entry = entry->next;
1346 }
1347}
1348
1349/*
1350 * vm_map_submap: [ kernel use only ]
1351 *
1352 * Mark the given range as handled by a subordinate map.
1353 *
1354 * This range must have been created with vm_map_find,
1355 * and no other operations may have been performed on this
1356 * range prior to calling vm_map_submap.
1357 *
1358 * Only a limited number of operations can be performed
1359 * within this rage after calling vm_map_submap:
1360 * vm_fault
1361 * [Don't try vm_map_copy!]
1362 *
1363 * To remove a submapping, one must first remove the
1364 * range from the superior map, and then destroy the
1365 * submap (if desired). [Better yet, don't try it.]
1366 */
1367int
1368vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1369{
1370 vm_map_entry_t entry;
1371 int result = KERN_INVALID_ARGUMENT;
1372 int count;
1373
1374 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1375 vm_map_lock(map);
1376
1377 VM_MAP_RANGE_CHECK(map, start, end);
1378
1379 if (vm_map_lookup_entry(map, start, &entry)) {
1380 vm_map_clip_start(map, entry, start, &count);
1381 } else {
1382 entry = entry->next;
1383 }
1384
1385 vm_map_clip_end(map, entry, end, &count);
1386
1387 if ((entry->start == start) && (entry->end == end) &&
1388 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1389 (entry->object.vm_object == NULL)) {
1390 entry->object.sub_map = submap;
1391 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1392 result = KERN_SUCCESS;
1393 }
1394 vm_map_unlock(map);
1395 vm_map_entry_release(count);
1396
1397 return (result);
1398}
1399
1400/*
1401 * vm_map_protect:
1402 *
1403 * Sets the protection of the specified address
1404 * region in the target map. If "set_max" is
1405 * specified, the maximum protection is to be set;
1406 * otherwise, only the current protection is affected.
1407 */
1408int
1409vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1410 vm_prot_t new_prot, boolean_t set_max)
1411{
1412 vm_map_entry_t current;
1413 vm_map_entry_t entry;
1414 int count;
1415
1416 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1417 vm_map_lock(map);
1418
1419 VM_MAP_RANGE_CHECK(map, start, end);
1420
1421 if (vm_map_lookup_entry(map, start, &entry)) {
1422 vm_map_clip_start(map, entry, start, &count);
1423 } else {
1424 entry = entry->next;
1425 }
1426
1427 /*
1428 * Make a first pass to check for protection violations.
1429 */
1430
1431 current = entry;
1432 while ((current != &map->header) && (current->start < end)) {
1433 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1434 vm_map_unlock(map);
1435 vm_map_entry_release(count);
1436 return (KERN_INVALID_ARGUMENT);
1437 }
1438 if ((new_prot & current->max_protection) != new_prot) {
1439 vm_map_unlock(map);
1440 vm_map_entry_release(count);
1441 return (KERN_PROTECTION_FAILURE);
1442 }
1443 current = current->next;
1444 }
1445
1446 /*
1447 * Go back and fix up protections. [Note that clipping is not
1448 * necessary the second time.]
1449 */
1450 current = entry;
1451
1452 while ((current != &map->header) && (current->start < end)) {
1453 vm_prot_t old_prot;
1454
1455 vm_map_clip_end(map, current, end, &count);
1456
1457 old_prot = current->protection;
1458 if (set_max)
1459 current->protection =
1460 (current->max_protection = new_prot) &
1461 old_prot;
1462 else
1463 current->protection = new_prot;
1464
1465 /*
1466 * Update physical map if necessary. Worry about copy-on-write
1467 * here -- CHECK THIS XXX
1468 */
1469
1470 if (current->protection != old_prot) {
1471#define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1472 VM_PROT_ALL)
1473
1474 pmap_protect(map->pmap, current->start,
1475 current->end,
1476 current->protection & MASK(current));
1477#undef MASK
1478 }
1479
1480 vm_map_simplify_entry(map, current, &count);
1481
1482 current = current->next;
1483 }
1484
1485 vm_map_unlock(map);
1486 vm_map_entry_release(count);
1487 return (KERN_SUCCESS);
1488}
1489
1490/*
1491 * vm_map_madvise:
1492 *
1493 * This routine traverses a processes map handling the madvise
1494 * system call. Advisories are classified as either those effecting
1495 * the vm_map_entry structure, or those effecting the underlying
1496 * objects.
1497 */
1498
1499int
1500vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, int behav)
1501{
1502 vm_map_entry_t current, entry;
1503 int modify_map = 0;
1504 int count;
1505
1506 /*
1507 * Some madvise calls directly modify the vm_map_entry, in which case
1508 * we need to use an exclusive lock on the map and we need to perform
1509 * various clipping operations. Otherwise we only need a read-lock
1510 * on the map.
1511 */
1512
1513 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1514
1515 switch(behav) {
1516 case MADV_NORMAL:
1517 case MADV_SEQUENTIAL:
1518 case MADV_RANDOM:
1519 case MADV_NOSYNC:
1520 case MADV_AUTOSYNC:
1521 case MADV_NOCORE:
1522 case MADV_CORE:
1523 modify_map = 1;
1524 vm_map_lock(map);
1525 break;
1526 case MADV_WILLNEED:
1527 case MADV_DONTNEED:
1528 case MADV_FREE:
1529 vm_map_lock_read(map);
1530 break;
1531 default:
1532 vm_map_entry_release(count);
1533 return (KERN_INVALID_ARGUMENT);
1534 }
1535
1536 /*
1537 * Locate starting entry and clip if necessary.
1538 */
1539
1540 VM_MAP_RANGE_CHECK(map, start, end);
1541
1542 if (vm_map_lookup_entry(map, start, &entry)) {
1543 if (modify_map)
1544 vm_map_clip_start(map, entry, start, &count);
1545 } else {
1546 entry = entry->next;
1547 }
1548
1549 if (modify_map) {
1550 /*
1551 * madvise behaviors that are implemented in the vm_map_entry.
1552 *
1553 * We clip the vm_map_entry so that behavioral changes are
1554 * limited to the specified address range.
1555 */
1556 for (current = entry;
1557 (current != &map->header) && (current->start < end);
1558 current = current->next
1559 ) {
1560 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1561 continue;
1562
1563 vm_map_clip_end(map, current, end, &count);
1564
1565 switch (behav) {
1566 case MADV_NORMAL:
1567 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1568 break;
1569 case MADV_SEQUENTIAL:
1570 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1571 break;
1572 case MADV_RANDOM:
1573 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1574 break;
1575 case MADV_NOSYNC:
1576 current->eflags |= MAP_ENTRY_NOSYNC;
1577 break;
1578 case MADV_AUTOSYNC:
1579 current->eflags &= ~MAP_ENTRY_NOSYNC;
1580 break;
1581 case MADV_NOCORE:
1582 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1583 break;
1584 case MADV_CORE:
1585 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1586 break;
1587 default:
1588 break;
1589 }
1590 vm_map_simplify_entry(map, current, &count);
1591 }
1592 vm_map_unlock(map);
1593 } else {
1594 vm_pindex_t pindex;
1595 int count;
1596
1597 /*
1598 * madvise behaviors that are implemented in the underlying
1599 * vm_object.
1600 *
1601 * Since we don't clip the vm_map_entry, we have to clip
1602 * the vm_object pindex and count.
1603 */
1604 for (current = entry;
1605 (current != &map->header) && (current->start < end);
1606 current = current->next
1607 ) {
1608 vm_offset_t useStart;
1609
1610 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1611 continue;
1612
1613 pindex = OFF_TO_IDX(current->offset);
1614 count = atop(current->end - current->start);
1615 useStart = current->start;
1616
1617 if (current->start < start) {
1618 pindex += atop(start - current->start);
1619 count -= atop(start - current->start);
1620 useStart = start;
1621 }
1622 if (current->end > end)
1623 count -= atop(current->end - end);
1624
1625 if (count <= 0)
1626 continue;
1627
1628 vm_object_madvise(current->object.vm_object,
1629 pindex, count, behav);
1630 if (behav == MADV_WILLNEED) {
1631 pmap_object_init_pt(
1632 map->pmap,
1633 useStart,
1634 current->protection,
1635 current->object.vm_object,
1636 pindex,
1637 (count << PAGE_SHIFT),
1638 MAP_PREFAULT_MADVISE
1639 );
1640 }
1641 }
1642 vm_map_unlock_read(map);
1643 }
1644 vm_map_entry_release(count);
1645 return(0);
1646}
1647
1648
1649/*
1650 * vm_map_inherit:
1651 *
1652 * Sets the inheritance of the specified address
1653 * range in the target map. Inheritance
1654 * affects how the map will be shared with
1655 * child maps at the time of vm_map_fork.
