AMD64 - Fix many compile-time warnings. int/ptr type mismatches, %llx, etc.
[dragonfly.git] / sys / kern / kern_intr.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved.
3 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice unmodified, this list of conditions, and the following
10 * disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $
27 * $DragonFly: src/sys/kern/kern_intr.c,v 1.55 2008/09/01 12:49:00 sephe Exp $
28 *
29 */
30
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/malloc.h>
34#include <sys/kernel.h>
35#include <sys/sysctl.h>
36#include <sys/thread.h>
37#include <sys/proc.h>
38#include <sys/thread2.h>
39#include <sys/random.h>
40#include <sys/serialize.h>
41#include <sys/interrupt.h>
42#include <sys/bus.h>
43#include <sys/machintr.h>
44
45#include <machine/frame.h>
46
47#include <sys/interrupt.h>
48
49struct info_info;
50
51typedef struct intrec {
52 struct intrec *next;
53 struct intr_info *info;
54 inthand2_t *handler;
55 void *argument;
56 char *name;
57 int intr;
58 int intr_flags;
59 struct lwkt_serialize *serializer;
60} *intrec_t;
61
62struct intr_info {
63 intrec_t i_reclist;
64 struct thread i_thread;
65 struct random_softc i_random;
66 int i_running;
67 long i_count; /* interrupts dispatched */
68 int i_mplock_required;
69 int i_fast;
70 int i_slow;
71 int i_state;
72 int i_errorticks;
73 unsigned long i_straycount;
74} intr_info_ary[MAX_INTS];
75
76int max_installed_hard_intr;
77int max_installed_soft_intr;
78
79#define EMERGENCY_INTR_POLLING_FREQ_MAX 20000
80
81static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS);
82static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS);
83static void emergency_intr_timer_callback(systimer_t, struct intrframe *);
84static void ithread_handler(void *arg);
85static void ithread_emergency(void *arg);
86static void report_stray_interrupt(int intr, struct intr_info *info);
87
88int intr_info_size = sizeof(intr_info_ary) / sizeof(intr_info_ary[0]);
89
90static struct systimer emergency_intr_timer;
91static struct thread emergency_intr_thread;
92
93#define ISTATE_NOTHREAD 0
94#define ISTATE_NORMAL 1
95#define ISTATE_LIVELOCKED 2
96
97#ifdef SMP
98static int intr_mpsafe = 1;
99TUNABLE_INT("kern.intr_mpsafe", &intr_mpsafe);
100SYSCTL_INT(_kern, OID_AUTO, intr_mpsafe,
101 CTLFLAG_RW, &intr_mpsafe, 0, "Run INTR_MPSAFE handlers without the BGL");
102#endif
103static int livelock_limit = 40000;
104static int livelock_lowater = 20000;
105static int livelock_debug = -1;
106SYSCTL_INT(_kern, OID_AUTO, livelock_limit,
107 CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit");
108SYSCTL_INT(_kern, OID_AUTO, livelock_lowater,
109 CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore");
110SYSCTL_INT(_kern, OID_AUTO, livelock_debug,
111 CTLFLAG_RW, &livelock_debug, 0, "Livelock debug intr#");
112
113static int emergency_intr_enable = 0; /* emergency interrupt polling */
114TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable);
115SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW,
116 0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable");
117
118static int emergency_intr_freq = 10; /* emergency polling frequency */
119TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq);
120SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW,
121 0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency");
122
123/*
124 * Sysctl support routines
125 */
126static int
127sysctl_emergency_enable(SYSCTL_HANDLER_ARGS)
128{
129 int error, enabled;
130
131 enabled = emergency_intr_enable;
132 error = sysctl_handle_int(oidp, &enabled, 0, req);
133 if (error || req->newptr == NULL)
134 return error;
135 emergency_intr_enable = enabled;
136 if (emergency_intr_enable) {
137 systimer_adjust_periodic(&emergency_intr_timer,
138 emergency_intr_freq);
139 } else {
140 systimer_adjust_periodic(&emergency_intr_timer, 1);
141 }
142 return 0;
143}
144
145static int
146sysctl_emergency_freq(SYSCTL_HANDLER_ARGS)
147{
148 int error, phz;
149
150 phz = emergency_intr_freq;
151 error = sysctl_handle_int(oidp, &phz, 0, req);
152 if (error || req->newptr == NULL)
153 return error;
154 if (phz <= 0)
155 return EINVAL;
156 else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX)
157 phz = EMERGENCY_INTR_POLLING_FREQ_MAX;
158
159 emergency_intr_freq = phz;
160 if (emergency_intr_enable) {
161 systimer_adjust_periodic(&emergency_intr_timer,
162 emergency_intr_freq);
163 } else {
164 systimer_adjust_periodic(&emergency_intr_timer, 1);
165 }
166 return 0;
167}
168
169/*
170 * Register an SWI or INTerrupt handler.
