top(1): Silence gcc warnings.
[dragonfly.git] / sys / kern / lwkt_thread.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35/*
36 * Each cpu in a system has its own self-contained light weight kernel
37 * thread scheduler, which means that generally speaking we only need
38 * to use a critical section to avoid problems. Foreign thread
39 * scheduling is queued via (async) IPIs.
40 */
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/proc.h>
46#include <sys/rtprio.h>
47#include <sys/queue.h>
48#include <sys/sysctl.h>
49#include <sys/kthread.h>
50#include <machine/cpu.h>
51#include <sys/lock.h>
52#include <sys/caps.h>
53#include <sys/spinlock.h>
54#include <sys/ktr.h>
55
56#include <sys/thread2.h>
57#include <sys/spinlock2.h>
58
59#include <vm/vm.h>
60#include <vm/vm_param.h>
61#include <vm/vm_kern.h>
62#include <vm/vm_object.h>
63#include <vm/vm_page.h>
64#include <vm/vm_map.h>
65#include <vm/vm_pager.h>
66#include <vm/vm_extern.h>
67
68#include <machine/stdarg.h>
69#include <machine/smp.h>
70
71
72static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
73
74#ifdef SMP
75static int mplock_countx = 0;
76#endif
77#ifdef INVARIANTS
78static int panic_on_cscount = 0;
79#endif
80static __int64_t switch_count = 0;
81static __int64_t preempt_hit = 0;
82static __int64_t preempt_miss = 0;
83static __int64_t preempt_weird = 0;
84static __int64_t token_contention_count = 0;
85static __int64_t mplock_contention_count = 0;
86static int lwkt_use_spin_port;
87#ifdef SMP
88static int chain_mplock = 0;
89static int bgl_yield = 10;
90#endif
91static struct objcache *thread_cache;
92
93volatile cpumask_t mp_lock_contention_mask;
94
95static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
96
97extern void cpu_heavy_restore(void);
98extern void cpu_lwkt_restore(void);
99extern void cpu_kthread_restore(void);
100extern void cpu_idle_restore(void);
101
102#ifdef __amd64__
103
104static int
105jg_tos_ok(struct thread *td)
106{
107 void *tos;
108 int tos_ok;
109
110 if (td == NULL) {
111 return 1;
112 }
113 KKASSERT(td->td_sp != NULL);
114 tos = ((void **)td->td_sp)[0];
115 tos_ok = 0;
116 if ((tos == cpu_heavy_restore) || (tos == cpu_lwkt_restore) ||
117 (tos == cpu_kthread_restore) || (tos == cpu_idle_restore)) {
118 tos_ok = 1;
119 }
120 return tos_ok;
121}
122
123#endif
124
125/*
126 * We can make all thread ports use the spin backend instead of the thread
127 * backend. This should only be set to debug the spin backend.
128 */
129TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
130
131#ifdef INVARIANTS
132SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
133#endif
134#ifdef SMP
135SYSCTL_INT(_lwkt, OID_AUTO, chain_mplock, CTLFLAG_RW, &chain_mplock, 0, "");
136SYSCTL_INT(_lwkt, OID_AUTO, bgl_yield_delay, CTLFLAG_RW, &bgl_yield, 0, "");
137#endif
138SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
139SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
140SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
141SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
142#ifdef INVARIANTS
143SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
144 &token_contention_count, 0, "spinning due to token contention");
145SYSCTL_QUAD(_lwkt, OID_AUTO, mplock_contention_count, CTLFLAG_RW,
146 &mplock_contention_count, 0, "spinning due to MPLOCK contention");
147#endif
148
149/*
150 * Kernel Trace
151 */
152#if !defined(KTR_GIANT_CONTENTION)
153#define KTR_GIANT_CONTENTION KTR_ALL
154#endif
155
156KTR_INFO_MASTER(giant);
157KTR_INFO(KTR_GIANT_CONTENTION, giant, beg, 0, "thread=%p", sizeof(void *));
158KTR_INFO(KTR_GIANT_CONTENTION, giant, end, 1, "thread=%p", sizeof(void *));
159
160#define loggiant(name) KTR_LOG(giant_ ## name, curthread)
161
162/*
163 * These helper procedures handle the runq, they can only be called from
164 * within a critical section.
165 *
166 * WARNING! Prior to SMP being brought up it is possible to enqueue and
167 * dequeue threads belonging to other cpus, so be sure to use td->td_gd
168 * instead of 'mycpu' when referencing the globaldata structure. Once
169 * SMP live enqueuing and dequeueing only occurs on the current cpu.
170 */
171static __inline
172void
173_lwkt_dequeue(thread_t td)
174{
175 if (td->td_flags & TDF_RUNQ) {
176 int nq = td->td_pri & TDPRI_MASK;
177 struct globaldata *gd = td->td_gd;
178
179 td->td_flags &= ~TDF_RUNQ;
180 TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
181 /* runqmask is passively cleaned up by the switcher */
182 }
183}
184
185static __inline
186void
187_lwkt_enqueue(thread_t td)
188{
189 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
190 int nq = td->td_pri & TDPRI_MASK;
191 struct globaldata *gd = td->td_gd;
192
193 td->td_flags |= TDF_RUNQ;
194 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
195 gd->gd_runqmask |= 1 << nq;
196 }
197}
198
199static __boolean_t
200_lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
201{
202 struct thread *td = (struct thread *)obj;
203
204 td->td_kstack = NULL;
205 td->td_kstack_size = 0;
206 td->td_flags = TDF_ALLOCATED_THREAD;
207 return (1);
208}
209
210static void
211_lwkt_thread_dtor(void *obj, void *privdata)
212{
213 struct thread *td = (struct thread *)obj;
214
215 KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
216 ("_lwkt_thread_dtor: not allocated from objcache"));
217 KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
218 td->td_kstack_size > 0,
219 ("_lwkt_thread_dtor: corrupted stack"));
220 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
221}
222
223/*
224 * Initialize the lwkt s/system.
225 */
226void
227lwkt_init(void)
228{
229 /* An objcache has 2 magazines per CPU so divide cache size by 2. */
230 thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread),
231 NULL, CACHE_NTHREADS/2,
232 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
233}
234
235/*
236 * Schedule a thread to run. As the current thread we can always safely
237 * schedule ourselves, and a shortcut procedure is provided for that
238 * function.