1656 */
1657int
1658vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1659 vm_inherit_t new_inheritance)
1660{
1661 vm_map_entry_t entry;
1662 vm_map_entry_t temp_entry;
1663 int count;
1664
1665 switch (new_inheritance) {
1666 case VM_INHERIT_NONE:
1667 case VM_INHERIT_COPY:
1668 case VM_INHERIT_SHARE:
1669 break;
1670 default:
1671 return (KERN_INVALID_ARGUMENT);
1672 }
1673
1674 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1675 vm_map_lock(map);
1676
1677 VM_MAP_RANGE_CHECK(map, start, end);
1678
1679 if (vm_map_lookup_entry(map, start, &temp_entry)) {
1680 entry = temp_entry;
1681 vm_map_clip_start(map, entry, start, &count);
1682 } else
1683 entry = temp_entry->next;
1684
1685 while ((entry != &map->header) && (entry->start < end)) {
1686 vm_map_clip_end(map, entry, end, &count);
1687
1688 entry->inheritance = new_inheritance;
1689
1690 vm_map_simplify_entry(map, entry, &count);
1691
1692 entry = entry->next;
1693 }
1694 vm_map_unlock(map);
1695 vm_map_entry_release(count);
1696 return (KERN_SUCCESS);
1697}
1698
1699/*
1700 * Implement the semantics of mlock
1701 */
1702int
1703vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
1704 boolean_t new_pageable)
1705{
1706 vm_map_entry_t entry;
1707 vm_map_entry_t start_entry;
1708 vm_offset_t end;
1709 int rv = KERN_SUCCESS;
1710 int count;
1711
1712 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1713 vm_map_lock(map);
1714 VM_MAP_RANGE_CHECK(map, start, real_end);
1715 end = real_end;
1716
1717 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1718 if (start_entry == NULL) {
1719 vm_map_unlock(map);
1720 vm_map_entry_release(count);
1721 return (KERN_INVALID_ADDRESS);
1722 }
1723
1724 if (new_pageable == 0) {
1725 entry = start_entry;
1726 while ((entry != &map->header) && (entry->start < end)) {
1727 vm_offset_t save_start;
1728 vm_offset_t save_end;
1729
1730 /*
1731 * Already user wired or hard wired (trivial cases)
1732 */
1733 if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1734 entry = entry->next;
1735 continue;
1736 }
1737 if (entry->wired_count != 0) {
1738 entry->wired_count++;
1739 entry->eflags |= MAP_ENTRY_USER_WIRED;
1740 entry = entry->next;
1741 continue;
1742 }
1743
1744 /*
1745 * A new wiring requires instantiation of appropriate
1746 * management structures and the faulting in of the
1747 * page.
1748 */
1749 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1750 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1751 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1752
1753 vm_object_shadow(&entry->object.vm_object,
1754 &entry->offset,
1755 atop(entry->end - entry->start));
1756 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1757
1758 } else if (entry->object.vm_object == NULL &&
1759 !map->system_map) {
1760
1761 entry->object.vm_object =
1762 vm_object_allocate(OBJT_DEFAULT,
1763 atop(entry->end - entry->start));
1764 entry->offset = (vm_offset_t) 0;
1765
1766 }
1767 }
1768 entry->wired_count++;
1769 entry->eflags |= MAP_ENTRY_USER_WIRED;
1770
1771 /*
1772 * Now fault in the area. Note that vm_fault_wire()
1773 * may release the map lock temporarily, it will be
1774 * relocked on return. The in-transition
1775 * flag protects the entries.
1776 */
1777 save_start = entry->start;
1778 save_end = entry->end;
1779 rv = vm_fault_wire(map, entry, TRUE);
1780 if (rv) {
1781 CLIP_CHECK_BACK(entry, save_start);
1782 for (;;) {
1783 KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1784 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1785 entry->wired_count = 0;
1786 if (entry->end == save_end)
1787 break;
1788 entry = entry->next;
1789 KASSERT(entry != &map->header, ("bad entry clip during backout"));
1790 }
1791 end = save_start; /* unwire the rest */
1792 break;
1793 }
1794 /*
1795 * note that even though the entry might have been
1796 * clipped, the USER_WIRED flag we set prevents
1797 * duplication so we do not have to do a
1798 * clip check.
1799 */
1800 entry = entry->next;
1801 }
1802
1803 /*
1804 * If we failed fall through to the unwiring section to
1805 * unwire what we had wired so far. 'end' has already
1806 * been adjusted.
1807 */
1808 if (rv)
1809 new_pageable = 1;
1810
1811 /*
1812 * start_entry might have been clipped if we unlocked the
1813 * map and blocked. No matter how clipped it has gotten
1814 * there should be a fragment that is on our start boundary.
1815 */
1816 CLIP_CHECK_BACK(start_entry, start);
1817 }
1818
1819 /*
1820 * Deal with the unwiring case.
1821 */
1822 if (new_pageable) {
1823 /*
1824 * This is the unwiring case. We must first ensure that the
1825 * range to be unwired is really wired down. We know there
1826 * are no holes.
1827 */
1828 entry = start_entry;
1829 while ((entry != &map->header) && (entry->start < end)) {
1830 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1831 rv = KERN_INVALID_ARGUMENT;
1832 goto done;
1833 }
1834 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
1835 entry = entry->next;
1836 }
1837
1838 /*
1839 * Now decrement the wiring count for each region. If a region
1840 * becomes completely unwired, unwire its physical pages and
1841 * mappings.
1842 */
1843 /*
1844 * The map entries are processed in a loop, checking to
1845 * make sure the entry is wired and asserting it has a wired
1846 * count. However, another loop was inserted more-or-less in
1847 * the middle of the unwiring path. This loop picks up the
1848 * "entry" loop variable from the first loop without first
1849 * setting it to start_entry. Naturally, the secound loop
1850 * is never entered and the pages backing the entries are
1851 * never unwired. This can lead to a leak of wired pages.
1852 */
1853 entry = start_entry;
1854 while ((entry != &map->header) && (entry->start < end)) {
1855 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
1856 ("expected USER_WIRED on entry %p", entry));
1857 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1858 entry->wired_count--;
1859 if (entry->wired_count == 0)
1860 vm_fault_unwire(map, entry);
1861 entry = entry->next;
1862 }
1863 }
1864done:
1865 vm_map_unclip_range(map, start_entry, start, real_end, &count,
1866 MAP_CLIP_NO_HOLES);
1867 map->timestamp++;
1868 vm_map_unlock(map);
1869 vm_map_entry_release(count);
1870 return (rv);
1871}
1872
1873/*
1874 * vm_map_wire:
1875 *
1876 * Sets the pageability of the specified address
1877 * range in the target map. Regions specified
1878 * as not pageable require locked-down physical
1879 * memory and physical page maps.
1880 *
1881 * The map must not be locked, but a reference
1882 * must remain to the map throughout the call.
1883 *
1884 * This function may be called via the zalloc path and must properly
1885 * reserve map entries for kernel_map.
1886 */
1887int
1888vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
1889{
1890 vm_map_entry_t entry;
1891 vm_map_entry_t start_entry;
1892 vm_offset_t end;
1893 int rv = KERN_SUCCESS;
1894 int count;
1895
1896 if (kmflags & KM_KRESERVE)
1897 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
1898 else
1899 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1900 vm_map_lock(map);
1901 VM_MAP_RANGE_CHECK(map, start, real_end);
1902 end = real_end;
1903
1904 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1905 if (start_entry == NULL) {
1906 vm_map_unlock(map);
1907 rv = KERN_INVALID_ADDRESS;
1908 goto failure;
1909 }
1910 if ((kmflags & KM_PAGEABLE) == 0) {
1911 /*
1912 * Wiring.
