Separate M_NULLOK from M_RNOWAIT.
[dragonfly.git] / sys / kern / uipc_socket2.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
34 * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.17 2002/08/31 19:04:55 dwmalone Exp $
35 * $DragonFly: src/sys/kern/uipc_socket2.c,v 1.15 2005/01/26 23:09:57 hsu Exp $
36 */
37
38#include "opt_param.h"
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/domain.h>
42#include <sys/file.h> /* for maxfiles */
43#include <sys/kernel.h>
44#include <sys/proc.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/protosw.h>
48#include <sys/resourcevar.h>
49#include <sys/stat.h>
50#include <sys/socket.h>
51#include <sys/socketvar.h>
52#include <sys/signalvar.h>
53#include <sys/sysctl.h>
54#include <sys/aio.h> /* for aio_swake proto */
55#include <sys/event.h>
56
57#include <sys/thread2.h>
58#include <sys/msgport2.h>
59
60int maxsockets;
61
62/*
63 * Primitive routines for operating on sockets and socket buffers
64 */
65
66u_long sb_max = SB_MAX;
67u_long sb_max_adj =
68 SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
69
70static u_long sb_efficiency = 8; /* parameter for sbreserve() */
71
72/*
73 * Procedures to manipulate state flags of socket
74 * and do appropriate wakeups. Normal sequence from the
75 * active (originating) side is that soisconnecting() is
76 * called during processing of connect() call,
77 * resulting in an eventual call to soisconnected() if/when the
78 * connection is established. When the connection is torn down
79 * soisdisconnecting() is called during processing of disconnect() call,
80 * and soisdisconnected() is called when the connection to the peer
81 * is totally severed. The semantics of these routines are such that
82 * connectionless protocols can call soisconnected() and soisdisconnected()
83 * only, bypassing the in-progress calls when setting up a ``connection''
84 * takes no time.
85 *
86 * From the passive side, a socket is created with
87 * two queues of sockets: so_incomp for connections in progress
88 * and so_comp for connections already made and awaiting user acceptance.
89 * As a protocol is preparing incoming connections, it creates a socket
90 * structure queued on so_incomp by calling sonewconn(). When the connection
91 * is established, soisconnected() is called, and transfers the
92 * socket structure to so_comp, making it available to accept().
93 *
94 * If a socket is closed with sockets on either
95 * so_incomp or so_comp, these sockets are dropped.
96 *
97 * If higher level protocols are implemented in
98 * the kernel, the wakeups done here will sometimes
99 * cause software-interrupt process scheduling.
100 */
101
102void
103soisconnecting(so)
104 struct socket *so;
105{
106
107 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
108 so->so_state |= SS_ISCONNECTING;
109}
110
111void
112soisconnected(so)
113 struct socket *so;
114{
115 struct socket *head = so->so_head;
116
117 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
118 so->so_state |= SS_ISCONNECTED;
119 if (head && (so->so_state & SS_INCOMP)) {
120 if ((so->so_options & SO_ACCEPTFILTER) != 0) {
121 so->so_upcall = head->so_accf->so_accept_filter->accf_callback;
122 so->so_upcallarg = head->so_accf->so_accept_filter_arg;
123 so->so_rcv.sb_flags |= SB_UPCALL;
124 so->so_options &= ~SO_ACCEPTFILTER;
125 so->so_upcall(so, so->so_upcallarg, 0);
126 return;
127 }
128 TAILQ_REMOVE(&head->so_incomp, so, so_list);
129 head->so_incqlen--;
130 so->so_state &= ~SS_INCOMP;
131 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
132 head->so_qlen++;
133 so->so_state |= SS_COMP;
134 sorwakeup(head);
135 wakeup_one(&head->so_timeo);
136 } else {
137 wakeup(&so->so_timeo);
138 sorwakeup(so);
139 sowwakeup(so);
140 }
141}
142
143void
144soisdisconnecting(so)
145 struct socket *so;
146{
147
148 so->so_state &= ~SS_ISCONNECTING;
149 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
150 wakeup((caddr_t)&so->so_timeo);
151 sowwakeup(so);
152 sorwakeup(so);
153}
154
155void
156soisdisconnected(so)
157 struct socket *so;
158{
159
160 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
161 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
162 wakeup((caddr_t)&so->so_timeo);
163 sbdrop(&so->so_snd, so->so_snd.sb_cc);
164 sowwakeup(so);
165 sorwakeup(so);
166}
167
168/*
169 * When an attempt at a new connection is noted on a socket
170 * which accepts connections, sonewconn is called. If the
171 * connection is possible (subject to space constraints, etc.)
