kernel - Cluster fixes + Enable clustering for HAMMER1
[dragonfly.git] / sys / kern / vfs_bio.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 * John S. Dyson.
13 *
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme. Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author: John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/buf.h>
33#include <sys/conf.h>
34#include <sys/devicestat.h>
35#include <sys/eventhandler.h>
36#include <sys/lock.h>
37#include <sys/malloc.h>
38#include <sys/mount.h>
39#include <sys/kernel.h>
40#include <sys/kthread.h>
41#include <sys/proc.h>
42#include <sys/reboot.h>
43#include <sys/resourcevar.h>
44#include <sys/sysctl.h>
45#include <sys/vmmeter.h>
46#include <sys/vnode.h>
47#include <sys/dsched.h>
48#include <vm/vm.h>
49#include <vm/vm_param.h>
50#include <vm/vm_kern.h>
51#include <vm/vm_pageout.h>
52#include <vm/vm_page.h>
53#include <vm/vm_object.h>
54#include <vm/vm_extern.h>
55#include <vm/vm_map.h>
56#include <vm/vm_pager.h>
57#include <vm/swap_pager.h>
58
59#include <sys/buf2.h>
60#include <sys/thread2.h>
61#include <sys/spinlock2.h>
62#include <sys/mplock2.h>
63#include <vm/vm_page2.h>
64
65#include "opt_ddb.h"
66#ifdef DDB
67#include <ddb/ddb.h>
68#endif
69
70/*
71 * Buffer queues.
72 */
73enum bufq_type {
74 BQUEUE_NONE, /* not on any queue */
75 BQUEUE_LOCKED, /* locked buffers */
76 BQUEUE_CLEAN, /* non-B_DELWRI buffers */
77 BQUEUE_DIRTY, /* B_DELWRI buffers */
78 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */
79 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */
80 BQUEUE_EMPTY, /* empty buffer headers */
81
82 BUFFER_QUEUES /* number of buffer queues */
83};
84
85typedef enum bufq_type bufq_type_t;
86
87#define BD_WAKE_SIZE 16384
88#define BD_WAKE_MASK (BD_WAKE_SIZE - 1)
89
90TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
91static struct spinlock bufqspin = SPINLOCK_INITIALIZER(&bufqspin);
92static struct spinlock bufcspin = SPINLOCK_INITIALIZER(&bufcspin);
93
94static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
95
96struct buf *buf; /* buffer header pool */
97
98static void vfs_clean_pages(struct buf *bp);
99static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
100#if 0
101static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
102#endif
103static void vfs_vmio_release(struct buf *bp);
104static int flushbufqueues(struct buf *marker, bufq_type_t q);
105static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
106
107static void bd_signal(int totalspace);
108static void buf_daemon(void);
109static void buf_daemon_hw(void);
110
111/*
112 * bogus page -- for I/O to/from partially complete buffers
113 * this is a temporary solution to the problem, but it is not
114 * really that bad. it would be better to split the buffer
115 * for input in the case of buffers partially already in memory,
116 * but the code is intricate enough already.
117 */
118vm_page_t bogus_page;
119
120/*
121 * These are all static, but make the ones we export globals so we do
122 * not need to use compiler magic.
123 */
124long bufspace; /* locked by buffer_map */
125long maxbufspace;
126static long bufmallocspace; /* atomic ops */
127long maxbufmallocspace, lobufspace, hibufspace;
128static int bufreusecnt, bufdefragcnt, buffreekvacnt;
129static long lorunningspace;
130static long hirunningspace;
131static int runningbufreq; /* locked by bufcspin */
132static long dirtybufspace; /* locked by bufcspin */
133static int dirtybufcount; /* locked by bufcspin */
134static long dirtybufspacehw; /* locked by bufcspin */
135static int dirtybufcounthw; /* locked by bufcspin */
136static long runningbufspace; /* locked by bufcspin */
137static int runningbufcount; /* locked by bufcspin */
138long lodirtybufspace;
139long hidirtybufspace;
140static int getnewbufcalls;
141static int getnewbufrestarts;
142static int recoverbufcalls;
143static int needsbuffer; /* locked by bufcspin */
144static int bd_request; /* locked by bufcspin */
145static int bd_request_hw; /* locked by bufcspin */
146static u_int bd_wake_ary[BD_WAKE_SIZE];
147static u_int bd_wake_index;
148static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
149static int debug_commit;
150
151static struct thread *bufdaemon_td;
152static struct thread *bufdaemonhw_td;
153static u_int lowmempgallocs;
154static u_int lowmempgfails;
155
156/*
157 * Sysctls for operational control of the buffer cache.
158 */
159SYSCTL_LONG(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
160 "Number of dirty buffers to flush before bufdaemon becomes inactive");
161SYSCTL_LONG(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
162 "High watermark used to trigger explicit flushing of dirty buffers");
163SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
164 "Minimum amount of buffer space required for active I/O");
165SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
166 "Maximum amount of buffer space to usable for active I/O");
167SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
168 "Page allocations done during periods of very low free memory");
169SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0,
170 "Page allocations which failed during periods of very low free memory");
171SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
172 "Recycle pages to active or inactive queue transition pt 0-64");
173/*
174 * Sysctls determining current state of the buffer cache.
175 */
176SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
177 "Total number of buffers in buffer cache");
178SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
179 "Pending bytes of dirty buffers (all)");
180SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
181 "Pending bytes of dirty buffers (heavy weight)");
182SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
183 "Pending number of dirty buffers");
184SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
185 "Pending number of dirty buffers (heavy weight)");
186SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
187 "I/O bytes currently in progress due to asynchronous writes");
188SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
189 "I/O buffers currently in progress due to asynchronous writes");
190SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
191 "Hard limit on maximum amount of memory usable for buffer space");
192SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
193 "Soft limit on maximum amount of memory usable for buffer space");
194SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
195 "Minimum amount of memory to reserve for system buffer space");
196SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
197 "Amount of memory available for buffers");
198SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
199 0, "Maximum amount of memory reserved for buffers using malloc");
200SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
201 "Amount of memory left for buffers using malloc-scheme");
202SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
203 "New buffer header acquisition requests");
204SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
205 0, "New buffer header acquisition restarts");
206SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
207 "Recover VM space in an emergency");
208SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
209 "Buffer acquisition restarts due to fragmented buffer map");
210SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
211 "Amount of time KVA space was deallocated in an arbitrary buffer");
212SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
213 "Amount of time buffer re-use operations were successful");
214SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
215SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
216 "sizeof(struct buf)");
217
218char *buf_wmesg = BUF_WMESG;
219
220#define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
221#define VFS_BIO_NEED_UNUSED02 0x02
222#define VFS_BIO_NEED_UNUSED04 0x04
223#define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
224
225/*
226 * bufspacewakeup:
227 *
228 * Called when buffer space is potentially available for recovery.
229 * getnewbuf() will block on this flag when it is unable to free
230 * sufficient buffer space. Buffer space becomes recoverable when
231 * bp's get placed back in the queues.
232 */
233static __inline void
234bufspacewakeup(void)
235{
236 /*
237 * If someone is waiting for BUF space, wake them up. Even
238 * though we haven't freed the kva space yet, the waiting
239 * process will be able to now.
240 */
241 spin_lock(&bufcspin);
242 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
243 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
244 spin_unlock(&bufcspin);
245 wakeup(&needsbuffer);
246 } else {
247 spin_unlock(&bufcspin);
248 }
249}
250
251/*
252 * runningbufwakeup:
253 *
254 * Accounting for I/O in progress.
255 *
256 */
257static __inline void
258runningbufwakeup(struct buf *bp)
259{
260 long totalspace;
261 long limit;
262
263 if ((totalspace = bp->b_runningbufspace) != 0) {
264 spin_lock(&bufcspin);
265 runningbufspace -= totalspace;
266 --runningbufcount;
267 bp->b_runningbufspace = 0;
268
269 /*
270 * see waitrunningbufspace() for limit test.
271 */
272 limit = hirunningspace * 3 / 6;
273 if (runningbufreq && runningbufspace <= limit) {
274 runningbufreq = 0;
275 spin_unlock(&bufcspin);
276 wakeup(&runningbufreq);
277 } else {
278 spin_unlock(&bufcspin);
279 }
280 bd_signal(totalspace);
281 }
282}
283
284/*
285 * bufcountwakeup:
286 *
287 * Called when a buffer has been added to one of the free queues to
288 * account for the buffer and to wakeup anyone waiting for free buffers.
289 * This typically occurs when large amounts of metadata are being handled
290 * by the buffer cache ( else buffer space runs out first, usually ).
291 *
292 * MPSAFE
293 */
294static __inline void
295bufcountwakeup(void)
296{
297 spin_lock(&bufcspin);
298 if (needsbuffer) {
299 needsbuffer &= ~VFS_BIO_NEED_ANY;
300 spin_unlock(&bufcspin);
301 wakeup(&needsbuffer);
302 } else {
303 spin_unlock(&bufcspin);
304 }
305}
306
307/*
308 * waitrunningbufspace()
309 *
310 * If runningbufspace exceeds 4/6 hirunningspace we block until
311 * runningbufspace drops to 3/6 hirunningspace. We also block if another
312 * thread blocked here in order to be fair, even if runningbufspace
313 * is now lower than the limit.
314 *
315 * The caller may be using this function to block in a tight loop, we
316 * must block while runningbufspace is greater than at least
317 * hirunningspace * 3 / 6.
318 */
319void
320waitrunningbufspace(void)
321{
322 long limit = hirunningspace * 4 / 6;
323
324 if (runningbufspace > limit || runningbufreq) {
325 spin_lock(&bufcspin);
326 while (runningbufspace > limit || runningbufreq) {
327 runningbufreq = 1;
328 ssleep(&runningbufreq, &bufcspin, 0, "wdrn1", 0);
329 }
330 spin_unlock(&bufcspin);
331 }
332}
333
334/*
335 * buf_dirty_count_severe:
336 *
337 * Return true if we have too many dirty buffers.
338 */
339int
340buf_dirty_count_severe(void)
341{
342 return (runningbufspace + dirtybufspace >= hidirtybufspace ||
343 dirtybufcount >= nbuf / 2);
344}
345
346/*
347 * Return true if the amount of running I/O is severe and BIOQ should
348 * start bursting.
349 */
350int
351buf_runningbufspace_severe(void)
352{
353 return (runningbufspace >= hirunningspace * 4 / 6);
354}
355
356/*
357 * vfs_buf_test_cache:
358 *
359 * Called when a buffer is extended. This function clears the B_CACHE
360 * bit if the newly extended portion of the buffer does not contain
361 * valid data.
362 *
363 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
364 * cache buffers. The VM pages remain dirty, as someone had mmap()'d
365 * them while a clean buffer was present.
366 */
367static __inline__
368void
369vfs_buf_test_cache(struct buf *bp,
370 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
371 vm_page_t m)
372{
373 if (bp->b_flags & B_CACHE) {
374 int base = (foff + off) & PAGE_MASK;
375 if (vm_page_is_valid(m, base, size) == 0)
376 bp->b_flags &= ~B_CACHE;
377 }
378}
379
380/*
381 * bd_speedup()
382 *
383 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
384 * low water mark.
385 *
386 * MPSAFE
387 */
388static __inline__
389void
390bd_speedup(void)
391{
392 if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
393 return;
394
395 if (bd_request == 0 &&
396 (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
397 dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
398 spin_lock(&bufcspin);
399 bd_request = 1;
400 spin_unlock(&bufcspin);
401 wakeup(&bd_request);
402 }
403 if (bd_request_hw == 0 &&
404 (dirtybufspacehw > lodirtybufspace / 2 ||
405 dirtybufcounthw >= nbuf / 2)) {
406 spin_lock(&bufcspin);
407 bd_request_hw = 1;
408 spin_unlock(&bufcspin);
409 wakeup(&bd_request_hw);
410 }
411}
412
413/*
414 * bd_heatup()
415 *
416 * Get the buf_daemon heated up when the number of running and dirty
417 * buffers exceeds the mid-point.
418 *
419 * Return the total number of dirty bytes past the second mid point
420 * as a measure of how much excess dirty data there is in the system.
421 *
422 * MPSAFE
423 */
424int
425bd_heatup(void)
426{
427 long mid1;
428 long mid2;
429 long totalspace;
430
431 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
432
433 totalspace = runningbufspace + dirtybufspace;
434 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
435 bd_speedup();
436 mid2 = mid1 + (hidirtybufspace - mid1) / 2;
437 if (totalspace >= mid2)
438 return(totalspace - mid2);
439 }
440 return(0);
441}
442
443/*
444 * bd_wait()
445 *
446 * Wait for the buffer cache to flush (totalspace) bytes worth of
447 * buffers, then return.
448 *
449 * Regardless this function blocks while the number of dirty buffers
450 * exceeds hidirtybufspace.
451 *
452 * MPSAFE
453 */
454void
455bd_wait(int totalspace)
456{
457 u_int i;
458 int count;
459
460 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
461 return;
462
463 while (totalspace > 0) {
464 bd_heatup();
465 if (totalspace > runningbufspace + dirtybufspace)
466 totalspace = runningbufspace + dirtybufspace;
467 count = totalspace / BKVASIZE;
468 if (count >= BD_WAKE_SIZE)
469 count = BD_WAKE_SIZE - 1;
470
471 spin_lock(&bufcspin);
472 i = (bd_wake_index + count) & BD_WAKE_MASK;
473 ++bd_wake_ary[i];
474
475 /*
476 * This is not a strict interlock, so we play a bit loose
477 * with locking access to dirtybufspace*
478 */
479 tsleep_interlock(&bd_wake_ary[i], 0);
480 spin_unlock(&bufcspin);
481 tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
482
483 totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
484 }
485}
486
487/*
488 * bd_signal()
489 *
490 * This function is called whenever runningbufspace or dirtybufspace
491 * is reduced. Track threads waiting for run+dirty buffer I/O
492 * complete.
493 *
494 * MPSAFE
495 */
496static void
497bd_signal(int totalspace)
498{
499 u_int i;
500
501 if (totalspace > 0) {
502 if (totalspace > BKVASIZE * BD_WAKE_SIZE)
503 totalspace = BKVASIZE * BD_WAKE_SIZE;
504 spin_lock(&bufcspin);
505 while (totalspace > 0) {
506 i = bd_wake_index++;
507 i &= BD_WAKE_MASK;
508 if (bd_wake_ary[i]) {
509 bd_wake_ary[i] = 0;
510 spin_unlock(&bufcspin);
511 wakeup(&bd_wake_ary[i]);
512 spin_lock(&bufcspin);
513 }
514 totalspace -= BKVASIZE;
515 }
516 spin_unlock(&bufcspin);
517 }
518}
519
520/*
521 * BIO tracking support routines.
522 *
523 * Release a ref on a bio_track. Wakeup requests are atomically released
524 * along with the last reference so bk_active will never wind up set to
525 * only 0x80000000.
526 *
527 * MPSAFE
528 */
529static
530void
531bio_track_rel(struct bio_track *track)
532{
533 int active;
534 int desired;
535
536 /*
537 * Shortcut
538 */
539 active = track->bk_active;
540 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
541 return;
542
543 /*
544 * Full-on. Note that the wait flag is only atomically released on
545 * the 1->0 count transition.
546 *
547 * We check for a negative count transition using bit 30 since bit 31
548 * has a different meaning.
549 */
550 for (;;) {
551 desired = (active & 0x7FFFFFFF) - 1;
552 if (desired)
553 desired |= active & 0x80000000;
554 if (atomic_cmpset_int(&track->bk_active, active, desired)) {
555 if (desired & 0x40000000)
556 panic("bio_track_rel: bad count: %p\n", track);
557 if (active & 0x80000000)
558 wakeup(track);
559 break;
560 }
561 active = track->bk_active;
562 }
563}
564
565/*
566 * Wait for the tracking count to reach 0.
567 *
568 * Use atomic ops such that the wait flag is only set atomically when
569 * bk_active is non-zero.
570 *
571 * MPSAFE
572 */
573int
574bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
575{
576 int active;
577 int desired;
578 int error;
579
580 /*
581 * Shortcut
582 */
583 if (track->bk_active == 0)
584 return(0);
585
586 /*
587 * Full-on. Note that the wait flag may only be atomically set if
588 * the active count is non-zero.
589 *
590 * NOTE: We cannot optimize active == desired since a wakeup could
591 * clear active prior to our tsleep_interlock().
592 */
593 error = 0;
594 while ((active = track->bk_active) != 0) {
595 cpu_ccfence();
596 desired = active | 0x80000000;
597 tsleep_interlock(track, slp_flags);
598 if (atomic_cmpset_int(&track->bk_active, active, desired)) {
599 error = tsleep(track, slp_flags | PINTERLOCKED,
600 "trwait", slp_timo);
601 if (error)
602 break;
603 }
604 }
605 return (error);
606}
607
608/*
609 * bufinit:
610 *
611 * Load time initialisation of the buffer cache, called from machine
612 * dependant initialization code.
613 */
614void
615bufinit(void)
616{
617 struct buf *bp;
618 vm_offset_t bogus_offset;
619 int i;
620
621 /* next, make a null set of free lists */
622 for (i = 0; i < BUFFER_QUEUES; i++)
623 TAILQ_INIT(&bufqueues[i]);
624
625 /* finally, initialize each buffer header and stick on empty q */
626 for (i = 0; i < nbuf; i++) {
627 bp = &buf[i];
628 bzero(bp, sizeof *bp);
629 bp->b_flags = B_INVAL; /* we're just an empty header */
630 bp->b_cmd = BUF_CMD_DONE;
631 bp->b_qindex = BQUEUE_EMPTY;
632 initbufbio(bp);
633 xio_init(&bp->b_xio);
634 buf_dep_init(bp);
635 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
636 }
637
638 /*
639 * maxbufspace is the absolute maximum amount of buffer space we are
640 * allowed to reserve in KVM and in real terms. The absolute maximum
641 * is nominally used by buf_daemon. hibufspace is the nominal maximum
642 * used by most other processes. The differential is required to
643 * ensure that buf_daemon is able to run when other processes might
644 * be blocked waiting for buffer space.
645 *
646 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
647 * this may result in KVM fragmentation which is not handled optimally
648 * by the system.
649 */
650 maxbufspace = (long)nbuf * BKVASIZE;
651 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
652 lobufspace = hibufspace - MAXBSIZE;
653
654 lorunningspace = 512 * 1024;
655 /* hirunningspace -- see below */
656
657 /*
658 * Limit the amount of malloc memory since it is wired permanently
659 * into the kernel space. Even though this is accounted for in
660 * the buffer allocation, we don't want the malloced region to grow
661 * uncontrolled. The malloc scheme improves memory utilization
662 * significantly on average (small) directories.
663 */
664 maxbufmallocspace = hibufspace / 20;
665
666 /*
667 * Reduce the chance of a deadlock occuring by limiting the number
668 * of delayed-write dirty buffers we allow to stack up.
669 *
670 * We don't want too much actually queued to the device at once
671 * (XXX this needs to be per-mount!), because the buffers will
672 * wind up locked for a very long period of time while the I/O
673 * drains.
674 */
675 hidirtybufspace = hibufspace / 2; /* dirty + running */
676 hirunningspace = hibufspace / 16; /* locked & queued to device */
677 if (hirunningspace < 1024 * 1024)
678 hirunningspace = 1024 * 1024;
679
680 dirtybufspace = 0;
681 dirtybufspacehw = 0;
682
683 lodirtybufspace = hidirtybufspace / 2;
684
685 /*
686 * Maximum number of async ops initiated per buf_daemon loop. This is
687 * somewhat of a hack at the moment, we really need to limit ourselves
688 * based on the number of bytes of I/O in-transit that were initiated
689 * from buf_daemon.
