Rename printf -> kprintf in sys/ and add some defines where necessary
[dragonfly.git] / sys / kern / kern_descrip.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2005 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Jeffrey Hsu.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *
35 * Copyright (c) 1982, 1986, 1989, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_descrip.c 8.6 (Berkeley) 4/19/94
72 * $FreeBSD: src/sys/kern/kern_descrip.c,v 1.81.2.19 2004/02/28 00:43:31 tegge Exp $
73 * $DragonFly: src/sys/kern/kern_descrip.c,v 1.76 2006/12/23 00:35:03 swildner Exp $
74 */
75
76#include "opt_compat.h"
77#include <sys/param.h>
78#include <sys/systm.h>
79#include <sys/malloc.h>
80#include <sys/sysproto.h>
81#include <sys/conf.h>
82#include <sys/device.h>
83#include <sys/filedesc.h>
84#include <sys/kernel.h>
85#include <sys/sysctl.h>
86#include <sys/vnode.h>
87#include <sys/proc.h>
88#include <sys/nlookup.h>
89#include <sys/file.h>
90#include <sys/stat.h>
91#include <sys/filio.h>
92#include <sys/fcntl.h>
93#include <sys/unistd.h>
94#include <sys/resourcevar.h>
95#include <sys/event.h>
96#include <sys/kern_syscall.h>
97#include <sys/kcore.h>
98#include <sys/kinfo.h>
99
100#include <vm/vm.h>
101#include <vm/vm_extern.h>
102
103#include <sys/thread2.h>
104#include <sys/file2.h>
105#include <sys/spinlock2.h>
106
107static void fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd);
108static void fdreserve_locked (struct filedesc *fdp, int fd0, int incr);
109static struct file *funsetfd_locked (struct filedesc *fdp, int fd);
110static int checkfpclosed(struct filedesc *fdp, int fd, struct file *fp);
111static void ffree(struct file *fp);
112
113static MALLOC_DEFINE(M_FILEDESC, "file desc", "Open file descriptor table");
114static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "file desc to leader",
115 "file desc to leader structures");
116MALLOC_DEFINE(M_FILE, "file", "Open file structure");
117static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
118
119static d_open_t fdopen;
120#define NUMFDESC 64
121
122#define CDEV_MAJOR 22
123static struct dev_ops fildesc_ops = {
124 { "FD", CDEV_MAJOR, 0 },
125 .d_open = fdopen,
126};
127
128static int badfo_readwrite (struct file *fp, struct uio *uio,
129 struct ucred *cred, int flags);
130static int badfo_ioctl (struct file *fp, u_long com, caddr_t data,
131 struct ucred *cred);
132static int badfo_poll (struct file *fp, int events, struct ucred *cred);
133static int badfo_kqfilter (struct file *fp, struct knote *kn);
134static int badfo_stat (struct file *fp, struct stat *sb, struct ucred *cred);
135static int badfo_close (struct file *fp);
136static int badfo_shutdown (struct file *fp, int how);
137
138/*
139 * Descriptor management.
140 */
141static struct filelist filehead = LIST_HEAD_INITIALIZER(&filehead);
142static struct spinlock filehead_spin = SPINLOCK_INITIALIZER(&filehead_spin);
143static int nfiles; /* actual number of open files */
144extern int cmask;
145
146/*
147 * Fixup fd_freefile and fd_lastfile after a descriptor has been cleared.
148 *
149 * MPSAFE - must be called with fdp->fd_spin exclusively held
150 */
151static __inline
152void
153fdfixup_locked(struct filedesc *fdp, int fd)
154{
155 if (fd < fdp->fd_freefile) {
156 fdp->fd_freefile = fd;
157 }
158 while (fdp->fd_lastfile >= 0 &&
159 fdp->fd_files[fdp->fd_lastfile].fp == NULL &&
160 fdp->fd_files[fdp->fd_lastfile].reserved == 0
161 ) {
162 --fdp->fd_lastfile;
163 }
164}
165
166/*
167 * System calls on descriptors.
168 *
169 * MPSAFE
170 */
171int
172sys_getdtablesize(struct getdtablesize_args *uap)
173{
174 struct proc *p = curproc;
175 struct plimit *limit = p->p_limit;
176
177 spin_lock_rd(&limit->p_spin);
178 uap->sysmsg_result =
179 min((int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
180 spin_unlock_rd(&limit->p_spin);
181 return (0);
182}
183
184/*
185 * Duplicate a file descriptor to a particular value.
186 *
187 * note: keep in mind that a potential race condition exists when closing
188 * descriptors from a shared descriptor table (via rfork).
189 *
190 * MPSAFE
191 */
192int
193sys_dup2(struct dup2_args *uap)
194{
195 int error;
196
197 error = kern_dup(DUP_FIXED, uap->from, uap->to, uap->sysmsg_fds);
198
199 return (error);
200}
201
202/*
203 * Duplicate a file descriptor.
204 *
205 * MPSAFE
206 */
207int
208sys_dup(struct dup_args *uap)
209{
210 int error;
211
212 error = kern_dup(DUP_VARIABLE, uap->fd, 0, uap->sysmsg_fds);
213
214 return (error);
215}
216
217/*
218 * MPALMOSTSAFE - acquires mplock for fp operations
219 */
220int
221kern_fcntl(int fd, int cmd, union fcntl_dat *dat, struct ucred *cred)
222{
223 struct thread *td = curthread;
224 struct proc *p = td->td_proc;
225 struct file *fp;
226 struct vnode *vp;
227 u_int newmin;
228 u_int oflags;
229 int tmp, error, flg = F_POSIX;
230
231 KKASSERT(p);
232
233 /*
234 * Operations on file descriptors that do not require a file pointer.
235 */
236 switch (cmd) {
237 case F_GETFD:
238 error = fgetfdflags(p->p_fd, fd, &tmp);
239 if (error == 0)
240 dat->fc_cloexec = (tmp & UF_EXCLOSE) ? FD_CLOEXEC : 0;
241 return (error);
242
243 case F_SETFD:
244 if (dat->fc_cloexec & FD_CLOEXEC)
245 error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
246 else
247 error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
248 return (error);
249 case F_DUPFD:
250 newmin = dat->fc_fd;
251 error = kern_dup(DUP_VARIABLE, fd, newmin, &dat->fc_fd);
252 return (error);
253 default:
254 break;
255 }
256
257 /*
258 * Operations on file pointers
259 */
260 if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
261 return (EBADF);
262
263 get_mplock();
264 switch (cmd) {
265 case F_GETFL:
266 dat->fc_flags = OFLAGS(fp->f_flag);
267 error = 0;
268 break;
269
270 case F_SETFL:
271 oflags = fp->f_flag & FCNTLFLAGS;
272 fp->f_flag &= ~FCNTLFLAGS;
273 fp->f_flag |= FFLAGS(dat->fc_flags & ~O_ACCMODE) & FCNTLFLAGS;
274 error = 0;
275 if ((fp->f_flag ^ oflags) & FASYNC) {
276 tmp = fp->f_flag & FASYNC;
277 error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp, cred);
278 }
279 if (error)
280 fp->f_flag = (fp->f_flag & ~FCNTLFLAGS) | oflags;
281 break;
282
283 case F_GETOWN:
284 error = fo_ioctl(fp, FIOGETOWN, (caddr_t)&dat->fc_owner, cred);
285 break;
286
287 case F_SETOWN:
288 error = fo_ioctl(fp, FIOSETOWN, (caddr_t)&dat->fc_owner, cred);
289 break;
290
291 case F_SETLKW:
292 flg |= F_WAIT;
293 /* Fall into F_SETLK */
294
295 case F_SETLK:
296 if (fp->f_type != DTYPE_VNODE) {
297 error = EBADF;
298 break;
299 }
300 vp = (struct vnode *)fp->f_data;
301
302 /*
303 * copyin/lockop may block
304 */
305 if (dat->fc_flock.l_whence == SEEK_CUR)
306 dat->fc_flock.l_start += fp->f_offset;
307
308 switch (dat->fc_flock.l_type) {
309 case F_RDLCK:
310 if ((fp->f_flag & FREAD) == 0) {
311 error = EBADF;
312 break;
313 }
314 p->p_leader->p_flag |= P_ADVLOCK;
315 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
316 &dat->fc_flock, flg);
317 break;
318 case F_WRLCK:
319 if ((fp->f_flag & FWRITE) == 0) {
320 error = EBADF;
321 break;
322 }
323 p->p_leader->p_flag |= P_ADVLOCK;
324 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
325 &dat->fc_flock, flg);
326 break;
327 case F_UNLCK:
328 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
329 &dat->fc_flock, F_POSIX);
330 break;
331 default:
332 error = EINVAL;
333 break;
334 }
335
336 /*
337 * It is possible to race a close() on the descriptor while
338 * we were blocked getting the lock. If this occurs the
339 * close might not have caught the lock.
340 */
341 if (checkfpclosed(p->p_fd, fd, fp)) {
342 dat->fc_flock.l_whence = SEEK_SET;
343 dat->fc_flock.l_start = 0;
344 dat->fc_flock.l_len = 0;
345 dat->fc_flock.l_type = F_UNLCK;
346 (void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
347 F_UNLCK, &dat->fc_flock, F_POSIX);
348 }
349 break;
350
351 case F_GETLK:
352 if (fp->f_type != DTYPE_VNODE) {
353 error = EBADF;
354 break;
355 }
356 vp = (struct vnode *)fp->f_data;
357 /*
358 * copyin/lockop may block
359 */
360 if (dat->fc_flock.l_type != F_RDLCK &&
361 dat->fc_flock.l_type != F_WRLCK &&
362 dat->fc_flock.l_type != F_UNLCK) {
363 error = EINVAL;
364 break;
365 }
366 if (dat->fc_flock.l_whence == SEEK_CUR)
367 dat->fc_flock.l_start += fp->f_offset;
368 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK,
369 &dat->fc_flock, F_POSIX);
370 break;
371 default:
372 error = EINVAL;
373 break;
374 }
375 rel_mplock();
376
377 fdrop(fp);
378 return (error);
379}
380
381/*
382 * The file control system call.