1913 *
1914 * 1. Holding the write lock, we create any shadow or zero-fill
1915 * objects that need to be created. Then we clip each map
1916 * entry to the region to be wired and increment its wiring
1917 * count. We create objects before clipping the map entries
1918 * to avoid object proliferation.
1919 *
1920 * 2. We downgrade to a read lock, and call vm_fault_wire to
1921 * fault in the pages for any newly wired area (wired_count is
1922 * 1).
1923 *
1924 * Downgrading to a read lock for vm_fault_wire avoids a
1925 * possible deadlock with another process that may have faulted
1926 * on one of the pages to be wired (it would mark the page busy,
1927 * blocking us, then in turn block on the map lock that we
1928 * hold). Because of problems in the recursive lock package,
1929 * we cannot upgrade to a write lock in vm_map_lookup. Thus,
1930 * any actions that require the write lock must be done
1931 * beforehand. Because we keep the read lock on the map, the
1932 * copy-on-write status of the entries we modify here cannot
1933 * change.
1934 */
1935
1936 entry = start_entry;
1937 while ((entry != &map->header) && (entry->start < end)) {
1938 /*
1939 * Trivial case if the entry is already wired
1940 */
1941 if (entry->wired_count) {
1942 entry->wired_count++;
1943 entry = entry->next;
1944 continue;
1945 }
1946
1947 /*
1948 * The entry is being newly wired, we have to setup
1949 * appropriate management structures. A shadow
1950 * object is required for a copy-on-write region,
1951 * or a normal object for a zero-fill region. We
1952 * do not have to do this for entries that point to sub
1953 * maps because we won't hold the lock on the sub map.
1954 */
1955 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1956 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1957 if (copyflag &&
1958 ((entry->protection & VM_PROT_WRITE) != 0)) {
1959
1960 vm_object_shadow(&entry->object.vm_object,
1961 &entry->offset,
1962 atop(entry->end - entry->start));
1963 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1964 } else if (entry->object.vm_object == NULL &&
1965 !map->system_map) {
1966 entry->object.vm_object =
1967 vm_object_allocate(OBJT_DEFAULT,
1968 atop(entry->end - entry->start));
1969 entry->offset = (vm_offset_t) 0;
1970 }
1971 }
1972
1973 entry->wired_count++;
1974 entry = entry->next;
1975 }
1976
1977 /*
1978 * Pass 2.
1979 */
1980
1981 /*
1982 * HACK HACK HACK HACK
1983 *
1984 * Unlock the map to avoid deadlocks. The in-transit flag
1985 * protects us from most changes but note that
1986 * clipping may still occur. To prevent clipping from
1987 * occuring after the unlock, except for when we are
1988 * blocking in vm_fault_wire, we must run in a critical
1989 * section, otherwise our accesses to entry->start and
1990 * entry->end could be corrupted. We have to enter the
1991 * critical section prior to unlocking so start_entry does
1992 * not change out from under us at the very beginning of the
1993 * loop.
1994 *
1995 * HACK HACK HACK HACK
1996 */
1997
1998 crit_enter();
1999
2000 entry = start_entry;
2001 while (entry != &map->header && entry->start < end) {
2002 /*
2003 * If vm_fault_wire fails for any page we need to undo
2004 * what has been done. We decrement the wiring count
2005 * for those pages which have not yet been wired (now)
2006 * and unwire those that have (later).
2007 */
2008 vm_offset_t save_start = entry->start;
2009 vm_offset_t save_end = entry->end;
2010
2011 if (entry->wired_count == 1)
2012 rv = vm_fault_wire(map, entry, FALSE);
2013 if (rv) {
2014 CLIP_CHECK_BACK(entry, save_start);
2015 for (;;) {
2016 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2017 entry->wired_count = 0;
2018 if (entry->end == save_end)
2019 break;
2020 entry = entry->next;
2021 KASSERT(entry != &map->header, ("bad entry clip during backout"));
2022 }
2023 end = save_start;
2024 break;
2025 }
2026 CLIP_CHECK_FWD(entry, save_end);
2027 entry = entry->next;
2028 }
2029 crit_exit();
2030
2031 /*
2032 * If a failure occured undo everything by falling through
2033 * to the unwiring code. 'end' has already been adjusted
2034 * appropriately.
2035 */
2036 if (rv)
2037 kmflags |= KM_PAGEABLE;
2038
2039 /*
2040 * start_entry is still IN_TRANSITION but may have been
2041 * clipped since vm_fault_wire() unlocks and relocks the
2042 * map. No matter how clipped it has gotten there should
2043 * be a fragment that is on our start boundary.
2044 */
2045 CLIP_CHECK_BACK(start_entry, start);
2046 }
2047
2048 if (kmflags & KM_PAGEABLE) {
2049 /*
2050 * This is the unwiring case. We must first ensure that the
2051 * range to be unwired is really wired down. We know there
2052 * are no holes.
2053 */
2054 entry = start_entry;
2055 while ((entry != &map->header) && (entry->start < end)) {
2056 if (entry->wired_count == 0) {
2057 rv = KERN_INVALID_ARGUMENT;
2058 goto done;
2059 }
2060 entry = entry->next;
2061 }
2062
2063 /*
2064 * Now decrement the wiring count for each region. If a region
2065 * becomes completely unwired, unwire its physical pages and
2066 * mappings.
2067 */
2068 entry = start_entry;
2069 while ((entry != &map->header) && (entry->start < end)) {
2070 entry->wired_count--;
2071 if (entry->wired_count == 0)
2072 vm_fault_unwire(map, entry);
2073 entry = entry->next;
2074 }
2075 }
2076done:
2077 vm_map_unclip_range(map, start_entry, start, real_end, &count,
2078 MAP_CLIP_NO_HOLES);
2079 map->timestamp++;
2080 vm_map_unlock(map);
2081failure:
2082 if (kmflags & KM_KRESERVE)
2083 vm_map_entry_krelease(count);
2084 else
2085 vm_map_entry_release(count);
2086 return (rv);
2087}
2088
2089/*
2090 * vm_map_set_wired_quick()
2091 *
2092 * Mark a newly allocated address range as wired but do not fault in
2093 * the pages. The caller is expected to load the pages into the object.
2094 *
2095 * The map must be locked on entry and will remain locked on return.
2096 */
2097void
2098vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2099{
2100 vm_map_entry_t scan;
2101 vm_map_entry_t entry;
2102
2103 entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2104 for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2105 KKASSERT(entry->wired_count == 0);
2106 entry->wired_count = 1;
2107 }
2108 vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2109}
2110
2111/*
2112 * vm_map_clean
2113 *
2114 * Push any dirty cached pages in the address range to their pager.
2115 * If syncio is TRUE, dirty pages are written synchronously.
2116 * If invalidate is TRUE, any cached pages are freed as well.
2117 *
2118 * Returns an error if any part of the specified range is not mapped.
2119 */
2120int
2121vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio,
2122 boolean_t invalidate)
2123{
2124 vm_map_entry_t current;
2125 vm_map_entry_t entry;
2126 vm_size_t size;
2127 vm_object_t object;
2128 vm_ooffset_t offset;
2129
2130 vm_map_lock_read(map);
2131 VM_MAP_RANGE_CHECK(map, start, end);
2132 if (!vm_map_lookup_entry(map, start, &entry)) {
2133 vm_map_unlock_read(map);
2134 return (KERN_INVALID_ADDRESS);
2135 }
2136 /*
2137 * Make a first pass to check for holes.
2138 */
2139 for (current = entry; current->start < end; current = current->next) {
2140 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2141 vm_map_unlock_read(map);
2142 return (KERN_INVALID_ARGUMENT);
2143 }
2144 if (end > current->end &&
2145 (current->next == &map->header ||
2146 current->end != current->next->start)) {
2147 vm_map_unlock_read(map);
2148 return (KERN_INVALID_ADDRESS);
2149 }
2150 }
2151
2152 if (invalidate)
2153 pmap_remove(vm_map_pmap(map), start, end);
2154 /*
2155 * Make a second pass, cleaning/uncaching pages from the indicated
2156 * objects as we go.