690 */
691
692 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
693 vm_object_hold(&kernel_object);
694 bogus_page = vm_page_alloc(&kernel_object,
695 (bogus_offset >> PAGE_SHIFT),
696 VM_ALLOC_NORMAL);
697 vm_object_drop(&kernel_object);
698 vmstats.v_wire_count++;
699
700}
701
702/*
703 * Initialize the embedded bio structures, typically used by
704 * deprecated code which tries to allocate its own struct bufs.
705 */
706void
707initbufbio(struct buf *bp)
708{
709 bp->b_bio1.bio_buf = bp;
710 bp->b_bio1.bio_prev = NULL;
711 bp->b_bio1.bio_offset = NOOFFSET;
712 bp->b_bio1.bio_next = &bp->b_bio2;
713 bp->b_bio1.bio_done = NULL;
714 bp->b_bio1.bio_flags = 0;
715
716 bp->b_bio2.bio_buf = bp;
717 bp->b_bio2.bio_prev = &bp->b_bio1;
718 bp->b_bio2.bio_offset = NOOFFSET;
719 bp->b_bio2.bio_next = NULL;
720 bp->b_bio2.bio_done = NULL;
721 bp->b_bio2.bio_flags = 0;
722
723 BUF_LOCKINIT(bp);
724}
725
726/*
727 * Reinitialize the embedded bio structures as well as any additional
728 * translation cache layers.
729 */
730void
731reinitbufbio(struct buf *bp)
732{
733 struct bio *bio;
734
735 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
736 bio->bio_done = NULL;
737 bio->bio_offset = NOOFFSET;
738 }
739}
740
741/*
742 * Undo the effects of an initbufbio().
743 */
744void
745uninitbufbio(struct buf *bp)
746{
747 dsched_exit_buf(bp);
748 BUF_LOCKFREE(bp);
749}
750
751/*
752 * Push another BIO layer onto an existing BIO and return it. The new
753 * BIO layer may already exist, holding cached translation data.
754 */
755struct bio *
756push_bio(struct bio *bio)
757{
758 struct bio *nbio;
759
760 if ((nbio = bio->bio_next) == NULL) {
761 int index = bio - &bio->bio_buf->b_bio_array[0];
762 if (index >= NBUF_BIO - 1) {
763 panic("push_bio: too many layers bp %p\n",
764 bio->bio_buf);
765 }
766 nbio = &bio->bio_buf->b_bio_array[index + 1];
767 bio->bio_next = nbio;
768 nbio->bio_prev = bio;
769 nbio->bio_buf = bio->bio_buf;
770 nbio->bio_offset = NOOFFSET;
771 nbio->bio_done = NULL;
772 nbio->bio_next = NULL;
773 }
774 KKASSERT(nbio->bio_done == NULL);
775 return(nbio);
776}
777
778/*
779 * Pop a BIO translation layer, returning the previous layer. The
780 * must have been previously pushed.
781 */
782struct bio *
783pop_bio(struct bio *bio)
784{
785 return(bio->bio_prev);
786}
787
788void
789clearbiocache(struct bio *bio)
790{
791 while (bio) {
792 bio->bio_offset = NOOFFSET;
793 bio = bio->bio_next;
794 }
795}
796
797/*
798 * bfreekva:
799 *
800 * Free the KVA allocation for buffer 'bp'.
801 *
802 * Must be called from a critical section as this is the only locking for
803 * buffer_map.
804 *
805 * Since this call frees up buffer space, we call bufspacewakeup().
806 *
807 * MPALMOSTSAFE
808 */
809static void
810bfreekva(struct buf *bp)
811{
812 int count;
813
814 if (bp->b_kvasize) {
815 ++buffreekvacnt;
816 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
817 vm_map_lock(&buffer_map);
818 bufspace -= bp->b_kvasize;
819 vm_map_delete(&buffer_map,
820 (vm_offset_t) bp->b_kvabase,
821 (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
822 &count
823 );
824 vm_map_unlock(&buffer_map);
825 vm_map_entry_release(count);
826 bp->b_kvasize = 0;
827 bp->b_kvabase = NULL;
828 bufspacewakeup();
829 }
830}
831
832/*
833 * bremfree:
834 *
835 * Remove the buffer from the appropriate free list.
836 */
837static __inline void
838_bremfree(struct buf *bp)
839{
840 if (bp->b_qindex != BQUEUE_NONE) {
841 KASSERT(BUF_REFCNTNB(bp) == 1,
842 ("bremfree: bp %p not locked",bp));
843 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
844 bp->b_qindex = BQUEUE_NONE;
845 } else {
846 if (BUF_REFCNTNB(bp) <= 1)
847 panic("bremfree: removing a buffer not on a queue");
848 }
849}
850
851void
852bremfree(struct buf *bp)
853{
854 spin_lock(&bufqspin);
855 _bremfree(bp);
856 spin_unlock(&bufqspin);
857}
858
859static void
860bremfree_locked(struct buf *bp)
861{
862 _bremfree(bp);
863}
864
865/*
866 * This version of bread issues any required I/O asyncnronously and
867 * makes a callback on completion.
868 *
869 * The callback must check whether BIO_DONE is set in the bio and issue
870 * the bpdone(bp, 0) if it isn't. The callback is responsible for clearing
871 * BIO_DONE and disposing of the I/O (bqrelse()ing it).
872 */
873void
874breadcb(struct vnode *vp, off_t loffset, int size,
875 void (*func)(struct bio *), void *arg)
876{
877 struct buf *bp;
878
879 bp = getblk(vp, loffset, size, 0, 0);
880
881 /* if not found in cache, do some I/O */
882 if ((bp->b_flags & B_CACHE) == 0) {
883 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
884 bp->b_cmd = BUF_CMD_READ;
885 bp->b_bio1.bio_done = func;
886 bp->b_bio1.bio_caller_info1.ptr = arg;
887 vfs_busy_pages(vp, bp);
888 BUF_KERNPROC(bp);
889 vn_strategy(vp, &bp->b_bio1);
890 } else if (func) {
891 /*
892 * Since we are issuing the callback synchronously it cannot
893 * race the BIO_DONE, so no need for atomic ops here.
894 */
895 /*bp->b_bio1.bio_done = func;*/
896 bp->b_bio1.bio_caller_info1.ptr = arg;
897 bp->b_bio1.bio_flags |= BIO_DONE;
898 func(&bp->b_bio1);
899 } else {
900 bqrelse(bp);
901 }
902}
903
904/*
905 * breadnx() - Terminal function for bread() and breadn().
906 *
907 * This function will start asynchronous I/O on read-ahead blocks as well
908 * as satisfy the primary request.
909 *
910 * We must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE is
911 * set, the buffer is valid and we do not have to do anything.
912 */
913int
914breadnx(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
915 int *rabsize, int cnt, struct buf **bpp)
916{
917 struct buf *bp, *rabp;
918 int i;
919 int rv = 0, readwait = 0;
920
921 if (*bpp)
922 bp = *bpp;
923 else
924 *bpp = bp = getblk(vp, loffset, size, 0, 0);
925
926 /* if not found in cache, do some I/O */
927 if ((bp->b_flags & B_CACHE) == 0) {
928 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
929 bp->b_cmd = BUF_CMD_READ;
930 bp->b_bio1.bio_done = biodone_sync;
931 bp->b_bio1.bio_flags |= BIO_SYNC;
932 vfs_busy_pages(vp, bp);
933 vn_strategy(vp, &bp->b_bio1);
934 ++readwait;
935 }
936
937 for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
938 if (inmem(vp, *raoffset))
939 continue;
940 rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
941
942 if ((rabp->b_flags & B_CACHE) == 0) {
943 rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
944 rabp->b_cmd = BUF_CMD_READ;
945 vfs_busy_pages(vp, rabp);
946 BUF_KERNPROC(rabp);
947 vn_strategy(vp, &rabp->b_bio1);
948 } else {
949 brelse(rabp);
950 }
951 }
952 if (readwait)
953 rv = biowait(&bp->b_bio1, "biord");
954 return (rv);
955}
956
957/*
958 * bwrite:
959 *
960 * Synchronous write, waits for completion.
961 *
962 * Write, release buffer on completion. (Done by iodone
963 * if async). Do not bother writing anything if the buffer
964 * is invalid.
965 *
966 * Note that we set B_CACHE here, indicating that buffer is
967 * fully valid and thus cacheable. This is true even of NFS
968 * now so we set it generally. This could be set either here
969 * or in biodone() since the I/O is synchronous. We put it
970 * here.
971 */
972int
973bwrite(struct buf *bp)
974{
975 int error;
976
977 if (bp->b_flags & B_INVAL) {
978 brelse(bp);
979 return (0);
980 }
981 if (BUF_REFCNTNB(bp) == 0)
982 panic("bwrite: buffer is not busy???");
983
984 /* Mark the buffer clean */
985 bundirty(bp);
986
987 bp->b_flags &= ~(B_ERROR | B_EINTR);
988 bp->b_flags |= B_CACHE;
989 bp->b_cmd = BUF_CMD_WRITE;
990 bp->b_bio1.bio_done = biodone_sync;
991 bp->b_bio1.bio_flags |= BIO_SYNC;
992 vfs_busy_pages(bp->b_vp, bp);
993
994 /*
995 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
996 * valid for vnode-backed buffers.
997 */
998 bsetrunningbufspace(bp, bp->b_bufsize);
999 vn_strategy(bp->b_vp, &bp->b_bio1);
1000 error = biowait(&bp->b_bio1, "biows");
1001 brelse(bp);
1002
1003 return (error);
1004}
1005
1006/*
1007 * bawrite:
1008 *
1009 * Asynchronous write. Start output on a buffer, but do not wait for
1010 * it to complete. The buffer is released when the output completes.
1011 *
1012 * bwrite() ( or the VOP routine anyway ) is responsible for handling
1013 * B_INVAL buffers. Not us.
1014 */
1015void
1016bawrite(struct buf *bp)
1017{
1018 if (bp->b_flags & B_INVAL) {
1019 brelse(bp);
1020 return;
1021 }
1022 if (BUF_REFCNTNB(bp) == 0)
1023 panic("bwrite: buffer is not busy???");
1024
1025 /* Mark the buffer clean */
1026 bundirty(bp);
1027
1028 bp->b_flags &= ~(B_ERROR | B_EINTR);
1029 bp->b_flags |= B_CACHE;
1030 bp->b_cmd = BUF_CMD_WRITE;
1031 KKASSERT(bp->b_bio1.bio_done == NULL);
1032 vfs_busy_pages(bp->b_vp, bp);
1033
1034 /*
1035 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
1036 * valid for vnode-backed buffers.
1037 */
1038 bsetrunningbufspace(bp, bp->b_bufsize);
1039 BUF_KERNPROC(bp);
1040 vn_strategy(bp->b_vp, &bp->b_bio1);
1041}
1042
1043/*
1044 * bowrite:
1045 *
1046 * Ordered write. Start output on a buffer, and flag it so that the
1047 * device will write it in the order it was queued. The buffer is
1048 * released when the output completes. bwrite() ( or the VOP routine
1049 * anyway ) is responsible for handling B_INVAL buffers.
1050 */
1051int
1052bowrite(struct buf *bp)
1053{
1054 bp->b_flags |= B_ORDERED;
1055 bawrite(bp);
1056 return (0);
1057}
1058
1059/*
1060 * bdwrite:
1061 *
1062 * Delayed write. (Buffer is marked dirty). Do not bother writing
1063 * anything if the buffer is marked invalid.
1064 *
1065 * Note that since the buffer must be completely valid, we can safely
1066 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
1067 * biodone() in order to prevent getblk from writing the buffer
1068 * out synchronously.
1069 */
1070void
1071bdwrite(struct buf *bp)
1072{
1073 if (BUF_REFCNTNB(bp) == 0)
1074 panic("bdwrite: buffer is not busy");
1075
1076 if (bp->b_flags & B_INVAL) {
1077 brelse(bp);
1078 return;
1079 }
1080 bdirty(bp);
1081
1082 if (dsched_is_clear_buf_priv(bp))
1083 dsched_new_buf(bp);
1084
1085 /*
1086 * Set B_CACHE, indicating that the buffer is fully valid. This is
1087 * true even of NFS now.
1088 */
1089 bp->b_flags |= B_CACHE;
1090
1091 /*
1092 * This bmap keeps the system from needing to do the bmap later,
1093 * perhaps when the system is attempting to do a sync. Since it
1094 * is likely that the indirect block -- or whatever other datastructure
1095 * that the filesystem needs is still in memory now, it is a good
1096 * thing to do this. Note also, that if the pageout daemon is
1097 * requesting a sync -- there might not be enough memory to do
1098 * the bmap then... So, this is important to do.
1099 */
1100 if (bp->b_bio2.bio_offset == NOOFFSET) {
1101 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1102 NULL, NULL, BUF_CMD_WRITE);
1103 }
1104
1105 /*
1106 * Because the underlying pages may still be mapped and
1107 * writable trying to set the dirty buffer (b_dirtyoff/end)
1108 * range here will be inaccurate.
1109 *
1110 * However, we must still clean the pages to satisfy the
1111 * vnode_pager and pageout daemon, so theythink the pages
1112 * have been "cleaned". What has really occured is that
1113 * they've been earmarked for later writing by the buffer
1114 * cache.
1115 *
1116 * So we get the b_dirtyoff/end update but will not actually
1117 * depend on it (NFS that is) until the pages are busied for
1118 * writing later on.
1119 */
1120 vfs_clean_pages(bp);
1121 bqrelse(bp);
1122
1123 /*
1124 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1125 * due to the softdep code.
1126 */
1127}
1128
1129/*
1130 * Fake write - return pages to VM system as dirty, leave the buffer clean.
1131 * This is used by tmpfs.
1132 *
1133 * It is important for any VFS using this routine to NOT use it for
1134 * IO_SYNC or IO_ASYNC operations which occur when the system really
1135 * wants to flush VM pages to backing store.
1136 */
1137void
1138buwrite(struct buf *bp)
1139{
1140 vm_page_t m;
1141 int i;
1142
1143 /*
1144 * Only works for VMIO buffers. If the buffer is already
1145 * marked for delayed-write we can't avoid the bdwrite().
1146 */
1147 if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1148 bdwrite(bp);
1149 return;
1150 }
1151
1152 /*
1153 * Mark as needing a commit.
1154 */
1155 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1156 m = bp->b_xio.xio_pages[i];
1157 vm_page_need_commit(m);
1158 }
1159 bqrelse(bp);
1160}
1161
1162/*
1163 * bdirty:
1164 *
1165 * Turn buffer into delayed write request by marking it B_DELWRI.
1166 * B_RELBUF and B_NOCACHE must be cleared.
1167 *
1168 * We reassign the buffer to itself to properly update it in the
1169 * dirty/clean lists.
1170 *
1171 * Must be called from a critical section.
1172 * The buffer must be on BQUEUE_NONE.
1173 */
1174void
1175bdirty(struct buf *bp)
1176{
1177 KASSERT(bp->b_qindex == BQUEUE_NONE,
1178 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1179 if (bp->b_flags & B_NOCACHE) {
1180 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1181 bp->b_flags &= ~B_NOCACHE;
1182 }
1183 if (bp->b_flags & B_INVAL) {
1184 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1185 }
1186 bp->b_flags &= ~B_RELBUF;
1187
1188 if ((bp->b_flags & B_DELWRI) == 0) {
1189 lwkt_gettoken(&bp->b_vp->v_token);
1190 bp->b_flags |= B_DELWRI;
1191 reassignbuf(bp);
1192 lwkt_reltoken(&bp->b_vp->v_token);
1193
1194 spin_lock(&bufcspin);
1195 ++dirtybufcount;
1196 dirtybufspace += bp->b_bufsize;
1197 if (bp->b_flags & B_HEAVY) {
1198 ++dirtybufcounthw;
1199 dirtybufspacehw += bp->b_bufsize;
1200 }
1201 spin_unlock(&bufcspin);
1202
1203 bd_heatup();
1204 }
1205}
1206
1207/*
1208 * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1209 * needs to be flushed with a different buf_daemon thread to avoid
1210 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf().
1211 */
1212void
1213bheavy(struct buf *bp)
1214{
1215 if ((bp->b_flags & B_HEAVY) == 0) {
1216 bp->b_flags |= B_HEAVY;
1217 if (bp->b_flags & B_DELWRI) {
1218 spin_lock(&bufcspin);
1219 ++dirtybufcounthw;
1220 dirtybufspacehw += bp->b_bufsize;
1221 spin_unlock(&bufcspin);
1222 }
1223 }
1224}
1225
1226/*
1227 * bundirty:
1228 *
1229 * Clear B_DELWRI for buffer.
1230 *
1231 * Must be called from a critical section.
1232 *
1233 * The buffer is typically on BQUEUE_NONE but there is one case in
1234 * brelse() that calls this function after placing the buffer on
1235 * a different queue.
1236 *
1237 * MPSAFE
1238 */
1239void
1240bundirty(struct buf *bp)
1241{
1242 if (bp->b_flags & B_DELWRI) {
1243 lwkt_gettoken(&bp->b_vp->v_token);
1244 bp->b_flags &= ~B_DELWRI;
1245 reassignbuf(bp);
1246 lwkt_reltoken(&bp->b_vp->v_token);
1247
1248 spin_lock(&bufcspin);
1249 --dirtybufcount;
1250 dirtybufspace -= bp->b_bufsize;
1251 if (bp->b_flags & B_HEAVY) {
1252 --dirtybufcounthw;
1253 dirtybufspacehw -= bp->b_bufsize;
1254 }
1255 spin_unlock(&bufcspin);
1256
1257 bd_signal(bp->b_bufsize);
1258 }
1259 /*
1260 * Since it is now being written, we can clear its deferred write flag.
1261 */
1262 bp->b_flags &= ~B_DEFERRED;
1263}
1264
1265/*
1266 * Set the b_runningbufspace field, used to track how much I/O is
1267 * in progress at any given moment.
1268 */
1269void
1270bsetrunningbufspace(struct buf *bp, int bytes)
1271{
1272 bp->b_runningbufspace = bytes;
1273 if (bytes) {
1274 spin_lock(&bufcspin);
1275 runningbufspace += bytes;
1276 ++runningbufcount;
1277 spin_unlock(&bufcspin);
1278 }
1279}
1280
1281/*
1282 * brelse:
1283 *
1284 * Release a busy buffer and, if requested, free its resources. The
1285 * buffer will be stashed in the appropriate bufqueue[] allowing it
1286 * to be accessed later as a cache entity or reused for other purposes.
1287 *
1288 * MPALMOSTSAFE
1289 */
1290void
1291brelse(struct buf *bp)
1292{
1293#ifdef INVARIANTS
1294 int saved_flags = bp->b_flags;
1295#endif
1296
1297 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1298
1299 /*
1300 * If B_NOCACHE is set we are being asked to destroy the buffer and
1301 * its backing store. Clear B_DELWRI.
1302 *
1303 * B_NOCACHE is set in two cases: (1) when the caller really wants
1304 * to destroy the buffer and backing store and (2) when the caller
1305 * wants to destroy the buffer and backing store after a write
1306 * completes.
1307 */
1308 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1309 bundirty(bp);
1310 }
1311
1312 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1313 /*
1314 * A re-dirtied buffer is only subject to destruction
1315 * by B_INVAL. B_ERROR and B_NOCACHE are ignored.
1316 */
1317 /* leave buffer intact */
1318 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1319 (bp->b_bufsize <= 0)) {
1320 /*
1321 * Either a failed read or we were asked to free or not
1322 * cache the buffer. This path is reached with B_DELWRI
1323 * set only if B_INVAL is already set. B_NOCACHE governs
1324 * backing store destruction.
