em/emx: Update comment concerning errata number
[dragonfly.git] / sys / dev / netif / em / if_em.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>. All rights reserved.
3 *
4 * Copyright (c) 2001-2008, Intel Corporation
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * 3. Neither the name of the Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived from
19 * this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 *
34 * Copyright (c) 2005 The DragonFly Project. All rights reserved.
35 *
36 * This code is derived from software contributed to The DragonFly Project
37 * by Matthew Dillon <dillon@backplane.com>
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 *
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in
47 * the documentation and/or other materials provided with the
48 * distribution.
49 * 3. Neither the name of The DragonFly Project nor the names of its
50 * contributors may be used to endorse or promote products derived
51 * from this software without specific, prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
57 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 */
67/*
68 * SERIALIZATION API RULES:
69 *
70 * - If the driver uses the same serializer for the interrupt as for the
71 * ifnet, most of the serialization will be done automatically for the
72 * driver.
73 *
74 * - ifmedia entry points will be serialized by the ifmedia code using the
75 * ifnet serializer.
76 *
77 * - if_* entry points except for if_input will be serialized by the IF
78 * and protocol layers.
79 *
80 * - The device driver must be sure to serialize access from timeout code
81 * installed by the device driver.
82 *
83 * - The device driver typically holds the serializer at the time it wishes
84 * to call if_input.
85 *
86 * - We must call lwkt_serialize_handler_enable() prior to enabling the
87 * hardware interrupt and lwkt_serialize_handler_disable() after disabling
88 * the hardware interrupt in order to avoid handler execution races from
89 * scheduled interrupt threads.
90 *
91 * NOTE! Since callers into the device driver hold the ifnet serializer,
92 * the device driver may be holding a serializer at the time it calls
93 * if_input even if it is not serializer-aware.
94 */
95
96#include "opt_polling.h"
97
98#include <sys/param.h>
99#include <sys/bus.h>
100#include <sys/endian.h>
101#include <sys/interrupt.h>
102#include <sys/kernel.h>
103#include <sys/ktr.h>
104#include <sys/malloc.h>
105#include <sys/mbuf.h>
106#include <sys/proc.h>
107#include <sys/rman.h>
108#include <sys/serialize.h>
109#include <sys/socket.h>
110#include <sys/sockio.h>
111#include <sys/sysctl.h>
112#include <sys/systm.h>
113
114#include <net/bpf.h>
115#include <net/ethernet.h>
116#include <net/if.h>
117#include <net/if_arp.h>
118#include <net/if_dl.h>
119#include <net/if_media.h>
120#include <net/ifq_var.h>
121#include <net/vlan/if_vlan_var.h>
122#include <net/vlan/if_vlan_ether.h>
123
124#include <netinet/in_systm.h>
125#include <netinet/in.h>
126#include <netinet/ip.h>
127#include <netinet/tcp.h>
128#include <netinet/udp.h>
129
130#include <bus/pci/pcivar.h>
131#include <bus/pci/pcireg.h>
132
133#include <dev/netif/ig_hal/e1000_api.h>
134#include <dev/netif/ig_hal/e1000_82571.h>
135#include <dev/netif/em/if_em.h>
136
137#define EM_NAME "Intel(R) PRO/1000 Network Connection "
138#define EM_VER " 7.2.4"
139
140#define _EM_DEVICE(id, ret) \
141 { EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
142#define EM_EMX_DEVICE(id) _EM_DEVICE(id, -100)
143#define EM_DEVICE(id) _EM_DEVICE(id, 0)
144#define EM_DEVICE_NULL { 0, 0, 0, NULL }
145
146static const struct em_vendor_info em_vendor_info_array[] = {
147 EM_DEVICE(82540EM),
148 EM_DEVICE(82540EM_LOM),
149 EM_DEVICE(82540EP),
150 EM_DEVICE(82540EP_LOM),
151 EM_DEVICE(82540EP_LP),
152
153 EM_DEVICE(82541EI),
154 EM_DEVICE(82541ER),