2157 */
2158 for (current = entry; current->start < end; current = current->next) {
2159 offset = current->offset + (start - current->start);
2160 size = (end <= current->end ? end : current->end) - start;
2161 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2162 vm_map_t smap;
2163 vm_map_entry_t tentry;
2164 vm_size_t tsize;
2165
2166 smap = current->object.sub_map;
2167 vm_map_lock_read(smap);
2168 (void) vm_map_lookup_entry(smap, offset, &tentry);
2169 tsize = tentry->end - offset;
2170 if (tsize < size)
2171 size = tsize;
2172 object = tentry->object.vm_object;
2173 offset = tentry->offset + (offset - tentry->start);
2174 vm_map_unlock_read(smap);
2175 } else {
2176 object = current->object.vm_object;
2177 }
2178 /*
2179 * Note that there is absolutely no sense in writing out
2180 * anonymous objects, so we track down the vnode object
2181 * to write out.
2182 * We invalidate (remove) all pages from the address space
2183 * anyway, for semantic correctness.
2184 *
2185 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2186 * may start out with a NULL object.
2187 */
2188 while (object && object->backing_object) {
2189 offset += object->backing_object_offset;
2190 object = object->backing_object;
2191 if (object->size < OFF_TO_IDX( offset + size))
2192 size = IDX_TO_OFF(object->size) - offset;
2193 }
2194 if (object && (object->type == OBJT_VNODE) &&
2195 (current->protection & VM_PROT_WRITE)) {
2196 /*
2197 * Flush pages if writing is allowed, invalidate them
2198 * if invalidation requested. Pages undergoing I/O
2199 * will be ignored by vm_object_page_remove().
2200 *
2201 * We cannot lock the vnode and then wait for paging
2202 * to complete without deadlocking against vm_fault.
2203 * Instead we simply call vm_object_page_remove() and
2204 * allow it to block internally on a page-by-page
2205 * basis when it encounters pages undergoing async
2206 * I/O.
2207 */
2208 int flags;
2209
2210 vm_object_reference(object);
2211 vn_lock(object->handle,
2212 LK_EXCLUSIVE | LK_RETRY, curthread);
2213 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2214 flags |= invalidate ? OBJPC_INVAL : 0;
2215 vm_object_page_clean(object,
2216 OFF_TO_IDX(offset),
2217 OFF_TO_IDX(offset + size + PAGE_MASK),
2218 flags);
2219 VOP_UNLOCK(((struct vnode *)object->handle),
2220 0, curthread);
2221 vm_object_deallocate(object);
2222 }
2223 if (object && invalidate &&
2224 ((object->type == OBJT_VNODE) ||
2225 (object->type == OBJT_DEVICE))) {
2226 int clean_only =
2227 (object->type == OBJT_DEVICE) ? FALSE : TRUE;
2228 vm_object_reference(object);
2229 vm_object_page_remove(object,
2230 OFF_TO_IDX(offset),
2231 OFF_TO_IDX(offset + size + PAGE_MASK),
2232 clean_only);
2233 vm_object_deallocate(object);
2234 }
2235 start += size;
2236 }
2237
2238 vm_map_unlock_read(map);
2239 return (KERN_SUCCESS);
2240}
2241
2242/*
2243 * vm_map_entry_unwire: [ internal use only ]
2244 *
2245 * Make the region specified by this entry pageable.
2246 *
2247 * The map in question should be locked.
2248 * [This is the reason for this routine's existence.]
2249 */
2250static void
2251vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2252{
2253 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2254 entry->wired_count = 0;
2255 vm_fault_unwire(map, entry);
2256}
2257
2258/*
2259 * vm_map_entry_delete: [ internal use only ]
2260 *
2261 * Deallocate the given entry from the target map.
2262 */
2263static void
2264vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2265{
2266 vm_map_entry_unlink(map, entry);
2267 map->size -= entry->end - entry->start;
2268
2269 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2270 vm_object_deallocate(entry->object.vm_object);
2271 }
2272
2273 vm_map_entry_dispose(map, entry, countp);
2274}
2275
2276/*
2277 * vm_map_delete: [ internal use only ]
2278 *
2279 * Deallocates the given address range from the target
2280 * map.
2281 */
2282int
2283vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2284{
2285 vm_object_t object;
2286 vm_map_entry_t entry;
2287 vm_map_entry_t first_entry;
2288
2289again:
2290 /*
2291 * Find the start of the region, and clip it. Set entry to point
2292 * at the first record containing the requested address or, if no
2293 * such record exists, the next record with a greater address. The
2294 * loop will run from this point until a record beyond the termination
2295 * address is encountered.
2296 *
2297 * map->hint must be adjusted to not point to anything we delete,
2298 * so set it to the entry prior to the one being deleted.
2299 *
2300 * GGG see other GGG comment.
2301 */
2302 if (vm_map_lookup_entry(map, start, &first_entry)) {
2303 entry = first_entry;
2304 vm_map_clip_start(map, entry, start, countp);
2305 map->hint = entry->prev; /* possible problem XXX */
2306 } else {
2307 map->hint = first_entry; /* possible problem XXX */
2308 entry = first_entry->next;
2309 }
2310
2311 /*
2312 * If a hole opens up prior to the current first_free then
2313 * adjust first_free. As with map->hint, map->first_free
2314 * cannot be left set to anything we might delete.
2315 */
2316 if (entry == &map->header) {
2317 map->first_free = &map->header;
2318 } else if (map->first_free->start >= start) {
2319 map->first_free = entry->prev;
2320 }
2321
2322 /*
2323 * Step through all entries in this region
2324 */
2325
2326 while ((entry != &map->header) && (entry->start < end)) {
2327 vm_map_entry_t next;
2328 vm_offset_t s, e;
2329 vm_pindex_t offidxstart, offidxend, count;
2330
2331 /*
2332 * If we hit an in-transition entry we have to sleep and
2333 * retry. It's easier (and not really slower) to just retry
2334 * since this case occurs so rarely and the hint is already
2335 * pointing at the right place. We have to reset the
2336 * start offset so as not to accidently delete an entry
2337 * another process just created in vacated space.
2338 */
2339 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2340 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2341 start = entry->start;
2342 ++mycpu->gd_cnt.v_intrans_coll;
2343 ++mycpu->gd_cnt.v_intrans_wait;
2344 vm_map_transition_wait(map);
2345 goto again;
2346 }
2347 vm_map_clip_end(map, entry, end, countp);
2348
2349 s = entry->start;
2350 e = entry->end;
2351 next = entry->next;
2352
2353 offidxstart = OFF_TO_IDX(entry->offset);
2354 count = OFF_TO_IDX(e - s);
2355 object = entry->object.vm_object;
2356
2357 /*
2358 * Unwire before removing addresses from the pmap; otherwise,
2359 * unwiring will put the entries back in the pmap.
2360 */
2361 if (entry->wired_count != 0)
2362 vm_map_entry_unwire(map, entry);
2363
2364 offidxend = offidxstart + count;
2365
2366 if ((object == kernel_object) || (object == kmem_object)) {
2367 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2368 } else {
2369 pmap_remove(map->pmap, s, e);
2370 if (object != NULL &&
2371 object->ref_count != 1 &&
2372 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2373 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2374 vm_object_collapse(object);
2375 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2376 if (object->type == OBJT_SWAP) {
2377 swap_pager_freespace(object, offidxstart, count);
2378 }
2379 if (offidxend >= object->size &&
2380 offidxstart < object->size) {
2381 object->size = offidxstart;
2382 }
2383 }
2384 }
2385
2386 /*
2387 * Delete the entry (which may delete the object) only after
2388 * removing all pmap entries pointing to its pages.
2389 * (Otherwise, its page frames may be reallocated, and any
2390 * modify bits will be set in the wrong object!)
2391 */
2392 vm_map_entry_delete(map, entry, countp);
2393 entry = next;
2394 }
2395 return (KERN_SUCCESS);
2396}
2397
2398/*
2399 * vm_map_remove:
2400 *
2401 * Remove the given address range from the target map.
2402 * This is the exported form of vm_map_delete.