1325 *
1326 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1327 * buffer cannot be immediately freed.
1328 */
1329 bp->b_flags |= B_INVAL;
1330 if (LIST_FIRST(&bp->b_dep) != NULL)
1331 buf_deallocate(bp);
1332 if (bp->b_flags & B_DELWRI) {
1333 spin_lock(&bufcspin);
1334 --dirtybufcount;
1335 dirtybufspace -= bp->b_bufsize;
1336 if (bp->b_flags & B_HEAVY) {
1337 --dirtybufcounthw;
1338 dirtybufspacehw -= bp->b_bufsize;
1339 }
1340 spin_unlock(&bufcspin);
1341
1342 bd_signal(bp->b_bufsize);
1343 }
1344 bp->b_flags &= ~(B_DELWRI | B_CACHE);
1345 }
1346
1347 /*
1348 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1349 * or if b_refs is non-zero.
1350 *
1351 * If vfs_vmio_release() is called with either bit set, the
1352 * underlying pages may wind up getting freed causing a previous
1353 * write (bdwrite()) to get 'lost' because pages associated with
1354 * a B_DELWRI bp are marked clean. Pages associated with a
1355 * B_LOCKED buffer may be mapped by the filesystem.
1356 *
1357 * If we want to release the buffer ourselves (rather then the
1358 * originator asking us to release it), give the originator a
1359 * chance to countermand the release by setting B_LOCKED.
1360 *
1361 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1362 * if B_DELWRI is set.
1363 *
1364 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1365 * on pages to return pages to the VM page queues.
1366 */
1367 if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) {
1368 bp->b_flags &= ~B_RELBUF;
1369 } else if (vm_page_count_min(0)) {
1370 if (LIST_FIRST(&bp->b_dep) != NULL)
1371 buf_deallocate(bp); /* can set B_LOCKED */
1372 if (bp->b_flags & (B_DELWRI | B_LOCKED))
1373 bp->b_flags &= ~B_RELBUF;
1374 else
1375 bp->b_flags |= B_RELBUF;
1376 }
1377
1378 /*
1379 * Make sure b_cmd is clear. It may have already been cleared by
1380 * biodone().
1381 *
1382 * At this point destroying the buffer is governed by the B_INVAL
1383 * or B_RELBUF flags.
1384 */
1385 bp->b_cmd = BUF_CMD_DONE;
1386 dsched_exit_buf(bp);
1387
1388 /*
1389 * VMIO buffer rundown. Make sure the VM page array is restored
1390 * after an I/O may have replaces some of the pages with bogus pages
1391 * in order to not destroy dirty pages in a fill-in read.
1392 *
1393 * Note that due to the code above, if a buffer is marked B_DELWRI
1394 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1395 * B_INVAL may still be set, however.
1396 *
1397 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1398 * but not the backing store. B_NOCACHE will destroy the backing
1399 * store.
1400 *
1401 * Note that dirty NFS buffers contain byte-granular write ranges
1402 * and should not be destroyed w/ B_INVAL even if the backing store
1403 * is left intact.
1404 */
1405 if (bp->b_flags & B_VMIO) {
1406 /*
1407 * Rundown for VMIO buffers which are not dirty NFS buffers.
1408 */
1409 int i, j, resid;
1410 vm_page_t m;
1411 off_t foff;
1412 vm_pindex_t poff;
1413 vm_object_t obj;
1414 struct vnode *vp;
1415
1416 vp = bp->b_vp;
1417
1418 /*
1419 * Get the base offset and length of the buffer. Note that
1420 * in the VMIO case if the buffer block size is not
1421 * page-aligned then b_data pointer may not be page-aligned.
1422 * But our b_xio.xio_pages array *IS* page aligned.
1423 *
1424 * block sizes less then DEV_BSIZE (usually 512) are not
1425 * supported due to the page granularity bits (m->valid,
1426 * m->dirty, etc...).
1427 *
1428 * See man buf(9) for more information
1429 */
1430
1431 resid = bp->b_bufsize;
1432 foff = bp->b_loffset;
1433
1434 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1435 m = bp->b_xio.xio_pages[i];
1436 vm_page_flag_clear(m, PG_ZERO);
1437 /*
1438 * If we hit a bogus page, fixup *all* of them
1439 * now. Note that we left these pages wired
1440 * when we removed them so they had better exist,
1441 * and they cannot be ripped out from under us so
1442 * no critical section protection is necessary.
1443 */
1444 if (m == bogus_page) {
1445 obj = vp->v_object;
1446 poff = OFF_TO_IDX(bp->b_loffset);
1447
1448 vm_object_hold(obj);
1449 for (j = i; j < bp->b_xio.xio_npages; j++) {
1450 vm_page_t mtmp;
1451
1452 mtmp = bp->b_xio.xio_pages[j];
1453 if (mtmp == bogus_page) {
1454 mtmp = vm_page_lookup(obj, poff + j);
1455 if (!mtmp) {
1456 panic("brelse: page missing");
1457 }
1458 bp->b_xio.xio_pages[j] = mtmp;
1459 }
1460 }
1461 bp->b_flags &= ~B_HASBOGUS;
1462 vm_object_drop(obj);
1463
1464 if ((bp->b_flags & B_INVAL) == 0) {
1465 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1466 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1467 }
1468 m = bp->b_xio.xio_pages[i];
1469 }
1470
1471 /*
1472 * Invalidate the backing store if B_NOCACHE is set
1473 * (e.g. used with vinvalbuf()). If this is NFS
1474 * we impose a requirement that the block size be
1475 * a multiple of PAGE_SIZE and create a temporary
1476 * hack to basically invalidate the whole page. The
1477 * problem is that NFS uses really odd buffer sizes
1478 * especially when tracking piecemeal writes and
1479 * it also vinvalbuf()'s a lot, which would result
1480 * in only partial page validation and invalidation
1481 * here. If the file page is mmap()'d, however,
1482 * all the valid bits get set so after we invalidate
1483 * here we would end up with weird m->valid values
1484 * like 0xfc. nfs_getpages() can't handle this so
1485 * we clear all the valid bits for the NFS case
1486 * instead of just some of them.
1487 *
1488 * The real bug is the VM system having to set m->valid
1489 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1490 * itself is an artifact of the whole 512-byte
1491 * granular mess that exists to support odd block
1492 * sizes and UFS meta-data block sizes (e.g. 6144).
1493 * A complete rewrite is required.
1494 *
1495 * XXX
1496 */
1497 if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1498 int poffset = foff & PAGE_MASK;
1499 int presid;
1500
1501 presid = PAGE_SIZE - poffset;
1502 if (bp->b_vp->v_tag == VT_NFS &&
1503 bp->b_vp->v_type == VREG) {
1504 ; /* entire page */
1505 } else if (presid > resid) {
1506 presid = resid;
1507 }
1508 KASSERT(presid >= 0, ("brelse: extra page"));
1509 vm_page_set_invalid(m, poffset, presid);
1510
1511 /*
1512 * Also make sure any swap cache is removed
1513 * as it is now stale (HAMMER in particular
1514 * uses B_NOCACHE to deal with buffer
1515 * aliasing).
1516 */
1517 swap_pager_unswapped(m);
1518 }
1519 resid -= PAGE_SIZE - (foff & PAGE_MASK);
1520 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1521 }
1522 if (bp->b_flags & (B_INVAL | B_RELBUF))
1523 vfs_vmio_release(bp);
1524 } else {
1525 /*
1526 * Rundown for non-VMIO buffers.
1527 */
1528 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1529 if (bp->b_bufsize)
1530 allocbuf(bp, 0);
1531 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1532 if (bp->b_vp)
1533 brelvp(bp);
1534 }
1535 }
1536
1537 if (bp->b_qindex != BQUEUE_NONE)
1538 panic("brelse: free buffer onto another queue???");
1539 if (BUF_REFCNTNB(bp) > 1) {
1540 /* Temporary panic to verify exclusive locking */
1541 /* This panic goes away when we allow shared refs */
1542 panic("brelse: multiple refs");
1543 /* NOT REACHED */
1544 return;
1545 }
1546
1547 /*
1548 * Figure out the correct queue to place the cleaned up buffer on.
1549 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1550 * disassociated from their vnode.
1551 */
1552 spin_lock(&bufqspin);
1553 if (bp->b_flags & B_LOCKED) {
1554 /*
1555 * Buffers that are locked are placed in the locked queue
1556 * immediately, regardless of their state.
1557 */
1558 bp->b_qindex = BQUEUE_LOCKED;
1559 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1560 } else if (bp->b_bufsize == 0) {
1561 /*
1562 * Buffers with no memory. Due to conditionals near the top
1563 * of brelse() such buffers should probably already be
1564 * marked B_INVAL and disassociated from their vnode.
1565 */
1566 bp->b_flags |= B_INVAL;
1567 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1568 KKASSERT((bp->b_flags & B_HASHED) == 0);
1569 if (bp->b_kvasize) {
1570 bp->b_qindex = BQUEUE_EMPTYKVA;
1571 } else {
1572 bp->b_qindex = BQUEUE_EMPTY;
1573 }
1574 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1575 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1576 /*
1577 * Buffers with junk contents. Again these buffers had better
1578 * already be disassociated from their vnode.
1579 */
1580 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1581 KKASSERT((bp->b_flags & B_HASHED) == 0);
1582 bp->b_flags |= B_INVAL;
1583 bp->b_qindex = BQUEUE_CLEAN;
1584 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1585 } else {
1586 /*
1587 * Remaining buffers. These buffers are still associated with
1588 * their vnode.
1589 */
1590 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1591 case B_DELWRI:
1592 bp->b_qindex = BQUEUE_DIRTY;
1593 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1594 break;
1595 case B_DELWRI | B_HEAVY:
1596 bp->b_qindex = BQUEUE_DIRTY_HW;
1597 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1598 b_freelist);
1599 break;
1600 default:
1601 /*
1602 * NOTE: Buffers are always placed at the end of the
1603 * queue. If B_AGE is not set the buffer will cycle
1604 * through the queue twice.
1605 */
1606 bp->b_qindex = BQUEUE_CLEAN;
1607 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1608 break;
1609 }
1610 }
1611 spin_unlock(&bufqspin);
1612
1613 /*
1614 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1615 * on the correct queue.
1616 */
1617 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1618 bundirty(bp);
1619
1620 /*
1621 * The bp is on an appropriate queue unless locked. If it is not
1622 * locked or dirty we can wakeup threads waiting for buffer space.
1623 *
1624 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1625 * if B_INVAL is set ).
1626 */
1627 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1628 bufcountwakeup();
1629
1630 /*
1631 * Something we can maybe free or reuse
1632 */
1633 if (bp->b_bufsize || bp->b_kvasize)
1634 bufspacewakeup();
1635
1636 /*
1637 * Clean up temporary flags and unlock the buffer.
1638 */
1639 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1640 BUF_UNLOCK(bp);
1641}
1642
1643/*
1644 * bqrelse:
1645 *
1646 * Release a buffer back to the appropriate queue but do not try to free
1647 * it. The buffer is expected to be used again soon.
1648 *
1649 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1650 * biodone() to requeue an async I/O on completion. It is also used when
1651 * known good buffers need to be requeued but we think we may need the data
1652 * again soon.
1653 *
1654 * XXX we should be able to leave the B_RELBUF hint set on completion.
1655 *
1656 * MPSAFE
1657 */
1658void
1659bqrelse(struct buf *bp)
1660{
1661 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1662
1663 if (bp->b_qindex != BQUEUE_NONE)
1664 panic("bqrelse: free buffer onto another queue???");
1665 if (BUF_REFCNTNB(bp) > 1) {
1666 /* do not release to free list */
1667 panic("bqrelse: multiple refs");
1668 return;
1669 }
1670
1671 buf_act_advance(bp);
1672
1673 spin_lock(&bufqspin);
1674 if (bp->b_flags & B_LOCKED) {
1675 /*
1676 * Locked buffers are released to the locked queue. However,
1677 * if the buffer is dirty it will first go into the dirty
1678 * queue and later on after the I/O completes successfully it
1679 * will be released to the locked queue.
1680 */
1681 bp->b_qindex = BQUEUE_LOCKED;
1682 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1683 } else if (bp->b_flags & B_DELWRI) {
1684 bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1685 BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1686 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1687 } else if (vm_page_count_min(0)) {
1688 /*
1689 * We are too low on memory, we have to try to free the
1690 * buffer (most importantly: the wired pages making up its
1691 * backing store) *now*.
1692 */
1693 spin_unlock(&bufqspin);
1694 brelse(bp);
1695 return;
1696 } else {
1697 bp->b_qindex = BQUEUE_CLEAN;
1698 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1699 }
1700 spin_unlock(&bufqspin);
1701
1702 if ((bp->b_flags & B_LOCKED) == 0 &&
1703 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1704 bufcountwakeup();
1705 }
1706
1707 /*
1708 * Something we can maybe free or reuse.
1709 */
1710 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1711 bufspacewakeup();
1712
1713 /*
1714 * Final cleanup and unlock. Clear bits that are only used while a
1715 * buffer is actively locked.
1716 */
1717 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1718 dsched_exit_buf(bp);
1719 BUF_UNLOCK(bp);
1720}
1721
1722/*
1723 * Hold a buffer, preventing it from being reused. This will prevent
1724 * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1725 * operations. If a B_INVAL operation occurs the buffer will remain held
1726 * but the underlying pages may get ripped out.
1727 *
1728 * These functions are typically used in VOP_READ/VOP_WRITE functions
1729 * to hold a buffer during a copyin or copyout, preventing deadlocks
1730 * or recursive lock panics when read()/write() is used over mmap()'d
1731 * space.
1732 *
1733 * NOTE: bqhold() requires that the buffer be locked at the time of the
1734 * hold. bqdrop() has no requirements other than the buffer having
1735 * previously been held.
1736 */
1737void
1738bqhold(struct buf *bp)
1739{
1740 atomic_add_int(&bp->b_refs, 1);
1741}
1742
1743void
1744bqdrop(struct buf *bp)
1745{
1746 KKASSERT(bp->b_refs > 0);
1747 atomic_add_int(&bp->b_refs, -1);
1748}
1749
1750/*
1751 * Return backing pages held by the buffer 'bp' back to the VM system.
1752 * This routine is called when the bp is invalidated, released, or
1753 * reused.
1754 *
1755 * The KVA mapping (b_data) for the underlying pages is removed by
1756 * this function.
1757 *
1758 * WARNING! This routine is integral to the low memory critical path
1759 * when a buffer is B_RELBUF'd. If the system has a severe page
1760 * deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1761 * queues so they can be reused in the current pageout daemon
1762 * pass.
1763 */
1764static void
1765vfs_vmio_release(struct buf *bp)
1766{
1767 int i;
1768 vm_page_t m;
1769
1770 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1771 m = bp->b_xio.xio_pages[i];
1772 bp->b_xio.xio_pages[i] = NULL;
1773
1774 /*
1775 * We need to own the page in order to safely unwire it.
1776 */
1777 vm_page_busy_wait(m, FALSE, "vmiopg");
1778
1779 /*
1780 * The VFS is telling us this is not a meta-data buffer
1781 * even if it is backed by a block device.
1782 */
1783 if (bp->b_flags & B_NOTMETA)
1784 vm_page_flag_set(m, PG_NOTMETA);
1785
1786 /*
1787 * This is a very important bit of code. We try to track
1788 * VM page use whether the pages are wired into the buffer
1789 * cache or not. While wired into the buffer cache the
1790 * bp tracks the act_count.
1791 *
1792 * We can choose to place unwired pages on the inactive
1793 * queue (0) or active queue (1). If we place too many
1794 * on the active queue the queue will cycle the act_count
1795 * on pages we'd like to keep, just from single-use pages
1796 * (such as when doing a tar-up or file scan).
1797 */
1798 if (bp->b_act_count < vm_cycle_point)
1799 vm_page_unwire(m, 0);
1800 else
1801 vm_page_unwire(m, 1);
1802
1803 /*
1804 * If the wire_count has dropped to 0 we may need to take
1805 * further action before unbusying the page.
1806 *
1807 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us.
1808 */
1809 if (m->wire_count == 0) {
1810 vm_page_flag_clear(m, PG_ZERO);
1811
1812 if (bp->b_flags & B_DIRECT) {
1813 /*
1814 * Attempt to free the page if B_DIRECT is
1815 * set, the caller does not desire the page
1816 * to be cached.
1817 */
1818 vm_page_wakeup(m);
1819 vm_page_try_to_free(m);
1820 } else if ((bp->b_flags & B_NOTMETA) ||
1821 vm_page_count_min(0)) {
1822 /*
1823 * Attempt to move the page to PQ_CACHE
1824 * if B_NOTMETA is set. This flag is set
1825 * by HAMMER to remove one of the two pages
1826 * present when double buffering is enabled.
1827 *
1828 * Attempt to move the page to PQ_CACHE
1829 * If we have a severe page deficit. This
1830 * will cause buffer cache operations related
1831 * to pageouts to recycle the related pages
1832 * in order to avoid a low memory deadlock.
1833 */
1834 m->act_count = bp->b_act_count;
1835 vm_page_wakeup(m);
1836 vm_page_try_to_cache(m);
1837 } else {
1838 /*
1839 * Nominal case, leave the page on the
1840 * queue the original unwiring placed it on
1841 * (active or inactive).
1842 */
1843 m->act_count = bp->b_act_count;
1844 vm_page_wakeup(m);
1845 }
1846 } else {
1847 vm_page_wakeup(m);
1848 }
1849 }
1850
1851 pmap_qremove(trunc_page((vm_offset_t) bp->b_data),
1852 bp->b_xio.xio_npages);
1853 if (bp->b_bufsize) {
1854 bufspacewakeup();
1855 bp->b_bufsize = 0;
1856 }
1857 bp->b_xio.xio_npages = 0;
1858 bp->b_flags &= ~B_VMIO;
1859 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1860 if (bp->b_vp)
1861 brelvp(bp);
1862}
1863
1864/*
1865 * getnewbuf:
1866 *
1867 * Find and initialize a new buffer header, freeing up existing buffers
1868 * in the bufqueues as necessary. The new buffer is returned locked.
1869 *
1870 * Important: B_INVAL is not set. If the caller wishes to throw the
1871 * buffer away, the caller must set B_INVAL prior to calling brelse().
1872 *
1873 * We block if:
1874 * We have insufficient buffer headers
1875 * We have insufficient buffer space
1876 * buffer_map is too fragmented ( space reservation fails )
1877 * If we have to flush dirty buffers ( but we try to avoid this )
1878 *
1879 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1880 * Instead we ask the buf daemon to do it for us. We attempt to
1881 * avoid piecemeal wakeups of the pageout daemon.
1882 *
1883 * MPALMOSTSAFE
1884 */
1885struct buf *
1886getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1887{
1888 struct buf *bp;
1889 struct buf *nbp;
1890 int defrag = 0;
1891 int nqindex;
1892 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1893 static int flushingbufs;
1894
1895 /*
1896 * We can't afford to block since we might be holding a vnode lock,
1897 * which may prevent system daemons from running. We deal with
1898 * low-memory situations by proactively returning memory and running
1899 * async I/O rather then sync I/O.
1900 */
1901
1902 ++getnewbufcalls;
1903 --getnewbufrestarts;
1904restart:
1905 ++getnewbufrestarts;
1906
1907 /*
1908 * Setup for scan. If we do not have enough free buffers,
1909 * we setup a degenerate case that immediately fails. Note
1910 * that if we are specially marked process, we are allowed to
1911 * dip into our reserves.
1912 *
1913 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
1914 *
1915 * We start with EMPTYKVA. If the list is empty we backup to EMPTY.
