- update OpenSSL to 0.9.8
[dragonfly.git] / secure / lib / libcrypto / man / BN_add.3
... / ...
CommitLineData
1.\" Automatically generated by Pod::Man v1.37, Pod::Parser v1.14
2.\"
3.\" Standard preamble:
4.\" ========================================================================
5.de Sh \" Subsection heading
6.br
7.if t .Sp
8.ne 5
9.PP
10\fB\\$1\fR
11.PP
12..
13.de Sp \" Vertical space (when we can't use .PP)
14.if t .sp .5v
15.if n .sp
16..
17.de Vb \" Begin verbatim text
18.ft CW
19.nf
20.ne \\$1
21..
22.de Ve \" End verbatim text
23.ft R
24.fi
25..
26.\" Set up some character translations and predefined strings. \*(-- will
27.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
28.\" double quote, and \*(R" will give a right double quote. | will give a
29.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used to
30.\" do unbreakable dashes and therefore won't be available. \*(C` and \*(C'
31.\" expand to `' in nroff, nothing in troff, for use with C<>.
32.tr \(*W-|\(bv\*(Tr
33.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
34.ie n \{\
35. ds -- \(*W-
36. ds PI pi
37. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
38. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
39. ds L" ""
40. ds R" ""
41. ds C` ""
42. ds C' ""
43'br\}
44.el\{\
45. ds -- \|\(em\|
46. ds PI \(*p
47. ds L" ``
48. ds R" ''
49'br\}
50.\"
51.\" If the F register is turned on, we'll generate index entries on stderr for
52.\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
53.\" entries marked with X<> in POD. Of course, you'll have to process the
54.\" output yourself in some meaningful fashion.
55.if \nF \{\
56. de IX
57. tm Index:\\$1\t\\n%\t"\\$2"
58..
59. nr % 0
60. rr F
61.\}
62.\"
63.\" For nroff, turn off justification. Always turn off hyphenation; it makes
64.\" way too many mistakes in technical documents.
65.hy 0
66.if n .na
67.\"
68.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
69.\" Fear. Run. Save yourself. No user-serviceable parts.
70. \" fudge factors for nroff and troff
71.if n \{\
72. ds #H 0
73. ds #V .8m
74. ds #F .3m
75. ds #[ \f1
76. ds #] \fP
77.\}
78.if t \{\
79. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
80. ds #V .6m
81. ds #F 0
82. ds #[ \&
83. ds #] \&
84.\}
85. \" simple accents for nroff and troff
86.if n \{\
87. ds ' \&
88. ds ` \&
89. ds ^ \&
90. ds , \&
91. ds ~ ~
92. ds /
93.\}
94.if t \{\
95. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
96. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
97. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
98. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
99. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
100. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
101.\}
102. \" troff and (daisy-wheel) nroff accents
103.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
104.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
105.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
106.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
107.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
108.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
109.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
110.ds ae a\h'-(\w'a'u*4/10)'e
111.ds Ae A\h'-(\w'A'u*4/10)'E
112. \" corrections for vroff
113.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
114.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
115. \" for low resolution devices (crt and lpr)
116.if \n(.H>23 .if \n(.V>19 \
117\{\
118. ds : e
119. ds 8 ss
120. ds o a
121. ds d- d\h'-1'\(ga
122. ds D- D\h'-1'\(hy
123. ds th \o'bp'
124. ds Th \o'LP'
125. ds ae ae
126. ds Ae AE
127.\}
128.rm #[ #] #H #V #F C
129.\" ========================================================================
130.\"
131.IX Title "BN_add 3"
132.TH BN_add 3 "2005-07-06" "0.9.8" "OpenSSL"
133.SH "NAME"
134BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add,
135BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd \-
136arithmetic operations on BIGNUMs
137.SH "SYNOPSIS"
138.IX Header "SYNOPSIS"
139.Vb 1
140\& #include <openssl/bn.h>
141.Ve
142.PP
143.Vb 1
144\& int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
145.Ve
146.PP
147.Vb 1
148\& int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
149.Ve
150.PP
151.Vb 1
152\& int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
153.Ve
154.PP
155.Vb 1
156\& int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
157.Ve
158.PP
159.Vb 2
160\& int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
161\& BN_CTX *ctx);
162.Ve
163.PP
164.Vb 1
165\& int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
166.Ve
167.PP
168.Vb 1
169\& int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
170.Ve
171.PP
172.Vb 2
173\& int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
174\& BN_CTX *ctx);
175.Ve
176.PP
177.Vb 2
178\& int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
179\& BN_CTX *ctx);
180.Ve
181.PP
182.Vb 2
183\& int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
184\& BN_CTX *ctx);
185.Ve
186.PP
187.Vb 1
188\& int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
189.Ve
190.PP
191.Vb 1
192\& int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
193.Ve
194.PP
195.Vb 2
196\& int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
197\& const BIGNUM *m, BN_CTX *ctx);
198.Ve
199.PP
200.Vb 1
201\& int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
202.Ve
203.SH "DESCRIPTION"
204.IX Header "DESCRIPTION"
205\&\fIBN_add()\fR adds \fIa\fR and \fIb\fR and places the result in \fIr\fR (\f(CW\*(C`r=a+b\*(C'\fR).
206\&\fIr\fR may be the same \fB\s-1BIGNUM\s0\fR as \fIa\fR or \fIb\fR.