155 EM_DEVICE(82541ER_LOM),
156 EM_DEVICE(82541EI_MOBILE),
157 EM_DEVICE(82541GI),
158 EM_DEVICE(82541GI_LF),
159 EM_DEVICE(82541GI_MOBILE),
160
161 EM_DEVICE(82542),
162
163 EM_DEVICE(82543GC_FIBER),
164 EM_DEVICE(82543GC_COPPER),
165
166 EM_DEVICE(82544EI_COPPER),
167 EM_DEVICE(82544EI_FIBER),
168 EM_DEVICE(82544GC_COPPER),
169 EM_DEVICE(82544GC_LOM),
170
171 EM_DEVICE(82545EM_COPPER),
172 EM_DEVICE(82545EM_FIBER),
173 EM_DEVICE(82545GM_COPPER),
174 EM_DEVICE(82545GM_FIBER),
175 EM_DEVICE(82545GM_SERDES),
176
177 EM_DEVICE(82546EB_COPPER),
178 EM_DEVICE(82546EB_FIBER),
179 EM_DEVICE(82546EB_QUAD_COPPER),
180 EM_DEVICE(82546GB_COPPER),
181 EM_DEVICE(82546GB_FIBER),
182 EM_DEVICE(82546GB_SERDES),
183 EM_DEVICE(82546GB_PCIE),
184 EM_DEVICE(82546GB_QUAD_COPPER),
185 EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
186
187 EM_DEVICE(82547EI),
188 EM_DEVICE(82547EI_MOBILE),
189 EM_DEVICE(82547GI),
190
191 EM_EMX_DEVICE(82571EB_COPPER),
192 EM_EMX_DEVICE(82571EB_FIBER),
193 EM_EMX_DEVICE(82571EB_SERDES),
194 EM_EMX_DEVICE(82571EB_SERDES_DUAL),
195 EM_EMX_DEVICE(82571EB_SERDES_QUAD),
196 EM_EMX_DEVICE(82571EB_QUAD_COPPER),
197 EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
198 EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
199 EM_EMX_DEVICE(82571EB_QUAD_FIBER),
200 EM_EMX_DEVICE(82571PT_QUAD_COPPER),
201
202 EM_EMX_DEVICE(82572EI_COPPER),
203 EM_EMX_DEVICE(82572EI_FIBER),
204 EM_EMX_DEVICE(82572EI_SERDES),
205 EM_EMX_DEVICE(82572EI),
206
207 EM_EMX_DEVICE(82573E),
208 EM_EMX_DEVICE(82573E_IAMT),
209 EM_EMX_DEVICE(82573L),
210
211 EM_DEVICE(82583V),
212
213 EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
214 EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
215 EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
216 EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
217
218 EM_DEVICE(ICH8_IGP_M_AMT),
219 EM_DEVICE(ICH8_IGP_AMT),
220 EM_DEVICE(ICH8_IGP_C),
221 EM_DEVICE(ICH8_IFE),
222 EM_DEVICE(ICH8_IFE_GT),
223 EM_DEVICE(ICH8_IFE_G),
224 EM_DEVICE(ICH8_IGP_M),
225 EM_DEVICE(ICH8_82567V_3),
226
227 EM_DEVICE(ICH9_IGP_M_AMT),
228 EM_DEVICE(ICH9_IGP_AMT),
229 EM_DEVICE(ICH9_IGP_C),
230 EM_DEVICE(ICH9_IGP_M),
231 EM_DEVICE(ICH9_IGP_M_V),
232 EM_DEVICE(ICH9_IFE),
233 EM_DEVICE(ICH9_IFE_GT),
234 EM_DEVICE(ICH9_IFE_G),
235 EM_DEVICE(ICH9_BM),
236
237 EM_EMX_DEVICE(82574L),
238 EM_EMX_DEVICE(82574LA),
239
240 EM_DEVICE(ICH10_R_BM_LM),
241 EM_DEVICE(ICH10_R_BM_LF),
242 EM_DEVICE(ICH10_R_BM_V),
243 EM_DEVICE(ICH10_D_BM_LM),
244 EM_DEVICE(ICH10_D_BM_LF),
245 EM_DEVICE(ICH10_D_BM_V),
246
247 EM_DEVICE(PCH_M_HV_LM),
248 EM_DEVICE(PCH_M_HV_LC),
249 EM_DEVICE(PCH_D_HV_DM),
250 EM_DEVICE(PCH_D_HV_DC),
251
252 EM_DEVICE(PCH2_LV_LM),
253 EM_DEVICE(PCH2_LV_V),
254
255 /* required last entry */
256 EM_DEVICE_NULL
257};
258
259static int em_probe(device_t);
260static int em_attach(device_t);
261static int em_detach(device_t);
262static int em_shutdown(device_t);
263static int em_suspend(device_t);
264static int em_resume(device_t);
265
266static void em_init(void *);
267static void em_stop(struct adapter *);
268static int em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
269static void em_start(struct ifnet *);
270#ifdef DEVICE_POLLING
271static void em_poll(struct ifnet *, enum poll_cmd, int);
272#endif
273static void em_watchdog(struct ifnet *);
274static void em_media_status(struct ifnet *, struct ifmediareq *);
275static int em_media_change(struct ifnet *);
276static void em_timer(void *);
277
278static void em_intr(void *);
279static void em_intr_mask(void *);
280static void em_intr_body(struct adapter *, boolean_t);
281static void em_rxeof(struct adapter *, int);
282static void em_txeof(struct adapter *);
283static void em_tx_collect(struct adapter *);
284static void em_tx_purge(struct adapter *);
285static void em_enable_intr(struct adapter *);