171 */
172void *
173register_swi(int intr, inthand2_t *handler, void *arg, const char *name,
174 struct lwkt_serialize *serializer)
175{
176 if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
177 panic("register_swi: bad intr %d", intr);
178 return(register_int(intr, handler, arg, name, serializer, 0));
179}
180
181void *
182register_int(int intr, inthand2_t *handler, void *arg, const char *name,
183 struct lwkt_serialize *serializer, int intr_flags)
184{
185 struct intr_info *info;
186 struct intrec **list;
187 intrec_t rec;
188 int orig_cpuid = mycpuid, cpuid;
189 char envpath[32];
190
191 if (intr < 0 || intr >= MAX_INTS)
192 panic("register_int: bad intr %d", intr);
193 if (name == NULL)
194 name = "???";
195 info = &intr_info_ary[intr];
196
197 /*
198 * Construct an interrupt handler record
199 */
200 rec = kmalloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT);
201 rec->name = kmalloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT);
202 strcpy(rec->name, name);
203
204 rec->info = info;
205 rec->handler = handler;
206 rec->argument = arg;
207 rec->intr = intr;
208 rec->intr_flags = intr_flags;
209 rec->next = NULL;
210 rec->serializer = serializer;
211
212 /*
213 * Create an emergency polling thread and set up a systimer to wake
214 * it up.
215 */
216 if (emergency_intr_thread.td_kstack == NULL) {
217 lwkt_create(ithread_emergency, NULL, NULL,
218 &emergency_intr_thread, TDF_STOPREQ|TDF_INTTHREAD, -1,
219 "ithread emerg");
220 systimer_init_periodic_nq(&emergency_intr_timer,
221 emergency_intr_timer_callback, &emergency_intr_thread,
222 (emergency_intr_enable ? emergency_intr_freq : 1));
223 }
224
225 cpuid = orig_cpuid;
226 ksnprintf(envpath, sizeof(envpath), "hw.irq.%d.dest", intr);
227 kgetenv_int(envpath, &cpuid);
228 if (cpuid >= ncpus)
229 cpuid = orig_cpuid;
230
231 if (cpuid != orig_cpuid)
232 lwkt_migratecpu(cpuid);
233
234 /*
235 * Create an interrupt thread if necessary, leave it in an unscheduled
236 * state.
237 */
238 if (info->i_state == ISTATE_NOTHREAD) {
239 info->i_state = ISTATE_NORMAL;
240 lwkt_create((void *)ithread_handler, (void *)(intptr_t)intr, NULL,
241 &info->i_thread, TDF_STOPREQ|TDF_INTTHREAD|TDF_MPSAFE, -1,
242 "ithread %d", intr);
243 if (intr >= FIRST_SOFTINT)
244 lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM);
245 else
246 lwkt_setpri(&info->i_thread, TDPRI_INT_MED);
247 info->i_thread.td_preemptable = lwkt_preempt;
248 }
249
250 list = &info->i_reclist;
251
252 /*
253 * Keep track of how many fast and slow interrupts we have.
254 * Set i_mplock_required if any handler in the chain requires
255 * the MP lock to operate.