239 *
240 * (non-blocking, self contained on a per cpu basis)
241 */
242void
243lwkt_schedule_self(thread_t td)
244{
245 crit_enter_quick(td);
246 KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
247 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
248 _lwkt_enqueue(td);
249 crit_exit_quick(td);
250}
251
252/*
253 * Deschedule a thread.
254 *
255 * (non-blocking, self contained on a per cpu basis)
256 */
257void
258lwkt_deschedule_self(thread_t td)
259{
260 crit_enter_quick(td);
261 _lwkt_dequeue(td);
262 crit_exit_quick(td);
263}
264
265/*
266 * LWKTs operate on a per-cpu basis
267 *
268 * WARNING! Called from early boot, 'mycpu' may not work yet.
269 */
270void
271lwkt_gdinit(struct globaldata *gd)
272{
273 int i;
274
275 for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
276 TAILQ_INIT(&gd->gd_tdrunq[i]);
277 gd->gd_runqmask = 0;
278 TAILQ_INIT(&gd->gd_tdallq);
279}
280
281/*
282 * Create a new thread. The thread must be associated with a process context
283 * or LWKT start address before it can be scheduled. If the target cpu is
284 * -1 the thread will be created on the current cpu.
285 *
286 * If you intend to create a thread without a process context this function
287 * does everything except load the startup and switcher function.
288 */
289thread_t
290lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
291{
292 globaldata_t gd = mycpu;
293 void *stack;
294
295 /*
296 * If static thread storage is not supplied allocate a thread. Reuse
297 * a cached free thread if possible. gd_freetd is used to keep an exiting
298 * thread intact through the exit.
299 */
300 if (td == NULL) {
301 if ((td = gd->gd_freetd) != NULL)
302 gd->gd_freetd = NULL;
303 else
304 td = objcache_get(thread_cache, M_WAITOK);
305 KASSERT((td->td_flags &
306 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
307 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
308 flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
309 }
310
311 /*
312 * Try to reuse cached stack.
313 */
314 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
315 if (flags & TDF_ALLOCATED_STACK) {
316 kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
317 stack = NULL;
318 }
319 }
320 if (stack == NULL) {
321 stack = (void *)kmem_alloc(&kernel_map, stksize);
322 flags |= TDF_ALLOCATED_STACK;
323 }
324 if (cpu < 0)
325 lwkt_init_thread(td, stack, stksize, flags, gd);
326 else
327 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
328 return(td);
329}
330
331/*
332 * Initialize a preexisting thread structure. This function is used by
333 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
334 *
335 * All threads start out in a critical section at a priority of
336 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as
337 * appropriate. This function may send an IPI message when the
338 * requested cpu is not the current cpu and consequently gd_tdallq may
339 * not be initialized synchronously from the point of view of the originating
340 * cpu.
341 *
342 * NOTE! we have to be careful in regards to creating threads for other cpus
343 * if SMP has not yet been activated.
344 */
345#ifdef SMP
346
347static void
348lwkt_init_thread_remote(void *arg)
349{
350 thread_t td = arg;
351
352 /*
353 * Protected by critical section held by IPI dispatch
354 */
355 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
356}
357
358#endif
359
360void
361lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
362 struct globaldata *gd)
363{
364 globaldata_t mygd = mycpu;
365
366 bzero(td, sizeof(struct thread));
367 td->td_kstack = stack;
368 td->td_kstack_size = stksize;
369 td->td_flags = flags;
370 td->td_gd = gd;
371 td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
372#ifdef SMP
373 if ((flags & TDF_MPSAFE) == 0)
374 td->td_mpcount = 1;
375#endif
376 if (lwkt_use_spin_port)
377 lwkt_initport_spin(&td->td_msgport);
378 else
379 lwkt_initport_thread(&td->td_msgport, td);
380 pmap_init_thread(td);
381#ifdef SMP
382 /*
383 * Normally initializing a thread for a remote cpu requires sending an
384 * IPI. However, the idlethread is setup before the other cpus are
385 * activated so we have to treat it as a special case. XXX manipulation
386 * of gd_tdallq requires the BGL.
387 */
388 if (gd == mygd || td == &gd->gd_idlethread) {
389 crit_enter_gd(mygd);
390 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
391 crit_exit_gd(mygd);
392 } else {
393 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
394 }
395#else
396 crit_enter_gd(mygd);
397 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
398 crit_exit_gd(mygd);
399#endif
400}
401
402void
403lwkt_set_comm(thread_t td, const char *ctl, ...)
404{
405 __va_list va;
406
407 __va_start(va, ctl);
408 kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
409 __va_end(va);
410}
411
412void
413lwkt_hold(thread_t td)
414{
415 ++td->td_refs;
416}
417
418void
419lwkt_rele(thread_t td)
420{
421 KKASSERT(td->td_refs > 0);
422 --td->td_refs;
423}
424
425void
426lwkt_wait_free(thread_t td)
427{
428 while (td->td_refs)
429 tsleep(td, 0, "tdreap", hz);
430}
431
432void
433lwkt_free_thread(thread_t td)
434{
435 KASSERT((td->td_flags & TDF_RUNNING) == 0,
436 ("lwkt_free_thread: did not exit! %p", td));
437
438 if (td->td_flags & TDF_ALLOCATED_THREAD) {
439 objcache_put(thread_cache, td);
440 } else if (td->td_flags & TDF_ALLOCATED_STACK) {
441 /* client-allocated struct with internally allocated stack */
442 KASSERT(td->td_kstack && td->td_kstack_size > 0,
443 ("lwkt_free_thread: corrupted stack"));
444 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
445 td->td_kstack = NULL;
446 td->td_kstack_size = 0;
447 }
448}
449
450
451/*
452 * Switch to the next runnable lwkt. If no LWKTs are runnable then
453 * switch to the idlethread. Switching must occur within a critical
454 * section to avoid races with the scheduling queue.
455 *
456 * We always have full control over our cpu's run queue. Other cpus
457 * that wish to manipulate our queue must use the cpu_*msg() calls to
458 * talk to our cpu, so a critical section is all that is needed and
459 * the result is very, very fast thread switching.