2403 */
2404int
2405vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2406{
2407 int result;
2408 int count;
2409
2410 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2411 vm_map_lock(map);
2412 VM_MAP_RANGE_CHECK(map, start, end);
2413 result = vm_map_delete(map, start, end, &count);
2414 vm_map_unlock(map);
2415 vm_map_entry_release(count);
2416
2417 return (result);
2418}
2419
2420/*
2421 * vm_map_check_protection:
2422 *
2423 * Assert that the target map allows the specified
2424 * privilege on the entire address region given.
2425 * The entire region must be allocated.
2426 */
2427boolean_t
2428vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2429 vm_prot_t protection)
2430{
2431 vm_map_entry_t entry;
2432 vm_map_entry_t tmp_entry;
2433
2434 if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2435 return (FALSE);
2436 }
2437 entry = tmp_entry;
2438
2439 while (start < end) {
2440 if (entry == &map->header) {
2441 return (FALSE);
2442 }
2443 /*
2444 * No holes allowed!
2445 */
2446
2447 if (start < entry->start) {
2448 return (FALSE);
2449 }
2450 /*
2451 * Check protection associated with entry.
2452 */
2453
2454 if ((entry->protection & protection) != protection) {
2455 return (FALSE);
2456 }
2457 /* go to next entry */
2458
2459 start = entry->end;
2460 entry = entry->next;
2461 }
2462 return (TRUE);
2463}
2464
2465/*
2466 * Split the pages in a map entry into a new object. This affords
2467 * easier removal of unused pages, and keeps object inheritance from
2468 * being a negative impact on memory usage.
2469 */
2470static void
2471vm_map_split(vm_map_entry_t entry)
2472{
2473 vm_page_t m;
2474 vm_object_t orig_object, new_object, source;
2475 vm_offset_t s, e;
2476 vm_pindex_t offidxstart, offidxend, idx;
2477 vm_size_t size;
2478 vm_ooffset_t offset;
2479
2480 orig_object = entry->object.vm_object;
2481 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2482 return;
2483 if (orig_object->ref_count <= 1)
2484 return;
2485
2486 offset = entry->offset;
2487 s = entry->start;
2488 e = entry->end;
2489
2490 offidxstart = OFF_TO_IDX(offset);
2491 offidxend = offidxstart + OFF_TO_IDX(e - s);
2492 size = offidxend - offidxstart;
2493
2494 new_object = vm_pager_allocate(orig_object->type,
2495 NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
2496 if (new_object == NULL)
2497 return;
2498
2499 source = orig_object->backing_object;
2500 if (source != NULL) {
2501 vm_object_reference(source); /* Referenced by new_object */
2502 LIST_INSERT_HEAD(&source->shadow_head,
2503 new_object, shadow_list);
2504 vm_object_clear_flag(source, OBJ_ONEMAPPING);
2505 new_object->backing_object_offset =
2506 orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2507 new_object->backing_object = source;
2508 source->shadow_count++;
2509 source->generation++;
2510 }
2511
2512 for (idx = 0; idx < size; idx++) {
2513 vm_page_t m;
2514
2515 /*
2516 * A critical section is required to avoid a race between
2517 * the lookup and an interrupt/unbusy/free and our busy
2518 * check.
2519 */
2520 crit_enter();
2521 retry:
2522 m = vm_page_lookup(orig_object, offidxstart + idx);
2523 if (m == NULL) {
2524 crit_exit();
2525 continue;
2526 }
2527
2528 /*
2529 * We must wait for pending I/O to complete before we can
2530 * rename the page.
2531 *
2532 * We do not have to VM_PROT_NONE the page as mappings should
2533 * not be changed by this operation.
2534 */
2535 if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2536 goto retry;
2537 vm_page_busy(m);
2538 vm_page_rename(m, new_object, idx);
2539 /* page automatically made dirty by rename and cache handled */
2540 vm_page_busy(m);
2541 crit_exit();
2542 }
2543
2544 if (orig_object->type == OBJT_SWAP) {
2545 vm_object_pip_add(orig_object, 1);
2546 /*
2547 * copy orig_object pages into new_object
2548 * and destroy unneeded pages in
2549 * shadow object.
2550 */
2551 swap_pager_copy(orig_object, new_object, offidxstart, 0);
2552 vm_object_pip_wakeup(orig_object);
2553 }
2554
2555 /*
2556 * Wakeup the pages we played with. No spl protection is needed
2557 * for a simple wakeup.
2558 */
2559 for (idx = 0; idx < size; idx++) {
2560 m = vm_page_lookup(new_object, idx);
2561 if (m)
2562 vm_page_wakeup(m);
2563 }
2564
2565 entry->object.vm_object = new_object;
2566 entry->offset = 0LL;
2567 vm_object_deallocate(orig_object);
2568}
2569
2570/*
2571 * vm_map_copy_entry:
2572 *
2573 * Copies the contents of the source entry to the destination
2574 * entry. The entries *must* be aligned properly.
2575 */
2576static void
2577vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2578 vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2579{
2580 vm_object_t src_object;
2581
2582 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2583 return;
2584
2585 if (src_entry->wired_count == 0) {
2586
2587 /*
2588 * If the source entry is marked needs_copy, it is already
2589 * write-protected.
2590 */
2591 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2592 pmap_protect(src_map->pmap,
2593 src_entry->start,
2594 src_entry->end,
2595 src_entry->protection & ~VM_PROT_WRITE);
2596 }
2597
2598 /*
2599 * Make a copy of the object.
2600 */
2601 if ((src_object = src_entry->object.vm_object) != NULL) {
2602
2603 if ((src_object->handle == NULL) &&
2604 (src_object->type == OBJT_DEFAULT ||
2605 src_object->type == OBJT_SWAP)) {
2606 vm_object_collapse(src_object);
2607 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2608 vm_map_split(src_entry);
2609 src_object = src_entry->object.vm_object;
2610 }
2611 }
2612
2613 vm_object_reference(src_object);
2614 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2615 dst_entry->object.vm_object = src_object;
2616 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2617 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2618 dst_entry->offset = src_entry->offset;
2619 } else {
2620 dst_entry->object.vm_object = NULL;
2621 dst_entry->offset = 0;
2622 }
2623
2624 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2625 dst_entry->end - dst_entry->start, src_entry->start);
2626 } else {
2627 /*
2628 * Of course, wired down pages can't be set copy-on-write.
2629 * Cause wired pages to be copied into the new map by
2630 * simulating faults (the new pages are pageable)
2631 */
2632 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2633 }
2634}
2635
2636/*
2637 * vmspace_fork:
2638 * Create a new process vmspace structure and vm_map
2639 * based on those of an existing process. The new map
2640 * is based on the old map, according to the inheritance
2641 * values on the regions in that map.
2642 *
2643 * The source map must not be locked.
2644 */
2645struct vmspace *
2646vmspace_fork(struct vmspace *vm1)
2647{
2648 struct vmspace *vm2;
2649 vm_map_t old_map = &vm1->vm_map;
2650 vm_map_t new_map;
2651 vm_map_entry_t old_entry;
2652 vm_map_entry_t new_entry;
2653 vm_object_t object;
2654 int count;
2655
2656 vm_map_lock(old_map);
2657 old_map->infork = 1;
2658
2659 /*
2660 * XXX Note: upcalls are not copied.
2661 */
2662 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2663 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2664 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
2665 new_map = &vm2->vm_map; /* XXX */
2666 new_map->timestamp = 1;
2667
2668 count = 0;
2669 old_entry = old_map->header.next;
2670 while (old_entry != &old_map->header) {
2671 ++count;
2672 old_entry = old_entry->next;
2673 }
2674
2675 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2676
2677 old_entry = old_map->header.next;
2678 while (old_entry != &old_map->header) {
2679 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2680 panic("vm_map_fork: encountered a submap");
2681
2682 switch (old_entry->inheritance) {
2683 case VM_INHERIT_NONE:
2684 break;
2685
2686 case VM_INHERIT_SHARE:
2687 /*
2688 * Clone the entry, creating the shared object if necessary.