172 * then we allocate a new structure, propoerly linked into the
173 * data structure of the original socket, and return this.
174 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
175 */
176struct socket *
177sonewconn(struct socket *head, int connstatus)
178{
179 struct socket *so;
180 struct pru_attach_info ai;
181
182 if (head->so_qlen > 3 * head->so_qlimit / 2)
183 return ((struct socket *)0);
184 so = soalloc(0);
185 if (so == NULL)
186 return ((struct socket *)0);
187 if ((head->so_options & SO_ACCEPTFILTER) != 0)
188 connstatus = 0;
189 so->so_head = head;
190 so->so_type = head->so_type;
191 so->so_options = head->so_options &~ SO_ACCEPTCONN;
192 so->so_linger = head->so_linger;
193 so->so_state = head->so_state | SS_NOFDREF;
194 so->so_proto = head->so_proto;
195 so->so_timeo = head->so_timeo;
196 so->so_cred = crhold(head->so_cred);
197 ai.sb_rlimit = NULL;
198 ai.p_ucred = NULL;
199 ai.fd_rdir = NULL; /* jail code cruft XXX JH */
200 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat, NULL) ||
201 /* Directly call function since we're already at protocol level. */
202 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, &ai)) {
203 sodealloc(so);
204 return ((struct socket *)0);
205 }
206
207 if (connstatus) {
208 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
209 so->so_state |= SS_COMP;
210 head->so_qlen++;
211 } else {
212 if (head->so_incqlen > head->so_qlimit) {
213 struct socket *sp;
214 sp = TAILQ_FIRST(&head->so_incomp);
215 (void) soabort(sp);
216 }
217 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
218 so->so_state |= SS_INCOMP;
219 head->so_incqlen++;
220 }
221 if (connstatus) {
222 sorwakeup(head);
223 wakeup((caddr_t)&head->so_timeo);
224 so->so_state |= connstatus;
225 }
226 return (so);
227}
228
229/*
230 * Socantsendmore indicates that no more data will be sent on the
231 * socket; it would normally be applied to a socket when the user
232 * informs the system that no more data is to be sent, by the protocol
233 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
234 * will be received, and will normally be applied to the socket by a
235 * protocol when it detects that the peer will send no more data.
236 * Data queued for reading in the socket may yet be read.
237 */
238
239void
240socantsendmore(so)
241 struct socket *so;
242{
243
244 so->so_state |= SS_CANTSENDMORE;
245 sowwakeup(so);
246}
247
248void
249socantrcvmore(so)
250 struct socket *so;
251{
252
253 so->so_state |= SS_CANTRCVMORE;
254 sorwakeup(so);
255}
256
257/*
258 * Wait for data to arrive at/drain from a socket buffer.
259 */
260int
261sbwait(sb)
262 struct sockbuf *sb;
263{
264
265 sb->sb_flags |= SB_WAIT;
266 return (tsleep((caddr_t)&sb->sb_cc,
267 ((sb->sb_flags & SB_NOINTR) ? 0 : PCATCH),
268 "sbwait",
269 sb->sb_timeo));
270}
271
272/*
273 * Lock a sockbuf already known to be locked;
274 * return any error returned from sleep (EINTR).