460 *
461 * The LWKT scheduler uses a fixed priority model and round-robins at
462 * each priority level. User process scheduling is a totally
463 * different beast and LWKT priorities should not be confused with
464 * user process priorities.
465 *
466 * The MP lock may be out of sync with the thread's td_mpcount. lwkt_switch()
467 * cleans it up. Note that the td_switch() function cannot do anything that
468 * requires the MP lock since the MP lock will have already been setup for
469 * the target thread (not the current thread). It's nice to have a scheduler
470 * that does not need the MP lock to work because it allows us to do some
471 * really cool high-performance MP lock optimizations.
472 *
473 * PREEMPTION NOTE: Preemption occurs via lwkt_preempt(). lwkt_switch()
474 * is not called by the current thread in the preemption case, only when
475 * the preempting thread blocks (in order to return to the original thread).
476 */
477void
478lwkt_switch(void)
479{
480 globaldata_t gd = mycpu;
481 thread_t td = gd->gd_curthread;
482 thread_t ntd;
483#ifdef SMP
484 int mpheld;
485#endif
486
487 /*
488 * Switching from within a 'fast' (non thread switched) interrupt or IPI
489 * is illegal. However, we may have to do it anyway if we hit a fatal
490 * kernel trap or we have paniced.
491 *
492 * If this case occurs save and restore the interrupt nesting level.
493 */
494 if (gd->gd_intr_nesting_level) {
495 int savegdnest;
496 int savegdtrap;
497
498 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
499 panic("lwkt_switch: cannot switch from within "
500 "a fast interrupt, yet, td %p\n", td);
501 } else {
502 savegdnest = gd->gd_intr_nesting_level;
503 savegdtrap = gd->gd_trap_nesting_level;
504 gd->gd_intr_nesting_level = 0;
505 gd->gd_trap_nesting_level = 0;
506 if ((td->td_flags & TDF_PANICWARN) == 0) {
507 td->td_flags |= TDF_PANICWARN;
508 kprintf("Warning: thread switch from interrupt or IPI, "
509 "thread %p (%s)\n", td, td->td_comm);
510 print_backtrace();
511 }
512 lwkt_switch();
513 gd->gd_intr_nesting_level = savegdnest;
514 gd->gd_trap_nesting_level = savegdtrap;
515 return;
516 }
517 }
518
519 /*
520 * Passive release (used to transition from user to kernel mode
521 * when we block or switch rather then when we enter the kernel).
522 * This function is NOT called if we are switching into a preemption
523 * or returning from a preemption. Typically this causes us to lose
524 * our current process designation (if we have one) and become a true
525 * LWKT thread, and may also hand the current process designation to
526 * another process and schedule thread.
527 */
528 if (td->td_release)
529 td->td_release(td);
530
531 crit_enter_gd(gd);
532 if (td->td_toks)
533 lwkt_relalltokens(td);
534
535 /*
536 * We had better not be holding any spin locks, but don't get into an
537 * endless panic loop.
538 */
539 KASSERT(gd->gd_spinlock_rd == NULL || panicstr != NULL,
540 ("lwkt_switch: still holding a shared spinlock %p!",
541 gd->gd_spinlock_rd));
542 KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
543 ("lwkt_switch: still holding %d exclusive spinlocks!",
544 gd->gd_spinlocks_wr));
545
546
547#ifdef SMP
548 /*
549 * td_mpcount cannot be used to determine if we currently hold the
550 * MP lock because get_mplock() will increment it prior to attempting
551 * to get the lock, and switch out if it can't. Our ownership of
552 * the actual lock will remain stable while we are in a critical section
553 * (but, of course, another cpu may own or release the lock so the
554 * actual value of mp_lock is not stable).
555 */
556 mpheld = MP_LOCK_HELD();
557#ifdef INVARIANTS
558 if (td->td_cscount) {
559 kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
560 td);
561 if (panic_on_cscount)
562 panic("switching while mastering cpusync");
563 }
564#endif
565#endif
566 if ((ntd = td->td_preempted) != NULL) {
567 /*
568 * We had preempted another thread on this cpu, resume the preempted
569 * thread. This occurs transparently, whether the preempted thread
570 * was scheduled or not (it may have been preempted after descheduling
571 * itself).
572 *
573 * We have to setup the MP lock for the original thread after backing
574 * out the adjustment that was made to curthread when the original
575 * was preempted.
576 */
577 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
578#ifdef SMP
579 if (ntd->td_mpcount && mpheld == 0) {
580 panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
581 td, ntd, td->td_mpcount, ntd->td_mpcount);
582 }
583 if (ntd->td_mpcount) {
584 td->td_mpcount -= ntd->td_mpcount;
585 KKASSERT(td->td_mpcount >= 0);
586 }
587#endif
588 ntd->td_flags |= TDF_PREEMPT_DONE;
589
590 /*
591 * The interrupt may have woken a thread up, we need to properly
592 * set the reschedule flag if the originally interrupted thread is
593 * at a lower priority.
594 */
595 if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
596 need_lwkt_resched();
597 /* YYY release mp lock on switchback if original doesn't need it */
598 } else {
599 /*
600 * Priority queue / round-robin at each priority. Note that user
601 * processes run at a fixed, low priority and the user process
602 * scheduler deals with interactions between user processes
603 * by scheduling and descheduling them from the LWKT queue as
604 * necessary.
605 *
606 * We have to adjust the MP lock for the target thread. If we
607 * need the MP lock and cannot obtain it we try to locate a
608 * thread that does not need the MP lock. If we cannot, we spin
609 * instead of HLT.
610 *
611 * A similar issue exists for the tokens held by the target thread.
612 * If we cannot obtain ownership of the tokens we cannot immediately
613 * schedule the thread.
614 */
615
616 /*
617 * If an LWKT reschedule was requested, well that is what we are
618 * doing now so clear it.
619 */
620 clear_lwkt_resched();
621again:
622 if (gd->gd_runqmask) {
623 int nq = bsrl(gd->gd_runqmask);
624 if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
625 gd->gd_runqmask &= ~(1 << nq);
626 goto again;
627 }
628#ifdef SMP
629 /*
630 * THREAD SELECTION FOR AN SMP MACHINE BUILD
631 *
632 * If the target needs the MP lock and we couldn't get it,
633 * or if the target is holding tokens and we could not
634 * gain ownership of the tokens, continue looking for a
635 * thread to schedule and spin instead of HLT if we can't.