256 */
257 if ((intr_flags & INTR_MPSAFE) == 0)
258 info->i_mplock_required = 1;
259 if (intr_flags & INTR_FAST)
260 ++info->i_fast;
261 else
262 ++info->i_slow;
263
264 /*
265 * Enable random number generation keying off of this interrupt.
266 */
267 if ((intr_flags & INTR_NOENTROPY) == 0 && info->i_random.sc_enabled == 0) {
268 info->i_random.sc_enabled = 1;
269 info->i_random.sc_intr = intr;
270 }
271
272 /*
273 * Add the record to the interrupt list.
274 */
275 crit_enter();
276 while (*list != NULL)
277 list = &(*list)->next;
278 *list = rec;
279 crit_exit();
280
281 /*
282 * Update max_installed_hard_intr to make the emergency intr poll
283 * a bit more efficient.
284 */
285 if (intr < FIRST_SOFTINT) {
286 if (max_installed_hard_intr <= intr)
287 max_installed_hard_intr = intr + 1;
288 } else {
289 if (max_installed_soft_intr <= intr)
290 max_installed_soft_intr = intr + 1;
291 }
292
293 /*
294 * Setup the machine level interrupt vector
295 *
296 * XXX temporary workaround for some ACPI brokedness. ACPI installs
297 * its interrupt too early, before the IOAPICs have been configured,
298 * which means the IOAPIC is not enabled by the registration of the
299 * ACPI interrupt. Anything else sharing that IRQ will wind up not
300 * being enabled. Temporarily work around the problem by always
301 * installing and enabling on every new interrupt handler, even
302 * if one has already been setup on that irq.
303 */
304 if (intr < FIRST_SOFTINT /* && info->i_slow + info->i_fast == 1*/) {
305 if (machintr_vector_setup(intr, intr_flags))
306 kprintf("machintr_vector_setup: failed on irq %d\n", intr);
307 }
308
309 if (cpuid != orig_cpuid)
310 lwkt_migratecpu(orig_cpuid);
311
312 return(rec);
313}
314
315void
316unregister_swi(void *id)
317{
318 unregister_int(id);
319}
320
321void
322unregister_int(void *id)
323{
324 struct intr_info *info;
325 struct intrec **list;
326 intrec_t rec;
327 int intr;
328
329 intr = ((intrec_t)id)->intr;
330
331 if (intr < 0 || intr >= MAX_INTS)
332 panic("register_int: bad intr %d", intr);
333
334 info = &intr_info_ary[intr];
335
336 /*
337 * Remove the interrupt descriptor, adjust the descriptor count,
338 * and teardown the machine level vector if this was the last interrupt.
339 */
340 crit_enter();
341 list = &info->i_reclist;
342 while ((rec = *list) != NULL) {
343 if (rec == id)
344 break;
345 list = &rec->next;
346 }
347 if (rec) {
348 intrec_t rec0;
349
350 *list = rec->next;
351 if (rec->intr_flags & INTR_FAST)
352 --info->i_fast;
353 else
354 --info->i_slow;
355 if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0)
356 machintr_vector_teardown(intr);
357
358 /*
359 * Clear i_mplock_required if no handlers in the chain require the
360 * MP lock.
361 */
362 for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) {
363 if ((rec0->intr_flags & INTR_MPSAFE) == 0)
364 break;
365 }
366 if (rec0 == NULL)
367 info->i_mplock_required = 0;
368 }
369
370 crit_exit();
371
372 /*
373 * Free the record.