275 */
276int
277sb_lock(sb)
278 struct sockbuf *sb;
279{
280 int error;
281
282 while (sb->sb_flags & SB_LOCK) {
283 sb->sb_flags |= SB_WANT;
284 error = tsleep((caddr_t)&sb->sb_flags,
285 ((sb->sb_flags & SB_NOINTR) ? 0 : PCATCH),
286 "sblock", 0);
287 if (error)
288 return (error);
289 }
290 sb->sb_flags |= SB_LOCK;
291 return (0);
292}
293
294/*
295 * Wakeup processes waiting on a socket buffer. Do asynchronous notification
296 * via SIGIO if the socket has the SS_ASYNC flag set.
297 */
298void
299sowakeup(so, sb)
300 struct socket *so;
301 struct sockbuf *sb;
302{
303 struct selinfo *selinfo = &sb->sb_sel;
304
305 selwakeup(selinfo);
306 sb->sb_flags &= ~SB_SEL;
307 if (sb->sb_flags & SB_WAIT) {
308 sb->sb_flags &= ~SB_WAIT;
309 wakeup((caddr_t)&sb->sb_cc);
310 }
311 if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
312 pgsigio(so->so_sigio, SIGIO, 0);
313 if (sb->sb_flags & SB_UPCALL)
314 (*so->so_upcall)(so, so->so_upcallarg, MB_DONTWAIT);
315 if (sb->sb_flags & SB_AIO)
316 aio_swake(so, sb);
317 KNOTE(&selinfo->si_note, 0);
318 if (sb->sb_flags & SB_MEVENT) {
319 struct netmsg_so_notify *msg, *nmsg;
320
321 TAILQ_FOREACH_MUTABLE(msg, &selinfo->si_mlist, nm_list, nmsg) {
322 if (msg->nm_predicate((struct netmsg *)msg)) {
323 TAILQ_REMOVE(&selinfo->si_mlist, msg, nm_list);
324 lwkt_replymsg(&msg->nm_lmsg,
325 msg->nm_lmsg.ms_error);
326 }
327 }
328 if (TAILQ_EMPTY(&sb->sb_sel.si_mlist))
329 sb->sb_flags &= ~SB_MEVENT;
330 }
331}
332
333/*
334 * Socket buffer (struct sockbuf) utility routines.
335 *
336 * Each socket contains two socket buffers: one for sending data and
337 * one for receiving data. Each buffer contains a queue of mbufs,
338 * information about the number of mbufs and amount of data in the
339 * queue, and other fields allowing select() statements and notification
340 * on data availability to be implemented.
341 *
342 * Data stored in a socket buffer is maintained as a list of records.
343 * Each record is a list of mbufs chained together with the m_next
344 * field. Records are chained together with the m_nextpkt field. The upper
345 * level routine soreceive() expects the following conventions to be
346 * observed when placing information in the receive buffer:
347 *
348 * 1. If the protocol requires each message be preceded by the sender's
349 * name, then a record containing that name must be present before
350 * any associated data (mbuf's must be of type MT_SONAME).
351 * 2. If the protocol supports the exchange of ``access rights'' (really
352 * just additional data associated with the message), and there are
353 * ``rights'' to be received, then a record containing this data
354 * should be present (mbuf's must be of type MT_RIGHTS).
355 * 3. If a name or rights record exists, then it must be followed by
356 * a data record, perhaps of zero length.
357 *
358 * Before using a new socket structure it is first necessary to reserve
359 * buffer space to the socket, by calling sbreserve(). This should commit
360 * some of the available buffer space in the system buffer pool for the
361 * socket (currently, it does nothing but enforce limits). The space
362 * should be released by calling sbrelease() when the socket is destroyed.