2689 */
2690 object = old_entry->object.vm_object;
2691 if (object == NULL) {
2692 object = vm_object_allocate(OBJT_DEFAULT,
2693 atop(old_entry->end - old_entry->start));
2694 old_entry->object.vm_object = object;
2695 old_entry->offset = (vm_offset_t) 0;
2696 }
2697
2698 /*
2699 * Add the reference before calling vm_object_shadow
2700 * to insure that a shadow object is created.
2701 */
2702 vm_object_reference(object);
2703 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2704 vm_object_shadow(&old_entry->object.vm_object,
2705 &old_entry->offset,
2706 atop(old_entry->end - old_entry->start));
2707 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2708 /* Transfer the second reference too. */
2709 vm_object_reference(
2710 old_entry->object.vm_object);
2711 vm_object_deallocate(object);
2712 object = old_entry->object.vm_object;
2713 }
2714 vm_object_clear_flag(object, OBJ_ONEMAPPING);
2715
2716 /*
2717 * Clone the entry, referencing the shared object.
2718 */
2719 new_entry = vm_map_entry_create(new_map, &count);
2720 *new_entry = *old_entry;
2721 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2722 new_entry->wired_count = 0;
2723
2724 /*
2725 * Insert the entry into the new map -- we know we're
2726 * inserting at the end of the new map.
2727 */
2728
2729 vm_map_entry_link(new_map, new_map->header.prev,
2730 new_entry);
2731
2732 /*
2733 * Update the physical map
2734 */
2735
2736 pmap_copy(new_map->pmap, old_map->pmap,
2737 new_entry->start,
2738 (old_entry->end - old_entry->start),
2739 old_entry->start);
2740 break;
2741
2742 case VM_INHERIT_COPY:
2743 /*
2744 * Clone the entry and link into the map.
2745 */
2746 new_entry = vm_map_entry_create(new_map, &count);
2747 *new_entry = *old_entry;
2748 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2749 new_entry->wired_count = 0;
2750 new_entry->object.vm_object = NULL;
2751 vm_map_entry_link(new_map, new_map->header.prev,
2752 new_entry);
2753 vm_map_copy_entry(old_map, new_map, old_entry,
2754 new_entry);
2755 break;
2756 }
2757 old_entry = old_entry->next;
2758 }
2759
2760 new_map->size = old_map->size;
2761 old_map->infork = 0;
2762 vm_map_unlock(old_map);
2763 vm_map_entry_release(count);
2764
2765 return (vm2);
2766}
2767
2768int
2769vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2770 vm_prot_t prot, vm_prot_t max, int cow)
2771{
2772 vm_map_entry_t prev_entry;
2773 vm_map_entry_t new_stack_entry;
2774 vm_size_t init_ssize;
2775 int rv;
2776 int count;
2777
2778 if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2779 return (KERN_NO_SPACE);
2780
2781 if (max_ssize < sgrowsiz)
2782 init_ssize = max_ssize;
2783 else
2784 init_ssize = sgrowsiz;
2785
2786 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2787 vm_map_lock(map);
2788
2789 /* If addr is already mapped, no go */
2790 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2791 vm_map_unlock(map);
2792 vm_map_entry_release(count);
2793 return (KERN_NO_SPACE);
2794 }
2795
2796 /* If we would blow our VMEM resource limit, no go */
2797 if (map->size + init_ssize >
2798 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2799 vm_map_unlock(map);
2800 vm_map_entry_release(count);
2801 return (KERN_NO_SPACE);
2802 }
2803
2804 /* If we can't accomodate max_ssize in the current mapping,
2805 * no go. However, we need to be aware that subsequent user
2806 * mappings might map into the space we have reserved for
2807 * stack, and currently this space is not protected.
2808 *
2809 * Hopefully we will at least detect this condition
2810 * when we try to grow the stack.
2811 */
2812 if ((prev_entry->next != &map->header) &&
2813 (prev_entry->next->start < addrbos + max_ssize)) {
2814 vm_map_unlock(map);
2815 vm_map_entry_release(count);
2816 return (KERN_NO_SPACE);
2817 }
2818
2819 /* We initially map a stack of only init_ssize. We will
2820 * grow as needed later. Since this is to be a grow
2821 * down stack, we map at the top of the range.
2822 *
2823 * Note: we would normally expect prot and max to be
2824 * VM_PROT_ALL, and cow to be 0. Possibly we should
2825 * eliminate these as input parameters, and just
2826 * pass these values here in the insert call.
2827 */
2828 rv = vm_map_insert(map, &count,
2829 NULL, 0, addrbos + max_ssize - init_ssize,
2830 addrbos + max_ssize, prot, max, cow);
2831
2832 /* Now set the avail_ssize amount */
2833 if (rv == KERN_SUCCESS) {
2834 if (prev_entry != &map->header)
2835 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
2836 new_stack_entry = prev_entry->next;
2837 if (new_stack_entry->end != addrbos + max_ssize ||
2838 new_stack_entry->start != addrbos + max_ssize - init_ssize)
2839 panic ("Bad entry start/end for new stack entry");
2840 else
2841 new_stack_entry->avail_ssize = max_ssize - init_ssize;
2842 }
2843
2844 vm_map_unlock(map);
2845 vm_map_entry_release(count);
2846 return (rv);
2847}
2848
2849/* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
2850 * desired address is already mapped, or if we successfully grow
2851 * the stack. Also returns KERN_SUCCESS if addr is outside the
2852 * stack range (this is strange, but preserves compatibility with
2853 * the grow function in vm_machdep.c).
2854 */
2855int
2856vm_map_growstack (struct proc *p, vm_offset_t addr)
2857{
2858 vm_map_entry_t prev_entry;
2859 vm_map_entry_t stack_entry;
2860 vm_map_entry_t new_stack_entry;
2861 struct vmspace *vm = p->p_vmspace;
2862 vm_map_t map = &vm->vm_map;
2863 vm_offset_t end;
2864 int grow_amount;
2865 int rv = KERN_SUCCESS;
2866 int is_procstack;
2867 int use_read_lock = 1;
2868 int count;
2869
2870 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2871Retry:
2872 if (use_read_lock)
2873 vm_map_lock_read(map);
2874 else
2875 vm_map_lock(map);
2876
2877 /* If addr is already in the entry range, no need to grow.*/
2878 if (vm_map_lookup_entry(map, addr, &prev_entry))
2879 goto done;
2880
2881 if ((stack_entry = prev_entry->next) == &map->header)
2882 goto done;
2883 if (prev_entry == &map->header)
2884 end = stack_entry->start - stack_entry->avail_ssize;
2885 else
2886 end = prev_entry->end;
2887
2888 /* This next test mimics the old grow function in vm_machdep.c.
2889 * It really doesn't quite make sense, but we do it anyway
2890 * for compatibility.
2891 *
2892 * If not growable stack, return success. This signals the
2893 * caller to proceed as he would normally with normal vm.
2894 */
2895 if (stack_entry->avail_ssize < 1 ||
2896 addr >= stack_entry->start ||
2897 addr < stack_entry->start - stack_entry->avail_ssize) {
2898 goto done;
2899 }
2900
2901 /* Find the minimum grow amount */
2902 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2903 if (grow_amount > stack_entry->avail_ssize) {
2904 rv = KERN_NO_SPACE;
2905 goto done;
2906 }
2907
2908 /* If there is no longer enough space between the entries
2909 * nogo, and adjust the available space. Note: this
2910 * should only happen if the user has mapped into the
2911 * stack area after the stack was created, and is
2912 * probably an error.
2913 *
2914 * This also effectively destroys any guard page the user
2915 * might have intended by limiting the stack size.
2916 */
2917 if (grow_amount > stack_entry->start - end) {
2918 if (use_read_lock && vm_map_lock_upgrade(map)) {
2919 use_read_lock = 0;
2920 goto Retry;
2921 }
2922 use_read_lock = 0;
2923 stack_entry->avail_ssize = stack_entry->start - end;
2924 rv = KERN_NO_SPACE;
2925 goto done;
2926 }
2927
2928 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2929
2930 /* If this is the main process stack, see if we're over the
2931 * stack limit.