374 */
375 if (rec != NULL) {
376 kfree(rec->name, M_DEVBUF);
377 kfree(rec, M_DEVBUF);
378 } else {
379 kprintf("warning: unregister_int: int %d handler for %s not found\n",
380 intr, ((intrec_t)id)->name);
381 }
382}
383
384const char *
385get_registered_name(int intr)
386{
387 intrec_t rec;
388
389 if (intr < 0 || intr >= MAX_INTS)
390 panic("register_int: bad intr %d", intr);
391
392 if ((rec = intr_info_ary[intr].i_reclist) == NULL)
393 return(NULL);
394 else if (rec->next)
395 return("mux");
396 else
397 return(rec->name);
398}
399
400int
401count_registered_ints(int intr)
402{
403 struct intr_info *info;
404
405 if (intr < 0 || intr >= MAX_INTS)
406 panic("register_int: bad intr %d", intr);
407 info = &intr_info_ary[intr];
408 return(info->i_fast + info->i_slow);
409}
410
411long
412get_interrupt_counter(int intr)
413{
414 struct intr_info *info;
415
416 if (intr < 0 || intr >= MAX_INTS)
417 panic("register_int: bad intr %d", intr);
418 info = &intr_info_ary[intr];
419 return(info->i_count);
420}
421
422
423void
424swi_setpriority(int intr, int pri)
425{
426 struct intr_info *info;
427
428 if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
429 panic("register_swi: bad intr %d", intr);
430 info = &intr_info_ary[intr];
431 if (info->i_state != ISTATE_NOTHREAD)
432 lwkt_setpri(&info->i_thread, pri);
433}
434
435void
436register_randintr(int intr)
437{
438 struct intr_info *info;
439
440 if (intr < 0 || intr >= MAX_INTS)
441 panic("register_randintr: bad intr %d", intr);
442 info = &intr_info_ary[intr];
443 info->i_random.sc_intr = intr;
444 info->i_random.sc_enabled = 1;
445}
446
447void
448unregister_randintr(int intr)
449{
450 struct intr_info *info;
451
452 if (intr < 0 || intr >= MAX_INTS)
453 panic("register_swi: bad intr %d", intr);
454 info = &intr_info_ary[intr];
455 info->i_random.sc_enabled = -1;
456}
457
458int
459next_registered_randintr(int intr)
460{
461 struct intr_info *info;
462
463 if (intr < 0 || intr >= MAX_INTS)
464 panic("register_swi: bad intr %d", intr);
465 while (intr < MAX_INTS) {
466 info = &intr_info_ary[intr];
467 if (info->i_random.sc_enabled > 0)
468 break;
469 ++intr;
470 }
471 return(intr);
472}
473
474/*
475 * Dispatch an interrupt. If there's nothing to do we have a stray
476 * interrupt and can just return, leaving the interrupt masked.
477 *
478 * We need to schedule the interrupt and set its i_running bit. If
479 * we are not on the interrupt thread's cpu we have to send a message
480 * to the correct cpu that will issue the desired action (interlocking
481 * with the interrupt thread's critical section). We do NOT attempt to
482 * reschedule interrupts whos i_running bit is already set because
483 * this would prematurely wakeup a livelock-limited interrupt thread.
484 *
485 * i_running is only tested/set on the same cpu as the interrupt thread.
486 *
487 * We are NOT in a critical section, which will allow the scheduled
488 * interrupt to preempt us. The MP lock might *NOT* be held here.
489 */
490#ifdef SMP
491
492static void
493sched_ithd_remote(void *arg)
494{
495 sched_ithd((int)arg);
496}
497
498#endif
499
500void
501sched_ithd(int intr)
502{
503 struct intr_info *info;
504
505 info = &intr_info_ary[intr];
506
507 ++info->i_count;
508 if (info->i_state != ISTATE_NOTHREAD) {
509 if (info->i_reclist == NULL) {
510 report_stray_interrupt(intr, info);
511 } else {
512#ifdef SMP
513 if (info->i_thread.td_gd == mycpu) {
514 if (info->i_running == 0) {
515 info->i_running = 1;
516 if (info->i_state != ISTATE_LIVELOCKED)
517 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
518 }
519 } else {
520 lwkt_send_ipiq(info->i_thread.td_gd,
521 sched_ithd_remote, (void *)intr);
522 }
523#else
524 if (info->i_running == 0) {
525 info->i_running = 1;
526 if (info->i_state != ISTATE_LIVELOCKED)
527 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
528 }
529#endif
530 }
531 } else {
532 report_stray_interrupt(intr, info);
533 }
534}
535
536static void
537report_stray_interrupt(int intr, struct intr_info *info)
538{
539 ++info->i_straycount;
540 if (info->i_straycount < 10) {
541 if (info->i_errorticks == ticks)
542 return;
543 info->i_errorticks = ticks;
544 kprintf("sched_ithd: stray interrupt %d on cpu %d\n",
545 intr, mycpuid);
546 } else if (info->i_straycount == 10) {
547 kprintf("sched_ithd: %ld stray interrupts %d on cpu %d - "
548 "there will be no further reports\n",
549 info->i_straycount, intr, mycpuid);
550 }
551}
552
553/*
554 * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL
555 * might not be held).