363 */
364
365int
366soreserve(struct socket *so, u_long sndcc, u_long rcvcc, struct rlimit *rl)
367{
368 if (sbreserve(&so->so_snd, sndcc, so, rl) == 0)
369 goto bad;
370 if (sbreserve(&so->so_rcv, rcvcc, so, rl) == 0)
371 goto bad2;
372 if (so->so_rcv.sb_lowat == 0)
373 so->so_rcv.sb_lowat = 1;
374 if (so->so_snd.sb_lowat == 0)
375 so->so_snd.sb_lowat = MCLBYTES;
376 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
377 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
378 return (0);
379bad2:
380 sbrelease(&so->so_snd, so);
381bad:
382 return (ENOBUFS);
383}
384
385static int
386sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
387{
388 int error = 0;
389 u_long old_sb_max = sb_max;
390
391 error = SYSCTL_OUT(req, arg1, sizeof(int));
392 if (error || !req->newptr)
393 return (error);
394 error = SYSCTL_IN(req, arg1, sizeof(int));
395 if (error)
396 return (error);
397 if (sb_max < MSIZE + MCLBYTES) {
398 sb_max = old_sb_max;
399 return (EINVAL);
400 }
401 sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
402 return (0);
403}
404
405/*
406 * Allot mbufs to a sockbuf.
407 * Attempt to scale mbmax so that mbcnt doesn't become limiting
408 * if buffering efficiency is near the normal case.
409 */
410int
411sbreserve(struct sockbuf *sb, u_long cc, struct socket *so, struct rlimit *rl)
412{
413
414 /*
415 * rl will only be NULL when we're in an interrupt (eg, in tcp_input)
416 * or when called from netgraph (ie, ngd_attach)
417 */
418 if (cc > sb_max_adj)
419 return (0);
420 if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
421 rl ? rl->rlim_cur : RLIM_INFINITY)) {
422 return (0);
423 }
424 sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
425 if (sb->sb_lowat > sb->sb_hiwat)
426 sb->sb_lowat = sb->sb_hiwat;
427 return (1);
428}
429
430/*
431 * Free mbufs held by a socket, and reserved mbuf space.
432 */
433void
434sbrelease(sb, so)
435 struct sockbuf *sb;
436 struct socket *so;
437{
438
439 sbflush(sb);
440 (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
441 RLIM_INFINITY);
442 sb->sb_mbmax = 0;
443}
444
445/*
446 * Routines to add and remove
447 * data from an mbuf queue.
448 *
449 * The routines sbappend() or sbappendrecord() are normally called to
450 * append new mbufs to a socket buffer, after checking that adequate
451 * space is available, comparing the function sbspace() with the amount
452 * of data to be added. sbappendrecord() differs from sbappend() in
453 * that data supplied is treated as the beginning of a new record.
454 * To place a sender's address, optional access rights, and data in a
455 * socket receive buffer, sbappendaddr() should be used. To place
456 * access rights and data in a socket receive buffer, sbappendrights()
457 * should be used. In either case, the new data begins a new record.
458 * Note that unlike sbappend() and sbappendrecord(), these routines check
459 * for the caller that there will be enough space to store the data.
460 * Each fails if there is not enough space, or if it cannot find mbufs
461 * to store additional information in.
462 *
463 * Reliable protocols may use the socket send buffer to hold data
464 * awaiting acknowledgement. Data is normally copied from a socket
465 * send buffer in a protocol with m_copy for output to a peer,
466 * and then removing the data from the socket buffer with sbdrop()
467 * or sbdroprecord() when the data is acknowledged by the peer.
468 */
469
470/*
471 * Append mbuf chain m to the last record in the
472 * socket buffer sb. The additional space associated
473 * the mbuf chain is recorded in sb. Empty mbufs are
474 * discarded and mbufs are compacted where possible.