383 *
384 * MPSAFE
385 */
386int
387sys_fcntl(struct fcntl_args *uap)
388{
389 union fcntl_dat dat;
390 int error;
391
392 switch (uap->cmd) {
393 case F_DUPFD:
394 dat.fc_fd = uap->arg;
395 break;
396 case F_SETFD:
397 dat.fc_cloexec = uap->arg;
398 break;
399 case F_SETFL:
400 dat.fc_flags = uap->arg;
401 break;
402 case F_SETOWN:
403 dat.fc_owner = uap->arg;
404 break;
405 case F_SETLKW:
406 case F_SETLK:
407 case F_GETLK:
408 error = copyin((caddr_t)uap->arg, &dat.fc_flock,
409 sizeof(struct flock));
410 if (error)
411 return (error);
412 break;
413 }
414
415 error = kern_fcntl(uap->fd, uap->cmd, &dat, curproc->p_ucred);
416
417 if (error == 0) {
418 switch (uap->cmd) {
419 case F_DUPFD:
420 uap->sysmsg_result = dat.fc_fd;
421 break;
422 case F_GETFD:
423 uap->sysmsg_result = dat.fc_cloexec;
424 break;
425 case F_GETFL:
426 uap->sysmsg_result = dat.fc_flags;
427 break;
428 case F_GETOWN:
429 uap->sysmsg_result = dat.fc_owner;
430 case F_GETLK:
431 error = copyout(&dat.fc_flock, (caddr_t)uap->arg,
432 sizeof(struct flock));
433 break;
434 }
435 }
436
437 return (error);
438}
439
440/*
441 * Common code for dup, dup2, and fcntl(F_DUPFD).
442 *
443 * The type flag can be either DUP_FIXED or DUP_VARIABLE. DUP_FIXED tells
444 * kern_dup() to destructively dup over an existing file descriptor if new
445 * is already open. DUP_VARIABLE tells kern_dup() to find the lowest
446 * unused file descriptor that is greater than or equal to new.
447 *
448 * MPSAFE
449 */
450int
451kern_dup(enum dup_type type, int old, int new, int *res)
452{
453 struct thread *td = curthread;
454 struct proc *p = td->td_proc;
455 struct filedesc *fdp = p->p_fd;
456 struct file *fp;
457 struct file *delfp;
458 int oldflags;
459 int holdleaders;
460 int error, newfd;
461
462 /*
463 * Verify that we have a valid descriptor to dup from and
464 * possibly to dup to.
465 */
466retry:
467 spin_lock_wr(&fdp->fd_spin);
468 if (new < 0 || new > p->p_rlimit[RLIMIT_NOFILE].rlim_cur ||
469 new >= maxfilesperproc) {
470 spin_unlock_wr(&fdp->fd_spin);
471 return (EINVAL);
472 }
473 if ((unsigned)old >= fdp->fd_nfiles || fdp->fd_files[old].fp == NULL) {
474 spin_unlock_wr(&fdp->fd_spin);
475 return (EBADF);
476 }
477 if (type == DUP_FIXED && old == new) {
478 *res = new;
479 spin_unlock_wr(&fdp->fd_spin);
480 return (0);
481 }
482 fp = fdp->fd_files[old].fp;
483 oldflags = fdp->fd_files[old].fileflags;
484 fhold(fp); /* MPSAFE - can be called with a spinlock held */
485
486 /*
487 * Allocate a new descriptor if DUP_VARIABLE, or expand the table
488 * if the requested descriptor is beyond the current table size.
489 *
490 * This can block. Retry if the source descriptor no longer matches
491 * or if our expectation in the expansion case races.
492 *
493 * If we are not expanding or allocating a new decriptor, then reset
494 * the target descriptor to a reserved state so we have a uniform
495 * setup for the next code block.
496 */
497 if (type == DUP_VARIABLE || new >= fdp->fd_nfiles) {
498 spin_unlock_wr(&fdp->fd_spin);
499 error = fdalloc(p, new, &newfd);
500 spin_lock_wr(&fdp->fd_spin);
501 if (error) {
502 spin_unlock_wr(&fdp->fd_spin);
503 fdrop(fp);
504 return (error);
505 }
506 /*
507 * Check for ripout
508 */
509 if (old >= fdp->fd_nfiles || fdp->fd_files[old].fp != fp) {
510 fsetfd_locked(fdp, NULL, newfd);
511 spin_unlock_wr(&fdp->fd_spin);
512 fdrop(fp);
513 goto retry;
514 }
515 /*
516 * Check for expansion race
517 */
518 if (type != DUP_VARIABLE && new != newfd) {
519 fsetfd_locked(fdp, NULL, newfd);
520 spin_unlock_wr(&fdp->fd_spin);
521 fdrop(fp);
522 goto retry;
523 }
524 /*
525 * Check for ripout, newfd reused old (this case probably
526 * can't occur).
527 */
528 if (old == newfd) {
529 fsetfd_locked(fdp, NULL, newfd);
530 spin_unlock_wr(&fdp->fd_spin);
531 fdrop(fp);
532 goto retry;
533 }
534 new = newfd;
535 delfp = NULL;
536 } else {
537 if (fdp->fd_files[new].reserved) {
538 spin_unlock_wr(&fdp->fd_spin);
539 fdrop(fp);
540 kprintf("Warning: dup(): target descriptor %d is reserved, waiting for it to be resolved\n", new);
541 tsleep(fdp, 0, "fdres", hz);
542 goto retry;
543 }
544
545 /*
546 * If the target descriptor was never allocated we have
547 * to allocate it. If it was we have to clean out the
548 * old descriptor. delfp inherits the ref from the
549 * descriptor table.
550 */
551 delfp = fdp->fd_files[new].fp;
552 fdp->fd_files[new].fp = NULL;
553 fdp->fd_files[new].reserved = 1;
554 if (delfp == NULL) {
555 fdreserve_locked(fdp, new, 1);
556 if (new > fdp->fd_lastfile)
557 fdp->fd_lastfile = new;
558 }
559
560 }
561
562 /*
563 * NOTE: still holding an exclusive spinlock
564 */
565
566 /*
567 * If a descriptor is being overwritten we may hve to tell
568 * fdfree() to sleep to ensure that all relevant process
569 * leaders can be traversed in closef().
570 */
571 if (delfp != NULL && p->p_fdtol != NULL) {
572 fdp->fd_holdleaderscount++;
573 holdleaders = 1;
574 } else {
575 holdleaders = 0;
576 }
577 KASSERT(delfp == NULL || type == DUP_FIXED,
578 ("dup() picked an open file"));
579
580 /*
581 * Duplicate the source descriptor, update lastfile. If the new
582 * descriptor was not allocated and we aren't replacing an existing
583 * descriptor we have to mark the descriptor as being in use.
584 *
585 * The fd_files[] array inherits fp's hold reference.
586 */
587 fsetfd_locked(fdp, fp, new);
588 fdp->fd_files[new].fileflags = oldflags & ~UF_EXCLOSE;
589 spin_unlock_wr(&fdp->fd_spin);
590 fdrop(fp);
591 *res = new;
592
593 /*
594 * If we dup'd over a valid file, we now own the reference to it
595 * and must dispose of it using closef() semantics (as if a
596 * close() were performed on it).
597 */
598 if (delfp) {
599 (void)closef(delfp, td);
600 if (holdleaders) {
601 spin_lock_wr(&fdp->fd_spin);
602 fdp->fd_holdleaderscount--;
603 if (fdp->fd_holdleaderscount == 0 &&
604 fdp->fd_holdleaderswakeup != 0) {
605 fdp->fd_holdleaderswakeup = 0;
606 spin_unlock_wr(&fdp->fd_spin);
607 wakeup(&fdp->fd_holdleaderscount);
608 } else {
609 spin_unlock_wr(&fdp->fd_spin);
610 }
611 }
612 }
613 return (0);
614}
615
616/*
617 * If sigio is on the list associated with a process or process group,
618 * disable signalling from the device, remove sigio from the list and
619 * free sigio.
620 */
621void
622funsetown(struct sigio *sigio)
623{
624 if (sigio == NULL)
625 return;
626 crit_enter();
627 *(sigio->sio_myref) = NULL;
628 crit_exit();
629 if (sigio->sio_pgid < 0) {
630 SLIST_REMOVE(&sigio->sio_pgrp->pg_sigiolst, sigio,
631 sigio, sio_pgsigio);
632 } else /* if ((*sigiop)->sio_pgid > 0) */ {
633 SLIST_REMOVE(&sigio->sio_proc->p_sigiolst, sigio,
634 sigio, sio_pgsigio);
635 }
636 crfree(sigio->sio_ucred);
637 kfree(sigio, M_SIGIO);
638}
639
640/* Free a list of sigio structures. */
641void
642funsetownlst(struct sigiolst *sigiolst)
643{
644 struct sigio *sigio;
645
646 while ((sigio = SLIST_FIRST(sigiolst)) != NULL)
647 funsetown(sigio);
648}
649
650/*
651 * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
652 *
653 * After permission checking, add a sigio structure to the sigio list for
654 * the process or process group.
655 */
656int
657fsetown(pid_t pgid, struct sigio **sigiop)
658{
659 struct proc *proc;
660 struct pgrp *pgrp;
661 struct sigio *sigio;
662
663 if (pgid == 0) {
664 funsetown(*sigiop);
665 return (0);
666 }
667 if (pgid > 0) {
668 proc = pfind(pgid);
669 if (proc == NULL)
670 return (ESRCH);
671
672 /*
673 * Policy - Don't allow a process to FSETOWN a process
674 * in another session.
675 *
676 * Remove this test to allow maximum flexibility or
677 * restrict FSETOWN to the current process or process
678 * group for maximum safety.
679 */
680 if (proc->p_session != curproc->p_session)
681 return (EPERM);
682
683 pgrp = NULL;
684 } else /* if (pgid < 0) */ {
685 pgrp = pgfind(-pgid);
686 if (pgrp == NULL)
687 return (ESRCH);
688
689 /*
690 * Policy - Don't allow a process to FSETOWN a process
691 * in another session.
692 *
693 * Remove this test to allow maximum flexibility or
694 * restrict FSETOWN to the current process or process
695 * group for maximum safety.