556 */
557static void
558ithread_livelock_wakeup(systimer_t st)
559{
560 struct intr_info *info;
561
562 info = &intr_info_ary[(int)(intptr_t)st->data];
563 if (info->i_state != ISTATE_NOTHREAD)
564 lwkt_schedule(&info->i_thread);
565}
566
567/*
568 * This function is called directly from the ICU or APIC vector code assembly
569 * to process an interrupt. The critical section and interrupt deferral
570 * checks have already been done but the function is entered WITHOUT
571 * a critical section held. The BGL may or may not be held.
572 *
573 * Must return non-zero if we do not want the vector code to re-enable
574 * the interrupt (which we don't if we have to schedule the interrupt)
575 */
576int ithread_fast_handler(struct intrframe *frame);
577
578int
579ithread_fast_handler(struct intrframe *frame)
580{
581 int intr;
582 struct intr_info *info;
583 struct intrec **list;
584 int must_schedule;
585#ifdef SMP
586 int got_mplock;
587#endif
588 intrec_t rec, next_rec;
589 globaldata_t gd;
590
591 intr = frame->if_vec;
592 gd = mycpu;
593
594 info = &intr_info_ary[intr];
595
596 /*
597 * If we are not processing any FAST interrupts, just schedule the thing.
598 * (since we aren't in a critical section, this can result in a
599 * preemption)
600 *
601 * XXX Protect sched_ithd() call with gd_intr_nesting_level? Interrupts
602 * aren't enabled, but still...
603 */
604 if (info->i_fast == 0) {
605 ++gd->gd_cnt.v_intr;
606 sched_ithd(intr);
607 return(1);
608 }
609
610 /*
611 * This should not normally occur since interrupts ought to be
612 * masked if the ithread has been scheduled or is running.
613 */
614 if (info->i_running)
615 return(1);
616
617 /*
618 * Bump the interrupt nesting level to process any FAST interrupts.
619 * Obtain the MP lock as necessary. If the MP lock cannot be obtained,
620 * schedule the interrupt thread to deal with the issue instead.
621 *
622 * To reduce overhead, just leave the MP lock held once it has been
623 * obtained.
624 */
625 crit_enter_gd(gd);
626 ++gd->gd_intr_nesting_level;
627 ++gd->gd_cnt.v_intr;
628 must_schedule = info->i_slow;
629#ifdef SMP
630 got_mplock = 0;
631#endif
632
633 list = &info->i_reclist;
634 for (rec = *list; rec; rec = next_rec) {
635 next_rec = rec->next; /* rec may be invalid after call */
636
637 if (rec->intr_flags & INTR_FAST) {
638#ifdef SMP
639 if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) {
640 if (try_mplock() == 0) {
641 int owner;
642
643 /*
644 * If we couldn't get the MP lock try to forward it
645 * to the cpu holding the MP lock, setting must_schedule
646 * to -1 so we do not schedule and also do not unmask
647 * the interrupt. Otherwise just schedule it.
648 */
649 owner = owner_mplock();
650 if (owner >= 0 && owner != gd->gd_cpuid) {
651 lwkt_send_ipiq_bycpu(owner, forward_fastint_remote,
652 (void *)intr);
653 must_schedule = -1;
654 ++gd->gd_cnt.v_forwarded_ints;
655 } else {
656 must_schedule = 1;
657 }
658 break;
659 }
660 got_mplock = 1;
661 }
662#endif
663 if (rec->serializer) {
664 must_schedule += lwkt_serialize_handler_try(
665 rec->serializer, rec->handler,
666 rec->argument, frame);
667 } else {
668 rec->handler(rec->argument, frame);
669 }
670 }
671 }
672
673 /*
674 * Cleanup
675 */
676 --gd->gd_intr_nesting_level;
677#ifdef SMP
678 if (got_mplock)
679 rel_mplock();
680#endif
681 crit_exit_gd(gd);
682
683 /*
684 * If we had a problem, schedule the thread to catch the missed
685 * records (it will just re-run all of them). A return value of 0
686 * indicates that all handlers have been run and the interrupt can
687 * be re-enabled, and a non-zero return indicates that the interrupt
688 * thread controls re-enablement.