475 */
476void
477sbappend(sb, m)
478 struct sockbuf *sb;
479 struct mbuf *m;
480{
481 struct mbuf *n;
482
483 if (m == 0)
484 return;
485 n = sb->sb_mb;
486 if (n) {
487 while (n->m_nextpkt)
488 n = n->m_nextpkt;
489 do {
490 if (n->m_flags & M_EOR) {
491 sbappendrecord(sb, m); /* XXXXXX!!!! */
492 return;
493 }
494 } while (n->m_next && (n = n->m_next));
495 }
496 sbcompress(sb, m, n);
497}
498
499/*
500 * sbappendstream() is an optimized form of sbappend() for protocols
501 * such as TCP that only have one record in the socket buffer, are
502 * not PR_ATOMIC, nor allow MT_CONTROL data.
503 */
504void
505sbappendstream(struct sockbuf *sb, struct mbuf *m)
506{
507 KKASSERT(m->m_nextpkt == NULL);
508 sbcompress(sb, m, sb->sb_lastmbuf);
509}
510
511#ifdef SOCKBUF_DEBUG
512void
513sbcheck(sb)
514 struct sockbuf *sb;
515{
516 struct mbuf *m;
517 struct mbuf *n = 0;
518 u_long len = 0, mbcnt = 0;
519
520 for (m = sb->sb_mb; m; m = n) {
521 n = m->m_nextpkt;
522 for (; m; m = m->m_next) {
523 len += m->m_len;
524 mbcnt += MSIZE;
525 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
526 mbcnt += m->m_ext.ext_size;
527 }
528 }
529 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
530 printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
531 mbcnt, sb->sb_mbcnt);
532 panic("sbcheck");
533 }
534}
535#endif
536
537/*
538 * As above, except the mbuf chain
539 * begins a new record.
540 */
541void
542sbappendrecord(sb, m0)
543 struct sockbuf *sb;
544 struct mbuf *m0;
545{
546 struct mbuf *m;
547
548 if (m0 == 0)
549 return;
550 m = sb->sb_mb;
551 if (m)
552 while (m->m_nextpkt)
553 m = m->m_nextpkt;
554 /*
555 * Put the first mbuf on the queue.
556 * Note this permits zero length records.
557 */
558 sballoc(sb, m0);
559 if (m)
560 m->m_nextpkt = m0;
561 else
562 sb->sb_mb = m0;
563 m = m0->m_next;
564 m0->m_next = 0;
565 if (m && (m0->m_flags & M_EOR)) {
566 m0->m_flags &= ~M_EOR;
567 m->m_flags |= M_EOR;
568 }
569 sbcompress(sb, m, m0);
570}
571
572/*
573 * As above except that OOB data
574 * is inserted at the beginning of the sockbuf,
575 * but after any other OOB data.
576 */
577void
578sbinsertoob(sb, m0)
579 struct sockbuf *sb;
580 struct mbuf *m0;
581{
582 struct mbuf *m;
583 struct mbuf **mp;
584
585 if (m0 == 0)
586 return;
587 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
588 m = *mp;
589 again:
590 switch (m->m_type) {
591
592 case MT_OOBDATA:
593 continue; /* WANT next train */
594
595 case MT_CONTROL:
596 m = m->m_next;
597 if (m)
598 goto again; /* inspect THIS train further */
599 }
600 break;
601 }
602 /*
603 * Put the first mbuf on the queue.
604 * Note this permits zero length records.
605 */
606 sballoc(sb, m0);
607 m0->m_nextpkt = *mp;
608 *mp = m0;
609 m = m0->m_next;
610 m0->m_next = 0;
611 if (m && (m0->m_flags & M_EOR)) {
612 m0->m_flags &= ~M_EOR;
613 m->m_flags |= M_EOR;
614 }
615 sbcompress(sb, m, m0);
616}
617
618/*
619 * Append address and data, and optionally, control (ancillary) data
620 * to the receive queue of a socket. If present,
621 * m0 must include a packet header with total length.
622 * Returns 0 if no space in sockbuf or insufficient mbufs.