1916 * However, there are a number of cases (defragging, reusing, ...)
1917 * where we cannot backup.
1918 */
1919 nqindex = BQUEUE_EMPTYKVA;
1920 spin_lock(&bufqspin);
1921 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1922
1923 if (nbp == NULL) {
1924 /*
1925 * If no EMPTYKVA buffers and we are either
1926 * defragging or reusing, locate a CLEAN buffer
1927 * to free or reuse. If bufspace useage is low
1928 * skip this step so we can allocate a new buffer.
1929 */
1930 if (defrag || bufspace >= lobufspace) {
1931 nqindex = BQUEUE_CLEAN;
1932 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1933 }
1934
1935 /*
1936 * If we could not find or were not allowed to reuse a
1937 * CLEAN buffer, check to see if it is ok to use an EMPTY
1938 * buffer. We can only use an EMPTY buffer if allocating
1939 * its KVA would not otherwise run us out of buffer space.
1940 */
1941 if (nbp == NULL && defrag == 0 &&
1942 bufspace + maxsize < hibufspace) {
1943 nqindex = BQUEUE_EMPTY;
1944 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1945 }
1946 }
1947
1948 /*
1949 * Run scan, possibly freeing data and/or kva mappings on the fly
1950 * depending.
1951 *
1952 * WARNING! bufqspin is held!
1953 */
1954 while ((bp = nbp) != NULL) {
1955 int qindex = nqindex;
1956
1957 nbp = TAILQ_NEXT(bp, b_freelist);
1958
1959 /*
1960 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
1961 * cycles through the queue twice before being selected.
1962 */
1963 if (qindex == BQUEUE_CLEAN &&
1964 (bp->b_flags & B_AGE) == 0 && nbp) {
1965 bp->b_flags |= B_AGE;
1966 TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
1967 TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
1968 continue;
1969 }
1970
1971 /*
1972 * Calculate next bp ( we can only use it if we do not block
1973 * or do other fancy things ).
1974 */
1975 if (nbp == NULL) {
1976 switch(qindex) {
1977 case BQUEUE_EMPTY:
1978 nqindex = BQUEUE_EMPTYKVA;
1979 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1980 break;
1981 /* fall through */
1982 case BQUEUE_EMPTYKVA:
1983 nqindex = BQUEUE_CLEAN;
1984 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1985 break;
1986 /* fall through */
1987 case BQUEUE_CLEAN:
1988 /*
1989 * nbp is NULL.
1990 */
1991 break;
1992 }
1993 }
1994
1995 /*
1996 * Sanity Checks
1997 */
1998 KASSERT(bp->b_qindex == qindex,
1999 ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2000
2001 /*
2002 * Note: we no longer distinguish between VMIO and non-VMIO
2003 * buffers.
2004 */
2005 KASSERT((bp->b_flags & B_DELWRI) == 0,
2006 ("delwri buffer %p found in queue %d", bp, qindex));
2007
2008 /*
2009 * Do not try to reuse a buffer with a non-zero b_refs.
2010 * This is an unsynchronized test. A synchronized test
2011 * is also performed after we lock the buffer.
2012 */
2013 if (bp->b_refs)
2014 continue;
2015
2016 /*
2017 * If we are defragging then we need a buffer with
2018 * b_kvasize != 0. XXX this situation should no longer
2019 * occur, if defrag is non-zero the buffer's b_kvasize
2020 * should also be non-zero at this point. XXX
2021 */
2022 if (defrag && bp->b_kvasize == 0) {
2023 kprintf("Warning: defrag empty buffer %p\n", bp);
2024 continue;
2025 }
2026
2027 /*
2028 * Start freeing the bp. This is somewhat involved. nbp
2029 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers
2030 * on the clean list must be disassociated from their
2031 * current vnode. Buffers on the empty[kva] lists have
2032 * already been disassociated.
2033 *
2034 * b_refs is checked after locking along with queue changes.
2035 * We must check here to deal with zero->nonzero transitions
2036 * made by the owner of the buffer lock, which is used by
2037 * VFS's to hold the buffer while issuing an unlocked
2038 * uiomove()s. We cannot invalidate the buffer's pages
2039 * for this case. Once we successfully lock a buffer the
2040 * only 0->1 transitions of b_refs will occur via findblk().
2041 *
2042 * We must also check for queue changes after successful
2043 * locking as the current lock holder may dispose of the
2044 * buffer and change its queue.
2045 */
2046 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2047 spin_unlock(&bufqspin);
2048 tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100);
2049 goto restart;
2050 }
2051 if (bp->b_qindex != qindex || bp->b_refs) {
2052 spin_unlock(&bufqspin);
2053 BUF_UNLOCK(bp);
2054 goto restart;
2055 }
2056 bremfree_locked(bp);
2057 spin_unlock(&bufqspin);
2058
2059 /*
2060 * Dependancies must be handled before we disassociate the
2061 * vnode.
2062 *
2063 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2064 * be immediately disassociated. HAMMER then becomes
2065 * responsible for releasing the buffer.
2066 *
2067 * NOTE: bufqspin is UNLOCKED now.
2068 */
2069 if (LIST_FIRST(&bp->b_dep) != NULL) {
2070 buf_deallocate(bp);
2071 if (bp->b_flags & B_LOCKED) {
2072 bqrelse(bp);
2073 goto restart;
2074 }
2075 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2076 }
2077
2078 if (qindex == BQUEUE_CLEAN) {
2079 if (bp->b_flags & B_VMIO)
2080 vfs_vmio_release(bp);
2081 if (bp->b_vp)
2082 brelvp(bp);
2083 }
2084
2085 /*
2086 * NOTE: nbp is now entirely invalid. We can only restart
2087 * the scan from this point on.
2088 *
2089 * Get the rest of the buffer freed up. b_kva* is still
2090 * valid after this operation.
2091 */
2092 KASSERT(bp->b_vp == NULL,
2093 ("bp3 %p flags %08x vnode %p qindex %d "
2094 "unexpectededly still associated!",
2095 bp, bp->b_flags, bp->b_vp, qindex));
2096 KKASSERT((bp->b_flags & B_HASHED) == 0);
2097
2098 /*
2099 * critical section protection is not required when
2100 * scrapping a buffer's contents because it is already
2101 * wired.
2102 */
2103 if (bp->b_bufsize)
2104 allocbuf(bp, 0);
2105
2106 bp->b_flags = B_BNOCLIP;
2107 bp->b_cmd = BUF_CMD_DONE;
2108 bp->b_vp = NULL;
2109 bp->b_error = 0;
2110 bp->b_resid = 0;
2111 bp->b_bcount = 0;
2112 bp->b_xio.xio_npages = 0;
2113 bp->b_dirtyoff = bp->b_dirtyend = 0;
2114 bp->b_act_count = ACT_INIT;
2115 reinitbufbio(bp);
2116 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2117 buf_dep_init(bp);
2118 if (blkflags & GETBLK_BHEAVY)
2119 bp->b_flags |= B_HEAVY;
2120
2121 /*
2122 * If we are defragging then free the buffer.
2123 */
2124 if (defrag) {
2125 bp->b_flags |= B_INVAL;
2126 bfreekva(bp);
2127 brelse(bp);
2128 defrag = 0;
2129 goto restart;
2130 }
2131
2132 /*
2133 * If we are overcomitted then recover the buffer and its
2134 * KVM space. This occurs in rare situations when multiple
2135 * processes are blocked in getnewbuf() or allocbuf().
2136 */
2137 if (bufspace >= hibufspace)
2138 flushingbufs = 1;
2139 if (flushingbufs && bp->b_kvasize != 0) {
2140 bp->b_flags |= B_INVAL;
2141 bfreekva(bp);
2142 brelse(bp);
2143 goto restart;
2144 }
2145 if (bufspace < lobufspace)
2146 flushingbufs = 0;
2147
2148 /*
2149 * b_refs can transition to a non-zero value while we hold
2150 * the buffer locked due to a findblk(). Our brelvp() above
2151 * interlocked any future possible transitions due to
2152 * findblk()s.
2153 *
2154 * If we find b_refs to be non-zero we can destroy the
2155 * buffer's contents but we cannot yet reuse the buffer.
2156 */
2157 if (bp->b_refs) {
2158 bp->b_flags |= B_INVAL;
2159 bfreekva(bp);
2160 brelse(bp);
2161 goto restart;
2162 }
2163 break;
2164 /* NOT REACHED, bufqspin not held */
2165 }
2166
2167 /*
2168 * If we exhausted our list, sleep as appropriate. We may have to
2169 * wakeup various daemons and write out some dirty buffers.
2170 *
2171 * Generally we are sleeping due to insufficient buffer space.
2172 *
2173 * NOTE: bufqspin is held if bp is NULL, else it is not held.
2174 */
2175 if (bp == NULL) {
2176 int flags;
2177 char *waitmsg;
2178
2179 spin_unlock(&bufqspin);
2180 if (defrag) {
2181 flags = VFS_BIO_NEED_BUFSPACE;
2182 waitmsg = "nbufkv";
2183 } else if (bufspace >= hibufspace) {
2184 waitmsg = "nbufbs";
2185 flags = VFS_BIO_NEED_BUFSPACE;
2186 } else {
2187 waitmsg = "newbuf";
2188 flags = VFS_BIO_NEED_ANY;
2189 }
2190
2191 bd_speedup(); /* heeeelp */
2192 spin_lock(&bufcspin);
2193 needsbuffer |= flags;
2194 while (needsbuffer & flags) {
2195 if (ssleep(&needsbuffer, &bufcspin,
2196 slpflags, waitmsg, slptimeo)) {
2197 spin_unlock(&bufcspin);
2198 return (NULL);
2199 }
2200 }
2201 spin_unlock(&bufcspin);
2202 } else {
2203 /*
2204 * We finally have a valid bp. We aren't quite out of the
2205 * woods, we still have to reserve kva space. In order
2206 * to keep fragmentation sane we only allocate kva in
2207 * BKVASIZE chunks.
2208 *
2209 * (bufqspin is not held)
2210 */
2211 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2212
2213 if (maxsize != bp->b_kvasize) {
2214 vm_offset_t addr = 0;
2215 int count;
2216
2217 bfreekva(bp);
2218
2219 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2220 vm_map_lock(&buffer_map);
2221
2222 if (vm_map_findspace(&buffer_map,
2223 vm_map_min(&buffer_map), maxsize,
2224 maxsize, 0, &addr)) {
2225 /*
2226 * Uh oh. Buffer map is too fragmented. We
2227 * must defragment the map.
2228 */
2229 vm_map_unlock(&buffer_map);
2230 vm_map_entry_release(count);
2231 ++bufdefragcnt;
2232 defrag = 1;
2233 bp->b_flags |= B_INVAL;
2234 brelse(bp);
2235 goto restart;
2236 }
2237 if (addr) {
2238 vm_map_insert(&buffer_map, &count,
2239 NULL, 0,
2240 addr, addr + maxsize,
2241 VM_MAPTYPE_NORMAL,
2242 VM_PROT_ALL, VM_PROT_ALL,
2243 MAP_NOFAULT);
2244
2245 bp->b_kvabase = (caddr_t) addr;
2246 bp->b_kvasize = maxsize;
2247 bufspace += bp->b_kvasize;
2248 ++bufreusecnt;
2249 }
2250 vm_map_unlock(&buffer_map);
2251 vm_map_entry_release(count);
2252 }
2253 bp->b_data = bp->b_kvabase;
2254 }
2255 return(bp);
2256}
2257
2258#if 0
2259/*
2260 * This routine is called in an emergency to recover VM pages from the
2261 * buffer cache by cashing in clean buffers. The idea is to recover
2262 * enough pages to be able to satisfy a stuck bio_page_alloc().
2263 *
2264 * XXX Currently not implemented. This function can wind up deadlocking
2265 * against another thread holding one or more of the backing pages busy.
2266 */
2267static int
2268recoverbufpages(void)
2269{
2270 struct buf *bp;
2271 int bytes = 0;
2272
2273 ++recoverbufcalls;
2274
2275 spin_lock(&bufqspin);
2276 while (bytes < MAXBSIZE) {
2277 bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2278 if (bp == NULL)
2279 break;
2280
2281 /*
2282 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
2283 * cycles through the queue twice before being selected.
2284 */
2285 if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2286 bp->b_flags |= B_AGE;
2287 TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2288 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2289 bp, b_freelist);
2290 continue;
2291 }
2292
2293 /*
2294 * Sanity Checks
2295 */
2296 KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2297 KKASSERT((bp->b_flags & B_DELWRI) == 0);
2298
2299 /*
2300 * Start freeing the bp. This is somewhat involved.
2301 *
2302 * Buffers on the clean list must be disassociated from
2303 * their current vnode
2304 */
2305
2306 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2307 kprintf("recoverbufpages: warning, locked buf %p, "
2308 "race corrected\n",
2309 bp);
2310 ssleep(&bd_request, &bufqspin, 0, "gnbxxx", hz / 100);
2311 continue;
2312 }
2313 if (bp->b_qindex != BQUEUE_CLEAN) {
2314 kprintf("recoverbufpages: warning, BUF_LOCK blocked "
2315 "unexpectedly on buf %p index %d, race "
2316 "corrected\n",
2317 bp, bp->b_qindex);
2318 BUF_UNLOCK(bp);
2319 continue;
2320 }
2321 bremfree_locked(bp);
2322 spin_unlock(&bufqspin);
2323
2324 /*
2325 * Sanity check. Only BQUEUE_DIRTY[_HW] employs markers.
2326 */
2327 KKASSERT((bp->b_flags & B_MARKER) == 0);
2328
2329 /*
2330 * Dependancies must be handled before we disassociate the
2331 * vnode.
2332 *
2333 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2334 * be immediately disassociated. HAMMER then becomes
2335 * responsible for releasing the buffer.
2336 */
2337 if (LIST_FIRST(&bp->b_dep) != NULL) {
2338 buf_deallocate(bp);
2339 if (bp->b_flags & B_LOCKED) {
2340 bqrelse(bp);
2341 spin_lock(&bufqspin);
2342 continue;
2343 }
2344 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2345 }
2346
2347 bytes += bp->b_bufsize;
2348
2349 if (bp->b_flags & B_VMIO) {
2350 bp->b_flags |= B_DIRECT; /* try to free pages */
2351 vfs_vmio_release(bp);
2352 }
2353 if (bp->b_vp)
2354 brelvp(bp);
2355
2356 KKASSERT(bp->b_vp == NULL);
2357 KKASSERT((bp->b_flags & B_HASHED) == 0);
2358
2359 /*
2360 * critical section protection is not required when
2361 * scrapping a buffer's contents because it is already
2362 * wired.
2363 */
2364 if (bp->b_bufsize)
2365 allocbuf(bp, 0);
2366
2367 bp->b_flags = B_BNOCLIP;
2368 bp->b_cmd = BUF_CMD_DONE;
2369 bp->b_vp = NULL;
2370 bp->b_error = 0;
2371 bp->b_resid = 0;
2372 bp->b_bcount = 0;
2373 bp->b_xio.xio_npages = 0;
2374 bp->b_dirtyoff = bp->b_dirtyend = 0;
2375 reinitbufbio(bp);
2376 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2377 buf_dep_init(bp);
2378 bp->b_flags |= B_INVAL;
2379 /* bfreekva(bp); */
2380 brelse(bp);
2381 spin_lock(&bufqspin);
2382 }
2383 spin_unlock(&bufqspin);
2384 return(bytes);
2385}
2386#endif
2387
2388/*
2389 * buf_daemon:
2390 *
2391 * Buffer flushing daemon. Buffers are normally flushed by the
2392 * update daemon but if it cannot keep up this process starts to
2393 * take the load in an attempt to prevent getnewbuf() from blocking.
2394 *
2395 * Once a flush is initiated it does not stop until the number
2396 * of buffers falls below lodirtybuffers, but we will wake up anyone
2397 * waiting at the mid-point.
2398 */
2399static struct kproc_desc buf_kp = {
2400 "bufdaemon",
2401 buf_daemon,
2402 &bufdaemon_td
2403};
2404SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2405 kproc_start, &buf_kp)
2406
2407static struct kproc_desc bufhw_kp = {
2408 "bufdaemon_hw",
2409 buf_daemon_hw,
2410 &bufdaemonhw_td
2411};
2412SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2413 kproc_start, &bufhw_kp)
2414
2415/*
2416 * MPSAFE thread
2417 */
2418static void
2419buf_daemon1(struct thread *td, int queue, int (*buf_limit_fn)(long),
2420 int *bd_req)
2421{
2422 long limit;
2423 struct buf *marker;
2424
2425 marker = kmalloc(sizeof(*marker), M_BIOBUF, M_WAITOK | M_ZERO);
2426 marker->b_flags |= B_MARKER;
2427 marker->b_qindex = BQUEUE_NONE;
2428
2429 /*
2430 * This process needs to be suspended prior to shutdown sync.
2431 */
2432 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2433 td, SHUTDOWN_PRI_LAST);
2434 curthread->td_flags |= TDF_SYSTHREAD;
2435
2436 /*
2437 * This process is allowed to take the buffer cache to the limit
2438 */
2439 for (;;) {
2440 kproc_suspend_loop();
2441
2442 /*
2443 * Do the flush as long as the number of dirty buffers
2444 * (including those running) exceeds lodirtybufspace.
2445 *
2446 * When flushing limit running I/O to hirunningspace
2447 * Do the flush. Limit the amount of in-transit I/O we
2448 * allow to build up, otherwise we would completely saturate
2449 * the I/O system. Wakeup any waiting processes before we
2450 * normally would so they can run in parallel with our drain.
2451 *
2452 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2453 * but because we split the operation into two threads we
2454 * have to cut it in half for each thread.
2455 */
2456 waitrunningbufspace();
2457 limit = lodirtybufspace / 2;
2458 while (buf_limit_fn(limit)) {
2459 if (flushbufqueues(marker, queue) == 0)
2460 break;
2461 if (runningbufspace < hirunningspace)
2462 continue;
2463 waitrunningbufspace();
2464 }
2465
2466 /*
2467 * We reached our low water mark, reset the
2468 * request and sleep until we are needed again.
2469 * The sleep is just so the suspend code works.
2470 */
2471 spin_lock(&bufcspin);
2472 if (*bd_req == 0)
2473 ssleep(bd_req, &bufcspin, 0, "psleep", hz);
2474 *bd_req = 0;
2475 spin_unlock(&bufcspin);
2476 }
2477 /* NOT REACHED */
2478 /*kfree(marker, M_BIOBUF);*/
2479}
2480
2481static int
2482buf_daemon_limit(long limit)
2483{
2484 return (runningbufspace + dirtybufspace > limit ||
2485 dirtybufcount - dirtybufcounthw >= nbuf / 2);
2486}
2487
2488static int
2489buf_daemon_hw_limit(long limit)
2490{
2491 return (runningbufspace + dirtybufspacehw > limit ||
2492 dirtybufcounthw >= nbuf / 2);
2493}
2494
2495static void
2496buf_daemon(void)
2497{
2498 buf_daemon1(bufdaemon_td, BQUEUE_DIRTY, buf_daemon_limit,
2499 &bd_request);
2500}
2501
2502static void
2503buf_daemon_hw(void)
2504{
2505 buf_daemon1(bufdaemonhw_td, BQUEUE_DIRTY_HW, buf_daemon_hw_limit,
2506 &bd_request_hw);
2507}
2508
2509/*
2510 * flushbufqueues:
2511 *
2512 * Try to flush a buffer in the dirty queue. We must be careful to
2513 * free up B_INVAL buffers instead of write them, which NFS is
2514 * particularly sensitive to.