696 */
697 if (pgrp->pg_session != curproc->p_session)
698 return (EPERM);
699
700 proc = NULL;
701 }
702 funsetown(*sigiop);
703 sigio = kmalloc(sizeof(struct sigio), M_SIGIO, M_WAITOK);
704 if (pgid > 0) {
705 SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio);
706 sigio->sio_proc = proc;
707 } else {
708 SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
709 sigio->sio_pgrp = pgrp;
710 }
711 sigio->sio_pgid = pgid;
712 sigio->sio_ucred = crhold(curproc->p_ucred);
713 /* It would be convenient if p_ruid was in ucred. */
714 sigio->sio_ruid = curproc->p_ucred->cr_ruid;
715 sigio->sio_myref = sigiop;
716 crit_enter();
717 *sigiop = sigio;
718 crit_exit();
719 return (0);
720}
721
722/*
723 * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
724 */
725pid_t
726fgetown(struct sigio *sigio)
727{
728 return (sigio != NULL ? sigio->sio_pgid : 0);
729}
730
731/*
732 * Close many file descriptors.
733 *
734 * MPSAFE
735 */
736int
737sys_closefrom(struct closefrom_args *uap)
738{
739 return(kern_closefrom(uap->fd));
740}
741
742/*
743 * Close all file descriptors greater then or equal to fd
744 *
745 * MPSAFE
746 */
747int
748kern_closefrom(int fd)
749{
750 struct thread *td = curthread;
751 struct proc *p = td->td_proc;
752 struct filedesc *fdp;
753
754 KKASSERT(p);
755 fdp = p->p_fd;
756
757 if (fd < 0)
758 return (EINVAL);
759
760 /*
761 * NOTE: This function will skip unassociated descriptors and
762 * reserved descriptors that have not yet been assigned.
763 * fd_lastfile can change as a side effect of kern_close().
764 */
765 spin_lock_wr(&fdp->fd_spin);
766 while (fd <= fdp->fd_lastfile) {
767 if (fdp->fd_files[fd].fp != NULL) {
768 spin_unlock_wr(&fdp->fd_spin);
769 /* ok if this races another close */
770 if (kern_close(fd) == EINTR)
771 return (EINTR);
772 spin_lock_wr(&fdp->fd_spin);
773 }
774 ++fd;
775 }
776 spin_unlock_wr(&fdp->fd_spin);
777 return (0);
778}
779
780/*
781 * Close a file descriptor.
782 *
783 * MPSAFE
784 */
785int
786sys_close(struct close_args *uap)
787{
788 return(kern_close(uap->fd));
789}
790
791/*
792 * MPALMOSTSAFE - acquires mplock around knote_fdclose() calls
793 */
794int
795kern_close(int fd)
796{
797 struct thread *td = curthread;
798 struct proc *p = td->td_proc;
799 struct filedesc *fdp;
800 struct file *fp;
801 int error;
802 int holdleaders;
803
804 KKASSERT(p);
805 fdp = p->p_fd;
806
807 spin_lock_wr(&fdp->fd_spin);
808 if ((fp = funsetfd_locked(fdp, fd)) == NULL) {
809 spin_unlock_wr(&fdp->fd_spin);
810 return (EBADF);
811 }
812 holdleaders = 0;
813 if (p->p_fdtol != NULL) {
814 /*
815 * Ask fdfree() to sleep to ensure that all relevant
816 * process leaders can be traversed in closef().
817 */
818 fdp->fd_holdleaderscount++;
819 holdleaders = 1;
820 }
821
822 /*
823 * we now hold the fp reference that used to be owned by the descriptor
824 * array.
825 */
826 spin_unlock_wr(&fdp->fd_spin);
827 if (fd < fdp->fd_knlistsize) {
828 get_mplock();
829 if (fd < fdp->fd_knlistsize)
830 knote_fdclose(p, fd);
831 rel_mplock();
832 }
833 error = closef(fp, td);
834 if (holdleaders) {
835 spin_lock_wr(&fdp->fd_spin);
836 fdp->fd_holdleaderscount--;
837 if (fdp->fd_holdleaderscount == 0 &&
838 fdp->fd_holdleaderswakeup != 0) {
839 fdp->fd_holdleaderswakeup = 0;
840 spin_unlock_wr(&fdp->fd_spin);
841 wakeup(&fdp->fd_holdleaderscount);
842 } else {
843 spin_unlock_wr(&fdp->fd_spin);
844 }
845 }
846 return (error);
847}
848
849/*
850 * shutdown_args(int fd, int how)
851 */
852int
853kern_shutdown(int fd, int how)
854{
855 struct thread *td = curthread;
856 struct proc *p = td->td_proc;
857 struct file *fp;
858 int error;
859
860 KKASSERT(p);
861
862 if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
863 return (EBADF);
864 error = fo_shutdown(fp, how);
865 fdrop(fp);
866
867 return (error);
868}
869
870int
871sys_shutdown(struct shutdown_args *uap)
872{
873 int error;
874
875 error = kern_shutdown(uap->s, uap->how);
876
877 return (error);
878}
879
880int
881kern_fstat(int fd, struct stat *ub)
882{
883 struct thread *td = curthread;
884 struct proc *p = td->td_proc;
885 struct file *fp;
886 int error;
887
888 KKASSERT(p);
889
890 if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
891 return (EBADF);
892 error = fo_stat(fp, ub, p->p_ucred);
893 fdrop(fp);
894
895 return (error);
896}
897
898/*
899 * Return status information about a file descriptor.
900 */
901int
902sys_fstat(struct fstat_args *uap)
903{
904 struct stat st;
905 int error;
906
907 error = kern_fstat(uap->fd, &st);
908
909 if (error == 0)
910 error = copyout(&st, uap->sb, sizeof(st));
911 return (error);
912}
913
914/*
915 * Return pathconf information about a file descriptor.
916 */
917/* ARGSUSED */
918int
919sys_fpathconf(struct fpathconf_args *uap)
920{
921 struct thread *td = curthread;
922 struct proc *p = td->td_proc;
923 struct file *fp;
924 struct vnode *vp;
925 int error = 0;
926
927 KKASSERT(p);
928
929 if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
930 return (EBADF);
931
932 switch (fp->f_type) {
933 case DTYPE_PIPE:
934 case DTYPE_SOCKET:
935 if (uap->name != _PC_PIPE_BUF) {
936 error = EINVAL;
937 } else {
938 uap->sysmsg_result = PIPE_BUF;
939 error = 0;
940 }
941 break;
942 case DTYPE_FIFO:
943 case DTYPE_VNODE:
944 vp = (struct vnode *)fp->f_data;
945 error = VOP_PATHCONF(vp, uap->name, uap->sysmsg_fds);
946 break;
947 default:
948 error = EOPNOTSUPP;
949 break;
950 }
951 fdrop(fp);
952 return(error);
953}
954
955static int fdexpand;
956SYSCTL_INT(_debug, OID_AUTO, fdexpand, CTLFLAG_RD, &fdexpand, 0, "");
957
958/*
959 * Grow the file table so it can hold through descriptor (want).
960 *
961 * The fdp's spinlock must be held exclusively on entry and may be held
962 * exclusively on return. The spinlock may be cycled by the routine.
963 *
964 * MPSAFE
965 */
966static void
967fdgrow_locked(struct filedesc *fdp, int want)
968{
969 struct fdnode *newfiles;
970 struct fdnode *oldfiles;
971 int nf, extra;
972
973 nf = fdp->fd_nfiles;
974 do {
975 /* nf has to be of the form 2^n - 1 */
976 nf = 2 * nf + 1;
977 } while (nf <= want);
978
979 spin_unlock_wr(&fdp->fd_spin);
980 newfiles = kmalloc(nf * sizeof(struct fdnode), M_FILEDESC, M_WAITOK);
981 spin_lock_wr(&fdp->fd_spin);
982
983 /*
984 * We could have raced another extend while we were not holding
985 * the spinlock.
986 */
987 if (fdp->fd_nfiles >= nf) {
988 spin_unlock_wr(&fdp->fd_spin);
989 kfree(newfiles, M_FILEDESC);
990 spin_lock_wr(&fdp->fd_spin);
991 return;
992 }
993 /*
994 * Copy the existing ofile and ofileflags arrays
995 * and zero the new portion of each array.
996 */
997 extra = nf - fdp->fd_nfiles;
998 bcopy(fdp->fd_files, newfiles, fdp->fd_nfiles * sizeof(struct fdnode));
999 bzero(&newfiles[fdp->fd_nfiles], extra * sizeof(struct fdnode));
1000
1001 oldfiles = fdp->fd_files;
1002 fdp->fd_files = newfiles;
1003 fdp->fd_nfiles = nf;
1004
1005 if (oldfiles != fdp->fd_builtin_files) {
1006 spin_unlock_wr(&fdp->fd_spin);
1007 kfree(oldfiles, M_FILEDESC);
1008 spin_lock_wr(&fdp->fd_spin);
1009 }
1010 fdexpand++;
1011}
1012
1013/*
1014 * Number of nodes in right subtree, including the root.
1015 */
1016static __inline int
1017right_subtree_size(int n)
1018{
1019 return (n ^ (n | (n + 1)));
1020}
1021
1022/*
1023 * Bigger ancestor.
1024 */
1025static __inline int
1026right_ancestor(int n)
1027{
1028 return (n | (n + 1));
1029}
1030
1031/*
1032 * Smaller ancestor.
1033 */
1034static __inline int
1035left_ancestor(int n)
1036{
1037 return ((n & (n + 1)) - 1);
1038}
1039
1040/*
1041 * Traverse the in-place binary tree buttom-up adjusting the allocation
1042 * count so scans can determine where free descriptors are located.
1043 *
1044 * MPSAFE - caller must be holding an exclusive spinlock on fdp
1045 */
1046static
1047void
1048fdreserve_locked(struct filedesc *fdp, int fd, int incr)
1049{
1050 while (fd >= 0) {
1051 fdp->fd_files[fd].allocated += incr;
1052 KKASSERT(fdp->fd_files[fd].allocated >= 0);
1053 fd = left_ancestor(fd);
1054 }
1055}
1056
1057/*
1058 * Reserve a file descriptor for the process. If no error occurs, the
1059 * caller MUST at some point call fsetfd() or assign a file pointer
1060 * or dispose of the reservation.