623 */
624int
625sbappendaddr(sb, asa, m0, control)
626 struct sockbuf *sb;
627 const struct sockaddr *asa;
628 struct mbuf *m0, *control;
629{
630 struct mbuf *m, *n;
631 int space = asa->sa_len;
632
633 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
634 panic("sbappendaddr");
635
636 if (m0)
637 space += m0->m_pkthdr.len;
638 for (n = control; n; n = n->m_next) {
639 space += n->m_len;
640 if (n->m_next == 0) /* keep pointer to last control buf */
641 break;
642 }
643 if (space > sbspace(sb))
644 return (0);
645 if (asa->sa_len > MLEN)
646 return (0);
647 MGET(m, MB_DONTWAIT, MT_SONAME);
648 if (m == 0)
649 return (0);
650 m->m_len = asa->sa_len;
651 bcopy(asa, mtod(m, caddr_t), asa->sa_len);
652 if (n)
653 n->m_next = m0; /* concatenate data to control */
654 else
655 control = m0;
656 m->m_next = control;
657 for (n = m; n; n = n->m_next)
658 sballoc(sb, n);
659 n = sb->sb_mb;
660 if (n) {
661 while (n->m_nextpkt)
662 n = n->m_nextpkt;
663 n->m_nextpkt = m;
664 } else
665 sb->sb_mb = m;
666 return (1);
667}
668
669int
670sbappendcontrol(sb, m0, control)
671 struct sockbuf *sb;
672 struct mbuf *control, *m0;
673{
674 struct mbuf *m, *n;
675 int space = 0;
676
677 if (control == 0)
678 panic("sbappendcontrol");
679 for (m = control; ; m = m->m_next) {
680 space += m->m_len;
681 if (m->m_next == 0)
682 break;
683 }
684 n = m; /* save pointer to last control buffer */
685 for (m = m0; m; m = m->m_next)
686 space += m->m_len;
687 if (space > sbspace(sb))
688 return (0);
689 n->m_next = m0; /* concatenate data to control */
690 for (m = control; m; m = m->m_next)
691 sballoc(sb, m);
692 n = sb->sb_mb;
693 if (n) {
694 while (n->m_nextpkt)
695 n = n->m_nextpkt;
696 n->m_nextpkt = control;
697 } else
698 sb->sb_mb = control;
699 return (1);
700}
701
702/*
703 * Compress mbuf chain m into the socket
704 * buffer sb following mbuf n. If n
705 * is null, the buffer is presumed empty.
706 */
707void
708sbcompress(sb, m, n)
709 struct sockbuf *sb;
710 struct mbuf *m, *n;
711{
712 int eor = 0;
713 struct mbuf *o;
714
715 while (m) {
716 eor |= m->m_flags & M_EOR;
717 if (m->m_len == 0 &&
718 (eor == 0 ||
719 (((o = m->m_next) || (o = n)) &&
720 o->m_type == m->m_type))) {
721 m = m_free(m);
722 continue;
723 }
724 if (n && (n->m_flags & M_EOR) == 0 &&
725 M_WRITABLE(n) &&
726 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
727 m->m_len <= M_TRAILINGSPACE(n) &&
728 n->m_type == m->m_type) {
729 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
730 (unsigned)m->m_len);
731 n->m_len += m->m_len;
732 sb->sb_cc += m->m_len;
733 m = m_free(m);
734 continue;
735 }
736 if (n)
737 n->m_next = m;
738 else
739 sb->sb_mb = m;
740 sb->sb_lastmbuf = m;
741 sballoc(sb, m);
742 n = m;
743 m->m_flags &= ~M_EOR;
744 m = m->m_next;
745 n->m_next = 0;
746 }
747 if (eor) {
748 if (n)
749 n->m_flags |= eor;
750 else
751 printf("semi-panic: sbcompress");
752 }
753}
754
755/*
756 * Free all mbufs in a sockbuf.
757 * Check that all resources are reclaimed.