2515 *
2516 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate
2517 * that we really want to try to get the buffer out and reuse it
2518 * due to the write load on the machine.
2519 *
2520 * We must lock the buffer in order to check its validity before we
2521 * can mess with its contents. bufqspin isn't enough.
2522 */
2523static int
2524flushbufqueues(struct buf *marker, bufq_type_t q)
2525{
2526 struct buf *bp;
2527 int r = 0;
2528
2529 KKASSERT(marker->b_qindex == BQUEUE_NONE);
2530 KKASSERT(marker->b_flags & B_MARKER);
2531
2532 /*
2533 * Spinlock needed to perform operations on the queue and may be
2534 * held through a non-blocking BUF_LOCK(), but cannot be held when
2535 * BUF_UNLOCK()ing or through any other major operation.
2536 */
2537 spin_lock(&bufqspin);
2538 marker->b_qindex = q;
2539 TAILQ_INSERT_HEAD(&bufqueues[q], marker, b_freelist);
2540 bp = marker;
2541
2542 while ((bp = TAILQ_NEXT(bp, b_freelist)) != NULL) {
2543 /*
2544 * NOTE: spinlock is always held at the top of the loop
2545 */
2546 if (bp->b_flags & B_MARKER)
2547 continue;
2548 if ((bp->b_flags & B_DELWRI) == 0) {
2549 kprintf("Unexpected clean buffer %p\n", bp);
2550 continue;
2551 }
2552 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
2553 continue;
2554 KKASSERT(bp->b_qindex == q);
2555
2556 /*
2557 * Once the buffer is locked we will have no choice but to
2558 * unlock the spinlock around a later BUF_UNLOCK and re-set
2559 * bp = marker when looping. Move the marker now to make
2560 * things easier.
2561 */
2562 TAILQ_REMOVE(&bufqueues[q], marker, b_freelist);
2563 TAILQ_INSERT_AFTER(&bufqueues[q], bp, marker, b_freelist);
2564
2565 /*
2566 * Must recheck B_DELWRI after successfully locking
2567 * the buffer.
2568 */
2569 if ((bp->b_flags & B_DELWRI) == 0) {
2570 spin_unlock(&bufqspin);
2571 BUF_UNLOCK(bp);
2572 spin_lock(&bufqspin);
2573 bp = marker;
2574 continue;
2575 }
2576
2577 /*
2578 * Remove the buffer from its queue. We still own the
2579 * spinlock here.
2580 */
2581 _bremfree(bp);
2582
2583 /*
2584 * Disposing of an invalid buffer counts as a flush op
2585 */
2586 if (bp->b_flags & B_INVAL) {
2587 spin_unlock(&bufqspin);
2588 brelse(bp);
2589 spin_lock(&bufqspin);
2590 ++r;
2591 break;
2592 }
2593
2594 /*
2595 * Release the spinlock for the more complex ops we
2596 * are now going to do.
2597 */
2598 spin_unlock(&bufqspin);
2599 lwkt_yield();
2600
2601 /*
2602 * This is a bit messy
2603 */
2604 if (LIST_FIRST(&bp->b_dep) != NULL &&
2605 (bp->b_flags & B_DEFERRED) == 0 &&
2606 buf_countdeps(bp, 0)) {
2607 spin_lock(&bufqspin);
2608 TAILQ_INSERT_TAIL(&bufqueues[q], bp, b_freelist);
2609 bp->b_qindex = q;
2610 bp->b_flags |= B_DEFERRED;
2611 spin_unlock(&bufqspin);
2612 BUF_UNLOCK(bp);
2613 spin_lock(&bufqspin);
2614 bp = marker;
2615 continue;
2616 }
2617
2618 /*
2619 * spinlock not held here.
2620 *
2621 * If the buffer has a dependancy, buf_checkwrite() must
2622 * also return 0 for us to be able to initate the write.
2623 *
2624 * If the buffer is flagged B_ERROR it may be requeued
2625 * over and over again, we try to avoid a live lock.
2626 *
2627 * NOTE: buf_checkwrite is MPSAFE.
2628 */
2629 bremfree(bp);
2630 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2631 brelse(bp);
2632 } else if (bp->b_flags & B_ERROR) {
2633 tsleep(bp, 0, "bioer", 1);
2634 bp->b_flags &= ~B_AGE;
2635 cluster_awrite(bp);
2636 } else {
2637 bp->b_flags |= B_AGE;
2638 cluster_awrite(bp);
2639 }
2640 spin_lock(&bufqspin);
2641 ++r;
2642 break;
2643 }
2644 TAILQ_REMOVE(&bufqueues[q], marker, b_freelist);
2645 marker->b_qindex = BQUEUE_NONE;
2646 spin_unlock(&bufqspin);
2647
2648 return (r);
2649}
2650
2651/*
2652 * inmem:
2653 *
2654 * Returns true if no I/O is needed to access the associated VM object.
2655 * This is like findblk except it also hunts around in the VM system for
2656 * the data.
2657 *
2658 * Note that we ignore vm_page_free() races from interrupts against our
2659 * lookup, since if the caller is not protected our return value will not
2660 * be any more valid then otherwise once we exit the critical section.
2661 */
2662int
2663inmem(struct vnode *vp, off_t loffset)
2664{
2665 vm_object_t obj;
2666 vm_offset_t toff, tinc, size;
2667 vm_page_t m;
2668 int res = 1;
2669
2670 if (findblk(vp, loffset, FINDBLK_TEST))
2671 return 1;
2672 if (vp->v_mount == NULL)
2673 return 0;
2674 if ((obj = vp->v_object) == NULL)
2675 return 0;
2676
2677 size = PAGE_SIZE;
2678 if (size > vp->v_mount->mnt_stat.f_iosize)
2679 size = vp->v_mount->mnt_stat.f_iosize;
2680
2681 vm_object_hold(obj);
2682 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2683 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2684 if (m == NULL) {
2685 res = 0;
2686 break;
2687 }
2688 tinc = size;
2689 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2690 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2691 if (vm_page_is_valid(m,
2692 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) {
2693 res = 0;
2694 break;
2695 }
2696 }
2697 vm_object_drop(obj);
2698 return (res);
2699}
2700
2701/*
2702 * findblk:
2703 *
2704 * Locate and return the specified buffer. Unless flagged otherwise,
2705 * a locked buffer will be returned if it exists or NULL if it does not.
2706 *
2707 * findblk()'d buffers are still on the bufqueues and if you intend
2708 * to use your (locked NON-TEST) buffer you need to bremfree(bp)
2709 * and possibly do other stuff to it.
2710 *
2711 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible
2712 * for locking the buffer and ensuring that it remains
2713 * the desired buffer after locking.
2714 *
2715 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable
2716 * to acquire the lock we return NULL, even if the
2717 * buffer exists.
2718 *
2719 * FINDBLK_REF - Returns the buffer ref'd, which prevents normal
2720 * reuse by getnewbuf() but does not prevent
2721 * disassociation (B_INVAL). Used to avoid deadlocks
2722 * against random (vp,loffset)s due to reassignment.
2723 *
2724 * (0) - Lock the buffer blocking.
2725 *
2726 * MPSAFE
2727 */
2728struct buf *
2729findblk(struct vnode *vp, off_t loffset, int flags)
2730{
2731 struct buf *bp;
2732 int lkflags;
2733
2734 lkflags = LK_EXCLUSIVE;
2735 if (flags & FINDBLK_NBLOCK)
2736 lkflags |= LK_NOWAIT;
2737
2738 for (;;) {
2739 /*
2740 * Lookup. Ref the buf while holding v_token to prevent
2741 * reuse (but does not prevent diassociation).
2742 */
2743 lwkt_gettoken_shared(&vp->v_token);
2744 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2745 if (bp == NULL) {
2746 lwkt_reltoken(&vp->v_token);
2747 return(NULL);
2748 }
2749 bqhold(bp);
2750 lwkt_reltoken(&vp->v_token);
2751
2752 /*
2753 * If testing only break and return bp, do not lock.
2754 */
2755 if (flags & FINDBLK_TEST)
2756 break;
2757
2758 /*
2759 * Lock the buffer, return an error if the lock fails.
2760 * (only FINDBLK_NBLOCK can cause the lock to fail).
2761 */
2762 if (BUF_LOCK(bp, lkflags)) {
2763 atomic_subtract_int(&bp->b_refs, 1);
2764 /* bp = NULL; not needed */
2765 return(NULL);
2766 }
2767
2768 /*
2769 * Revalidate the locked buf before allowing it to be
2770 * returned.
2771 */
2772 if (bp->b_vp == vp && bp->b_loffset == loffset)
2773 break;
2774 atomic_subtract_int(&bp->b_refs, 1);
2775 BUF_UNLOCK(bp);
2776 }
2777
2778 /*
2779 * Success
2780 */
2781 if ((flags & FINDBLK_REF) == 0)
2782 atomic_subtract_int(&bp->b_refs, 1);
2783 return(bp);
2784}
2785
2786/*
2787 * getcacheblk:
2788 *
2789 * Similar to getblk() except only returns the buffer if it is
2790 * B_CACHE and requires no other manipulation. Otherwise NULL
2791 * is returned.
2792 *
2793 * If B_RAM is set the buffer might be just fine, but we return
2794 * NULL anyway because we want the code to fall through to the
2795 * cluster read. Otherwise read-ahead breaks.
2796 *
2797 * If blksize is 0 the buffer cache buffer must already be fully
2798 * cached.
2799 *
2800 * If blksize is non-zero getblk() will be used, allowing a buffer
2801 * to be reinstantiated from its VM backing store. The buffer must
2802 * still be fully cached after reinstantiation to be returned.
2803 */
2804struct buf *
2805getcacheblk(struct vnode *vp, off_t loffset, int blksize, int blkflags)
2806{
2807 struct buf *bp;
2808 int fndflags = (blkflags & GETBLK_NOWAIT) ? FINDBLK_NBLOCK : 0;
2809
2810 if (blksize) {
2811 bp = getblk(vp, loffset, blksize, blkflags, 0);
2812 if (bp) {
2813 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2814 B_CACHE) {
2815 bp->b_flags &= ~B_AGE;
2816 } else {
2817 brelse(bp);
2818 bp = NULL;
2819 }
2820 }
2821 } else {
2822 bp = findblk(vp, loffset, fndflags);
2823 if (bp) {
2824 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2825 B_CACHE) {
2826 bp->b_flags &= ~B_AGE;
2827 bremfree(bp);
2828 } else {
2829 BUF_UNLOCK(bp);
2830 bp = NULL;
2831 }
2832 }
2833 }
2834 return (bp);
2835}
2836
2837/*
2838 * getblk:
2839 *
2840 * Get a block given a specified block and offset into a file/device.
2841 * B_INVAL may or may not be set on return. The caller should clear
2842 * B_INVAL prior to initiating a READ.
2843 *
2844 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2845 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2846 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2847 * without doing any of those things the system will likely believe
2848 * the buffer to be valid (especially if it is not B_VMIO), and the
2849 * next getblk() will return the buffer with B_CACHE set.
2850 *
2851 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2852 * an existing buffer.
2853 *
2854 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2855 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2856 * and then cleared based on the backing VM. If the previous buffer is
2857 * non-0-sized but invalid, B_CACHE will be cleared.
2858 *
2859 * If getblk() must create a new buffer, the new buffer is returned with
2860 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2861 * case it is returned with B_INVAL clear and B_CACHE set based on the
2862 * backing VM.
2863 *
2864 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2865 * B_CACHE bit is clear.
2866 *
2867 * What this means, basically, is that the caller should use B_CACHE to
2868 * determine whether the buffer is fully valid or not and should clear
2869 * B_INVAL prior to issuing a read. If the caller intends to validate
2870 * the buffer by loading its data area with something, the caller needs
2871 * to clear B_INVAL. If the caller does this without issuing an I/O,
2872 * the caller should set B_CACHE ( as an optimization ), else the caller
2873 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2874 * a write attempt or if it was a successfull read. If the caller
2875 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2876 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2877 *
2878 * getblk flags:
2879 *
2880 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2881 * GETBLK_BHEAVY - heavy-weight buffer cache buffer
2882 *
2883 * MPALMOSTSAFE
2884 */
2885struct buf *
2886getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2887{
2888 struct buf *bp;
2889 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2890 int error;
2891 int lkflags;
2892
2893 if (size > MAXBSIZE)
2894 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2895 if (vp->v_object == NULL)
2896 panic("getblk: vnode %p has no object!", vp);
2897
2898loop:
2899 if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2900 /*
2901 * The buffer was found in the cache, but we need to lock it.
2902 * We must acquire a ref on the bp to prevent reuse, but
2903 * this will not prevent disassociation (brelvp()) so we
2904 * must recheck (vp,loffset) after acquiring the lock.
2905 *
2906 * Without the ref the buffer could potentially be reused
2907 * before we acquire the lock and create a deadlock
2908 * situation between the thread trying to reuse the buffer
2909 * and us due to the fact that we would wind up blocking
2910 * on a random (vp,loffset).
2911 */
2912 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2913 if (blkflags & GETBLK_NOWAIT) {
2914 bqdrop(bp);
2915 return(NULL);
2916 }
2917 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2918 if (blkflags & GETBLK_PCATCH)
2919 lkflags |= LK_PCATCH;
2920 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2921 if (error) {
2922 bqdrop(bp);
2923 if (error == ENOLCK)
2924 goto loop;
2925 return (NULL);
2926 }
2927 /* buffer may have changed on us */
2928 }
2929 bqdrop(bp);
2930
2931 /*
2932 * Once the buffer has been locked, make sure we didn't race
2933 * a buffer recyclement. Buffers that are no longer hashed
2934 * will have b_vp == NULL, so this takes care of that check
2935 * as well.
2936 */
2937 if (bp->b_vp != vp || bp->b_loffset != loffset) {
2938 kprintf("Warning buffer %p (vp %p loffset %lld) "
2939 "was recycled\n",
2940 bp, vp, (long long)loffset);
2941 BUF_UNLOCK(bp);
2942 goto loop;
2943 }
2944
2945 /*
2946 * If SZMATCH any pre-existing buffer must be of the requested
2947 * size or NULL is returned. The caller absolutely does not
2948 * want getblk() to bwrite() the buffer on a size mismatch.
2949 */
2950 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2951 BUF_UNLOCK(bp);
2952 return(NULL);
2953 }
2954
2955 /*
2956 * All vnode-based buffers must be backed by a VM object.
2957 */
2958 KKASSERT(bp->b_flags & B_VMIO);
2959 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2960 bp->b_flags &= ~B_AGE;
2961
2962 /*
2963 * Make sure that B_INVAL buffers do not have a cached
2964 * block number translation.
2965 */
2966 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2967 kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2968 " did not have cleared bio_offset cache\n",
2969 bp, vp, (long long)loffset);
2970 clearbiocache(&bp->b_bio2);
2971 }
2972
2973 /*
2974 * The buffer is locked. B_CACHE is cleared if the buffer is
2975 * invalid.
2976 */
2977 if (bp->b_flags & B_INVAL)
2978 bp->b_flags &= ~B_CACHE;
2979 bremfree(bp);
2980
2981 /*
2982 * Any size inconsistancy with a dirty buffer or a buffer
2983 * with a softupdates dependancy must be resolved. Resizing
2984 * the buffer in such circumstances can lead to problems.
2985 *
2986 * Dirty or dependant buffers are written synchronously.
2987 * Other types of buffers are simply released and
2988 * reconstituted as they may be backed by valid, dirty VM
2989 * pages (but not marked B_DELWRI).
2990 *
2991 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2992 * and may be left over from a prior truncation (and thus
2993 * no longer represent the actual EOF point), so we
2994 * definitely do not want to B_NOCACHE the backing store.
2995 */
2996 if (size != bp->b_bcount) {
2997 if (bp->b_flags & B_DELWRI) {
2998 bp->b_flags |= B_RELBUF;
2999 bwrite(bp);
3000 } else if (LIST_FIRST(&bp->b_dep)) {
3001 bp->b_flags |= B_RELBUF;
3002 bwrite(bp);
3003 } else {
3004 bp->b_flags |= B_RELBUF;
3005 brelse(bp);
3006 }
3007 goto loop;
3008 }
3009 KKASSERT(size <= bp->b_kvasize);
3010 KASSERT(bp->b_loffset != NOOFFSET,
3011 ("getblk: no buffer offset"));
3012
3013 /*
3014 * A buffer with B_DELWRI set and B_CACHE clear must
3015 * be committed before we can return the buffer in
3016 * order to prevent the caller from issuing a read
3017 * ( due to B_CACHE not being set ) and overwriting
3018 * it.
3019 *
3020 * Most callers, including NFS and FFS, need this to
3021 * operate properly either because they assume they
3022 * can issue a read if B_CACHE is not set, or because
3023 * ( for example ) an uncached B_DELWRI might loop due
3024 * to softupdates re-dirtying the buffer. In the latter
3025 * case, B_CACHE is set after the first write completes,
3026 * preventing further loops.
3027 *
3028 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
3029 * above while extending the buffer, we cannot allow the
3030 * buffer to remain with B_CACHE set after the write
3031 * completes or it will represent a corrupt state. To
3032 * deal with this we set B_NOCACHE to scrap the buffer
3033 * after the write.
3034 *
3035 * XXX Should this be B_RELBUF instead of B_NOCACHE?
3036 * I'm not even sure this state is still possible
3037 * now that getblk() writes out any dirty buffers
3038 * on size changes.
3039 *
3040 * We might be able to do something fancy, like setting
3041 * B_CACHE in bwrite() except if B_DELWRI is already set,
3042 * so the below call doesn't set B_CACHE, but that gets real
3043 * confusing. This is much easier.
3044 */
3045
3046 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3047 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
3048 "and CACHE clear, b_flags %08x\n",
3049 bp, (intmax_t)bp->b_loffset, bp->b_flags);
3050 bp->b_flags |= B_NOCACHE;
3051 bwrite(bp);
3052 goto loop;
3053 }
3054 } else {
3055 /*
3056 * Buffer is not in-core, create new buffer. The buffer
3057 * returned by getnewbuf() is locked. Note that the returned
3058 * buffer is also considered valid (not marked B_INVAL).
3059 *
3060 * Calculating the offset for the I/O requires figuring out
3061 * the block size. We use DEV_BSIZE for VBLK or VCHR and
3062 * the mount's f_iosize otherwise. If the vnode does not
3063 * have an associated mount we assume that the passed size is
3064 * the block size.
3065 *
3066 * Note that vn_isdisk() cannot be used here since it may
3067 * return a failure for numerous reasons. Note that the
3068 * buffer size may be larger then the block size (the caller
3069 * will use block numbers with the proper multiple). Beware
3070 * of using any v_* fields which are part of unions. In
3071 * particular, in DragonFly the mount point overloading
3072 * mechanism uses the namecache only and the underlying
3073 * directory vnode is not a special case.
3074 */
3075 int bsize, maxsize;
3076
3077 if (vp->v_type == VBLK || vp->v_type == VCHR)
3078 bsize = DEV_BSIZE;
3079 else if (vp->v_mount)
3080 bsize = vp->v_mount->mnt_stat.f_iosize;
3081 else
3082 bsize = size;
3083
3084 maxsize = size + (loffset & PAGE_MASK);
3085 maxsize = imax(maxsize, bsize);
3086
3087 bp = getnewbuf(blkflags, slptimeo, size, maxsize);
3088 if (bp == NULL) {
3089 if (slpflags || slptimeo)
3090 return NULL;
3091 goto loop;
3092 }
3093
3094 /*
3095 * Atomically insert the buffer into the hash, so that it can
3096 * be found by findblk().
3097 *
3098 * If bgetvp() returns non-zero a collision occured, and the
3099 * bp will not be associated with the vnode.