1061 *
1062 * MPSAFE
1063 */
1064int
1065fdalloc(struct proc *p, int want, int *result)
1066{
1067 struct filedesc *fdp = p->p_fd;
1068 int fd, rsize, rsum, node, lim;
1069
1070 spin_lock_rd(&p->p_limit->p_spin);
1071 lim = min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
1072 spin_unlock_rd(&p->p_limit->p_spin);
1073 if (want >= lim)
1074 return (EMFILE);
1075 spin_lock_wr(&fdp->fd_spin);
1076 if (want >= fdp->fd_nfiles)
1077 fdgrow_locked(fdp, want);
1078
1079 /*
1080 * Search for a free descriptor starting at the higher
1081 * of want or fd_freefile. If that fails, consider
1082 * expanding the ofile array.
1083 *
1084 * NOTE! the 'allocated' field is a cumulative recursive allocation
1085 * count. If we happen to see a value of 0 then we can shortcut
1086 * our search. Otherwise we run through through the tree going
1087 * down branches we know have free descriptor(s) until we hit a
1088 * leaf node. The leaf node will be free but will not necessarily
1089 * have an allocated field of 0.
1090 */
1091retry:
1092 /* move up the tree looking for a subtree with a free node */
1093 for (fd = max(want, fdp->fd_freefile); fd < min(fdp->fd_nfiles, lim);
1094 fd = right_ancestor(fd)) {
1095 if (fdp->fd_files[fd].allocated == 0)
1096 goto found;
1097
1098 rsize = right_subtree_size(fd);
1099 if (fdp->fd_files[fd].allocated == rsize)
1100 continue; /* right subtree full */
1101
1102 /*
1103 * Free fd is in the right subtree of the tree rooted at fd.
1104 * Call that subtree R. Look for the smallest (leftmost)
1105 * subtree of R with an unallocated fd: continue moving
1106 * down the left branch until encountering a full left
1107 * subtree, then move to the right.
1108 */
1109 for (rsum = 0, rsize /= 2; rsize > 0; rsize /= 2) {
1110 node = fd + rsize;
1111 rsum += fdp->fd_files[node].allocated;
1112 if (fdp->fd_files[fd].allocated == rsum + rsize) {
1113 fd = node; /* move to the right */
1114 if (fdp->fd_files[node].allocated == 0)
1115 goto found;
1116 rsum = 0;
1117 }
1118 }
1119 goto found;
1120 }
1121
1122 /*
1123 * No space in current array. Expand?
1124 */
1125 if (fdp->fd_nfiles >= lim) {
1126 spin_unlock_wr(&fdp->fd_spin);
1127 return (EMFILE);
1128 }
1129 fdgrow_locked(fdp, want);
1130 goto retry;
1131
1132found:
1133 KKASSERT(fd < fdp->fd_nfiles);
1134 if (fd > fdp->fd_lastfile)
1135 fdp->fd_lastfile = fd;
1136 if (want <= fdp->fd_freefile)
1137 fdp->fd_freefile = fd;
1138 *result = fd;
1139 KKASSERT(fdp->fd_files[fd].fp == NULL);
1140 KKASSERT(fdp->fd_files[fd].reserved == 0);
1141 fdp->fd_files[fd].fileflags = 0;
1142 fdp->fd_files[fd].reserved = 1;
1143 fdreserve_locked(fdp, fd, 1);
1144 spin_unlock_wr(&fdp->fd_spin);
1145 return (0);
1146}
1147
1148/*
1149 * Check to see whether n user file descriptors
1150 * are available to the process p.
1151 *
1152 * MPSAFE
1153 */
1154int
1155fdavail(struct proc *p, int n)
1156{
1157 struct filedesc *fdp = p->p_fd;
1158 struct fdnode *fdnode;
1159 int i, lim, last;
1160
1161 spin_lock_rd(&p->p_limit->p_spin);
1162 lim = min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
1163 spin_unlock_rd(&p->p_limit->p_spin);
1164
1165 spin_lock_rd(&fdp->fd_spin);
1166 if ((i = lim - fdp->fd_nfiles) > 0 && (n -= i) <= 0) {
1167 spin_unlock_rd(&fdp->fd_spin);
1168 return (1);
1169 }
1170 last = min(fdp->fd_nfiles, lim);
1171 fdnode = &fdp->fd_files[fdp->fd_freefile];
1172 for (i = last - fdp->fd_freefile; --i >= 0; ++fdnode) {
1173 if (fdnode->fp == NULL && --n <= 0) {
1174 spin_unlock_rd(&fdp->fd_spin);
1175 return (1);
1176 }
1177 }
1178 spin_unlock_rd(&fdp->fd_spin);
1179 return (0);
1180}
1181
1182/*
1183 * falloc:
1184 * Create a new open file structure and reserve a file decriptor
1185 * for the process that refers to it.
1186 *
1187 * Root creds are checked using p, or assumed if p is NULL. If
1188 * resultfd is non-NULL then p must also be non-NULL. No file
1189 * descriptor is reserved if resultfd is NULL.
1190 *
1191 * A file pointer with a refcount of 1 is returned. Note that the
1192 * file pointer is NOT associated with the descriptor. If falloc
1193 * returns success, fsetfd() MUST be called to either associate the
1194 * file pointer or clear the reservation.
1195 *
1196 * MPSAFE
1197 */
1198int
1199falloc(struct proc *p, struct file **resultfp, int *resultfd)
1200{
1201 static struct timeval lastfail;
1202 static int curfail;
1203 struct file *fp;
1204 int error;
1205
1206 fp = NULL;
1207
1208 /*
1209 * Handle filetable full issues and root overfill.
1210 */
1211 if (nfiles >= maxfiles - maxfilesrootres &&
1212 ((p && p->p_ucred->cr_ruid != 0) || nfiles >= maxfiles)) {
1213 if (ppsratecheck(&lastfail, &curfail, 1)) {
1214 kprintf("kern.maxfiles limit exceeded by uid %d, please see tuning(7).\n",
1215 (p ? p->p_ucred->cr_ruid : -1));
1216 }
1217 error = ENFILE;
1218 goto done;
1219 }
1220
1221 /*
1222 * Allocate a new file descriptor.
1223 */
1224 fp = kmalloc(sizeof(struct file), M_FILE, M_WAITOK | M_ZERO);
1225 spin_init(&fp->f_spin);
1226 fp->f_count = 1;
1227 fp->f_ops = &badfileops;
1228 fp->f_seqcount = 1;
1229 if (p)
1230 fp->f_cred = crhold(p->p_ucred);
1231 else
1232 fp->f_cred = crhold(proc0.p_ucred);
1233 spin_lock_wr(&filehead_spin);
1234 nfiles++;
1235 LIST_INSERT_HEAD(&filehead, fp, f_list);
1236 spin_unlock_wr(&filehead_spin);
1237 if (resultfd) {
1238 if ((error = fdalloc(p, 0, resultfd)) != 0) {
1239 fdrop(fp);
1240 fp = NULL;
1241 }
1242 } else {
1243 error = 0;
1244 }
1245done:
1246 *resultfp = fp;
1247 return (error);
1248}
1249
1250/*
1251 * MPSAFE
1252 */
1253static
1254int
1255checkfpclosed(struct filedesc *fdp, int fd, struct file *fp)
1256{
1257 int error;
1258
1259 spin_lock_rd(&fdp->fd_spin);
1260 if ((unsigned) fd >= fdp->fd_nfiles || fp != fdp->fd_files[fd].fp)
1261 error = EBADF;
1262 else
1263 error = 0;
1264 spin_unlock_rd(&fdp->fd_spin);
1265 return (error);
1266}
1267
1268/*
1269 * Associate a file pointer with a previously reserved file descriptor.
1270 * This function always succeeds.
1271 *
1272 * If fp is NULL, the file descriptor is returned to the pool.
1273 */
1274
1275/*
1276 * MPSAFE (exclusive spinlock must be held on call)
1277 */
1278static void
1279fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd)
1280{
1281 KKASSERT((unsigned)fd < fdp->fd_nfiles);
1282 KKASSERT(fdp->fd_files[fd].reserved != 0);
1283 if (fp) {
1284 fhold(fp);
1285 fdp->fd_files[fd].fp = fp;
1286 fdp->fd_files[fd].reserved = 0;
1287 if (fp->f_type == DTYPE_KQUEUE) {
1288 if (fdp->fd_knlistsize < 0)
1289 fdp->fd_knlistsize = 0;
1290 }
1291 } else {
1292 fdp->fd_files[fd].reserved = 0;
1293 fdreserve_locked(fdp, fd, -1);
1294 fdfixup_locked(fdp, fd);
1295 }
1296}
1297
1298/*
1299 * MPSAFE
1300 */
1301void
1302fsetfd(struct proc *p, struct file *fp, int fd)
1303{
1304 struct filedesc *fdp = p->p_fd;
1305
1306 spin_lock_wr(&fdp->fd_spin);
1307 fsetfd_locked(fdp, fp, fd);
1308 spin_unlock_wr(&fdp->fd_spin);
1309}
1310
1311/*
1312 * MPSAFE (exclusive spinlock must be held on call)
1313 */
1314static
1315struct file *
1316funsetfd_locked(struct filedesc *fdp, int fd)
1317{
1318 struct file *fp;
1319
1320 if ((unsigned)fd >= fdp->fd_nfiles)
1321 return (NULL);
1322 if ((fp = fdp->fd_files[fd].fp) == NULL)
1323 return (NULL);
1324 fdp->fd_files[fd].fp = NULL;
1325 fdp->fd_files[fd].fileflags = 0;
1326
1327 fdreserve_locked(fdp, fd, -1);
1328 fdfixup_locked(fdp, fd);
1329 return(fp);
1330}
1331
1332/*
1333 * MPSAFE
1334 */
1335int
1336fgetfdflags(struct filedesc *fdp, int fd, int *flagsp)
1337{
1338 int error;
1339
1340 spin_lock_rd(&fdp->fd_spin);
1341 if (((u_int)fd) >= fdp->fd_nfiles) {
1342 error = EBADF;
1343 } else if (fdp->fd_files[fd].fp == NULL) {
1344 error = EBADF;
1345 } else {
1346 *flagsp = fdp->fd_files[fd].fileflags;
1347 error = 0;
1348 }
1349 spin_unlock_rd(&fdp->fd_spin);
1350 return (error);
1351}
1352
1353/*
1354 * MPSAFE
1355 */
1356int
1357fsetfdflags(struct filedesc *fdp, int fd, int add_flags)
1358{
1359 int error;
1360
1361 spin_lock_wr(&fdp->fd_spin);
1362 if (((u_int)fd) >= fdp->fd_nfiles) {
1363 error = EBADF;
1364 } else if (fdp->fd_files[fd].fp == NULL) {
1365 error = EBADF;
1366 } else {
1367 fdp->fd_files[fd].fileflags |= add_flags;
1368 error = 0;
1369 }
1370 spin_unlock_wr(&fdp->fd_spin);
1371 return (error);
1372}
1373
1374/*
1375 * MPSAFE
1376 */
1377int
1378fclrfdflags(struct filedesc *fdp, int fd, int rem_flags)
1379{
1380 int error;
1381
1382 spin_lock_wr(&fdp->fd_spin);
1383 if (((u_int)fd) >= fdp->fd_nfiles) {
1384 error = EBADF;
1385 } else if (fdp->fd_files[fd].fp == NULL) {
1386 error = EBADF;
1387 } else {
1388 fdp->fd_files[fd].fileflags &= ~rem_flags;
1389 error = 0;
1390 }
1391 spin_unlock_wr(&fdp->fd_spin);
1392 return (error);
1393}
1394
1395void
1396fsetcred(struct file *fp, struct ucred *cr)
1397{
1398 crhold(cr);
1399 crfree(fp->f_cred);
1400 fp->f_cred = cr;
1401}
1402
1403/*
1404 * Free a file descriptor.