689 */
690 if (must_schedule > 0)
691 sched_ithd(intr);
692 else if (must_schedule == 0)
693 ++info->i_count;
694 return(must_schedule);
695}
696
697#if 0
698
6996: ; \
700 /* could not get the MP lock, forward the interrupt */ \
701 movl mp_lock, %eax ; /* check race */ \
702 cmpl $MP_FREE_LOCK,%eax ; \
703 je 2b ; \
704 incl PCPU(cnt)+V_FORWARDED_INTS ; \
705 subl $12,%esp ; \
706 movl $irq_num,8(%esp) ; \
707 movl $forward_fastint_remote,4(%esp) ; \
708 movl %eax,(%esp) ; \
709 call lwkt_send_ipiq_bycpu ; \
710 addl $12,%esp ; \
711 jmp 5f ;
712
713#endif
714
715
716/*
717 * Interrupt threads run this as their main loop.
718 *
719 * The handler begins execution outside a critical section and with the BGL
720 * held.
721 *
722 * The i_running state starts at 0. When an interrupt occurs, the hardware
723 * interrupt is disabled and sched_ithd() The HW interrupt remains disabled
724 * until all routines have run. We then call ithread_done() to reenable
725 * the HW interrupt and deschedule us until the next interrupt.
726 *
727 * We are responsible for atomically checking i_running and ithread_done()
728 * is responsible for atomically checking for platform-specific delayed
729 * interrupts. i_running for our irq is only set in the context of our cpu,
730 * so a critical section is a sufficient interlock.
731 */
732#define LIVELOCK_TIMEFRAME(freq) ((freq) >> 2) /* 1/4 second */
733
734static void
735ithread_handler(void *arg)
736{
737 struct intr_info *info;
738 int use_limit;
739 __uint32_t lseconds;
740 int intr;
741 int mpheld;
742 struct intrec **list;
743 intrec_t rec, nrec;
744 globaldata_t gd;
745 struct systimer ill_timer; /* enforced freq. timer */
746 u_int ill_count; /* interrupt livelock counter */
747
748 ill_count = 0;
749 intr = (int)(intptr_t)arg;
750 info = &intr_info_ary[intr];
751 list = &info->i_reclist;
752 gd = mycpu;
753 lseconds = gd->gd_time_seconds;
754
755 /*
756 * The loop must be entered with one critical section held. The thread
757 * is created with TDF_MPSAFE so the MP lock is not held on start.
758 */
759 crit_enter_gd(gd);
760 mpheld = 0;
761
762 for (;;) {
763 /*
764 * The chain is only considered MPSAFE if all its interrupt handlers
765 * are MPSAFE. However, if intr_mpsafe has been turned off we
766 * always operate with the BGL.
767 */
768#ifdef SMP
769 if (intr_mpsafe == 0) {
770 if (mpheld == 0) {
771 get_mplock();
772 mpheld = 1;
773 }
774 } else if (info->i_mplock_required != mpheld) {
775 if (info->i_mplock_required) {
776 KKASSERT(mpheld == 0);
777 get_mplock();
778 mpheld = 1;
779 } else {
780 KKASSERT(mpheld != 0);
781 rel_mplock();
782 mpheld = 0;
783 }
784 }
785#endif
786
787 /*
788 * If an interrupt is pending, clear i_running and execute the
789 * handlers. Note that certain types of interrupts can re-trigger
790 * and set i_running again.
791 *
792 * Each handler is run in a critical section. Note that we run both
793 * FAST and SLOW designated service routines.