636 *
637 * NOTE: the mpheld variable invalid after this conditional, it
638 * can change due to both cpu_try_mplock() returning success
639 * AND interactions in lwkt_getalltokens() due to the fact that
640 * we are trying to check the mpcount of a thread other then
641 * the current thread. Because of this, if the current thread
642 * is not holding td_mpcount, an IPI indirectly run via
643 * lwkt_getalltokens() can obtain and release the MP lock and
644 * cause the core MP lock to be released.
645 */
646 if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
647 (ntd->td_toks && lwkt_getalltokens(ntd) == 0)
648 ) {
649 u_int32_t rqmask = gd->gd_runqmask;
650
651 mpheld = MP_LOCK_HELD();
652 ntd = NULL;
653 while (rqmask) {
654 TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
655 if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
656 /* spinning due to MP lock being held */
657#ifdef INVARIANTS
658 ++mplock_contention_count;
659#endif
660 /* mplock still not held, 'mpheld' still valid */
661 continue;
662 }
663
664 /*
665 * mpheld state invalid after getalltokens call returns
666 * failure, but the variable is only needed for
667 * the loop.
668 */
669 if (ntd->td_toks && !lwkt_getalltokens(ntd)) {
670 /* spinning due to token contention */
671#ifdef INVARIANTS
672 ++token_contention_count;
673#endif
674 mpheld = MP_LOCK_HELD();
675 continue;
676 }
677 break;
678 }
679 if (ntd)
680 break;
681 rqmask &= ~(1 << nq);
682 nq = bsrl(rqmask);
683
684 /*
685 * We have two choices. We can either refuse to run a
686 * user thread when a kernel thread needs the MP lock
687 * but could not get it, or we can allow it to run but
688 * then expect an IPI (hopefully) later on to force a
689 * reschedule when the MP lock might become available.
690 */
691 if (nq < TDPRI_KERN_LPSCHED) {
692 if (chain_mplock == 0)
693 break;
694 atomic_set_int(&mp_lock_contention_mask,
695 gd->gd_cpumask);
696 /* continue loop, allow user threads to be scheduled */
697 }
698 }
699 if (ntd == NULL) {
700 cpu_mplock_contested();
701 ntd = &gd->gd_idlethread;
702 ntd->td_flags |= TDF_IDLE_NOHLT;
703 goto using_idle_thread;
704 } else {
705 ++gd->gd_cnt.v_swtch;
706 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
707 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
708 }
709 } else {
710 if (ntd->td_mpcount)
711 ++mplock_countx;
712 ++gd->gd_cnt.v_swtch;
713 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
714 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
715 }
716#else
717 /*
718 * THREAD SELECTION FOR A UP MACHINE BUILD. We don't have to
719 * worry about tokens or the BGL. However, we still have
720 * to call lwkt_getalltokens() in order to properly detect
721 * stale tokens. This call cannot fail for a UP build!
722 */
723 lwkt_getalltokens(ntd);
724 ++gd->gd_cnt.v_swtch;
725 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
726 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
727#endif
728 } else {
729 /*
730 * We have nothing to run but only let the idle loop halt
731 * the cpu if there are no pending interrupts.
732 */
733 ntd = &gd->gd_idlethread;
734 if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
735 ntd->td_flags |= TDF_IDLE_NOHLT;
736#ifdef SMP
737using_idle_thread:
738 /*
739 * The idle thread should not be holding the MP lock unless we
740 * are trapping in the kernel or in a panic. Since we select the
741 * idle thread unconditionally when no other thread is available,
742 * if the MP lock is desired during a panic or kernel trap, we
743 * have to loop in the scheduler until we get it.
744 */
745 if (ntd->td_mpcount) {
746 mpheld = MP_LOCK_HELD();
747 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
748 panic("Idle thread %p was holding the BGL!", ntd);
749 } else if (mpheld == 0) {
750 cpu_mplock_contested();
751 goto again;
752 }
753 }
754#endif
755 }
756 }
757 KASSERT(ntd->td_pri >= TDPRI_CRIT,
758 ("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
759
760 /*
761 * Do the actual switch. If the new target does not need the MP lock
762 * and we are holding it, release the MP lock. If the new target requires
763 * the MP lock we have already acquired it for the target.
764 */
765#ifdef SMP
766 if (ntd->td_mpcount == 0 ) {
767 if (MP_LOCK_HELD())
768 cpu_rel_mplock();
769 } else {
770 ASSERT_MP_LOCK_HELD(ntd);
771 }
772#endif
773 if (td != ntd) {
774 ++switch_count;
775#ifdef __amd64__
776 KKASSERT(jg_tos_ok(ntd));
777#endif
778 td->td_switch(ntd);
779 }
780 /* NOTE: current cpu may have changed after switch */
781 crit_exit_quick(td);
782}
783
784/*
785 * Request that the target thread preempt the current thread. Preemption
786 * only works under a specific set of conditions:
787 *
788 * - We are not preempting ourselves
789 * - The target thread is owned by the current cpu
790 * - We are not currently being preempted
791 * - The target is not currently being preempted
792 * - We are not holding any spin locks
793 * - The target thread is not holding any tokens
794 * - We are able to satisfy the target's MP lock requirements (if any).
795 *
796 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically
797 * this is called via lwkt_schedule() through the td_preemptable callback.
798 * critpri is the managed critical priority that we should ignore in order
799 * to determine whether preemption is possible (aka usually just the crit
800 * priority of lwkt_schedule() itself).
801 *
802 * XXX at the moment we run the target thread in a critical section during
803 * the preemption in order to prevent the target from taking interrupts
804 * that *WE* can't. Preemption is strictly limited to interrupt threads
805 * and interrupt-like threads, outside of a critical section, and the
806 * preempted source thread will be resumed the instant the target blocks
807 * whether or not the source is scheduled (i.e. preemption is supposed to
808 * be as transparent as possible).