1405 */
1406static
1407void
1408ffree(struct file *fp)
1409{
1410 KASSERT((fp->f_count == 0), ("ffree: fp_fcount not 0!"));
1411 spin_lock_wr(&filehead_spin);
1412 LIST_REMOVE(fp, f_list);
1413 nfiles--;
1414 spin_unlock_wr(&filehead_spin);
1415 crfree(fp->f_cred);
1416 if (fp->f_nchandle.ncp)
1417 cache_drop(&fp->f_nchandle);
1418 kfree(fp, M_FILE);
1419}
1420
1421/*
1422 * called from init_main, initialize filedesc0 for proc0.
1423 */
1424void
1425fdinit_bootstrap(struct proc *p0, struct filedesc *fdp0, int cmask)
1426{
1427 p0->p_fd = fdp0;
1428 p0->p_fdtol = NULL;
1429 fdp0->fd_refcnt = 1;
1430 fdp0->fd_cmask = cmask;
1431 fdp0->fd_files = fdp0->fd_builtin_files;
1432 fdp0->fd_nfiles = NDFILE;
1433 fdp0->fd_lastfile = -1;
1434 spin_init(&fdp0->fd_spin);
1435}
1436
1437/*
1438 * Build a new filedesc structure.
1439 *
1440 * NOT MPSAFE (vref)
1441 */
1442struct filedesc *
1443fdinit(struct proc *p)
1444{
1445 struct filedesc *newfdp;
1446 struct filedesc *fdp = p->p_fd;
1447
1448 newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK|M_ZERO);
1449 spin_lock_rd(&fdp->fd_spin);
1450 if (fdp->fd_cdir) {
1451 newfdp->fd_cdir = fdp->fd_cdir;
1452 vref(newfdp->fd_cdir);
1453 cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1454 }
1455
1456 /*
1457 * rdir may not be set in e.g. proc0 or anything vm_fork'd off of
1458 * proc0, but should unconditionally exist in other processes.
1459 */
1460 if (fdp->fd_rdir) {
1461 newfdp->fd_rdir = fdp->fd_rdir;
1462 vref(newfdp->fd_rdir);
1463 cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1464 }
1465 if (fdp->fd_jdir) {
1466 newfdp->fd_jdir = fdp->fd_jdir;
1467 vref(newfdp->fd_jdir);
1468 cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1469 }
1470 spin_unlock_rd(&fdp->fd_spin);
1471
1472 /* Create the file descriptor table. */
1473 newfdp->fd_refcnt = 1;
1474 newfdp->fd_cmask = cmask;
1475 newfdp->fd_files = newfdp->fd_builtin_files;
1476 newfdp->fd_nfiles = NDFILE;
1477 newfdp->fd_knlistsize = -1;
1478 newfdp->fd_lastfile = -1;
1479 spin_init(&newfdp->fd_spin);
1480
1481 return (newfdp);
1482}
1483
1484/*
1485 * Share a filedesc structure.
1486 *
1487 * MPSAFE
1488 */
1489struct filedesc *
1490fdshare(struct proc *p)
1491{
1492 struct filedesc *fdp;
1493
1494 fdp = p->p_fd;
1495 spin_lock_wr(&fdp->fd_spin);
1496 fdp->fd_refcnt++;
1497 spin_unlock_wr(&fdp->fd_spin);
1498 return (fdp);
1499}
1500
1501/*
1502 * Copy a filedesc structure.
1503 *
1504 * MPSAFE
1505 */
1506struct filedesc *
1507fdcopy(struct proc *p)
1508{
1509 struct filedesc *fdp = p->p_fd;
1510 struct filedesc *newfdp;
1511 struct fdnode *fdnode;
1512 int i;
1513 int ni;
1514
1515 /*
1516 * Certain daemons might not have file descriptors.
1517 */
1518 if (fdp == NULL)
1519 return (NULL);
1520
1521 /*
1522 * Allocate the new filedesc and fd_files[] array. This can race
1523 * with operations by other threads on the fdp so we have to be
1524 * careful.
1525 */
1526 newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK | M_ZERO);
1527again:
1528 spin_lock_rd(&fdp->fd_spin);
1529 if (fdp->fd_lastfile < NDFILE) {
1530 newfdp->fd_files = newfdp->fd_builtin_files;
1531 i = NDFILE;
1532 } else {
1533 /*
1534 * We have to allocate (N^2-1) entries for our in-place
1535 * binary tree. Allow the table to shrink.
1536 */
1537 i = fdp->fd_nfiles;
1538 ni = (i - 1) / 2;
1539 while (ni > fdp->fd_lastfile && ni > NDFILE) {
1540 i = ni;
1541 ni = (i - 1) / 2;
1542 }
1543 spin_unlock_rd(&fdp->fd_spin);
1544 newfdp->fd_files = kmalloc(i * sizeof(struct fdnode),
1545 M_FILEDESC, M_WAITOK | M_ZERO);
1546
1547 /*
1548 * Check for race, retry
1549 */
1550 spin_lock_rd(&fdp->fd_spin);
1551 if (i <= fdp->fd_lastfile) {
1552 spin_unlock_rd(&fdp->fd_spin);
1553 kfree(newfdp->fd_files, M_FILEDESC);
1554 goto again;
1555 }
1556 }
1557
1558 /*
1559 * Dup the remaining fields. vref() and cache_hold() can be
1560 * safely called while holding the read spinlock on fdp.
1561 *
1562 * The read spinlock on fdp is still being held.
1563 *
1564 * NOTE: vref and cache_hold calls for the case where the vnode
1565 * or cache entry already has at least one ref may be called
1566 * while holding spin locks.
1567 */
1568 if ((newfdp->fd_cdir = fdp->fd_cdir) != NULL) {
1569 vref(newfdp->fd_cdir);
1570 cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1571 }
1572 /*
1573 * We must check for fd_rdir here, at least for now because
1574 * the init process is created before we have access to the
1575 * rootvode to take a reference to it.
1576 */
1577 if ((newfdp->fd_rdir = fdp->fd_rdir) != NULL) {
1578 vref(newfdp->fd_rdir);
1579 cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1580 }
1581 if ((newfdp->fd_jdir = fdp->fd_jdir) != NULL) {
1582 vref(newfdp->fd_jdir);
1583 cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1584 }
1585 newfdp->fd_refcnt = 1;
1586 newfdp->fd_nfiles = i;
1587 newfdp->fd_lastfile = fdp->fd_lastfile;
1588 newfdp->fd_freefile = fdp->fd_freefile;
1589 newfdp->fd_cmask = fdp->fd_cmask;
1590 newfdp->fd_knlist = NULL;
1591 newfdp->fd_knlistsize = -1;
1592 newfdp->fd_knhash = NULL;
1593 newfdp->fd_knhashmask = 0;
1594 spin_init(&newfdp->fd_spin);
1595
1596 /*
1597 * Copy the descriptor table through (i). This also copies the
1598 * allocation state. Then go through and ref the file pointers
1599 * and clean up any KQ descriptors.
1600 *
1601 * kq descriptors cannot be copied. Since we haven't ref'd the
1602 * copied files yet we can ignore the return value from funsetfd().
1603 *
1604 * The read spinlock on fdp is still being held.
1605 */
1606 bcopy(fdp->fd_files, newfdp->fd_files, i * sizeof(struct fdnode));
1607 for (i = 0 ; i < newfdp->fd_nfiles; ++i) {
1608 fdnode = &newfdp->fd_files[i];
1609 if (fdnode->reserved) {
1610 fdreserve_locked(newfdp, i, -1);
1611 fdnode->reserved = 0;
1612 fdfixup_locked(newfdp, i);
1613 } else if (fdnode->fp) {
1614 if (fdnode->fp->f_type == DTYPE_KQUEUE) {
1615 (void)funsetfd_locked(newfdp, i);
1616 } else {
1617 fhold(fdnode->fp);
1618 }
1619 }
1620 }
1621 spin_unlock_rd(&fdp->fd_spin);
1622 return (newfdp);
1623}
1624
1625/*
1626 * Release a filedesc structure.