794 */
795 if (info->i_running) {
796 ++ill_count;
797 info->i_running = 0;
798
799 if (*list == NULL)
800 report_stray_interrupt(intr, info);
801
802 for (rec = *list; rec; rec = nrec) {
803 nrec = rec->next;
804 if (rec->serializer) {
805 lwkt_serialize_handler_call(rec->serializer, rec->handler,
806 rec->argument, NULL);
807 } else {
808 rec->handler(rec->argument, NULL);
809 }
810 }
811 }
812
813 /*
814 * This is our interrupt hook to add rate randomness to the random
815 * number generator.
816 */
817 if (info->i_random.sc_enabled > 0)
818 add_interrupt_randomness(intr);
819
820 /*
821 * Unmask the interrupt to allow it to trigger again. This only
822 * applies to certain types of interrupts (typ level interrupts).
823 * This can result in the interrupt retriggering, but the retrigger
824 * will not be processed until we cycle our critical section.
825 *
826 * Only unmask interrupts while handlers are installed. It is
827 * possible to hit a situation where no handlers are installed
828 * due to a device driver livelocking and then tearing down its
829 * interrupt on close (the parallel bus being a good example).
830 */
831 if (*list)
832 machintr_intren(intr);
833
834 /*
835 * Do a quick exit/enter to catch any higher-priority interrupt
836 * sources, such as the statclock, so thread time accounting
837 * will still work. This may also cause an interrupt to re-trigger.
838 */
839 crit_exit_gd(gd);
840 crit_enter_gd(gd);
841
842 /*
843 * LIVELOCK STATE MACHINE
844 */
845 switch(info->i_state) {
846 case ISTATE_NORMAL:
847 /*
848 * Reset the count each second.
849 */
850 if (lseconds != gd->gd_time_seconds) {
851 lseconds = gd->gd_time_seconds;
852 ill_count = 0;
853 }
854
855 /*
856 * If we did not exceed the frequency limit, we are done.
857 * If the interrupt has not retriggered we deschedule ourselves.
858 */
859 if (ill_count <= livelock_limit) {
860 if (info->i_running == 0) {
861 lwkt_deschedule_self(gd->gd_curthread);
862 lwkt_switch();
863 }
864 break;
865 }
866
867 /*
868 * Otherwise we are livelocked. Set up a periodic systimer
869 * to wake the thread up at the limit frequency.
870 */
871 kprintf("intr %d at %d/%d hz, livelocked limit engaged!\n",
872 intr, ill_count, livelock_limit);
873 info->i_state = ISTATE_LIVELOCKED;
874 if ((use_limit = livelock_limit) < 100)
875 use_limit = 100;
876 else if (use_limit > 500000)
877 use_limit = 500000;
878 systimer_init_periodic_nq(&ill_timer, ithread_livelock_wakeup,
879 (void *)(intptr_t)intr, use_limit);
880 /* fall through */
881 case ISTATE_LIVELOCKED:
882 /*
883 * Wait for our periodic timer to go off. Since the interrupt
884 * has re-armed it can still set i_running, but it will not
885 * reschedule us while we are in a livelocked state.
886 */
887 lwkt_deschedule_self(gd->gd_curthread);
888 lwkt_switch();
889
890 /*
891 * Check once a second to see if the livelock condition no
892 * longer applies.
893 */
894 if (lseconds != gd->gd_time_seconds) {
895 lseconds = gd->gd_time_seconds;
896 if (ill_count < livelock_lowater) {
897 info->i_state = ISTATE_NORMAL;
898 systimer_del(&ill_timer);
899 kprintf("intr %d at %d/%d hz, livelock removed\n",
900 intr, ill_count, livelock_lowater);
901 } else if (livelock_debug == intr ||
902 (bootverbose && cold)) {
903 kprintf("intr %d at %d/%d hz, in livelock\n",
904 intr, ill_count, livelock_lowater);
905 }
906 ill_count = 0;
907 }
908 break;
909 }
910 }
911 /* not reached */
912}
913
914/*
915 * Emergency interrupt polling thread. The thread begins execution
916 * outside a critical section with the BGL held.