809 *
810 * The target thread inherits our MP count (added to its own) for the
811 * duration of the preemption in order to preserve the atomicy of the
812 * MP lock during the preemption. Therefore, any preempting targets must be
813 * careful in regards to MP assertions. Note that the MP count may be
814 * out of sync with the physical mp_lock, but we do not have to preserve
815 * the original ownership of the lock if it was out of synch (that is, we
816 * can leave it synchronized on return).
817 */
818void
819lwkt_preempt(thread_t ntd, int critpri)
820{
821 struct globaldata *gd = mycpu;
822 thread_t td;
823#ifdef SMP
824 int mpheld;
825 int savecnt;
826#endif
827
828 /*
829 * The caller has put us in a critical section. We can only preempt
830 * if the caller of the caller was not in a critical section (basically
831 * a local interrupt), as determined by the 'critpri' parameter. We
832 * also can't preempt if the caller is holding any spinlocks (even if
833 * he isn't in a critical section). This also handles the tokens test.
834 *
835 * YYY The target thread must be in a critical section (else it must
836 * inherit our critical section? I dunno yet).
837 *
838 * Set need_lwkt_resched() unconditionally for now YYY.
839 */
840 KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
841
842 td = gd->gd_curthread;
843 if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
844 ++preempt_miss;
845 return;
846 }
847 if ((td->td_pri & ~TDPRI_MASK) > critpri) {
848 ++preempt_miss;
849 need_lwkt_resched();
850 return;
851 }
852#ifdef SMP
853 if (ntd->td_gd != gd) {
854 ++preempt_miss;
855 need_lwkt_resched();
856 return;
857 }
858#endif
859 /*
860 * Take the easy way out and do not preempt if we are holding
861 * any spinlocks. We could test whether the thread(s) being
862 * preempted interlock against the target thread's tokens and whether
863 * we can get all the target thread's tokens, but this situation
864 * should not occur very often so its easier to simply not preempt.
865 * Also, plain spinlocks are impossible to figure out at this point so
866 * just don't preempt.
867 *
868 * Do not try to preempt if the target thread is holding any tokens.
869 * We could try to acquire the tokens but this case is so rare there
870 * is no need to support it.
871 */
872 if (gd->gd_spinlock_rd || gd->gd_spinlocks_wr) {
873 ++preempt_miss;
874 need_lwkt_resched();
875 return;
876 }
877 if (ntd->td_toks) {
878 ++preempt_miss;
879 need_lwkt_resched();
880 return;
881 }
882 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
883 ++preempt_weird;
884 need_lwkt_resched();
885 return;
886 }
887 if (ntd->td_preempted) {
888 ++preempt_hit;
889 need_lwkt_resched();
890 return;
891 }
892#ifdef SMP
893 /*
894 * note: an interrupt might have occured just as we were transitioning
895 * to or from the MP lock. In this case td_mpcount will be pre-disposed
896 * (non-zero) but not actually synchronized with the actual state of the
897 * lock. We can use it to imply an MP lock requirement for the
898 * preemption but we cannot use it to test whether we hold the MP lock
899 * or not.
900 */
901 savecnt = td->td_mpcount;
902 mpheld = MP_LOCK_HELD();
903 ntd->td_mpcount += td->td_mpcount;
904 if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
905 ntd->td_mpcount -= td->td_mpcount;
906 ++preempt_miss;
907 need_lwkt_resched();
908 return;
909 }
910#endif
911
912 /*
913 * Since we are able to preempt the current thread, there is no need to
914 * call need_lwkt_resched().
915 */
916 ++preempt_hit;
917 ntd->td_preempted = td;
918 td->td_flags |= TDF_PREEMPT_LOCK;
919 td->td_switch(ntd);
920
921 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
922#ifdef SMP
923 KKASSERT(savecnt == td->td_mpcount);
924 mpheld = MP_LOCK_HELD();
925 if (mpheld && td->td_mpcount == 0)
926 cpu_rel_mplock();
927 else if (mpheld == 0 && td->td_mpcount)
928 panic("lwkt_preempt(): MP lock was not held through");
929#endif
930 ntd->td_preempted = NULL;
931 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
932}
933
934/*
935 * Conditionally call splz() if gd_reqflags indicates work is pending.
936 *
937 * td_nest_count prevents deep nesting via splz() or doreti() which
938 * might otherwise blow out the kernel stack. Note that except for
939 * this special case, we MUST call splz() here to handle any
940 * pending ints, particularly after we switch, or we might accidently
941 * halt the cpu with interrupts pending.
942 *
943 * (self contained on a per cpu basis)
944 */
945void
946splz_check(void)
947{
948 globaldata_t gd = mycpu;
949 thread_t td = gd->gd_curthread;
950
951 if (gd->gd_reqflags && td->td_nest_count < 2)
952 splz();
953}
954
955/*
956 * This implements a normal yield which will yield to equal priority
957 * threads as well as higher priority threads. Note that gd_reqflags
958 * tests will be handled by the crit_exit() call in lwkt_switch().
959 *
960 * (self contained on a per cpu basis)
961 */
962void
963lwkt_yield(void)
964{
965 lwkt_schedule_self(curthread);
966 lwkt_switch();
967}
968
969/*
970 * This function is used along with the lwkt_passive_recover() inline
971 * by the trap code to negotiate a passive release of the current
972 * process/lwp designation with the user scheduler.
973 */
974void
975lwkt_passive_release(struct thread *td)
976{
977 struct lwp *lp = td->td_lwp;
978
979 td->td_release = NULL;
980 lwkt_setpri_self(TDPRI_KERN_USER);
981 lp->lwp_proc->p_usched->release_curproc(lp);
982}
983
984/*
985 * Make a kernel thread act as if it were in user mode with regards
986 * to scheduling, to avoid becoming cpu-bound in the kernel. Kernel
987 * loops which may be potentially cpu-bound can call lwkt_user_yield().
988 *
989 * The lwkt_user_yield() function is designed to have very low overhead
990 * if no yield is determined to be needed.
991 */
992void
993lwkt_user_yield(void)
994{
995 thread_t td = curthread;
996 struct lwp *lp = td->td_lwp;
997
998#ifdef SMP
999 /*
1000 * XXX SEVERE TEMPORARY HACK. A cpu-bound operation running in the
1001 * kernel can prevent other cpus from servicing interrupt threads
1002 * which still require the MP lock (which is a lot of them). This
1003 * has a chaining effect since if the interrupt is blocked, so is
1004 * the event, so normal scheduling will not pick up on the problem.