207.PP
208\&\fIBN_sub()\fR subtracts \fIb\fR from \fIa\fR and places the result in \fIr\fR (\f(CW\*(C`r=a\-b\*(C'\fR).
209.PP
210\&\fIBN_mul()\fR multiplies \fIa\fR and \fIb\fR and places the result in \fIr\fR (\f(CW\*(C`r=a*b\*(C'\fR).
211\&\fIr\fR may be the same \fB\s-1BIGNUM\s0\fR as \fIa\fR or \fIb\fR.
212For multiplication by powers of 2, use \fIBN_lshift\fR\|(3).
213.PP
214\&\fIBN_sqr()\fR takes the square of \fIa\fR and places the result in \fIr\fR
215(\f(CW\*(C`r=a^2\*(C'\fR). \fIr\fR and \fIa\fR may be the same \fB\s-1BIGNUM\s0\fR.
216This function is faster than BN_mul(r,a,a).
217.PP
218\&\fIBN_div()\fR divides \fIa\fR by \fId\fR and places the result in \fIdv\fR and the
219remainder in \fIrem\fR (\f(CW\*(C`dv=a/d, rem=a%d\*(C'\fR). Either of \fIdv\fR and \fIrem\fR may
220be \fB\s-1NULL\s0\fR, in which case the respective value is not returned.
221The result is rounded towards zero; thus if \fIa\fR is negative, the
222remainder will be zero or negative.
223For division by powers of 2, use \fIBN_rshift\fR\|(3).
224.PP
225\&\fIBN_mod()\fR corresponds to \fIBN_div()\fR with \fIdv\fR set to \fB\s-1NULL\s0\fR.
226.PP
227\&\fIBN_nnmod()\fR reduces \fIa\fR modulo \fIm\fR and places the non-negative
228remainder in \fIr\fR.
229.PP
230\&\fIBN_mod_add()\fR adds \fIa\fR to \fIb\fR modulo \fIm\fR and places the non-negative
231result in \fIr\fR.
232.PP
233\&\fIBN_mod_sub()\fR subtracts \fIb\fR from \fIa\fR modulo \fIm\fR and places the
234non-negative result in \fIr\fR.
235.PP
236\&\fIBN_mod_mul()\fR multiplies \fIa\fR by \fIb\fR and finds the non-negative
237remainder respective to modulus \fIm\fR (\f(CW\*(C`r=(a*b) mod m\*(C'\fR). \fIr\fR may be
238the same \fB\s-1BIGNUM\s0\fR as \fIa\fR or \fIb\fR. For more efficient algorithms for
239repeated computations using the same modulus, see
240\&\fIBN_mod_mul_montgomery\fR\|(3) and
241\&\fIBN_mod_mul_reciprocal\fR\|(3).
242.PP
243\&\fIBN_mod_sqr()\fR takes the square of \fIa\fR modulo \fBm\fR and places the
244result in \fIr\fR.
245.PP
246\&\fIBN_exp()\fR raises \fIa\fR to the \fIp\fR\-th power and places the result in \fIr\fR
247(\f(CW\*(C`r=a^p\*(C'\fR). This function is faster than repeated applications of
248\&\fIBN_mul()\fR.
249.PP
250\&\fIBN_mod_exp()\fR computes \fIa\fR to the \fIp\fR\-th power modulo \fIm\fR (\f(CW\*(C`r=a^p %
251m\*(C'\fR). This function uses less time and space than \fIBN_exp()\fR.
252.PP
253\&\fIBN_gcd()\fR computes the greatest common divisor of \fIa\fR and \fIb\fR and
254places the result in \fIr\fR. \fIr\fR may be the same \fB\s-1BIGNUM\s0\fR as \fIa\fR or
255\&\fIb\fR.
256.PP
257For all functions, \fIctx\fR is a previously allocated \fB\s-1BN_CTX\s0\fR used for
258temporary variables; see \fIBN_CTX_new\fR\|(3).
259.PP
260Unless noted otherwise, the result \fB\s-1BIGNUM\s0\fR must be different from
261the arguments.
262.SH "RETURN VALUES"
263.IX Header "RETURN VALUES"
264For all functions, 1 is returned for success, 0 on error. The return
265value should always be checked (e.g., \f(CW\*(C`if (!BN_add(r,a,b)) goto err;\*(C'\fR).
266The error codes can be obtained by \fIERR_get_error\fR\|(3).
267.SH "SEE ALSO"
268.IX Header "SEE ALSO"
269\&\fIbn\fR\|(3), \fIERR_get_error\fR\|(3), \fIBN_CTX_new\fR\|(3),
270\&\fIBN_add_word\fR\|(3), \fIBN_set_bit\fR\|(3)
271.SH "HISTORY"
272.IX Header "HISTORY"
273\&\fIBN_add()\fR, \fIBN_sub()\fR, \fIBN_sqr()\fR, \fIBN_div()\fR, \fIBN_mod()\fR, \fIBN_mod_mul()\fR,
274\&\fIBN_mod_exp()\fR and \fIBN_gcd()\fR are available in all versions of SSLeay and
275OpenSSL. The \fIctx\fR argument to \fIBN_mul()\fR was added in SSLeay
2760.9.1b. \fIBN_exp()\fR appeared in SSLeay 0.9.0.
277\&\fIBN_nnmod()\fR, \fIBN_mod_add()\fR, \fIBN_mod_sub()\fR, and \fIBN_mod_sqr()\fR were added in
278OpenSSL 0.9.7.