917 *
918 * If emergency interrupt polling is enabled, this thread will
919 * execute all system interrupts not marked INTR_NOPOLL at the
920 * specified polling frequency.
921 *
922 * WARNING! This thread runs *ALL* interrupt service routines that
923 * are not marked INTR_NOPOLL, which basically means everything except
924 * the 8254 clock interrupt and the ATA interrupt. It has very high
925 * overhead and should only be used in situations where the machine
926 * cannot otherwise be made to work. Due to the severe performance
927 * degredation, it should not be enabled on production machines.
928 */
929static void
930ithread_emergency(void *arg __unused)
931{
932 struct intr_info *info;
933 intrec_t rec, nrec;
934 int intr;
935
936 for (;;) {
937 for (intr = 0; intr < max_installed_hard_intr; ++intr) {
938 info = &intr_info_ary[intr];
939 for (rec = info->i_reclist; rec; rec = nrec) {
940 if ((rec->intr_flags & INTR_NOPOLL) == 0) {
941 if (rec->serializer) {
942 lwkt_serialize_handler_call(rec->serializer,
943 rec->handler, rec->argument, NULL);
944 } else {
945 rec->handler(rec->argument, NULL);
946 }
947 }
948 nrec = rec->next;
949 }
950 }
951 lwkt_deschedule_self(curthread);
952 lwkt_switch();
953 }
954}
955
956/*
957 * Systimer callback - schedule the emergency interrupt poll thread
958 * if emergency polling is enabled.
959 */
960static
961void
962emergency_intr_timer_callback(systimer_t info, struct intrframe *frame __unused)
963{
964 if (emergency_intr_enable)
965 lwkt_schedule(info->data);
966}
967
968int
969ithread_cpuid(int intr)
970{
971 const struct intr_info *info;
972
973 KKASSERT(intr >= 0 && intr < MAX_INTS);
974 info = &intr_info_ary[intr];
975
976 if (info->i_state == ISTATE_NOTHREAD)
977 return -1;
978 return info->i_thread.td_gd->gd_cpuid;
979}
980
981/*
982 * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
983 * The data for this machine dependent, and the declarations are in machine
984 * dependent code. The layout of intrnames and intrcnt however is machine
985 * independent.
986 *
987 * We do not know the length of intrcnt and intrnames at compile time, so
988 * calculate things at run time.
989 */
990
991static int
992sysctl_intrnames(SYSCTL_HANDLER_ARGS)
993{
994 struct intr_info *info;
995 intrec_t rec;
996 int error = 0;
997 int len;
998 int intr;
999 char buf[64];
1000
1001 for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) {
1002 info = &intr_info_ary[intr];
1003
1004 len = 0;
1005 buf[0] = 0;
1006 for (rec = info->i_reclist; rec; rec = rec->next) {
1007 ksnprintf(buf + len, sizeof(buf) - len, "%s%s",
1008 (len ? "/" : ""), rec->name);
1009 len += strlen(buf + len);
1010 }
1011 if (len == 0) {
1012 ksnprintf(buf, sizeof(buf), "irq%d", intr);
1013 len = strlen(buf);
1014 }
1015 error = SYSCTL_OUT(req, buf, len + 1);
1016 }
1017 return (error);
1018}
1019
1020
1021SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
1022 NULL, 0, sysctl_intrnames, "", "Interrupt Names");
1023
1024static int
1025sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
1026{
1027 struct intr_info *info;
1028 int error = 0;
1029 int intr;
1030
1031 for (intr = 0; intr < max_installed_hard_intr; ++intr) {
1032 info = &intr_info_ary[intr];
1033
1034 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1035 if (error)
1036 goto failed;
1037 }
1038 for (intr = FIRST_SOFTINT; intr < max_installed_soft_intr; ++intr) {
1039 info = &intr_info_ary[intr];
1040
1041 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1042 if (error)
1043 goto failed;
1044 }
1045failed:
1046 return(error);
1047}
1048
1049SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
1050 NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
1051