1005 */
1006 if (mplock_countx && td->td_mpcount) {
1007 int savecnt = td->td_mpcount;
1008
1009 td->td_mpcount = 1;
1010 mplock_countx = 0;
1011 rel_mplock();
1012 DELAY(bgl_yield);
1013 get_mplock();
1014 td->td_mpcount = savecnt;
1015 }
1016#endif
1017
1018 /*
1019 * Another kernel thread wants the cpu
1020 */
1021 if (lwkt_resched_wanted())
1022 lwkt_switch();
1023
1024 /*
1025 * If the user scheduler has asynchronously determined that the current
1026 * process (when running in user mode) needs to lose the cpu then make
1027 * sure we are released.
1028 */
1029 if (user_resched_wanted()) {
1030 if (td->td_release)
1031 td->td_release(td);
1032 }
1033
1034 /*
1035 * If we are released reduce our priority
1036 */
1037 if (td->td_release == NULL) {
1038 if (lwkt_check_resched(td) > 0)
1039 lwkt_switch();
1040 if (lp) {
1041 lp->lwp_proc->p_usched->acquire_curproc(lp);
1042 td->td_release = lwkt_passive_release;
1043 lwkt_setpri_self(TDPRI_USER_NORM);
1044 }
1045 }
1046}
1047
1048/*
1049 * Return 0 if no runnable threads are pending at the same or higher
1050 * priority as the passed thread.
1051 *
1052 * Return 1 if runnable threads are pending at the same priority.
1053 *
1054 * Return 2 if runnable threads are pending at a higher priority.
1055 */
1056int
1057lwkt_check_resched(thread_t td)
1058{
1059 int pri = td->td_pri & TDPRI_MASK;
1060
1061 if (td->td_gd->gd_runqmask > (2 << pri) - 1)
1062 return(2);
1063 if (TAILQ_NEXT(td, td_threadq))
1064 return(1);
1065 return(0);
1066}
1067
1068/*
1069 * Generic schedule. Possibly schedule threads belonging to other cpus and
1070 * deal with threads that might be blocked on a wait queue.
1071 *
1072 * We have a little helper inline function which does additional work after
1073 * the thread has been enqueued, including dealing with preemption and
1074 * setting need_lwkt_resched() (which prevents the kernel from returning
1075 * to userland until it has processed higher priority threads).
1076 *
1077 * It is possible for this routine to be called after a failed _enqueue
1078 * (due to the target thread migrating, sleeping, or otherwise blocked).
1079 * We have to check that the thread is actually on the run queue!
1080 *
1081 * reschedok is an optimized constant propagated from lwkt_schedule() or
1082 * lwkt_schedule_noresched(). By default it is non-zero, causing a
1083 * reschedule to be requested if the target thread has a higher priority.
1084 * The port messaging code will set MSG_NORESCHED and cause reschedok to
1085 * be 0, prevented undesired reschedules.
1086 */
1087static __inline
1088void
1089_lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri, int reschedok)
1090{
1091 thread_t otd;
1092
1093 if (ntd->td_flags & TDF_RUNQ) {
1094 if (ntd->td_preemptable && reschedok) {
1095 ntd->td_preemptable(ntd, cpri); /* YYY +token */
1096 } else if (reschedok) {
1097 otd = curthread;
1098 if ((ntd->td_pri & TDPRI_MASK) > (otd->td_pri & TDPRI_MASK))
1099 need_lwkt_resched();
1100 }
1101 }
1102}
1103
1104static __inline
1105void
1106_lwkt_schedule(thread_t td, int reschedok)
1107{
1108 globaldata_t mygd = mycpu;
1109
1110 KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1111 crit_enter_gd(mygd);
1112 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1113 if (td == mygd->gd_curthread) {
1114 _lwkt_enqueue(td);
1115 } else {
1116 /*
1117 * If we own the thread, there is no race (since we are in a
1118 * critical section). If we do not own the thread there might
1119 * be a race but the target cpu will deal with it.
1120 */
1121#ifdef SMP
1122 if (td->td_gd == mygd) {
1123 _lwkt_enqueue(td);
1124 _lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1125 } else {
1126 lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1127 }
1128#else
1129 _lwkt_enqueue(td);
1130 _lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1131#endif
1132 }
1133 crit_exit_gd(mygd);
1134}
1135
1136void
1137lwkt_schedule(thread_t td)
1138{
1139 _lwkt_schedule(td, 1);
1140}
1141
1142void
1143lwkt_schedule_noresched(thread_t td)
1144{
1145 _lwkt_schedule(td, 0);
1146}
1147
1148/*
1149 * When scheduled remotely if frame != NULL the IPIQ is being
1150 * run via doreti or an interrupt then preemption can be allowed.
1151 *
1152 * To allow preemption we have to drop the critical section so only
1153 * one is present in _lwkt_schedule_post.
1154 */
1155static void
1156lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1157{
1158 thread_t td = curthread;
1159 thread_t ntd = arg;
1160
1161 if (frame && ntd->td_preemptable) {
1162 crit_exit_noyield(td);
1163 _lwkt_schedule(ntd, 1);
1164 crit_enter_quick(td);
1165 } else {
1166 _lwkt_schedule(ntd, 1);
1167 }
1168}
1169
1170#ifdef SMP
1171
1172/*
1173 * Thread migration using a 'Pull' method. The thread may or may not be
1174 * the current thread. It MUST be descheduled and in a stable state.
1175 * lwkt_giveaway() must be called on the cpu owning the thread.
1176 *
1177 * At any point after lwkt_giveaway() is called, the target cpu may
1178 * 'pull' the thread by calling lwkt_acquire().
1179 *
1180 * We have to make sure the thread is not sitting on a per-cpu tsleep
1181 * queue or it will blow up when it moves to another cpu.
1182 *
1183 * MPSAFE - must be called under very specific conditions.