758 */
759void
760sbflush(sb)
761 struct sockbuf *sb;
762{
763
764 if (sb->sb_flags & SB_LOCK)
765 panic("sbflush: locked");
766 while (sb->sb_mbcnt) {
767 /*
768 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
769 * we would loop forever. Panic instead.
770 */
771 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
772 break;
773 sbdrop(sb, (int)sb->sb_cc);
774 }
775 KASSERT(!(sb->sb_cc || sb->sb_mb || sb->sb_mbcnt || sb->sb_lastmbuf),
776 ("sbflush: cc %ld || mb %p || mbcnt %ld || mbtail %p",
777 sb->sb_cc, sb->sb_mb, sb->sb_mbcnt, sb->sb_lastmbuf));
778}
779
780/*
781 * Drop data from (the front of) a sockbuf.
782 */
783void
784sbdrop(sb, len)
785 struct sockbuf *sb;
786 int len;
787{
788 struct mbuf *m;
789 struct mbuf *next;
790
791 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
792 while (len > 0) {
793 if (m == 0) {
794 if (next == 0)
795 panic("sbdrop");
796 m = next;
797 next = m->m_nextpkt;
798 continue;
799 }
800 if (m->m_len > len) {
801 m->m_len -= len;
802 m->m_data += len;
803 sb->sb_cc -= len;
804 break;
805 }
806 len -= m->m_len;
807 sbfree(sb, m);
808 m = m_free(m);
809 }
810 while (m && m->m_len == 0) {
811 sbfree(sb, m);
812 m = m_free(m);
813 }
814 if (m) {
815 sb->sb_mb = m;
816 m->m_nextpkt = next;
817 } else {
818 sb->sb_mb = next;
819 sb->sb_lastmbuf = NULL;
820 }
821}
822
823/*
824 * Drop a record off the front of a sockbuf
825 * and move the next record to the front.
826 */
827void
828sbdroprecord(sb)
829 struct sockbuf *sb;
830{
831 struct mbuf *m;
832
833 m = sb->sb_mb;
834 if (m) {
835 sb->sb_mb = m->m_nextpkt;
836 do {
837 sbfree(sb, m);
838 m = m_free(m);
839 } while (m);
840 }
841}
842
843/*
844 * Create a "control" mbuf containing the specified data
845 * with the specified type for presentation on a socket buffer.
846 */
847struct mbuf *
848sbcreatecontrol(p, size, type, level)
849 caddr_t p;
850 int size;
851 int type, level;
852{
853 struct cmsghdr *cp;
854 struct mbuf *m;
855
856 if (CMSG_SPACE((u_int)size) > MCLBYTES)
857 return ((struct mbuf *) NULL);
858 if ((m = m_get(MB_DONTWAIT, MT_CONTROL)) == NULL)
859 return ((struct mbuf *) NULL);
860 if (CMSG_SPACE((u_int)size) > MLEN) {
861 MCLGET(m, MB_DONTWAIT);
862 if ((m->m_flags & M_EXT) == 0) {
863 m_free(m);
864 return ((struct mbuf *) NULL);
865 }
866 }
867 cp = mtod(m, struct cmsghdr *);
868 m->m_len = 0;
869 KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
870 ("sbcreatecontrol: short mbuf"));
871 if (p != NULL)
872 (void)memcpy(CMSG_DATA(cp), p, size);
873 m->m_len = CMSG_SPACE(size);
874 cp->cmsg_len = CMSG_LEN(size);
875 cp->cmsg_level = level;
876 cp->cmsg_type = type;
877 return (m);
878}
879
880/*
881 * Some routines that return EOPNOTSUPP for entry points that are not
882 * supported by a protocol. Fill in as needed.