1627 *
1628 * NOT MPSAFE (MPSAFE for refs > 1, but the final cleanup code is not MPSAFE)
1629 */
1630void
1631fdfree(struct proc *p)
1632{
1633 /* Take any thread of p */
1634 struct thread *td = LIST_FIRST(&p->p_lwps)->lwp_thread;
1635 struct filedesc *fdp = p->p_fd;
1636 struct fdnode *fdnode;
1637 int i;
1638 struct filedesc_to_leader *fdtol;
1639 struct file *fp;
1640 struct vnode *vp;
1641 struct flock lf;
1642
1643 /* Certain daemons might not have file descriptors. */
1644 if (fdp == NULL)
1645 return;
1646
1647 /*
1648 * Severe messing around to follow
1649 */
1650 spin_lock_wr(&fdp->fd_spin);
1651
1652 /* Check for special need to clear POSIX style locks */
1653 fdtol = p->p_fdtol;
1654 if (fdtol != NULL) {
1655 KASSERT(fdtol->fdl_refcount > 0,
1656 ("filedesc_to_refcount botch: fdl_refcount=%d",
1657 fdtol->fdl_refcount));
1658 if (fdtol->fdl_refcount == 1 &&
1659 (p->p_leader->p_flag & P_ADVLOCK) != 0) {
1660 for (i = 0; i <= fdp->fd_lastfile; ++i) {
1661 fdnode = &fdp->fd_files[i];
1662 if (fdnode->fp == NULL ||
1663 fdnode->fp->f_type != DTYPE_VNODE) {
1664 continue;
1665 }
1666 fp = fdnode->fp;
1667 fhold(fp);
1668 spin_unlock_wr(&fdp->fd_spin);
1669
1670 lf.l_whence = SEEK_SET;
1671 lf.l_start = 0;
1672 lf.l_len = 0;
1673 lf.l_type = F_UNLCK;
1674 vp = (struct vnode *)fp->f_data;
1675 (void) VOP_ADVLOCK(vp,
1676 (caddr_t)p->p_leader,
1677 F_UNLCK,
1678 &lf,
1679 F_POSIX);
1680 fdrop(fp);
1681 spin_lock_wr(&fdp->fd_spin);
1682 }
1683 }
1684 retry:
1685 if (fdtol->fdl_refcount == 1) {
1686 if (fdp->fd_holdleaderscount > 0 &&
1687 (p->p_leader->p_flag & P_ADVLOCK) != 0) {
1688 /*
1689 * close() or do_dup() has cleared a reference
1690 * in a shared file descriptor table.
1691 */
1692 fdp->fd_holdleaderswakeup = 1;
1693 msleep(&fdp->fd_holdleaderscount,
1694 &fdp->fd_spin, 0, "fdlhold", 0);
1695 goto retry;
1696 }
1697 if (fdtol->fdl_holdcount > 0) {
1698 /*
1699 * Ensure that fdtol->fdl_leader
1700 * remains valid in closef().
1701 */
1702 fdtol->fdl_wakeup = 1;
1703 msleep(fdtol, &fdp->fd_spin, 0, "fdlhold", 0);
1704 goto retry;
1705 }
1706 }
1707 fdtol->fdl_refcount--;
1708 if (fdtol->fdl_refcount == 0 &&
1709 fdtol->fdl_holdcount == 0) {
1710 fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
1711 fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
1712 } else {
1713 fdtol = NULL;
1714 }
1715 p->p_fdtol = NULL;
1716 if (fdtol != NULL) {
1717 spin_unlock_wr(&fdp->fd_spin);
1718 kfree(fdtol, M_FILEDESC_TO_LEADER);
1719 spin_lock_wr(&fdp->fd_spin);
1720 }
1721 }
1722 if (--fdp->fd_refcnt > 0) {
1723 spin_unlock_wr(&fdp->fd_spin);
1724 return;
1725 }
1726 spin_unlock_wr(&fdp->fd_spin);
1727
1728 /*
1729 * we are the last reference to the structure, we can
1730 * safely assume it will not change out from under us.
1731 */
1732 for (i = 0; i <= fdp->fd_lastfile; ++i) {
1733 if (fdp->fd_files[i].fp)
1734 closef(fdp->fd_files[i].fp, td);
1735 }
1736 if (fdp->fd_files != fdp->fd_builtin_files)
1737 kfree(fdp->fd_files, M_FILEDESC);
1738 if (fdp->fd_cdir) {
1739 cache_drop(&fdp->fd_ncdir);
1740 vrele(fdp->fd_cdir);
1741 }
1742 if (fdp->fd_rdir) {
1743 cache_drop(&fdp->fd_nrdir);
1744 vrele(fdp->fd_rdir);
1745 }
1746 if (fdp->fd_jdir) {
1747 cache_drop(&fdp->fd_njdir);
1748 vrele(fdp->fd_jdir);
1749 }
1750 if (fdp->fd_knlist)
1751 kfree(fdp->fd_knlist, M_KQUEUE);
1752 if (fdp->fd_knhash)
1753 kfree(fdp->fd_knhash, M_KQUEUE);
1754 kfree(fdp, M_FILEDESC);
1755}
1756
1757/*
1758 * Retrieve and reference the file pointer associated with a descriptor.
1759 *
1760 * MPSAFE
1761 */
1762struct file *
1763holdfp(struct filedesc *fdp, int fd, int flag)
1764{
1765 struct file* fp;
1766
1767 spin_lock_rd(&fdp->fd_spin);
1768 if (((u_int)fd) >= fdp->fd_nfiles) {
1769 fp = NULL;
1770 goto done;
1771 }
1772 if ((fp = fdp->fd_files[fd].fp) == NULL)
1773 goto done;
1774 if ((fp->f_flag & flag) == 0 && flag != -1) {
1775 fp = NULL;
1776 goto done;
1777 }
1778 fhold(fp);
1779done:
1780 spin_unlock_rd(&fdp->fd_spin);
1781 return (fp);
1782}
1783
1784/*
1785 * holdsock() - load the struct file pointer associated
1786 * with a socket into *fpp. If an error occurs, non-zero
1787 * will be returned and *fpp will be set to NULL.
1788 *
1789 * MPSAFE
1790 */
1791int
1792holdsock(struct filedesc *fdp, int fd, struct file **fpp)
1793{
1794 struct file *fp;
1795 int error;
1796
1797 spin_lock_rd(&fdp->fd_spin);
1798 if ((unsigned)fd >= fdp->fd_nfiles) {
1799 error = EBADF;
1800 fp = NULL;
1801 goto done;
1802 }
1803 if ((fp = fdp->fd_files[fd].fp) == NULL) {
1804 error = EBADF;
1805 goto done;
1806 }
1807 if (fp->f_type != DTYPE_SOCKET) {
1808 error = ENOTSOCK;
1809 goto done;
1810 }
1811 fhold(fp);
1812 error = 0;
1813done:
1814 spin_unlock_rd(&fdp->fd_spin);
1815 *fpp = fp;
1816 return (error);
1817}
1818
1819/*
1820 * Convert a user file descriptor to a held file pointer.
1821 *
1822 * MPSAFE
1823 */
1824int
1825holdvnode(struct filedesc *fdp, int fd, struct file **fpp)
1826{
1827 struct file *fp;
1828 int error;
1829
1830 spin_lock_rd(&fdp->fd_spin);
1831 if ((unsigned)fd >= fdp->fd_nfiles) {
1832 error = EBADF;
1833 fp = NULL;
1834 goto done;
1835 }
1836 if ((fp = fdp->fd_files[fd].fp) == NULL) {
1837 error = EBADF;
1838 goto done;
1839 }
1840 if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
1841 error = EINVAL;
1842 goto done;
1843 }
1844 fhold(fp);
1845 error = 0;
1846done:
1847 spin_unlock_rd(&fdp->fd_spin);
1848 *fpp = fp;
1849 return (error);
1850}
1851
1852/*
1853 * For setugid programs, we don't want to people to use that setugidness
1854 * to generate error messages which write to a file which otherwise would
1855 * otherwise be off-limits to the process.
1856 *
1857 * This is a gross hack to plug the hole. A better solution would involve
1858 * a special vop or other form of generalized access control mechanism. We
1859 * go ahead and just reject all procfs file systems accesses as dangerous.
1860 *
1861 * Since setugidsafety calls this only for fd 0, 1 and 2, this check is
1862 * sufficient. We also don't for check setugidness since we know we are.
1863 */
1864static int
1865is_unsafe(struct file *fp)
1866{
1867 if (fp->f_type == DTYPE_VNODE &&
1868 ((struct vnode *)(fp->f_data))->v_tag == VT_PROCFS)
1869 return (1);
1870 return (0);
1871}
1872
1873/*
1874 * Make this setguid thing safe, if at all possible.
1875 *
1876 * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
1877 */
1878void
1879setugidsafety(struct proc *p)
1880{
1881 /* Take any thread of p */
1882 struct thread *td = LIST_FIRST(&p->p_lwps)->lwp_thread;
1883 struct filedesc *fdp = p->p_fd;
1884 int i;
1885
1886 /* Certain daemons might not have file descriptors. */
1887 if (fdp == NULL)
1888 return;
1889
1890 /*
1891 * note: fdp->fd_files may be reallocated out from under us while
1892 * we are blocked in a close. Be careful!
1893 */
1894 for (i = 0; i <= fdp->fd_lastfile; i++) {
1895 if (i > 2)
1896 break;
1897 if (fdp->fd_files[i].fp && is_unsafe(fdp->fd_files[i].fp)) {
1898 struct file *fp;
1899
1900 if (i < fdp->fd_knlistsize)
1901 knote_fdclose(p, i);
1902 /*
1903 * NULL-out descriptor prior to close to avoid
1904 * a race while close blocks.
1905 */
1906 if ((fp = funsetfd_locked(fdp, i)) != NULL)
1907 closef(fp, td);
1908 }
1909 }
1910}
1911
1912/*
1913 * Close any files on exec?
1914 *
1915 * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
1916 */
1917void
1918fdcloseexec(struct proc *p)
1919{
1920 /* Take any thread of p */
1921 struct thread *td = LIST_FIRST(&p->p_lwps)->lwp_thread;
1922 struct filedesc *fdp = p->p_fd;
1923 int i;
1924
1925 /* Certain daemons might not have file descriptors. */
1926 if (fdp == NULL)
1927 return;
1928
1929 /*
1930 * We cannot cache fd_files since operations may block and rip
1931 * them out from under us.