3100 *
3101 * Make sure the translation layer has been cleared.
3102 */
3103 bp->b_loffset = loffset;
3104 bp->b_bio2.bio_offset = NOOFFSET;
3105 /* bp->b_bio2.bio_next = NULL; */
3106
3107 if (bgetvp(vp, bp, size)) {
3108 bp->b_flags |= B_INVAL;
3109 brelse(bp);
3110 goto loop;
3111 }
3112
3113 /*
3114 * All vnode-based buffers must be backed by a VM object.
3115 */
3116 KKASSERT(vp->v_object != NULL);
3117 bp->b_flags |= B_VMIO;
3118 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3119
3120 allocbuf(bp, size);
3121 }
3122 KKASSERT(dsched_is_clear_buf_priv(bp));
3123 return (bp);
3124}
3125
3126/*
3127 * regetblk(bp)
3128 *
3129 * Reacquire a buffer that was previously released to the locked queue,
3130 * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3131 * set B_LOCKED (which handles the acquisition race).
3132 *
3133 * To this end, either B_LOCKED must be set or the dependancy list must be
3134 * non-empty.
3135 *
3136 * MPSAFE
3137 */
3138void
3139regetblk(struct buf *bp)
3140{
3141 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3142 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3143 bremfree(bp);
3144}
3145
3146/*
3147 * geteblk:
3148 *
3149 * Get an empty, disassociated buffer of given size. The buffer is
3150 * initially set to B_INVAL.
3151 *
3152 * critical section protection is not required for the allocbuf()
3153 * call because races are impossible here.
3154 *
3155 * MPALMOSTSAFE
3156 */
3157struct buf *
3158geteblk(int size)
3159{
3160 struct buf *bp;
3161 int maxsize;
3162
3163 maxsize = (size + BKVAMASK) & ~BKVAMASK;
3164
3165 while ((bp = getnewbuf(0, 0, size, maxsize)) == NULL)
3166 ;
3167 allocbuf(bp, size);
3168 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
3169 KKASSERT(dsched_is_clear_buf_priv(bp));
3170 return (bp);
3171}
3172
3173
3174/*
3175 * allocbuf:
3176 *
3177 * This code constitutes the buffer memory from either anonymous system
3178 * memory (in the case of non-VMIO operations) or from an associated
3179 * VM object (in the case of VMIO operations). This code is able to
3180 * resize a buffer up or down.
3181 *
3182 * Note that this code is tricky, and has many complications to resolve
3183 * deadlock or inconsistant data situations. Tread lightly!!!
3184 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3185 * the caller. Calling this code willy nilly can result in the loss of
3186 * data.
3187 *
3188 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
3189 * B_CACHE for the non-VMIO case.
3190 *
3191 * This routine does not need to be called from a critical section but you
3192 * must own the buffer.
3193 *
3194 * MPSAFE
3195 */
3196int
3197allocbuf(struct buf *bp, int size)
3198{
3199 int newbsize, mbsize;
3200 int i;
3201
3202 if (BUF_REFCNT(bp) == 0)
3203 panic("allocbuf: buffer not busy");
3204
3205 if (bp->b_kvasize < size)
3206 panic("allocbuf: buffer too small");
3207
3208 if ((bp->b_flags & B_VMIO) == 0) {
3209 caddr_t origbuf;
3210 int origbufsize;
3211 /*
3212 * Just get anonymous memory from the kernel. Don't
3213 * mess with B_CACHE.
3214 */
3215 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3216 if (bp->b_flags & B_MALLOC)
3217 newbsize = mbsize;
3218 else
3219 newbsize = round_page(size);
3220
3221 if (newbsize < bp->b_bufsize) {
3222 /*
3223 * Malloced buffers are not shrunk
3224 */
3225 if (bp->b_flags & B_MALLOC) {
3226 if (newbsize) {
3227 bp->b_bcount = size;
3228 } else {
3229 kfree(bp->b_data, M_BIOBUF);
3230 if (bp->b_bufsize) {
3231 atomic_subtract_long(&bufmallocspace, bp->b_bufsize);
3232 bufspacewakeup();
3233 bp->b_bufsize = 0;
3234 }
3235 bp->b_data = bp->b_kvabase;
3236 bp->b_bcount = 0;
3237 bp->b_flags &= ~B_MALLOC;
3238 }
3239 return 1;
3240 }
3241 vm_hold_free_pages(
3242 bp,
3243 (vm_offset_t) bp->b_data + newbsize,
3244 (vm_offset_t) bp->b_data + bp->b_bufsize);
3245 } else if (newbsize > bp->b_bufsize) {
3246 /*
3247 * We only use malloced memory on the first allocation.
3248 * and revert to page-allocated memory when the buffer
3249 * grows.
3250 */
3251 if ((bufmallocspace < maxbufmallocspace) &&
3252 (bp->b_bufsize == 0) &&
3253 (mbsize <= PAGE_SIZE/2)) {
3254
3255 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3256 bp->b_bufsize = mbsize;
3257 bp->b_bcount = size;
3258 bp->b_flags |= B_MALLOC;
3259 atomic_add_long(&bufmallocspace, mbsize);
3260 return 1;
3261 }
3262 origbuf = NULL;
3263 origbufsize = 0;
3264 /*
3265 * If the buffer is growing on its other-than-first
3266 * allocation, then we revert to the page-allocation
3267 * scheme.
3268 */
3269 if (bp->b_flags & B_MALLOC) {
3270 origbuf = bp->b_data;
3271 origbufsize = bp->b_bufsize;
3272 bp->b_data = bp->b_kvabase;
3273 if (bp->b_bufsize) {
3274 atomic_subtract_long(&bufmallocspace,
3275 bp->b_bufsize);
3276 bufspacewakeup();
3277 bp->b_bufsize = 0;
3278 }
3279 bp->b_flags &= ~B_MALLOC;
3280 newbsize = round_page(newbsize);
3281 }
3282 vm_hold_load_pages(
3283 bp,
3284 (vm_offset_t) bp->b_data + bp->b_bufsize,
3285 (vm_offset_t) bp->b_data + newbsize);
3286 if (origbuf) {
3287 bcopy(origbuf, bp->b_data, origbufsize);
3288 kfree(origbuf, M_BIOBUF);
3289 }
3290 }
3291 } else {
3292 vm_page_t m;
3293 int desiredpages;
3294
3295 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3296 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3297 newbsize + PAGE_MASK) >> PAGE_SHIFT;
3298 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3299
3300 if (bp->b_flags & B_MALLOC)
3301 panic("allocbuf: VMIO buffer can't be malloced");
3302 /*
3303 * Set B_CACHE initially if buffer is 0 length or will become
3304 * 0-length.
3305 */
3306 if (size == 0 || bp->b_bufsize == 0)
3307 bp->b_flags |= B_CACHE;
3308
3309 if (newbsize < bp->b_bufsize) {
3310 /*
3311 * DEV_BSIZE aligned new buffer size is less then the
3312 * DEV_BSIZE aligned existing buffer size. Figure out
3313 * if we have to remove any pages.
3314 */
3315 if (desiredpages < bp->b_xio.xio_npages) {
3316 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3317 /*
3318 * the page is not freed here -- it
3319 * is the responsibility of
3320 * vnode_pager_setsize
3321 */
3322 m = bp->b_xio.xio_pages[i];
3323 KASSERT(m != bogus_page,
3324 ("allocbuf: bogus page found"));
3325 vm_page_busy_wait(m, TRUE, "biodep");
3326 bp->b_xio.xio_pages[i] = NULL;
3327 vm_page_unwire(m, 0);
3328 vm_page_wakeup(m);
3329 }
3330 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3331 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3332 bp->b_xio.xio_npages = desiredpages;
3333 }
3334 } else if (size > bp->b_bcount) {
3335 /*
3336 * We are growing the buffer, possibly in a
3337 * byte-granular fashion.
3338 */
3339 struct vnode *vp;
3340 vm_object_t obj;
3341 vm_offset_t toff;
3342 vm_offset_t tinc;
3343
3344 /*
3345 * Step 1, bring in the VM pages from the object,
3346 * allocating them if necessary. We must clear
3347 * B_CACHE if these pages are not valid for the
3348 * range covered by the buffer.
3349 *
3350 * critical section protection is required to protect
3351 * against interrupts unbusying and freeing pages
3352 * between our vm_page_lookup() and our
3353 * busycheck/wiring call.
3354 */
3355 vp = bp->b_vp;
3356 obj = vp->v_object;
3357
3358 vm_object_hold(obj);
3359 while (bp->b_xio.xio_npages < desiredpages) {
3360 vm_page_t m;
3361 vm_pindex_t pi;
3362 int error;
3363
3364 pi = OFF_TO_IDX(bp->b_loffset) +
3365 bp->b_xio.xio_npages;
3366
3367 /*
3368 * Blocking on m->busy might lead to a
3369 * deadlock:
3370 *
3371 * vm_fault->getpages->cluster_read->allocbuf
3372 */
3373 m = vm_page_lookup_busy_try(obj, pi, FALSE,
3374 &error);
3375 if (error) {
3376 vm_page_sleep_busy(m, FALSE, "pgtblk");
3377 continue;
3378 }
3379 if (m == NULL) {
3380 /*
3381 * note: must allocate system pages
3382 * since blocking here could intefere
3383 * with paging I/O, no matter which
3384 * process we are.
3385 */
3386 m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3387 if (m) {
3388 vm_page_wire(m);
3389 vm_page_flag_clear(m, PG_ZERO);
3390 vm_page_wakeup(m);
3391 bp->b_flags &= ~B_CACHE;
3392 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3393 ++bp->b_xio.xio_npages;
3394 }
3395 continue;
3396 }
3397
3398 /*
3399 * We found a page and were able to busy it.
3400 */
3401 vm_page_flag_clear(m, PG_ZERO);
3402 vm_page_wire(m);
3403 vm_page_wakeup(m);
3404 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3405 ++bp->b_xio.xio_npages;
3406 if (bp->b_act_count < m->act_count)
3407 bp->b_act_count = m->act_count;
3408 }
3409 vm_object_drop(obj);
3410
3411 /*
3412 * Step 2. We've loaded the pages into the buffer,
3413 * we have to figure out if we can still have B_CACHE
3414 * set. Note that B_CACHE is set according to the
3415 * byte-granular range ( bcount and size ), not the
3416 * aligned range ( newbsize ).
3417 *
3418 * The VM test is against m->valid, which is DEV_BSIZE
3419 * aligned. Needless to say, the validity of the data
3420 * needs to also be DEV_BSIZE aligned. Note that this
3421 * fails with NFS if the server or some other client
3422 * extends the file's EOF. If our buffer is resized,
3423 * B_CACHE may remain set! XXX
3424 */
3425
3426 toff = bp->b_bcount;
3427 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3428
3429 while ((bp->b_flags & B_CACHE) && toff < size) {
3430 vm_pindex_t pi;
3431
3432 if (tinc > (size - toff))
3433 tinc = size - toff;
3434
3435 pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3436 PAGE_SHIFT;
3437
3438 vfs_buf_test_cache(
3439 bp,
3440 bp->b_loffset,
3441 toff,
3442 tinc,
3443 bp->b_xio.xio_pages[pi]
3444 );
3445 toff += tinc;
3446 tinc = PAGE_SIZE;
3447 }
3448
3449 /*
3450 * Step 3, fixup the KVM pmap. Remember that
3451 * bp->b_data is relative to bp->b_loffset, but
3452 * bp->b_loffset may be offset into the first page.
3453 */
3454
3455 bp->b_data = (caddr_t)
3456 trunc_page((vm_offset_t)bp->b_data);
3457 pmap_qenter(
3458 (vm_offset_t)bp->b_data,
3459 bp->b_xio.xio_pages,
3460 bp->b_xio.xio_npages
3461 );
3462 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3463 (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3464 }
3465 }
3466
3467 /* adjust space use on already-dirty buffer */
3468 if (bp->b_flags & B_DELWRI) {
3469 spin_lock(&bufcspin);
3470 dirtybufspace += newbsize - bp->b_bufsize;
3471 if (bp->b_flags & B_HEAVY)
3472 dirtybufspacehw += newbsize - bp->b_bufsize;
3473 spin_unlock(&bufcspin);
3474 }
3475 if (newbsize < bp->b_bufsize)
3476 bufspacewakeup();
3477 bp->b_bufsize = newbsize; /* actual buffer allocation */
3478 bp->b_bcount = size; /* requested buffer size */
3479 return 1;
3480}
3481
3482/*
3483 * biowait:
3484 *
3485 * Wait for buffer I/O completion, returning error status. B_EINTR
3486 * is converted into an EINTR error but not cleared (since a chain
3487 * of biowait() calls may occur).
3488 *
3489 * On return bpdone() will have been called but the buffer will remain
3490 * locked and will not have been brelse()'d.
3491 *
3492 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is
3493 * likely still in progress on return.
3494 *
3495 * NOTE! This operation is on a BIO, not a BUF.
3496 *
3497 * NOTE! BIO_DONE is cleared by vn_strategy()
3498 *
3499 * MPSAFE
3500 */
3501static __inline int
3502_biowait(struct bio *bio, const char *wmesg, int to)
3503{
3504 struct buf *bp = bio->bio_buf;
3505 u_int32_t flags;
3506 u_int32_t nflags;
3507 int error;
3508
3509 KKASSERT(bio == &bp->b_bio1);
3510 for (;;) {
3511 flags = bio->bio_flags;
3512 if (flags & BIO_DONE)
3513 break;
3514 nflags = flags | BIO_WANT;
3515 tsleep_interlock(bio, 0);
3516 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3517 if (wmesg)
3518 error = tsleep(bio, PINTERLOCKED, wmesg, to);
3519 else if (bp->b_cmd == BUF_CMD_READ)
3520 error = tsleep(bio, PINTERLOCKED, "biord", to);
3521 else
3522 error = tsleep(bio, PINTERLOCKED, "biowr", to);
3523 if (error) {
3524 kprintf("tsleep error biowait %d\n", error);
3525 return (error);
3526 }
3527 }
3528 }
3529
3530 /*
3531 * Finish up.
3532 */
3533 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3534 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3535 if (bp->b_flags & B_EINTR)
3536 return (EINTR);
3537 if (bp->b_flags & B_ERROR)
3538 return (bp->b_error ? bp->b_error : EIO);
3539 return (0);
3540}
3541
3542int
3543biowait(struct bio *bio, const char *wmesg)
3544{
3545 return(_biowait(bio, wmesg, 0));
3546}
3547
3548int
3549biowait_timeout(struct bio *bio, const char *wmesg, int to)
3550{
3551 return(_biowait(bio, wmesg, to));
3552}
3553
3554/*
3555 * This associates a tracking count with an I/O. vn_strategy() and
3556 * dev_dstrategy() do this automatically but there are a few cases
3557 * where a vnode or device layer is bypassed when a block translation
3558 * is cached. In such cases bio_start_transaction() may be called on
3559 * the bypassed layers so the system gets an I/O in progress indication
3560 * for those higher layers.
3561 */
3562void
3563bio_start_transaction(struct bio *bio, struct bio_track *track)
3564{
3565 bio->bio_track = track;
3566 if (dsched_is_clear_buf_priv(bio->bio_buf))
3567 dsched_new_buf(bio->bio_buf);
3568 bio_track_ref(track);
3569}
3570
3571/*
3572 * Initiate I/O on a vnode.
3573 *
3574 * SWAPCACHE OPERATION:
3575 *
3576 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately
3577 * devfs also uses b_vp for fake buffers so we also have to check
3578 * that B_PAGING is 0. In this case the passed 'vp' is probably the
3579 * underlying block device. The swap assignments are related to the
3580 * buffer cache buffer's b_vp, not the passed vp.
3581 *
3582 * The passed vp == bp->b_vp only in the case where the strategy call
3583 * is made on the vp itself for its own buffers (a regular file or
3584 * block device vp). The filesystem usually then re-calls vn_strategy()
3585 * after translating the request to an underlying device.
3586 *
3587 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3588 * underlying buffer cache buffers.
3589 *
3590 * We can only deal with page-aligned buffers at the moment, because
3591 * we can't tell what the real dirty state for pages straddling a buffer
3592 * are.
3593 *
3594 * In order to call swap_pager_strategy() we must provide the VM object
3595 * and base offset for the underlying buffer cache pages so it can find
3596 * the swap blocks.
3597 */
3598void
3599vn_strategy(struct vnode *vp, struct bio *bio)
3600{
3601 struct bio_track *track;
3602 struct buf *bp = bio->bio_buf;
3603
3604 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3605
3606 /*
3607 * Set when an I/O is issued on the bp. Cleared by consumers
3608 * (aka HAMMER), allowing the consumer to determine if I/O had
3609 * actually occurred.
3610 */
3611 bp->b_flags |= B_IODEBUG;
3612
3613 /*
3614 * Handle the swap cache intercept.
3615 */
3616 if (vn_cache_strategy(vp, bio))
3617 return;
3618
3619 /*
3620 * Otherwise do the operation through the filesystem
3621 */
3622 if (bp->b_cmd == BUF_CMD_READ)
3623 track = &vp->v_track_read;
3624 else
3625 track = &vp->v_track_write;
3626 KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3627 bio->bio_track = track;
3628 if (dsched_is_clear_buf_priv(bio->bio_buf))
3629 dsched_new_buf(bio->bio_buf);
3630 bio_track_ref(track);
3631 vop_strategy(*vp->v_ops, vp, bio);
3632}
3633
3634static void vn_cache_strategy_callback(struct bio *bio);
3635
3636int
3637vn_cache_strategy(struct vnode *vp, struct bio *bio)
3638{
3639 struct buf *bp = bio->bio_buf;
3640 struct bio *nbio;
3641 vm_object_t object;
3642 vm_page_t m;
3643 int i;
3644
3645 /*
3646 * Is this buffer cache buffer suitable for reading from
3647 * the swap cache?
3648 */
3649 if (vm_swapcache_read_enable == 0 ||
3650 bp->b_cmd != BUF_CMD_READ ||
3651 ((bp->b_flags & B_CLUSTER) == 0 &&
3652 (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3653 ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3654 (bp->b_bcount & PAGE_MASK) != 0) {
3655 return(0);
3656 }
3657
3658 /*
3659 * Figure out the original VM object (it will match the underlying
3660 * VM pages). Note that swap cached data uses page indices relative
3661 * to that object, not relative to bio->bio_offset.
3662 */
3663 if (bp->b_flags & B_CLUSTER)
3664 object = vp->v_object;
3665 else
3666 object = bp->b_vp->v_object;
3667
3668 /*
3669 * In order to be able to use the swap cache all underlying VM
3670 * pages must be marked as such, and we can't have any bogus pages.
3671 */
3672 for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3673 m = bp->b_xio.xio_pages[i];
3674 if ((m->flags & PG_SWAPPED) == 0)
3675 break;
3676 if (m == bogus_page)
3677 break;
3678 }
3679
3680 /*
3681 * If we are good then issue the I/O using swap_pager_strategy().
3682 *
3683 * We can only do this if the buffer actually supports object-backed
3684 * I/O. If it doesn't npages will be 0.
3685 */
3686 if (i && i == bp->b_xio.xio_npages) {
3687 m = bp->b_xio.xio_pages[0];
3688 nbio = push_bio(bio);
3689 nbio->bio_done = vn_cache_strategy_callback;
3690 nbio->bio_offset = ptoa(m->pindex);
3691 KKASSERT(m->object == object);
3692 swap_pager_strategy(object, nbio);
3693 return(1);
3694 }
3695 return(0);
3696}
3697
3698/*
3699 * This is a bit of a hack but since the vn_cache_strategy() function can
3700 * override a VFS's strategy function we must make sure that the bio, which
3701 * is probably bio2, doesn't leak an unexpected offset value back to the
3702 * filesystem. The filesystem (e.g. UFS) might otherwise assume that the
3703 * bio went through its own file strategy function and the the bio2 offset
3704 * is a cached disk offset when, in fact, it isn't.