286static void em_disable_intr(struct adapter *);
287
288static int em_dma_malloc(struct adapter *, bus_size_t,
289 struct em_dma_alloc *);
290static void em_dma_free(struct adapter *, struct em_dma_alloc *);
291static void em_init_tx_ring(struct adapter *);
292static int em_init_rx_ring(struct adapter *);
293static int em_create_tx_ring(struct adapter *);
294static int em_create_rx_ring(struct adapter *);
295static void em_destroy_tx_ring(struct adapter *, int);
296static void em_destroy_rx_ring(struct adapter *, int);
297static int em_newbuf(struct adapter *, int, int);
298static int em_encap(struct adapter *, struct mbuf **);
299static void em_rxcsum(struct adapter *, struct e1000_rx_desc *,
300 struct mbuf *);
301static int em_txcsum_pullup(struct adapter *, struct mbuf **);
302static int em_txcsum(struct adapter *, struct mbuf *,
303 uint32_t *, uint32_t *);
304
305static int em_get_hw_info(struct adapter *);
306static int em_is_valid_eaddr(const uint8_t *);
307static int em_alloc_pci_res(struct adapter *);
308static void em_free_pci_res(struct adapter *);
309static int em_reset(struct adapter *);
310static void em_setup_ifp(struct adapter *);
311static void em_init_tx_unit(struct adapter *);
312static void em_init_rx_unit(struct adapter *);
313static void em_update_stats(struct adapter *);
314static void em_set_promisc(struct adapter *);
315static void em_disable_promisc(struct adapter *);
316static void em_set_multi(struct adapter *);
317static void em_update_link_status(struct adapter *);
318static void em_smartspeed(struct adapter *);
319static void em_set_itr(struct adapter *, uint32_t);
320static void em_disable_aspm(struct adapter *);
321
322/* Hardware workarounds */
323static int em_82547_fifo_workaround(struct adapter *, int);
324static void em_82547_update_fifo_head(struct adapter *, int);
325static int em_82547_tx_fifo_reset(struct adapter *);
326static void em_82547_move_tail(void *);
327static void em_82547_move_tail_serialized(struct adapter *);
328static uint32_t em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
329
330static void em_print_debug_info(struct adapter *);
331static void em_print_nvm_info(struct adapter *);
332static void em_print_hw_stats(struct adapter *);
333
334static int em_sysctl_stats(SYSCTL_HANDLER_ARGS);
335static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
336static int em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
337static int em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
338static void em_add_sysctl(struct adapter *adapter);
339
340/* Management and WOL Support */
341static void em_get_mgmt(struct adapter *);
342static void em_rel_mgmt(struct adapter *);
343static void em_get_hw_control(struct adapter *);
344static void em_rel_hw_control(struct adapter *);
345static void em_enable_wol(device_t);
346
347static device_method_t em_methods[] = {
348 /* Device interface */
349 DEVMETHOD(device_probe, em_probe),
350 DEVMETHOD(device_attach, em_attach),
351 DEVMETHOD(device_detach, em_detach),
352 DEVMETHOD(device_shutdown, em_shutdown),
353 DEVMETHOD(device_suspend, em_suspend),
354 DEVMETHOD(device_resume, em_resume),
355 { 0, 0 }
356};
357
358static driver_t em_driver = {
359 "em",
360 em_methods,
361 sizeof(struct adapter),
362};
363
364static devclass_t em_devclass;
365
366DECLARE_DUMMY_MODULE(if_em);
367MODULE_DEPEND(em, ig_hal, 1, 1, 1);
368DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
369
370/*
371 * Tunables
372 */
373static int em_int_throttle_ceil = EM_DEFAULT_ITR;
374static int em_rxd = EM_DEFAULT_RXD;
375static int em_txd = EM_DEFAULT_TXD;
376static int em_smart_pwr_down = 0;
377
378/* Controls whether promiscuous also shows bad packets */
379static int em_debug_sbp = FALSE;
380
381static int em_82573_workaround = 1;
382static int em_msi_enable = 1;
383
384TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