1932 */
1933 for (i = 0; i <= fdp->fd_lastfile; i++) {
1934 if (fdp->fd_files[i].fp != NULL &&
1935 (fdp->fd_files[i].fileflags & UF_EXCLOSE)) {
1936 struct file *fp;
1937
1938 if (i < fdp->fd_knlistsize)
1939 knote_fdclose(p, i);
1940 /*
1941 * NULL-out descriptor prior to close to avoid
1942 * a race while close blocks.
1943 */
1944 if ((fp = funsetfd_locked(fdp, i)) != NULL)
1945 closef(fp, td);
1946 }
1947 }
1948}
1949
1950/*
1951 * It is unsafe for set[ug]id processes to be started with file
1952 * descriptors 0..2 closed, as these descriptors are given implicit
1953 * significance in the Standard C library. fdcheckstd() will create a
1954 * descriptor referencing /dev/null for each of stdin, stdout, and
1955 * stderr that is not already open.
1956 *
1957 * NOT MPSAFE - calls falloc, vn_open, etc
1958 */
1959int
1960fdcheckstd(struct proc *p)
1961{
1962 struct nlookupdata nd;
1963 struct filedesc *fdp;
1964 struct file *fp;
1965 register_t retval;
1966 int i, error, flags, devnull;
1967
1968 fdp = p->p_fd;
1969 if (fdp == NULL)
1970 return (0);
1971 devnull = -1;
1972 error = 0;
1973 for (i = 0; i < 3; i++) {
1974 if (fdp->fd_files[i].fp != NULL)
1975 continue;
1976 if (devnull < 0) {
1977 if ((error = falloc(p, &fp, &devnull)) != 0)
1978 break;
1979
1980 error = nlookup_init(&nd, "/dev/null", UIO_SYSSPACE,
1981 NLC_FOLLOW|NLC_LOCKVP);
1982 flags = FREAD | FWRITE;
1983 if (error == 0)
1984 error = vn_open(&nd, fp, flags, 0);
1985 if (error == 0)
1986 fsetfd(p, fp, devnull);
1987 else
1988 fsetfd(p, NULL, devnull);
1989 fdrop(fp);
1990 nlookup_done(&nd);
1991 if (error)
1992 break;
1993 KKASSERT(i == devnull);
1994 } else {
1995 error = kern_dup(DUP_FIXED, devnull, i, &retval);
1996 if (error != 0)
1997 break;
1998 }
1999 }
2000 return (error);
2001}
2002
2003/*
2004 * Internal form of close.
2005 * Decrement reference count on file structure.
2006 * Note: td and/or p may be NULL when closing a file
2007 * that was being passed in a message.
2008 *
2009 * MPALMOSTSAFE - acquires mplock for VOP operations
2010 */
2011int
2012closef(struct file *fp, struct thread *td)
2013{
2014 struct vnode *vp;
2015 struct flock lf;
2016 struct filedesc_to_leader *fdtol;
2017 struct proc *p;
2018
2019 if (fp == NULL)
2020 return (0);
2021 if (td == NULL) {
2022 td = curthread;
2023 p = NULL; /* allow no proc association */
2024 } else {
2025 p = td->td_proc; /* can also be NULL */
2026 }
2027 /*
2028 * POSIX record locking dictates that any close releases ALL
2029 * locks owned by this process. This is handled by setting
2030 * a flag in the unlock to free ONLY locks obeying POSIX
2031 * semantics, and not to free BSD-style file locks.
2032 * If the descriptor was in a message, POSIX-style locks
2033 * aren't passed with the descriptor.
2034 */
2035 if (p != NULL && fp->f_type == DTYPE_VNODE &&
2036 (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2037 ) {
2038 get_mplock();
2039 if ((p->p_leader->p_flag & P_ADVLOCK) != 0) {
2040 lf.l_whence = SEEK_SET;
2041 lf.l_start = 0;
2042 lf.l_len = 0;
2043 lf.l_type = F_UNLCK;
2044 vp = (struct vnode *)fp->f_data;
2045 (void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
2046 &lf, F_POSIX);
2047 }
2048 fdtol = p->p_fdtol;
2049 if (fdtol != NULL) {
2050 /*
2051 * Handle special case where file descriptor table
2052 * is shared between multiple process leaders.
2053 */
2054 for (fdtol = fdtol->fdl_next;
2055 fdtol != p->p_fdtol;
2056 fdtol = fdtol->fdl_next) {
2057 if ((fdtol->fdl_leader->p_flag &
2058 P_ADVLOCK) == 0)
2059 continue;
2060 fdtol->fdl_holdcount++;
2061 lf.l_whence = SEEK_SET;
2062 lf.l_start = 0;
2063 lf.l_len = 0;
2064 lf.l_type = F_UNLCK;
2065 vp = (struct vnode *)fp->f_data;
2066 (void) VOP_ADVLOCK(vp,
2067 (caddr_t)fdtol->fdl_leader,
2068 F_UNLCK, &lf, F_POSIX);
2069 fdtol->fdl_holdcount--;
2070 if (fdtol->fdl_holdcount == 0 &&
2071 fdtol->fdl_wakeup != 0) {
2072 fdtol->fdl_wakeup = 0;
2073 wakeup(fdtol);
2074 }
2075 }
2076 }
2077 rel_mplock();
2078 }
2079 return (fdrop(fp));
2080}
2081
2082/*
2083 * MPSAFE
2084 *
2085 * fhold() can only be called if f_count is already at least 1 (i.e. the
2086 * caller of fhold() already has a reference to the file pointer in some
2087 * manner or other).
2088 *
2089 * This is a rare case where callers are allowed to hold spinlocks, so
2090 * we can't ourselves. Since we are not obtaining the fp spinlock,
2091 * we have to use an atomic lock to interlock against fdrop().
2092 */
2093void
2094fhold(struct file *fp)
2095{
2096 atomic_add_int(&fp->f_count, 1);
2097}
2098
2099/*
2100 * A spinlock is required to handle 1->0 transitions on f_count. We have
2101 * to use atomic_sub_int so as not to race the atomic_add_int in fhold().
2102 *
2103 * MPALMOSTSAFE - acquires mplock for final close sequence
2104 */
2105int
2106fdrop(struct file *fp)
2107{
2108 struct flock lf;
2109 struct vnode *vp;
2110 int error;
2111
2112 spin_lock_wr(&fp->f_spin);
2113 atomic_subtract_int(&fp->f_count, 1);
2114 if (fp->f_count > 0) {
2115 spin_unlock_wr(&fp->f_spin);
2116 return (0);
2117 }
2118 spin_unlock_wr(&fp->f_spin);
2119
2120 get_mplock();
2121
2122 /*
2123 * The last reference has gone away, we own the fp structure free
2124 * and clear.
2125 */
2126 if (fp->f_count < 0)
2127 panic("fdrop: count < 0");
2128 if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE &&
2129 (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2130 ) {
2131 lf.l_whence = SEEK_SET;
2132 lf.l_start = 0;
2133 lf.l_len = 0;
2134 lf.l_type = F_UNLCK;
2135 vp = (struct vnode *)fp->f_data;
2136 (void) VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2137 }
2138 if (fp->f_ops != &badfileops)
2139 error = fo_close(fp);
2140 else
2141 error = 0;
2142 ffree(fp);
2143 rel_mplock();
2144 return (error);
2145}
2146
2147/*
2148 * Apply an advisory lock on a file descriptor.
2149 *
2150 * Just attempt to get a record lock of the requested type on
2151 * the entire file (l_whence = SEEK_SET, l_start = 0, l_len = 0).
2152 */
2153int
2154sys_flock(struct flock_args *uap)
2155{
2156 struct proc *p = curproc;
2157 struct file *fp;
2158 struct vnode *vp;
2159 struct flock lf;
2160 int error;
2161
2162 if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
2163 return (EBADF);
2164 if (fp->f_type != DTYPE_VNODE) {
2165 error = EOPNOTSUPP;
2166 goto done;
2167 }
2168 vp = (struct vnode *)fp->f_data;
2169 lf.l_whence = SEEK_SET;
2170 lf.l_start = 0;
2171 lf.l_len = 0;
2172 if (uap->how & LOCK_UN) {
2173 lf.l_type = F_UNLCK;
2174 fp->f_flag &= ~FHASLOCK;
2175 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2176 goto done;
2177 }
2178 if (uap->how & LOCK_EX)
2179 lf.l_type = F_WRLCK;
2180 else if (uap->how & LOCK_SH)
2181 lf.l_type = F_RDLCK;
2182 else {
2183 error = EBADF;
2184 goto done;
2185 }
2186 fp->f_flag |= FHASLOCK;
2187 if (uap->how & LOCK_NB)
2188 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, 0);
2189 else
2190 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, F_WAIT);
2191done:
2192 fdrop(fp);
2193 return (error);
2194}
2195
2196/*
2197 * File Descriptor pseudo-device driver (/dev/fd/).
2198 *
2199 * Opening minor device N dup()s the file (if any) connected to file
2200 * descriptor N belonging to the calling process. Note that this driver
2201 * consists of only the ``open()'' routine, because all subsequent
2202 * references to this file will be direct to the other driver.
2203 */
2204/* ARGSUSED */
2205static int
2206fdopen(struct dev_open_args *ap)
2207{
2208 thread_t td = curthread;
2209
2210 KKASSERT(td->td_lwp != NULL);
2211
2212 /*
2213 * XXX Kludge: set curlwp->lwp_dupfd to contain the value of the
2214 * the file descriptor being sought for duplication. The error
2215 * return ensures that the vnode for this device will be released
2216 * by vn_open. Open will detect this special error and take the
2217 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
2218 * will simply report the error.
2219 */
2220 td->td_lwp->lwp_dupfd = minor(ap->a_head.a_dev);
2221 return (ENODEV);
2222}
2223
2224/*
2225 * The caller has reserved the file descriptor dfd for us. On success we
2226 * must fsetfd() it. On failure the caller will clean it up.
2227 *
2228 * NOT MPSAFE - isn't getting spinlocks, possibly other things
2229 */
2230int
2231dupfdopen(struct proc *p, int dfd, int sfd, int mode, int error)
2232{
2233 struct filedesc *fdp = p->p_fd;
2234 struct file *wfp;
2235 struct file *xfp;
2236
2237 if ((wfp = holdfp(fdp, sfd, -1)) == NULL)
2238 return (EBADF);
2239
2240 /*
2241 * There are two cases of interest here.