2932 */
2933 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2934 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2935 rv = KERN_NO_SPACE;
2936 goto done;
2937 }
2938
2939 /* Round up the grow amount modulo SGROWSIZ */
2940 grow_amount = roundup (grow_amount, sgrowsiz);
2941 if (grow_amount > stack_entry->avail_ssize) {
2942 grow_amount = stack_entry->avail_ssize;
2943 }
2944 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2945 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2946 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2947 ctob(vm->vm_ssize);
2948 }
2949
2950 /* If we would blow our VMEM resource limit, no go */
2951 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2952 rv = KERN_NO_SPACE;
2953 goto done;
2954 }
2955
2956 if (use_read_lock && vm_map_lock_upgrade(map)) {
2957 use_read_lock = 0;
2958 goto Retry;
2959 }
2960 use_read_lock = 0;
2961
2962 /* Get the preliminary new entry start value */
2963 addr = stack_entry->start - grow_amount;
2964
2965 /* If this puts us into the previous entry, cut back our growth
2966 * to the available space. Also, see the note above.
2967 */
2968 if (addr < end) {
2969 stack_entry->avail_ssize = stack_entry->start - end;
2970 addr = end;
2971 }
2972
2973 rv = vm_map_insert(map, &count,
2974 NULL, 0, addr, stack_entry->start,
2975 VM_PROT_ALL,
2976 VM_PROT_ALL,
2977 0);
2978
2979 /* Adjust the available stack space by the amount we grew. */
2980 if (rv == KERN_SUCCESS) {
2981 if (prev_entry != &map->header)
2982 vm_map_clip_end(map, prev_entry, addr, &count);
2983 new_stack_entry = prev_entry->next;
2984 if (new_stack_entry->end != stack_entry->start ||
2985 new_stack_entry->start != addr)
2986 panic ("Bad stack grow start/end in new stack entry");
2987 else {
2988 new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2989 (new_stack_entry->end -
2990 new_stack_entry->start);
2991 if (is_procstack)
2992 vm->vm_ssize += btoc(new_stack_entry->end -
2993 new_stack_entry->start);
2994 }
2995 }
2996
2997done:
2998 if (use_read_lock)
2999 vm_map_unlock_read(map);
3000 else
3001 vm_map_unlock(map);
3002 vm_map_entry_release(count);
3003 return (rv);
3004}
3005
3006/*
3007 * Unshare the specified VM space for exec. If other processes are
3008 * mapped to it, then create a new one. The new vmspace is null.
3009 */
3010
3011void
3012vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3013{
3014 struct vmspace *oldvmspace = p->p_vmspace;
3015 struct vmspace *newvmspace;
3016 vm_map_t map = &p->p_vmspace->vm_map;
3017
3018 /*
3019 * If we are execing a resident vmspace we fork it, otherwise
3020 * we create a new vmspace. Note that exitingcnt and upcalls
3021 * are not copied to the new vmspace.
3022 */
3023 if (vmcopy) {
3024 newvmspace = vmspace_fork(vmcopy);
3025 } else {
3026 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3027 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3028 (caddr_t)&oldvmspace->vm_endcopy -
3029 (caddr_t)&oldvmspace->vm_startcopy);
3030 }
3031
3032 /*
3033 * This code is written like this for prototype purposes. The
3034 * goal is to avoid running down the vmspace here, but let the
3035 * other process's that are still using the vmspace to finally
3036 * run it down. Even though there is little or no chance of blocking
3037 * here, it is a good idea to keep this form for future mods.
3038 */
3039 p->p_vmspace = newvmspace;
3040 pmap_pinit2(vmspace_pmap(newvmspace));
3041 if (p == curproc)
3042 pmap_activate(p);
3043 vmspace_free(oldvmspace);
3044}
3045
3046/*
3047 * Unshare the specified VM space for forcing COW. This
3048 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3049 *
3050 * The exitingcnt test is not strictly necessary but has been
3051 * included for code sanity (to make the code a bit more deterministic).
3052 */
3053
3054void
3055vmspace_unshare(struct proc *p)
3056{
3057 struct vmspace *oldvmspace = p->p_vmspace;
3058 struct vmspace *newvmspace;
3059
3060 if (oldvmspace->vm_refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3061 return;
3062 newvmspace = vmspace_fork(oldvmspace);
3063 p->p_vmspace = newvmspace;
3064 pmap_pinit2(vmspace_pmap(newvmspace));
3065 if (p == curproc)
3066 pmap_activate(p);
3067 vmspace_free(oldvmspace);
3068}
3069
3070/*
3071 * vm_map_lookup:
3072 *
3073 * Finds the VM object, offset, and
3074 * protection for a given virtual address in the
3075 * specified map, assuming a page fault of the
3076 * type specified.
3077 *
3078 * Leaves the map in question locked for read; return
3079 * values are guaranteed until a vm_map_lookup_done
3080 * call is performed. Note that the map argument
3081 * is in/out; the returned map must be used in
3082 * the call to vm_map_lookup_done.
3083 *
3084 * A handle (out_entry) is returned for use in
3085 * vm_map_lookup_done, to make that fast.
3086 *
3087 * If a lookup is requested with "write protection"
3088 * specified, the map may be changed to perform virtual
3089 * copying operations, although the data referenced will
3090 * remain the same.
3091 */
3092int
3093vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
3094 vm_offset_t vaddr,
3095 vm_prot_t fault_typea,
3096 vm_map_entry_t *out_entry, /* OUT */
3097 vm_object_t *object, /* OUT */
3098 vm_pindex_t *pindex, /* OUT */
3099 vm_prot_t *out_prot, /* OUT */
3100 boolean_t *wired) /* OUT */
3101{
3102 vm_map_entry_t entry;
3103 vm_map_t map = *var_map;
3104 vm_prot_t prot;
3105 vm_prot_t fault_type = fault_typea;
3106 int use_read_lock = 1;
3107 int rv = KERN_SUCCESS;
3108
3109RetryLookup:
3110 if (use_read_lock)
3111 vm_map_lock_read(map);
3112 else
3113 vm_map_lock(map);
3114
3115 /*
3116 * If the map has an interesting hint, try it before calling full
3117 * blown lookup routine.
3118 */
3119 entry = map->hint;
3120 *out_entry = entry;
3121
3122 if ((entry == &map->header) ||
3123 (vaddr < entry->start) || (vaddr >= entry->end)) {
3124 vm_map_entry_t tmp_entry;
3125
3126 /*
3127 * Entry was either not a valid hint, or the vaddr was not
3128 * contained in the entry, so do a full lookup.
3129 */
3130 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3131 rv = KERN_INVALID_ADDRESS;
3132 goto done;
3133 }
3134
3135 entry = tmp_entry;
3136 *out_entry = entry;
3137 }
3138
3139 /*
3140 * Handle submaps.
3141 */
3142
3143 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3144 vm_map_t old_map = map;
3145
3146 *var_map = map = entry->object.sub_map;
3147 if (use_read_lock)
3148 vm_map_unlock_read(old_map);
3149 else
3150 vm_map_unlock(old_map);
3151 use_read_lock = 1;
3152 goto RetryLookup;
3153 }
3154
3155 /*
3156 * Check whether this task is allowed to have this page.
3157 * Note the special case for MAP_ENTRY_COW
3158 * pages with an override. This is to implement a forced
3159 * COW for debuggers.
3160 */
3161
3162 if (fault_type & VM_PROT_OVERRIDE_WRITE)
3163 prot = entry->max_protection;
3164 else
3165 prot = entry->protection;
3166
3167 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3168 if ((fault_type & prot) != fault_type) {
3169 rv = KERN_PROTECTION_FAILURE;
3170 goto done;
3171 }
3172
3173 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3174 (entry->eflags & MAP_ENTRY_COW) &&
3175 (fault_type & VM_PROT_WRITE) &&
3176 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3177 rv = KERN_PROTECTION_FAILURE;
3178 goto done;
3179 }
3180
3181 /*
3182 * If this page is not pageable, we have to get it for all possible
3183 * accesses.
3184 */
3185
3186 *wired = (entry->wired_count != 0);
3187 if (*wired)
3188 prot = fault_type = entry->protection;
3189
3190 /*
3191 * If the entry was copy-on-write, we either ...
3192 */
3193
3194 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3195 /*
3196 * If we want to write the page, we may as well handle that
3197 * now since we've got the map locked.
3198 *
3199 * If we don't need to write the page, we just demote the
3200 * permissions allowed.