3705 */
3706static void
3707vn_cache_strategy_callback(struct bio *bio)
3708{
3709 bio->bio_offset = NOOFFSET;
3710 biodone(pop_bio(bio));
3711}
3712
3713/*
3714 * bpdone:
3715 *
3716 * Finish I/O on a buffer after all BIOs have been processed.
3717 * Called when the bio chain is exhausted or by biowait. If called
3718 * by biowait, elseit is typically 0.
3719 *
3720 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3721 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
3722 * assuming B_INVAL is clear.
3723 *
3724 * For the VMIO case, we set B_CACHE if the op was a read and no
3725 * read error occured, or if the op was a write. B_CACHE is never
3726 * set if the buffer is invalid or otherwise uncacheable.
3727 *
3728 * bpdone does not mess with B_INVAL, allowing the I/O routine or the
3729 * initiator to leave B_INVAL set to brelse the buffer out of existance
3730 * in the biodone routine.
3731 */
3732void
3733bpdone(struct buf *bp, int elseit)
3734{
3735 buf_cmd_t cmd;
3736
3737 KASSERT(BUF_REFCNTNB(bp) > 0,
3738 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3739 KASSERT(bp->b_cmd != BUF_CMD_DONE,
3740 ("biodone: bp %p already done!", bp));
3741
3742 /*
3743 * No more BIOs are left. All completion functions have been dealt
3744 * with, now we clean up the buffer.
3745 */
3746 cmd = bp->b_cmd;
3747 bp->b_cmd = BUF_CMD_DONE;
3748
3749 /*
3750 * Only reads and writes are processed past this point.
3751 */
3752 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3753 if (cmd == BUF_CMD_FREEBLKS)
3754 bp->b_flags |= B_NOCACHE;
3755 if (elseit)
3756 brelse(bp);
3757 return;
3758 }
3759
3760 /*
3761 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3762 * a lot worse. XXX - move this above the clearing of b_cmd
3763 */
3764 if (LIST_FIRST(&bp->b_dep) != NULL)
3765 buf_complete(bp); /* MPSAFE */
3766
3767 /*
3768 * A failed write must re-dirty the buffer unless B_INVAL
3769 * was set. Only applicable to normal buffers (with VPs).
3770 * vinum buffers may not have a vp.
3771 */
3772 if (cmd == BUF_CMD_WRITE &&
3773 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3774 bp->b_flags &= ~B_NOCACHE;
3775 if (bp->b_vp)
3776 bdirty(bp);
3777 }
3778
3779 if (bp->b_flags & B_VMIO) {
3780 int i;
3781 vm_ooffset_t foff;
3782 vm_page_t m;
3783 vm_object_t obj;
3784 int iosize;
3785 struct vnode *vp = bp->b_vp;
3786
3787 obj = vp->v_object;
3788
3789#if defined(VFS_BIO_DEBUG)
3790 if (vp->v_auxrefs == 0)
3791 panic("biodone: zero vnode hold count");
3792 if ((vp->v_flag & VOBJBUF) == 0)
3793 panic("biodone: vnode is not setup for merged cache");
3794#endif
3795
3796 foff = bp->b_loffset;
3797 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3798 KASSERT(obj != NULL, ("biodone: missing VM object"));
3799
3800#if defined(VFS_BIO_DEBUG)
3801 if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3802 kprintf("biodone: paging in progress(%d) < "
3803 "bp->b_xio.xio_npages(%d)\n",
3804 obj->paging_in_progress,
3805 bp->b_xio.xio_npages);
3806 }
3807#endif
3808
3809 /*
3810 * Set B_CACHE if the op was a normal read and no error
3811 * occured. B_CACHE is set for writes in the b*write()
3812 * routines.
3813 */
3814 iosize = bp->b_bcount - bp->b_resid;
3815 if (cmd == BUF_CMD_READ &&
3816 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3817 bp->b_flags |= B_CACHE;
3818 }
3819
3820 vm_object_hold(obj);
3821 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3822 int bogusflag = 0;
3823 int resid;
3824
3825 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3826 if (resid > iosize)
3827 resid = iosize;
3828
3829 /*
3830 * cleanup bogus pages, restoring the originals. Since
3831 * the originals should still be wired, we don't have
3832 * to worry about interrupt/freeing races destroying
3833 * the VM object association.
3834 */
3835 m = bp->b_xio.xio_pages[i];
3836 if (m == bogus_page) {
3837 bogusflag = 1;
3838 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3839 if (m == NULL)
3840 panic("biodone: page disappeared");
3841 bp->b_xio.xio_pages[i] = m;
3842 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3843 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3844 }
3845#if defined(VFS_BIO_DEBUG)
3846 if (OFF_TO_IDX(foff) != m->pindex) {
3847 kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3848 "mismatch\n",
3849 (unsigned long)foff, (long)m->pindex);
3850 }
3851#endif
3852
3853 /*
3854 * In the write case, the valid and clean bits are
3855 * already changed correctly (see bdwrite()), so we
3856 * only need to do this here in the read case.
3857 */
3858 vm_page_busy_wait(m, FALSE, "bpdpgw");
3859 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3860 vfs_clean_one_page(bp, i, m);
3861 }
3862 vm_page_flag_clear(m, PG_ZERO);
3863
3864 /*
3865 * when debugging new filesystems or buffer I/O
3866 * methods, this is the most common error that pops
3867 * up. if you see this, you have not set the page
3868 * busy flag correctly!!!
3869 */
3870 if (m->busy == 0) {
3871 kprintf("biodone: page busy < 0, "
3872 "pindex: %d, foff: 0x(%x,%x), "
3873 "resid: %d, index: %d\n",
3874 (int) m->pindex, (int)(foff >> 32),
3875 (int) foff & 0xffffffff, resid, i);
3876 if (!vn_isdisk(vp, NULL))
3877 kprintf(" iosize: %ld, loffset: %lld, "
3878 "flags: 0x%08x, npages: %d\n",
3879 bp->b_vp->v_mount->mnt_stat.f_iosize,
3880 (long long)bp->b_loffset,
3881 bp->b_flags, bp->b_xio.xio_npages);
3882 else
3883 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3884 (long long)bp->b_loffset,
3885 bp->b_flags, bp->b_xio.xio_npages);
3886 kprintf(" valid: 0x%x, dirty: 0x%x, "
3887 "wired: %d\n",
3888 m->valid, m->dirty,
3889 m->wire_count);
3890 panic("biodone: page busy < 0");
3891 }
3892 vm_page_io_finish(m);
3893 vm_page_wakeup(m);
3894 vm_object_pip_wakeup(obj);
3895 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3896 iosize -= resid;
3897 }
3898 bp->b_flags &= ~B_HASBOGUS;
3899 vm_object_drop(obj);
3900 }
3901
3902 /*
3903 * Finish up by releasing the buffer. There are no more synchronous
3904 * or asynchronous completions, those were handled by bio_done
3905 * callbacks.
3906 */
3907 if (elseit) {
3908 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3909 brelse(bp);
3910 else
3911 bqrelse(bp);
3912 }
3913}
3914
3915/*
3916 * Normal biodone.
3917 */
3918void
3919biodone(struct bio *bio)
3920{
3921 struct buf *bp = bio->bio_buf;
3922
3923 runningbufwakeup(bp);
3924
3925 /*
3926 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
3927 */
3928 while (bio) {
3929 biodone_t *done_func;
3930 struct bio_track *track;
3931
3932 /*
3933 * BIO tracking. Most but not all BIOs are tracked.
3934 */
3935 if ((track = bio->bio_track) != NULL) {
3936 bio_track_rel(track);
3937 bio->bio_track = NULL;
3938 }
3939
3940 /*
3941 * A bio_done function terminates the loop. The function
3942 * will be responsible for any further chaining and/or
3943 * buffer management.
3944 *
3945 * WARNING! The done function can deallocate the buffer!
3946 */
3947 if ((done_func = bio->bio_done) != NULL) {
3948 bio->bio_done = NULL;
3949 done_func(bio);
3950 return;
3951 }
3952 bio = bio->bio_prev;
3953 }
3954
3955 /*
3956 * If we've run out of bio's do normal [a]synchronous completion.
3957 */
3958 bpdone(bp, 1);
3959}
3960
3961/*
3962 * Synchronous biodone - this terminates a synchronous BIO.
3963 *
3964 * bpdone() is called with elseit=FALSE, leaving the buffer completed
3965 * but still locked. The caller must brelse() the buffer after waiting
3966 * for completion.
3967 */
3968void
3969biodone_sync(struct bio *bio)
3970{
3971 struct buf *bp = bio->bio_buf;
3972 int flags;
3973 int nflags;
3974
3975 KKASSERT(bio == &bp->b_bio1);
3976 bpdone(bp, 0);
3977
3978 for (;;) {
3979 flags = bio->bio_flags;
3980 nflags = (flags | BIO_DONE) & ~BIO_WANT;
3981
3982 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3983 if (flags & BIO_WANT)
3984 wakeup(bio);
3985 break;
3986 }
3987 }
3988}
3989
3990/*
3991 * vfs_unbusy_pages:
3992 *
3993 * This routine is called in lieu of iodone in the case of
3994 * incomplete I/O. This keeps the busy status for pages
3995 * consistant.
3996 */
3997void
3998vfs_unbusy_pages(struct buf *bp)
3999{
4000 int i;
4001
4002 runningbufwakeup(bp);
4003
4004 if (bp->b_flags & B_VMIO) {
4005 struct vnode *vp = bp->b_vp;
4006 vm_object_t obj;
4007
4008 obj = vp->v_object;
4009 vm_object_hold(obj);
4010
4011 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4012 vm_page_t m = bp->b_xio.xio_pages[i];
4013
4014 /*
4015 * When restoring bogus changes the original pages
4016 * should still be wired, so we are in no danger of
4017 * losing the object association and do not need
4018 * critical section protection particularly.
4019 */
4020 if (m == bogus_page) {
4021 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
4022 if (!m) {
4023 panic("vfs_unbusy_pages: page missing");
4024 }
4025 bp->b_xio.xio_pages[i] = m;
4026 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4027 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4028 }
4029 vm_page_busy_wait(m, FALSE, "bpdpgw");
4030 vm_page_flag_clear(m, PG_ZERO);
4031 vm_page_io_finish(m);
4032 vm_page_wakeup(m);
4033 vm_object_pip_wakeup(obj);
4034 }
4035 bp->b_flags &= ~B_HASBOGUS;
4036 vm_object_drop(obj);
4037 }
4038}
4039
4040/*
4041 * vfs_busy_pages:
4042 *
4043 * This routine is called before a device strategy routine.
4044 * It is used to tell the VM system that paging I/O is in
4045 * progress, and treat the pages associated with the buffer
4046 * almost as being PG_BUSY. Also the object 'paging_in_progress'
4047 * flag is handled to make sure that the object doesn't become
4048 * inconsistant.
4049 *
4050 * Since I/O has not been initiated yet, certain buffer flags
4051 * such as B_ERROR or B_INVAL may be in an inconsistant state
4052 * and should be ignored.
4053 *
4054 * MPSAFE
4055 */
4056void
4057vfs_busy_pages(struct vnode *vp, struct buf *bp)
4058{
4059 int i, bogus;
4060 struct lwp *lp = curthread->td_lwp;
4061
4062 /*
4063 * The buffer's I/O command must already be set. If reading,
4064 * B_CACHE must be 0 (double check against callers only doing
4065 * I/O when B_CACHE is 0).
4066 */
4067 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4068 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
4069
4070 if (bp->b_flags & B_VMIO) {
4071 vm_object_t obj;
4072
4073 obj = vp->v_object;
4074 KASSERT(bp->b_loffset != NOOFFSET,
4075 ("vfs_busy_pages: no buffer offset"));
4076
4077 /*
4078 * Busy all the pages. We have to busy them all at once
4079 * to avoid deadlocks.
4080 */
4081retry:
4082 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4083 vm_page_t m = bp->b_xio.xio_pages[i];
4084
4085 if (vm_page_busy_try(m, FALSE)) {
4086 vm_page_sleep_busy(m, FALSE, "vbpage");
4087 while (--i >= 0)
4088 vm_page_wakeup(bp->b_xio.xio_pages[i]);
4089 goto retry;
4090 }
4091 }
4092
4093 /*
4094 * Setup for I/O, soft-busy the page right now because
4095 * the next loop may block.
4096 */
4097 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4098 vm_page_t m = bp->b_xio.xio_pages[i];
4099
4100 vm_page_flag_clear(m, PG_ZERO);
4101 if ((bp->b_flags & B_CLUSTER) == 0) {
4102 vm_object_pip_add(obj, 1);
4103 vm_page_io_start(m);
4104 }
4105 }
4106
4107 /*
4108 * Adjust protections for I/O and do bogus-page mapping.
4109 * Assume that vm_page_protect() can block (it can block
4110 * if VM_PROT_NONE, don't take any chances regardless).
4111 *
4112 * In particular note that for writes we must incorporate
4113 * page dirtyness from the VM system into the buffer's
4114 * dirty range.
4115 *
4116 * For reads we theoretically must incorporate page dirtyness
4117 * from the VM system to determine if the page needs bogus
4118 * replacement, but we shortcut the test by simply checking
4119 * that all m->valid bits are set, indicating that the page
4120 * is fully valid and does not need to be re-read. For any
4121 * VM system dirtyness the page will also be fully valid
4122 * since it was mapped at one point.
4123 */
4124 bogus = 0;
4125 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4126 vm_page_t m = bp->b_xio.xio_pages[i];
4127
4128 vm_page_flag_clear(m, PG_ZERO); /* XXX */
4129 if (bp->b_cmd == BUF_CMD_WRITE) {
4130 /*
4131 * When readying a vnode-backed buffer for
4132 * a write we must zero-fill any invalid
4133 * portions of the backing VM pages, mark
4134 * it valid and clear related dirty bits.
4135 *
4136 * vfs_clean_one_page() incorporates any
4137 * VM dirtyness and updates the b_dirtyoff
4138 * range (after we've made the page RO).
4139 *
4140 * It is also expected that the pmap modified
4141 * bit has already been cleared by the
4142 * vm_page_protect(). We may not be able
4143 * to clear all dirty bits for a page if it
4144 * was also memory mapped (NFS).
4145 *
4146 * Finally be sure to unassign any swap-cache
4147 * backing store as it is now stale.
4148 */
4149 vm_page_protect(m, VM_PROT_READ);
4150 vfs_clean_one_page(bp, i, m);
4151 swap_pager_unswapped(m);
4152 } else if (m->valid == VM_PAGE_BITS_ALL) {
4153 /*
4154 * When readying a vnode-backed buffer for
4155 * read we must replace any dirty pages with
4156 * a bogus page so dirty data is not destroyed
4157 * when filling gaps.
4158 *
4159 * To avoid testing whether the page is
4160 * dirty we instead test that the page was
4161 * at some point mapped (m->valid fully
4162 * valid) with the understanding that
4163 * this also covers the dirty case.
4164 */
4165 bp->b_xio.xio_pages[i] = bogus_page;
4166 bp->b_flags |= B_HASBOGUS;
4167 bogus++;
4168 } else if (m->valid & m->dirty) {
4169 /*
4170 * This case should not occur as partial
4171 * dirtyment can only happen if the buffer
4172 * is B_CACHE, and this code is not entered
4173 * if the buffer is B_CACHE.
4174 */
4175 kprintf("Warning: vfs_busy_pages - page not "
4176 "fully valid! loff=%jx bpf=%08x "
4177 "idx=%d val=%02x dir=%02x\n",
4178 (intmax_t)bp->b_loffset, bp->b_flags,
4179 i, m->valid, m->dirty);
4180 vm_page_protect(m, VM_PROT_NONE);
4181 } else {
4182 /*
4183 * The page is not valid and can be made
4184 * part of the read.
4185 */
4186 vm_page_protect(m, VM_PROT_NONE);
4187 }
4188 vm_page_wakeup(m);
4189 }
4190 if (bogus) {
4191 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4192 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4193 }
4194 }
4195
4196 /*
4197 * This is the easiest place to put the process accounting for the I/O
4198 * for now.
4199 */
4200 if (lp != NULL) {
4201 if (bp->b_cmd == BUF_CMD_READ)
4202 lp->lwp_ru.ru_inblock++;
4203 else
4204 lp->lwp_ru.ru_oublock++;
4205 }
4206}
4207
4208/*
4209 * Tell the VM system that the pages associated with this buffer
4210 * are clean. This is used for delayed writes where the data is
4211 * going to go to disk eventually without additional VM intevention.
4212 *
4213 * NOTE: While we only really need to clean through to b_bcount, we
4214 * just go ahead and clean through to b_bufsize.
4215 */
4216static void
4217vfs_clean_pages(struct buf *bp)
4218{
4219 vm_page_t m;
4220 int i;
4221
4222 if ((bp->b_flags & B_VMIO) == 0)
4223 return;
4224
4225 KASSERT(bp->b_loffset != NOOFFSET,
4226 ("vfs_clean_pages: no buffer offset"));
4227
4228 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4229 m = bp->b_xio.xio_pages[i];
4230 vfs_clean_one_page(bp, i, m);
4231 }
4232}
4233
4234/*
4235 * vfs_clean_one_page:
4236 *
4237 * Set the valid bits and clear the dirty bits in a page within a
4238 * buffer. The range is restricted to the buffer's size and the
4239 * buffer's logical offset might index into the first page.
4240 *
4241 * The caller has busied or soft-busied the page and it is not mapped,
4242 * test and incorporate the dirty bits into b_dirtyoff/end before
4243 * clearing them. Note that we need to clear the pmap modified bits
4244 * after determining the the page was dirty, vm_page_set_validclean()
4245 * does not do it for us.
4246 *
4247 * This routine is typically called after a read completes (dirty should
4248 * be zero in that case as we are not called on bogus-replace pages),
4249 * or before a write is initiated.
4250 */
4251static void
4252vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4253{
4254 int bcount;
4255 int xoff;
4256 int soff;
4257 int eoff;
4258
4259 /*
4260 * Calculate offset range within the page but relative to buffer's
4261 * loffset. loffset might be offset into the first page.
4262 */
4263 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */
4264 bcount = bp->b_bcount + xoff; /* offset adjusted */
4265
4266 if (pageno == 0) {
4267 soff = xoff;
4268 eoff = PAGE_SIZE;
4269 } else {
4270 soff = (pageno << PAGE_SHIFT);
4271 eoff = soff + PAGE_SIZE;
4272 }
4273 if (eoff > bcount)
4274 eoff = bcount;
4275 if (soff >= eoff)
4276 return;
4277
4278 /*
4279 * Test dirty bits and adjust b_dirtyoff/end.
4280 *
4281 * If dirty pages are incorporated into the bp any prior
4282 * B_NEEDCOMMIT state (NFS) must be cleared because the
4283 * caller has not taken into account the new dirty data.
4284 *
4285 * If the page was memory mapped the dirty bits might go beyond the
4286 * end of the buffer, but we can't really make the assumption that
4287 * a file EOF straddles the buffer (even though this is the case for
4288 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing
4289 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4290 * This also saves some console spam.
4291 *
4292 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4293 * NFS can handle huge commits but not huge writes.