883 */
884int
885pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
886{
887 return EOPNOTSUPP;
888}
889
890int
891pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
892{
893 return EOPNOTSUPP;
894}
895
896int
897pru_connect2_notsupp(struct socket *so1, struct socket *so2)
898{
899 return EOPNOTSUPP;
900}
901
902int
903pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
904 struct ifnet *ifp, struct thread *td)
905{
906 return EOPNOTSUPP;
907}
908
909int
910pru_listen_notsupp(struct socket *so, struct thread *td)
911{
912 return EOPNOTSUPP;
913}
914
915int
916pru_rcvd_notsupp(struct socket *so, int flags)
917{
918 return EOPNOTSUPP;
919}
920
921int
922pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
923{
924 return EOPNOTSUPP;
925}
926
927/*
928 * This isn't really a ``null'' operation, but it's the default one
929 * and doesn't do anything destructive.
930 */
931int
932pru_sense_null(struct socket *so, struct stat *sb)
933{
934 sb->st_blksize = so->so_snd.sb_hiwat;
935 return 0;
936}
937
938/*
939 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. Callers
940 * of this routine assume that it always succeeds, so we have to use a
941 * blockable allocation even though we might be called from a critical thread.
942 */
943struct sockaddr *
944dup_sockaddr(const struct sockaddr *sa)
945{
946 struct sockaddr *sa2;
947
948 sa2 = malloc(sa->sa_len, M_SONAME, M_INTWAIT);
949 bcopy(sa, sa2, sa->sa_len);
950 return (sa2);
951}
952
953/*
954 * Create an external-format (``xsocket'') structure using the information
955 * in the kernel-format socket structure pointed to by so. This is done
956 * to reduce the spew of irrelevant information over this interface,
957 * to isolate user code from changes in the kernel structure, and
958 * potentially to provide information-hiding if we decide that
959 * some of this information should be hidden from users.
960 */
961void
962sotoxsocket(struct socket *so, struct xsocket *xso)
963{
964 xso->xso_len = sizeof *xso;
965 xso->xso_so = so;
966 xso->so_type = so->so_type;
967 xso->so_options = so->so_options;
968 xso->so_linger = so->so_linger;
969 xso->so_state = so->so_state;
970 xso->so_pcb = so->so_pcb;
971 xso->xso_protocol = so->so_proto->pr_protocol;
972 xso->xso_family = so->so_proto->pr_domain->dom_family;
973 xso->so_qlen = so->so_qlen;
974 xso->so_incqlen = so->so_incqlen;
975 xso->so_qlimit = so->so_qlimit;
976 xso->so_timeo = so->so_timeo;
977 xso->so_error = so->so_error;
978 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
979 xso->so_oobmark = so->so_oobmark;
980 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
981 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
982 xso->so_uid = so->so_cred->cr_uid;
983}
984
985/*
986 * This does the same for sockbufs. Note that the xsockbuf structure,
987 * since it is always embedded in a socket, does not include a self
988 * pointer nor a length. We make this entry point public in case
989 * some other mechanism needs it.
990 */
991void
992sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
993{
994 xsb->sb_cc = sb->sb_cc;
995 xsb->sb_hiwat = sb->sb_hiwat;
996 xsb->sb_mbcnt = sb->sb_mbcnt;
997 xsb->sb_mbmax = sb->sb_mbmax;
998 xsb->sb_lowat = sb->sb_lowat;
999 xsb->sb_flags = sb->sb_flags;
1000 xsb->sb_timeo = sb->sb_timeo;
1001}
1002
1003/*
1004 * Here is the definition of some of the basic objects in the kern.ipc
1005 * branch of the MIB.
1006 */
1007SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
1008
1009/* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1010static int dummy;
1011SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
1012SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_INT|CTLFLAG_RW,
1013 &sb_max, 0, sysctl_handle_sb_max, "I", "Maximum socket buffer size");
1014SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
1015 &maxsockets, 0, "Maximum number of sockets avaliable");
1016SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1017 &sb_efficiency, 0, "");
1018
1019/*
1020 * Initialise maxsockets
1021 */
1022static void init_maxsockets(void *ignored)
1023{
1024 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
1025 maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
1026}
1027SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);