3201 */
3202
3203 if (fault_type & VM_PROT_WRITE) {
3204 /*
3205 * Make a new object, and place it in the object
3206 * chain. Note that no new references have appeared
3207 * -- one just moved from the map to the new
3208 * object.
3209 */
3210
3211 if (use_read_lock && vm_map_lock_upgrade(map)) {
3212 use_read_lock = 0;
3213 goto RetryLookup;
3214 }
3215 use_read_lock = 0;
3216
3217 vm_object_shadow(
3218 &entry->object.vm_object,
3219 &entry->offset,
3220 atop(entry->end - entry->start));
3221
3222 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3223 } else {
3224 /*
3225 * We're attempting to read a copy-on-write page --
3226 * don't allow writes.
3227 */
3228
3229 prot &= ~VM_PROT_WRITE;
3230 }
3231 }
3232
3233 /*
3234 * Create an object if necessary.
3235 */
3236 if (entry->object.vm_object == NULL &&
3237 !map->system_map) {
3238 if (use_read_lock && vm_map_lock_upgrade(map)) {
3239 use_read_lock = 0;
3240 goto RetryLookup;
3241 }
3242 use_read_lock = 0;
3243 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3244 atop(entry->end - entry->start));
3245 entry->offset = 0;
3246 }
3247
3248 /*
3249 * Return the object/offset from this entry. If the entry was
3250 * copy-on-write or empty, it has been fixed up.
3251 */
3252
3253 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3254 *object = entry->object.vm_object;
3255
3256 /*
3257 * Return whether this is the only map sharing this data. On
3258 * success we return with a read lock held on the map. On failure
3259 * we return with the map unlocked.
3260 */
3261 *out_prot = prot;
3262done:
3263 if (rv == KERN_SUCCESS) {
3264 if (use_read_lock == 0)
3265 vm_map_lock_downgrade(map);
3266 } else if (use_read_lock) {
3267 vm_map_unlock_read(map);
3268 } else {
3269 vm_map_unlock(map);
3270 }
3271 return (rv);
3272}
3273
3274/*
3275 * vm_map_lookup_done:
3276 *
3277 * Releases locks acquired by a vm_map_lookup
3278 * (according to the handle returned by that lookup).
3279 */
3280
3281void
3282vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3283{
3284 /*
3285 * Unlock the main-level map
3286 */
3287 vm_map_unlock_read(map);
3288 if (count)
3289 vm_map_entry_release(count);
3290}
3291
3292/*
3293 * Performs the copy_on_write operations necessary to allow the virtual copies
3294 * into user space to work. This has to be called for write(2) system calls
3295 * from other processes, file unlinking, and file size shrinkage.
3296 */
3297void
3298vm_freeze_copyopts(vm_object_t object, vm_pindex_t froma, vm_pindex_t toa)
3299{
3300 int rv;
3301 vm_object_t robject;
3302 vm_pindex_t idx;
3303
3304 if ((object == NULL) ||
3305 ((object->flags & OBJ_OPT) == 0))
3306 return;
3307
3308 if (object->shadow_count > object->ref_count)
3309 panic("vm_freeze_copyopts: sc > rc");
3310
3311 while ((robject = LIST_FIRST(&object->shadow_head)) != NULL) {
3312 vm_pindex_t bo_pindex;
3313 vm_page_t m_in, m_out;
3314
3315 bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
3316
3317 vm_object_reference(robject);
3318
3319 vm_object_pip_wait(robject, "objfrz");
3320
3321 if (robject->ref_count == 1) {
3322 vm_object_deallocate(robject);
3323 continue;
3324 }
3325
3326 vm_object_pip_add(robject, 1);
3327
3328 for (idx = 0; idx < robject->size; idx++) {
3329
3330 m_out = vm_page_grab(robject, idx,
3331 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3332
3333 if (m_out->valid == 0) {
3334 m_in = vm_page_grab(object, bo_pindex + idx,
3335 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3336 if (m_in->valid == 0) {
3337 rv = vm_pager_get_pages(object, &m_in, 1, 0);
3338 if (rv != VM_PAGER_OK) {
3339 printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
3340 continue;
3341 }
3342 vm_page_deactivate(m_in);
3343 }
3344
3345 vm_page_protect(m_in, VM_PROT_NONE);
3346 pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
3347 m_out->valid = m_in->valid;
3348 vm_page_dirty(m_out);
3349 vm_page_activate(m_out);
3350 vm_page_wakeup(m_in);
3351 }
3352 vm_page_wakeup(m_out);
3353 }
3354
3355 object->shadow_count--;
3356 object->ref_count--;
3357 LIST_REMOVE(robject, shadow_list);
3358 robject->backing_object = NULL;
3359 robject->backing_object_offset = 0;
3360
3361 vm_object_pip_wakeup(robject);
3362 vm_object_deallocate(robject);
3363 }
3364
3365 vm_object_clear_flag(object, OBJ_OPT);
3366}
3367
3368#include "opt_ddb.h"
3369#ifdef DDB
3370#include <sys/kernel.h>
3371
3372#include <ddb/ddb.h>
3373
3374/*
3375 * vm_map_print: [ debug ]
3376 */
3377DB_SHOW_COMMAND(map, vm_map_print)
3378{
3379 static int nlines;
3380 /* XXX convert args. */
3381 vm_map_t map = (vm_map_t)addr;
3382 boolean_t full = have_addr;
3383
3384 vm_map_entry_t entry;
3385
3386 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3387 (void *)map,
3388 (void *)map->pmap, map->nentries, map->timestamp);
3389 nlines++;
3390
3391 if (!full && db_indent)
3392 return;
3393
3394 db_indent += 2;
3395 for (entry = map->header.next; entry != &map->header;
3396 entry = entry->next) {
3397 db_iprintf("map entry %p: start=%p, end=%p\n",
3398 (void *)entry, (void *)entry->start, (void *)entry->end);
3399 nlines++;
3400 {
3401 static char *inheritance_name[4] =
3402 {"share", "copy", "none", "donate_copy"};
3403
3404 db_iprintf(" prot=%x/%x/%s",
3405 entry->protection,
3406 entry->max_protection,
3407 inheritance_name[(int)(unsigned char)entry->inheritance]);
3408 if (entry->wired_count != 0)
3409 db_printf(", wired");
3410 }
3411 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3412 /* XXX no %qd in kernel. Truncate entry->offset. */
3413 db_printf(", share=%p, offset=0x%lx\n",
3414 (void *)entry->object.sub_map,
3415 (long)entry->offset);
3416 nlines++;
3417 if ((entry->prev == &map->header) ||
3418 (entry->prev->object.sub_map !=
3419 entry->object.sub_map)) {
3420 db_indent += 2;
3421 vm_map_print((db_expr_t)(intptr_t)
3422 entry->object.sub_map,
3423 full, 0, (char *)0);
3424 db_indent -= 2;
3425 }
3426 } else {
3427 /* XXX no %qd in kernel. Truncate entry->offset. */
3428 db_printf(", object=%p, offset=0x%lx",
3429 (void *)entry->object.vm_object,
3430 (long)entry->offset);
3431 if (entry->eflags & MAP_ENTRY_COW)
3432 db_printf(", copy (%s)",
3433 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3434 db_printf("\n");
3435 nlines++;
3436
3437 if ((entry->prev == &map->header) ||
3438 (entry->prev->object.vm_object !=
3439 entry->object.vm_object)) {
3440 db_indent += 2;
3441 vm_object_print((db_expr_t)(intptr_t)
3442 entry->object.vm_object,
3443 full, 0, (char *)0);
3444 nlines += 4;
3445 db_indent -= 2;
3446 }
3447 }
3448 }
3449 db_indent -= 2;
3450 if (db_indent == 0)
3451 nlines = 0;
3452}
3453
3454
3455DB_SHOW_COMMAND(procvm, procvm)
3456{
3457 struct proc *p;
3458
3459 if (have_addr) {
3460 p = (struct proc *) addr;
3461 } else {
3462 p = curproc;
3463 }
3464
3465 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3466 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3467 (void *)vmspace_pmap(p->p_vmspace));
3468
3469 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3470}
3471
3472#endif /* DDB */