4294 */
4295 vm_page_test_dirty(m);
4296 if (m->dirty) {
4297 if ((bp->b_flags & B_NEEDCOMMIT) &&
4298 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4299 if (debug_commit)
4300 kprintf("Warning: vfs_clean_one_page: bp %p "
4301 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4302 " cmd %d vd %02x/%02x x/s/e %d %d %d "
4303 "doff/end %d %d\n",
4304 bp, (intmax_t)bp->b_loffset, bp->b_bcount,
4305 bp->b_flags, bp->b_cmd,
4306 m->valid, m->dirty, xoff, soff, eoff,
4307 bp->b_dirtyoff, bp->b_dirtyend);
4308 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4309 if (debug_commit)
4310 print_backtrace(-1);
4311 }
4312 /*
4313 * Only clear the pmap modified bits if ALL the dirty bits
4314 * are set, otherwise the system might mis-clear portions
4315 * of a page.
4316 */
4317 if (m->dirty == VM_PAGE_BITS_ALL &&
4318 (bp->b_flags & B_NEEDCOMMIT) == 0) {
4319 pmap_clear_modify(m);
4320 }
4321 if (bp->b_dirtyoff > soff - xoff)
4322 bp->b_dirtyoff = soff - xoff;
4323 if (bp->b_dirtyend < eoff - xoff)
4324 bp->b_dirtyend = eoff - xoff;
4325 }
4326
4327 /*
4328 * Set related valid bits, clear related dirty bits.
4329 * Does not mess with the pmap modified bit.
4330 *
4331 * WARNING! We cannot just clear all of m->dirty here as the
4332 * buffer cache buffers may use a DEV_BSIZE'd aligned
4333 * block size, or have an odd size (e.g. NFS at file EOF).
4334 * The putpages code can clear m->dirty to 0.
4335 *
4336 * If a VOP_WRITE generates a buffer cache buffer which
4337 * covers the same space as mapped writable pages the
4338 * buffer flush might not be able to clear all the dirty
4339 * bits and still require a putpages from the VM system
4340 * to finish it off.
4341 *
4342 * WARNING! vm_page_set_validclean() currently assumes vm_token
4343 * is held. The page might not be busied (bdwrite() case).
4344 * XXX remove this comment once we've validated that this
4345 * is no longer an issue.
4346 */
4347 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4348}
4349
4350#if 0
4351/*
4352 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4353 * The page data is assumed to be valid (there is no zeroing here).
4354 */
4355static void
4356vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4357{
4358 int bcount;
4359 int xoff;
4360 int soff;
4361 int eoff;
4362
4363 /*
4364 * Calculate offset range within the page but relative to buffer's
4365 * loffset. loffset might be offset into the first page.
4366 */
4367 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */
4368 bcount = bp->b_bcount + xoff; /* offset adjusted */
4369
4370 if (pageno == 0) {
4371 soff = xoff;
4372 eoff = PAGE_SIZE;
4373 } else {
4374 soff = (pageno << PAGE_SHIFT);
4375 eoff = soff + PAGE_SIZE;
4376 }
4377 if (eoff > bcount)
4378 eoff = bcount;
4379 if (soff >= eoff)
4380 return;
4381 vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4382}
4383#endif
4384
4385/*
4386 * vfs_bio_clrbuf:
4387 *
4388 * Clear a buffer. This routine essentially fakes an I/O, so we need
4389 * to clear B_ERROR and B_INVAL.
4390 *
4391 * Note that while we only theoretically need to clear through b_bcount,
4392 * we go ahead and clear through b_bufsize.
4393 */
4394
4395void
4396vfs_bio_clrbuf(struct buf *bp)
4397{
4398 int i, mask = 0;
4399 caddr_t sa, ea;
4400 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4401 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4402 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4403 (bp->b_loffset & PAGE_MASK) == 0) {
4404 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4405 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4406 bp->b_resid = 0;
4407 return;
4408 }
4409 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
4410 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
4411 bzero(bp->b_data, bp->b_bufsize);
4412 bp->b_xio.xio_pages[0]->valid |= mask;
4413 bp->b_resid = 0;
4414 return;
4415 }
4416 }
4417 sa = bp->b_data;
4418 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4419 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4420 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4421 ea = (caddr_t)(vm_offset_t)ulmin(
4422 (u_long)(vm_offset_t)ea,
4423 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4424 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4425 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4426 continue;
4427 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4428 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4429 bzero(sa, ea - sa);
4430 }
4431 } else {
4432 for (; sa < ea; sa += DEV_BSIZE, j++) {
4433 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4434 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4435 bzero(sa, DEV_BSIZE);
4436 }
4437 }
4438 bp->b_xio.xio_pages[i]->valid |= mask;
4439 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4440 }
4441 bp->b_resid = 0;
4442 } else {
4443 clrbuf(bp);
4444 }
4445}
4446
4447/*
4448 * vm_hold_load_pages:
4449 *
4450 * Load pages into the buffer's address space. The pages are
4451 * allocated from the kernel object in order to reduce interference
4452 * with the any VM paging I/O activity. The range of loaded
4453 * pages will be wired.
4454 *
4455 * If a page cannot be allocated, the 'pagedaemon' is woken up to
4456 * retrieve the full range (to - from) of pages.
4457 *
4458 * MPSAFE
4459 */
4460void
4461vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4462{
4463 vm_offset_t pg;
4464 vm_page_t p;
4465 int index;
4466
4467 to = round_page(to);
4468 from = round_page(from);
4469 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4470
4471 pg = from;
4472 while (pg < to) {
4473 /*
4474 * Note: must allocate system pages since blocking here
4475 * could intefere with paging I/O, no matter which
4476 * process we are.
4477 */
4478 vm_object_hold(&kernel_object);
4479 p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
4480 (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4481 vm_object_drop(&kernel_object);
4482 if (p) {
4483 vm_page_wire(p);
4484 p->valid = VM_PAGE_BITS_ALL;
4485 vm_page_flag_clear(p, PG_ZERO);
4486 pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4487 bp->b_xio.xio_pages[index] = p;
4488 vm_page_wakeup(p);
4489
4490 pg += PAGE_SIZE;
4491 ++index;
4492 }
4493 }
4494 bp->b_xio.xio_npages = index;
4495}
4496
4497/*
4498 * Allocate a page for a buffer cache buffer.
4499 *
4500 * If NULL is returned the caller is expected to retry (typically check if
4501 * the page already exists on retry before trying to allocate one).
4502 *
4503 * NOTE! Low-memory handling is dealt with in b[q]relse(), not here. This
4504 * function will use the system reserve with the hope that the page
4505 * allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4506 * is done with the buffer.
4507 */
4508static
4509vm_page_t
4510bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
4511{
4512 int vmflags = VM_ALLOC_NORMAL | VM_ALLOC_NULL_OK;
4513 vm_page_t p;
4514
4515 ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj));
4516
4517 /*
4518 * Try a normal allocation first.
4519 */
4520 p = vm_page_alloc(obj, pg, vmflags);
4521 if (p)
4522 return(p);
4523 if (vm_page_lookup(obj, pg))
4524 return(NULL);
4525 vm_pageout_deficit += deficit;
4526
4527 /*
4528 * Try again, digging into the system reserve.
4529 *
4530 * Trying to recover pages from the buffer cache here can deadlock
4531 * against other threads trying to busy underlying pages so we
4532 * depend on the code in brelse() and bqrelse() to free/cache the
4533 * underlying buffer cache pages when memory is low.
4534 */
4535 if (curthread->td_flags & TDF_SYSTHREAD)
4536 vmflags |= VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT;
4537 else
4538 vmflags |= VM_ALLOC_SYSTEM;
4539
4540 /*recoverbufpages();*/
4541 p = vm_page_alloc(obj, pg, vmflags);
4542 if (p)
4543 return(p);
4544 if (vm_page_lookup(obj, pg))
4545 return(NULL);
4546
4547 /*
4548 * Wait for memory to free up and try again
4549 */
4550 if (vm_page_count_severe())
4551 ++lowmempgallocs;
4552 vm_wait(hz / 20 + 1);
4553
4554 p = vm_page_alloc(obj, pg, vmflags);
4555 if (p)
4556 return(p);
4557 if (vm_page_lookup(obj, pg))
4558 return(NULL);
4559
4560 /*
4561 * Ok, now we are really in trouble.
4562 */
4563 {
4564 static struct krate biokrate = { .freq = 1 };
4565 krateprintf(&biokrate,
4566 "Warning: bio_page_alloc: memory exhausted "
4567 "during bufcache page allocation from %s\n",
4568 curthread->td_comm);
4569 }
4570 if (curthread->td_flags & TDF_SYSTHREAD)
4571 vm_wait(hz / 20 + 1);
4572 else
4573 vm_wait(hz / 2 + 1);
4574 return (NULL);
4575}
4576
4577/*
4578 * vm_hold_free_pages:
4579 *
4580 * Return pages associated with the buffer back to the VM system.
4581 *
4582 * The range of pages underlying the buffer's address space will
4583 * be unmapped and un-wired.
4584 *
4585 * MPSAFE
4586 */
4587void
4588vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4589{
4590 vm_offset_t pg;
4591 vm_page_t p;
4592 int index, newnpages;
4593
4594 from = round_page(from);
4595 to = round_page(to);
4596 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4597 newnpages = index;
4598
4599 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4600 p = bp->b_xio.xio_pages[index];
4601 if (p && (index < bp->b_xio.xio_npages)) {
4602 if (p->busy) {
4603 kprintf("vm_hold_free_pages: doffset: %lld, "
4604 "loffset: %lld\n",
4605 (long long)bp->b_bio2.bio_offset,
4606 (long long)bp->b_loffset);
4607 }
4608 bp->b_xio.xio_pages[index] = NULL;
4609 pmap_kremove(pg);
4610 vm_page_busy_wait(p, FALSE, "vmhldpg");
4611 vm_page_unwire(p, 0);
4612 vm_page_free(p);
4613 }
4614 }
4615 bp->b_xio.xio_npages = newnpages;
4616}
4617
4618/*
4619 * vmapbuf:
4620 *
4621 * Map a user buffer into KVM via a pbuf. On return the buffer's
4622 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4623 * initialized.
4624 */
4625int
4626vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4627{
4628 caddr_t addr;
4629 vm_offset_t va;
4630 vm_page_t m;
4631 int vmprot;
4632 int error;
4633 int pidx;
4634 int i;
4635
4636 /*
4637 * bp had better have a command and it better be a pbuf.
4638 */
4639 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4640 KKASSERT(bp->b_flags & B_PAGING);
4641 KKASSERT(bp->b_kvabase);
4642
4643 if (bytes < 0)
4644 return (-1);
4645
4646 /*
4647 * Map the user data into KVM. Mappings have to be page-aligned.
4648 */
4649 addr = (caddr_t)trunc_page((vm_offset_t)udata);
4650 pidx = 0;
4651
4652 vmprot = VM_PROT_READ;
4653 if (bp->b_cmd == BUF_CMD_READ)
4654 vmprot |= VM_PROT_WRITE;
4655
4656 while (addr < udata + bytes) {
4657 /*
4658 * Do the vm_fault if needed; do the copy-on-write thing
4659 * when reading stuff off device into memory.
4660 *
4661 * vm_fault_page*() returns a held VM page.
4662 */
4663 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4664 va = trunc_page(va);
4665
4666 m = vm_fault_page_quick(va, vmprot, &error);
4667 if (m == NULL) {
4668 for (i = 0; i < pidx; ++i) {
4669 vm_page_unhold(bp->b_xio.xio_pages[i]);
4670 bp->b_xio.xio_pages[i] = NULL;
4671 }
4672 return(-1);
4673 }
4674 bp->b_xio.xio_pages[pidx] = m;
4675 addr += PAGE_SIZE;
4676 ++pidx;
4677 }
4678
4679 /*
4680 * Map the page array and set the buffer fields to point to
4681 * the mapped data buffer.
4682 */
4683 if (pidx > btoc(MAXPHYS))
4684 panic("vmapbuf: mapped more than MAXPHYS");
4685 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4686
4687 bp->b_xio.xio_npages = pidx;
4688 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4689 bp->b_bcount = bytes;
4690 bp->b_bufsize = bytes;
4691 return(0);
4692}
4693
4694/*
4695 * vunmapbuf:
4696 *
4697 * Free the io map PTEs associated with this IO operation.
4698 * We also invalidate the TLB entries and restore the original b_addr.
4699 */
4700void
4701vunmapbuf(struct buf *bp)
4702{
4703 int pidx;
4704 int npages;
4705
4706 KKASSERT(bp->b_flags & B_PAGING);
4707
4708 npages = bp->b_xio.xio_npages;
4709 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4710 for (pidx = 0; pidx < npages; ++pidx) {
4711 vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4712 bp->b_xio.xio_pages[pidx] = NULL;
4713 }
4714 bp->b_xio.xio_npages = 0;
4715 bp->b_data = bp->b_kvabase;
4716}
4717
4718/*
4719 * Scan all buffers in the system and issue the callback.
4720 */
4721int
4722scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4723{
4724 int count = 0;
4725 int error;
4726 int n;
4727
4728 for (n = 0; n < nbuf; ++n) {
4729 if ((error = callback(&buf[n], info)) < 0) {
4730 count = error;
4731 break;
4732 }
4733 count += error;
4734 }
4735 return (count);
4736}
4737
4738/*
4739 * nestiobuf_iodone: biodone callback for nested buffers and propagate
4740 * completion to the master buffer.
4741 */
4742static void
4743nestiobuf_iodone(struct bio *bio)
4744{
4745 struct bio *mbio;
4746 struct buf *mbp, *bp;
4747 struct devstat *stats;
4748 int error;
4749 int donebytes;
4750
4751 bp = bio->bio_buf;
4752 mbio = bio->bio_caller_info1.ptr;
4753 stats = bio->bio_caller_info2.ptr;
4754 mbp = mbio->bio_buf;
4755
4756 KKASSERT(bp->b_bcount <= bp->b_bufsize);
4757 KKASSERT(mbp != bp);
4758
4759 error = bp->b_error;
4760 if (bp->b_error == 0 &&
4761 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4762 /*
4763 * Not all got transfered, raise an error. We have no way to
4764 * propagate these conditions to mbp.
4765 */
4766 error = EIO;
4767 }
4768
4769 donebytes = bp->b_bufsize;
4770
4771 relpbuf(bp, NULL);
4772
4773 nestiobuf_done(mbio, donebytes, error, stats);
4774}
4775
4776void
4777nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4778{
4779 struct buf *mbp;
4780
4781 mbp = mbio->bio_buf;
4782
4783 KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4784
4785 /*
4786 * If an error occured, propagate it to the master buffer.
4787 *
4788 * Several biodone()s may wind up running concurrently so
4789 * use an atomic op to adjust b_flags.
4790 */
4791 if (error) {
4792 mbp->b_error = error;
4793 atomic_set_int(&mbp->b_flags, B_ERROR);
4794 }
4795
4796 /*
4797 * Decrement the operations in progress counter and terminate the
4798 * I/O if this was the last bit.
4799 */
4800 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4801 mbp->b_resid = 0;
4802 if (stats)
4803 devstat_end_transaction_buf(stats, mbp);
4804 biodone(mbio);
4805 }
4806}
4807
4808/*
4809 * Initialize a nestiobuf for use. Set an initial count of 1 to prevent
4810 * the mbio from being biodone()'d while we are still adding sub-bios to
4811 * it.
4812 */
4813void
4814nestiobuf_init(struct bio *bio)
4815{
4816 bio->bio_driver_info = (void *)1;
4817}
4818
4819/*
4820 * The BIOs added to the nestedio have already been started, remove the
4821 * count that placeheld our mbio and biodone() it if the count would
4822 * transition to 0.
4823 */
4824void
4825nestiobuf_start(struct bio *mbio)
4826{
4827 struct buf *mbp = mbio->bio_buf;
4828
4829 /*
4830 * Decrement the operations in progress counter and terminate the
4831 * I/O if this was the last bit.
4832 */
4833 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4834 if (mbp->b_flags & B_ERROR)
4835 mbp->b_resid = mbp->b_bcount;
4836 else
4837 mbp->b_resid = 0;
4838 biodone(mbio);
4839 }
4840}
4841
4842/*
4843 * Set an intermediate error prior to calling nestiobuf_start()
4844 */
4845void
4846nestiobuf_error(struct bio *mbio, int error)
4847{
4848 struct buf *mbp = mbio->bio_buf;
4849
4850 if (error) {
4851 mbp->b_error = error;
4852 atomic_set_int(&mbp->b_flags, B_ERROR);
4853 }
4854}
4855
4856/*
4857 * nestiobuf_add: setup a "nested" buffer.
4858 *
4859 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4860 * => 'bp' should be a buffer allocated by getiobuf.
4861 * => 'offset' is a byte offset in the master buffer.
4862 * => 'size' is a size in bytes of this nested buffer.
4863 */
4864void
4865nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
4866{
4867 struct buf *mbp = mbio->bio_buf;
4868 struct vnode *vp = mbp->b_vp;
4869
4870 KKASSERT(mbp->b_bcount >= offset + size);
4871
4872 atomic_add_int((int *)&mbio->bio_driver_info, 1);
4873
4874 /* kernel needs to own the lock for it to be released in biodone */
4875 BUF_KERNPROC(bp);
4876 bp->b_vp = vp;
4877 bp->b_cmd = mbp->b_cmd;
4878 bp->b_bio1.bio_done = nestiobuf_iodone;
4879 bp->b_data = (char *)mbp->b_data + offset;
4880 bp->b_resid = bp->b_bcount = size;
4881 bp->b_bufsize = bp->b_bcount;
4882
4883 bp->b_bio1.bio_track = NULL;
4884 bp->b_bio1.bio_caller_info1.ptr = mbio;
4885 bp->b_bio1.bio_caller_info2.ptr = stats;
4886}
4887
4888/*
4889 * print out statistics from the current status of the buffer pool
4890 * this can be toggeled by the system control option debug.syncprt
4891 */
4892#ifdef DEBUG
4893void
4894vfs_bufstats(void)
4895{
4896 int i, j, count;
4897 struct buf *bp;
4898 struct bqueues *dp;
4899 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4900 static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4901
4902 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4903 count = 0;
4904 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4905 counts[j] = 0;
4906
4907 spin_lock(&bufqspin);
4908 TAILQ_FOREACH(bp, dp, b_freelist) {
4909 if (bp->b_flags & B_MARKER)
4910 continue;
4911 counts[bp->b_bufsize/PAGE_SIZE]++;
4912 count++;
4913 }
4914 spin_unlock(&bufqspin);
4915
4916 kprintf("%s: total-%d", bname[i], count);
4917 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4918 if (counts[j] != 0)
4919 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4920 kprintf("\n");
4921 }
4922}
4923#endif
4924
4925#ifdef DDB
4926
4927DB_SHOW_COMMAND(buffer, db_show_buffer)
4928{
4929 /* get args */
4930 struct buf *bp = (struct buf *)addr;
4931
4932 if (!have_addr) {
4933 db_printf("usage: show buffer <addr>\n");
4934 return;
4935 }
4936
4937 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4938 db_printf("b_cmd = %d\n", bp->b_cmd);
4939 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4940 "b_resid = %d\n, b_data = %p, "
4941 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4942 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4943 bp->b_data,
4944 (long long)bp->b_bio2.bio_offset,
4945 (long long)(bp->b_bio2.bio_next ?
4946 bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4947 if (bp->b_xio.xio_npages) {
4948 int i;
4949 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4950 bp->b_xio.xio_npages);
4951 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4952 vm_page_t m;
4953 m = bp->b_xio.xio_pages[i];
4954 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4955 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4956 if ((i + 1) < bp->b_xio.xio_npages)
4957 db_printf(",");
4958 }
4959 db_printf("\n");
4960 }
4961}
4962#endif /* DDB */