1184 */
1185void
1186lwkt_giveaway(thread_t td)
1187{
1188 globaldata_t gd = mycpu;
1189
1190 crit_enter_gd(gd);
1191 if (td->td_flags & TDF_TSLEEPQ)
1192 tsleep_remove(td);
1193 KKASSERT(td->td_gd == gd);
1194 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1195 td->td_flags |= TDF_MIGRATING;
1196 crit_exit_gd(gd);
1197}
1198
1199void
1200lwkt_acquire(thread_t td)
1201{
1202 globaldata_t gd;
1203 globaldata_t mygd;
1204
1205 KKASSERT(td->td_flags & TDF_MIGRATING);
1206 gd = td->td_gd;
1207 mygd = mycpu;
1208 if (gd != mycpu) {
1209 cpu_lfence();
1210 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1211 crit_enter_gd(mygd);
1212 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1213#ifdef SMP
1214 lwkt_process_ipiq();
1215#endif
1216 cpu_lfence();
1217 }
1218 td->td_gd = mygd;
1219 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1220 td->td_flags &= ~TDF_MIGRATING;
1221 crit_exit_gd(mygd);
1222 } else {
1223 crit_enter_gd(mygd);
1224 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1225 td->td_flags &= ~TDF_MIGRATING;
1226 crit_exit_gd(mygd);
1227 }
1228}
1229
1230#endif
1231
1232/*
1233 * Generic deschedule. Descheduling threads other then your own should be
1234 * done only in carefully controlled circumstances. Descheduling is
1235 * asynchronous.
1236 *
1237 * This function may block if the cpu has run out of messages.
1238 */
1239void
1240lwkt_deschedule(thread_t td)
1241{
1242 crit_enter();
1243#ifdef SMP
1244 if (td == curthread) {
1245 _lwkt_dequeue(td);
1246 } else {
1247 if (td->td_gd == mycpu) {
1248 _lwkt_dequeue(td);
1249 } else {
1250 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1251 }
1252 }
1253#else
1254 _lwkt_dequeue(td);
1255#endif
1256 crit_exit();
1257}
1258
1259/*
1260 * Set the target thread's priority. This routine does not automatically
1261 * switch to a higher priority thread, LWKT threads are not designed for
1262 * continuous priority changes. Yield if you want to switch.
1263 *
1264 * We have to retain the critical section count which uses the high bits
1265 * of the td_pri field. The specified priority may also indicate zero or
1266 * more critical sections by adding TDPRI_CRIT*N.
1267 *
1268 * Note that we requeue the thread whether it winds up on a different runq
1269 * or not. uio_yield() depends on this and the routine is not normally
1270 * called with the same priority otherwise.
1271 */
1272void
1273lwkt_setpri(thread_t td, int pri)
1274{
1275 KKASSERT(pri >= 0);
1276 KKASSERT(td->td_gd == mycpu);
1277 crit_enter();
1278 if (td->td_flags & TDF_RUNQ) {
1279 _lwkt_dequeue(td);
1280 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1281 _lwkt_enqueue(td);
1282 } else {
1283 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1284 }
1285 crit_exit();
1286}
1287
1288void
1289lwkt_setpri_self(int pri)
1290{
1291 thread_t td = curthread;
1292
1293 KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1294 crit_enter();
1295 if (td->td_flags & TDF_RUNQ) {
1296 _lwkt_dequeue(td);
1297 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1298 _lwkt_enqueue(td);
1299 } else {
1300 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1301 }
1302 crit_exit();
1303}
1304
1305/*
1306 * Migrate the current thread to the specified cpu.
1307 *
1308 * This is accomplished by descheduling ourselves from the current cpu,
1309 * moving our thread to the tdallq of the target cpu, IPI messaging the
1310 * target cpu, and switching out. TDF_MIGRATING prevents scheduling
1311 * races while the thread is being migrated.
1312 *
1313 * We must be sure to remove ourselves from the current cpu's tsleepq
1314 * before potentially moving to another queue. The thread can be on
1315 * a tsleepq due to a left-over tsleep_interlock().
1316 */
1317#ifdef SMP
1318static void lwkt_setcpu_remote(void *arg);
1319#endif
1320
1321void
1322lwkt_setcpu_self(globaldata_t rgd)
1323{
1324#ifdef SMP
1325 thread_t td = curthread;
1326
1327 if (td->td_gd != rgd) {
1328 crit_enter_quick(td);
1329 if (td->td_flags & TDF_TSLEEPQ)
1330 tsleep_remove(td);
1331 td->td_flags |= TDF_MIGRATING;
1332 lwkt_deschedule_self(td);
1333 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1334 lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1335 lwkt_switch();
1336 /* we are now on the target cpu */
1337 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1338 crit_exit_quick(td);
1339 }
1340#endif
1341}
1342
1343void
1344lwkt_migratecpu(int cpuid)
1345{
1346#ifdef SMP
1347 globaldata_t rgd;
1348
1349 rgd = globaldata_find(cpuid);
1350 lwkt_setcpu_self(rgd);
1351#endif
1352}
1353
1354/*
1355 * Remote IPI for cpu migration (called while in a critical section so we
1356 * do not have to enter another one). The thread has already been moved to
1357 * our cpu's allq, but we must wait for the thread to be completely switched
1358 * out on the originating cpu before we schedule it on ours or the stack
1359 * state may be corrupt. We clear TDF_MIGRATING after flushing the GD
1360 * change to main memory.
1361 *
1362 * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1363 * against wakeups. It is best if this interface is used only when there
1364 * are no pending events that might try to schedule the thread.
1365 */
1366#ifdef SMP
1367static void
1368lwkt_setcpu_remote(void *arg)
1369{
1370 thread_t td = arg;
1371 globaldata_t gd = mycpu;
1372
1373 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1374#ifdef SMP
1375 lwkt_process_ipiq();
1376#endif
1377 cpu_lfence();
1378 }
1379 td->td_gd = gd;
1380 cpu_sfence();
1381 td->td_flags &= ~TDF_MIGRATING;
1382 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1383 _lwkt_enqueue(td);
1384}
1385#endif
1386
1387struct lwp *
1388lwkt_preempted_proc(void)
1389{
1390 thread_t td = curthread;
1391 while (td->td_preempted)
1392 td = td->td_preempted;
1393 return(td->td_lwp);
1394}
1395
1396/*
1397 * Create a kernel process/thread/whatever. It shares it's address space
1398 * with proc0 - ie: kernel only.