2242 *
2243 * For ENODEV simply dup sfd to file descriptor dfd and return.
2244 *
2245 * For ENXIO steal away the file structure from sfd and store it
2246 * dfd. sfd is effectively closed by this operation.
2247 *
2248 * Any other error code is just returned.
2249 */
2250 switch (error) {
2251 case ENODEV:
2252 /*
2253 * Check that the mode the file is being opened for is a
2254 * subset of the mode of the existing descriptor.
2255 */
2256 if (((mode & (FREAD|FWRITE)) | wfp->f_flag) != wfp->f_flag)
2257 return (EACCES);
2258 fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2259 fsetfd(p, wfp, dfd);
2260 error = 0;
2261 break;
2262 case ENXIO:
2263 /*
2264 * Steal away the file pointer from dfd, and stuff it into indx.
2265 */
2266 fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2267 fsetfd(p, wfp, dfd);
2268 if ((xfp = funsetfd_locked(fdp, sfd)) != NULL)
2269 fdrop(xfp);
2270 KKASSERT(xfp == wfp); /* XXX MP RACE */
2271 error = 0;
2272 break;
2273 default:
2274 break;
2275 }
2276 fdrop(wfp);
2277 return (error);
2278}
2279
2280/*
2281 * NOT MPSAFE - I think these refer to a common file descriptor table
2282 * and we need to spinlock that to link fdtol in.
2283 */
2284struct filedesc_to_leader *
2285filedesc_to_leader_alloc(struct filedesc_to_leader *old,
2286 struct proc *leader)
2287{
2288 struct filedesc_to_leader *fdtol;
2289
2290 fdtol = kmalloc(sizeof(struct filedesc_to_leader),
2291 M_FILEDESC_TO_LEADER, M_WAITOK);
2292 fdtol->fdl_refcount = 1;
2293 fdtol->fdl_holdcount = 0;
2294 fdtol->fdl_wakeup = 0;
2295 fdtol->fdl_leader = leader;
2296 if (old != NULL) {
2297 fdtol->fdl_next = old->fdl_next;
2298 fdtol->fdl_prev = old;
2299 old->fdl_next = fdtol;
2300 fdtol->fdl_next->fdl_prev = fdtol;
2301 } else {
2302 fdtol->fdl_next = fdtol;
2303 fdtol->fdl_prev = fdtol;
2304 }
2305 return fdtol;
2306}
2307
2308/*
2309 * Scan all file pointers in the system. The callback is made with
2310 * both the master list spinlock held and the fp spinlock held,
2311 * both exclusively.
2312 *
2313 * MPSAFE
2314 *
2315 * WARNING: both the filehead spinlock and the file pointer spinlock are
2316 * held exclusively when the callback is made. The file pointer is not
2317 * referenced.
2318 */
2319void
2320allfiles_scan_exclusive(int (*callback)(struct file *, void *), void *data)
2321{
2322 struct file *fp;
2323 int res;
2324
2325 spin_lock_wr(&filehead_spin);
2326 LIST_FOREACH(fp, &filehead, f_list) {
2327 spin_lock_wr(&fp->f_spin);
2328 res = callback(fp, data);
2329 spin_unlock_wr(&fp->f_spin);
2330 if (res < 0)
2331 break;
2332 }
2333 spin_unlock_wr(&filehead_spin);
2334}
2335
2336/*
2337 * Get file structures.
2338 *
2339 * NOT MPSAFE - process list scan, SYSCTL_OUT (probably not mpsafe)
2340 */
2341
2342struct sysctl_kern_file_info {
2343 int count;
2344 int error;
2345 struct sysctl_req *req;
2346};
2347
2348static int sysctl_kern_file_callback(struct proc *p, void *data);
2349
2350static int
2351sysctl_kern_file(SYSCTL_HANDLER_ARGS)
2352{
2353 struct sysctl_kern_file_info info;
2354
2355 /*
2356 * Note: because the number of file descriptors is calculated
2357 * in different ways for sizing vs returning the data,
2358 * there is information leakage from the first loop. However,
2359 * it is of a similar order of magnitude to the leakage from
2360 * global system statistics such as kern.openfiles.
2361 *
2362 * When just doing a count, note that we cannot just count
2363 * the elements and add f_count via the filehead list because
2364 * threaded processes share their descriptor table and f_count might
2365 * still be '1' in that case.
2366 *
2367 * Since the SYSCTL op can block, we must hold the process to
2368 * prevent it being ripped out from under us either in the
2369 * file descriptor loop or in the greater LIST_FOREACH. The
2370 * process may be in varying states of disrepair. If the process
2371 * is in SZOMB we may have caught it just as it is being removed
2372 * from the allproc list, we must skip it in that case to maintain
2373 * an unbroken chain through the allproc list.
2374 */
2375 info.count = 0;
2376 info.error = 0;
2377 info.req = req;
2378 allproc_scan(sysctl_kern_file_callback, &info);
2379
2380 /*
2381 * When just calculating the size, overestimate a bit to try to
2382 * prevent system activity from causing the buffer-fill call
2383 * to fail later on.
2384 */
2385 if (req->oldptr == NULL) {
2386 info.count = (info.count + 16) + (info.count / 10);
2387 info.error = SYSCTL_OUT(req, NULL,
2388 info.count * sizeof(struct kinfo_file));
2389 }
2390 return (info.error);
2391}
2392
2393static int
2394sysctl_kern_file_callback(struct proc *p, void *data)
2395{
2396 struct sysctl_kern_file_info *info = data;
2397 struct kinfo_file kf;
2398 struct filedesc *fdp;
2399 struct file *fp;
2400 uid_t uid;
2401 int n;
2402
2403 if (p->p_stat == SIDL || (p->p_flag & P_ZOMBIE))
2404 return(0);
2405 if (!PRISON_CHECK(info->req->td->td_proc->p_ucred, p->p_ucred) != 0)
2406 return(0);
2407 if ((fdp = p->p_fd) == NULL)
2408 return(0);
2409 spin_lock_rd(&fdp->fd_spin);
2410 for (n = 0; n < fdp->fd_nfiles; ++n) {
2411 if ((fp = fdp->fd_files[n].fp) == NULL)
2412 continue;
2413 if (info->req->oldptr == NULL) {
2414 ++info->count;
2415 } else {
2416 uid = p->p_ucred ? p->p_ucred->cr_uid : -1;
2417 kcore_make_file(&kf, fp, p->p_pid, uid, n);
2418 spin_unlock_rd(&fdp->fd_spin);
2419 info->error = SYSCTL_OUT(info->req, &kf, sizeof(kf));
2420 spin_lock_rd(&fdp->fd_spin);
2421 if (info->error)
2422 break;
2423 }
2424 }
2425 spin_unlock_rd(&fdp->fd_spin);
2426 if (info->error)
2427 return(-1);
2428 return(0);
2429}
2430
2431SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD,
2432 0, 0, sysctl_kern_file, "S,file", "Entire file table");
2433
2434SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW,
2435 &maxfilesperproc, 0, "Maximum files allowed open per process");
2436
2437SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW,
2438 &maxfiles, 0, "Maximum number of files");
2439
2440SYSCTL_INT(_kern, OID_AUTO, maxfilesrootres, CTLFLAG_RW,
2441 &maxfilesrootres, 0, "Descriptors reserved for root use");
2442
2443SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
2444 &nfiles, 0, "System-wide number of open files");
2445
2446static void
2447fildesc_drvinit(void *unused)
2448{
2449 int fd;
2450
2451 dev_ops_add(&fildesc_ops, 0, 0);
2452 for (fd = 0; fd < NUMFDESC; fd++) {
2453 make_dev(&fildesc_ops, fd,
2454 UID_BIN, GID_BIN, 0666, "fd/%d", fd);
2455 }
2456 make_dev(&fildesc_ops, 0, UID_ROOT, GID_WHEEL, 0666, "stdin");
2457 make_dev(&fildesc_ops, 1, UID_ROOT, GID_WHEEL, 0666, "stdout");
2458 make_dev(&fildesc_ops, 2, UID_ROOT, GID_WHEEL, 0666, "stderr");
2459}
2460
2461/*
2462 * MPSAFE
2463 */
2464struct fileops badfileops = {
2465 .fo_read = badfo_readwrite,
2466 .fo_write = badfo_readwrite,
2467 .fo_ioctl = badfo_ioctl,
2468 .fo_poll = badfo_poll,
2469 .fo_kqfilter = badfo_kqfilter,
2470 .fo_stat = badfo_stat,
2471 .fo_close = badfo_close,
2472 .fo_shutdown = badfo_shutdown
2473};
2474
2475/*
2476 * MPSAFE
2477 */
2478static int
2479badfo_readwrite(
2480 struct file *fp,
2481 struct uio *uio,
2482 struct ucred *cred,
2483 int flags
2484) {
2485 return (EBADF);
2486}
2487
2488/*
2489 * MPSAFE
2490 */
2491static int
2492badfo_ioctl(struct file *fp, u_long com, caddr_t data, struct ucred *cred)
2493{
2494 return (EBADF);
2495}
2496
2497/*
2498 * MPSAFE
2499 */
2500static int
2501badfo_poll(struct file *fp, int events, struct ucred *cred)
2502{
2503 return (0);
2504}
2505
2506/*
2507 * MPSAFE
2508 */
2509static int
2510badfo_kqfilter(struct file *fp, struct knote *kn)
2511{
2512 return (0);
2513}
2514
2515static int
2516badfo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
2517{
2518 return (EBADF);
2519}
2520
2521/*
2522 * MPSAFE
2523 */
2524static int
2525badfo_close(struct file *fp)
2526{
2527 return (EBADF);
2528}
2529
2530/*
2531 * MPSAFE
2532 */
2533static int
2534badfo_shutdown(struct file *fp, int how)
2535{
2536 return (EBADF);
2537}
2538
2539/*
2540 * MPSAFE
2541 */
2542int
2543nofo_shutdown(struct file *fp, int how)
2544{
2545 return (EOPNOTSUPP);
2546}
2547
2548SYSINIT(fildescdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,
2549 fildesc_drvinit,NULL)