1399 *
1400 * NOTE! By default new threads are created with the MP lock held. A
1401 * thread which does not require the MP lock should release it by calling
1402 * rel_mplock() at the start of the new thread.
1403 */
1404int
1405lwkt_create(void (*func)(void *), void *arg,
1406 struct thread **tdp, thread_t template, int tdflags, int cpu,
1407 const char *fmt, ...)
1408{
1409 thread_t td;
1410 __va_list ap;
1411
1412 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1413 tdflags);
1414 if (tdp)
1415 *tdp = td;
1416 cpu_set_thread_handler(td, lwkt_exit, func, arg);
1417
1418 /*
1419 * Set up arg0 for 'ps' etc
1420 */
1421 __va_start(ap, fmt);
1422 kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1423 __va_end(ap);
1424
1425 /*
1426 * Schedule the thread to run
1427 */
1428 if ((td->td_flags & TDF_STOPREQ) == 0)
1429 lwkt_schedule(td);
1430 else
1431 td->td_flags &= ~TDF_STOPREQ;
1432 return 0;
1433}
1434
1435/*
1436 * Destroy an LWKT thread. Warning! This function is not called when
1437 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1438 * uses a different reaping mechanism.
1439 */
1440void
1441lwkt_exit(void)
1442{
1443 thread_t td = curthread;
1444 thread_t std;
1445 globaldata_t gd;
1446
1447 if (td->td_flags & TDF_VERBOSE)
1448 kprintf("kthread %p %s has exited\n", td, td->td_comm);
1449 caps_exit(td);
1450
1451 /*
1452 * Get us into a critical section to interlock gd_freetd and loop
1453 * until we can get it freed.
1454 *
1455 * We have to cache the current td in gd_freetd because objcache_put()ing
1456 * it would rip it out from under us while our thread is still active.
1457 */
1458 gd = mycpu;
1459 crit_enter_quick(td);
1460 while ((std = gd->gd_freetd) != NULL) {
1461 gd->gd_freetd = NULL;
1462 objcache_put(thread_cache, std);
1463 }
1464
1465 /*
1466 * Remove thread resources from kernel lists and deschedule us for
1467 * the last time.
1468 */
1469 if (td->td_flags & TDF_TSLEEPQ)
1470 tsleep_remove(td);
1471 lwkt_deschedule_self(td);
1472 lwkt_remove_tdallq(td);
1473 if (td->td_flags & TDF_ALLOCATED_THREAD)
1474 gd->gd_freetd = td;
1475 cpu_thread_exit();
1476}
1477
1478void
1479lwkt_remove_tdallq(thread_t td)
1480{
1481 KKASSERT(td->td_gd == mycpu);
1482 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1483}
1484
1485void
1486crit_panic(void)
1487{
1488 thread_t td = curthread;
1489 int lpri = td->td_pri;
1490
1491 td->td_pri = 0;
1492 panic("td_pri is/would-go negative! %p %d", td, lpri);
1493}
1494
1495#ifdef SMP
1496
1497/*
1498 * Called from debugger/panic on cpus which have been stopped. We must still
1499 * process the IPIQ while stopped, even if we were stopped while in a critical
1500 * section (XXX).
1501 *
1502 * If we are dumping also try to process any pending interrupts. This may
1503 * or may not work depending on the state of the cpu at the point it was
1504 * stopped.
1505 */
1506void
1507lwkt_smp_stopped(void)
1508{
1509 globaldata_t gd = mycpu;
1510
1511 crit_enter_gd(gd);
1512 if (dumping) {
1513 lwkt_process_ipiq();
1514 splz();
1515 } else {
1516 lwkt_process_ipiq();
1517 }
1518 crit_exit_gd(gd);
1519}
1520
1521/*
1522 * get_mplock() calls this routine if it is unable to obtain the MP lock.
1523 * get_mplock() has already incremented td_mpcount. We must block and
1524 * not return until giant is held.
1525 *
1526 * All we have to do is lwkt_switch() away. The LWKT scheduler will not
1527 * reschedule the thread until it can obtain the giant lock for it.
1528 */
1529void
1530lwkt_mp_lock_contested(void)
1531{
1532 ++mplock_countx;
1533 loggiant(beg);
1534 lwkt_switch();
1535 loggiant(end);
1536}
1537
1538/*
1539 * The rel_mplock() code will call this function after releasing the
1540 * last reference on the MP lock if mp_lock_contention_mask is non-zero.
1541 *
1542 * We then chain an IPI to a single other cpu potentially needing the
1543 * lock. This is a bit heuristical and we can wind up with IPIs flying
1544 * all over the place.
1545 */
1546static void lwkt_mp_lock_uncontested_remote(void *arg __unused);
1547
1548void
1549lwkt_mp_lock_uncontested(void)
1550{
1551 globaldata_t gd;
1552 globaldata_t dgd;
1553 cpumask_t mask;
1554 cpumask_t tmpmask;
1555 int cpuid;
1556
1557 if (chain_mplock) {
1558 gd = mycpu;
1559 atomic_clear_int(&mp_lock_contention_mask, gd->gd_cpumask);
1560 mask = mp_lock_contention_mask;
1561 tmpmask = ~((1 << gd->gd_cpuid) - 1);
1562
1563 if (mask) {
1564 if (mask & tmpmask)
1565 cpuid = bsfl(mask & tmpmask);
1566 else
1567 cpuid = bsfl(mask);
1568 atomic_clear_int(&mp_lock_contention_mask, 1 << cpuid);
1569 dgd = globaldata_find(cpuid);
1570 lwkt_send_ipiq(dgd, lwkt_mp_lock_uncontested_remote, NULL);
1571 }
1572 }
1573}
1574
1575/*
1576 * The idea is for this IPI to interrupt a potentially lower priority
1577 * thread, such as a user thread, to allow the scheduler to reschedule
1578 * a higher priority kernel thread that needs the MP lock.
1579 *
1580 * For now we set the LWKT reschedule flag which generates an AST in
1581 * doreti, though theoretically it is also possible to possibly preempt
1582 * here if the underlying thread was operating in user mode. Nah.
1583 */
1584static void
1585lwkt_mp_lock_uncontested_remote(void *arg __unused)
1586{
1587 need_lwkt_resched();
1588}
1589
1590#endif