385TUNABLE_INT("hw.em.rxd", &em_rxd);
386TUNABLE_INT("hw.em.txd", &em_txd);
387TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
388TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
389TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
390TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
391
392/* Global used in WOL setup with multiport cards */
393static int em_global_quad_port_a = 0;
394
395/* Set this to one to display debug statistics */
396static int em_display_debug_stats = 0;
397
398#if !defined(KTR_IF_EM)
399#define KTR_IF_EM KTR_ALL
400#endif
401KTR_INFO_MASTER(if_em);
402KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
403KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
404KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
405KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
406KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
407#define logif(name) KTR_LOG(if_em_ ## name)
408
409static int
410em_probe(device_t dev)
411{
412 const struct em_vendor_info *ent;
413 uint16_t vid, did;
414
415 vid = pci_get_vendor(dev);
416 did = pci_get_device(dev);
417
418 for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
419 if (vid == ent->vendor_id && did == ent->device_id) {
420 device_set_desc(dev, ent->desc);
421 device_set_async_attach(dev, TRUE);
422 return (ent->ret);
423 }
424 }
425 return (ENXIO);
426}
427
428static int
429em_attach(device_t dev)
430{
431 struct adapter *adapter = device_get_softc(dev);
432 struct ifnet *ifp = &adapter->arpcom.ac_if;
433 int tsize, rsize;
434 int error = 0;
435 uint16_t eeprom_data, device_id, apme_mask;
436 driver_intr_t *intr_func;
437
438 adapter->dev = adapter->osdep.dev = dev;
439
440 callout_init_mp(&adapter->timer);
441 callout_init_mp(&adapter->tx_fifo_timer);
442
443 /* Determine hardware and mac info */
444 error = em_get_hw_info(adapter);
445 if (error) {
446 device_printf(dev, "Identify hardware failed\n");
447 goto fail;
448 }
449
450 /* Setup PCI resources */
451 error = em_alloc_pci_res(adapter);
452 if (error) {
453 device_printf(dev, "Allocation of PCI resources failed\n");
454 goto fail;
455 }
456
457 /*
458 * For ICH8 and family we need to map the flash memory,
459 * and this must happen after the MAC is identified.
460 */
461 if (adapter->hw.mac.type == e1000_ich8lan ||
462 adapter->hw.mac.type == e1000_ich9lan ||
463 adapter->hw.mac.type == e1000_ich10lan ||
464 adapter->hw.mac.type == e1000_pchlan ||
465 adapter->hw.mac.type == e1000_pch2lan) {
466 adapter->flash_rid = EM_BAR_FLASH;
467
468 adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
469 &adapter->flash_rid, RF_ACTIVE);
470 if (adapter->flash == NULL) {
471 device_printf(dev, "Mapping of Flash failed\n");
472 error = ENXIO;
473 goto fail;
474 }
475 adapter->osdep.flash_bus_space_tag =
476 rman_get_bustag(adapter->flash);
477 adapter->osdep.flash_bus_space_handle =
478 rman_get_bushandle(adapter->flash);
479
480 /*
481 * This is used in the shared code
482 * XXX this goof is actually not used.
483 */
484 adapter->hw.flash_address = (uint8_t *)adapter->flash;
485 }
486
487 /* Do Shared Code initialization */
488 if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
489 device_printf(dev, "Setup of Shared code failed\n");
490 error = ENXIO;
491 goto fail;
492 }
493
494 e1000_get_bus_info(&adapter->hw);
495
496 /*
497 * Validate number of transmit and receive descriptors. It
498 * must not exceed hardware maximum, and must be multiple
499 * of E1000_DBA_ALIGN.
500 */
501 if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
502 (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
503 (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
504 em_txd < EM_MIN_TXD) {
505 device_printf(dev, "Using %d TX descriptors instead of %d!\n",
506 EM_DEFAULT_TXD, em_txd);
507 adapter->num_tx_desc = EM_DEFAULT_TXD;
508 } else {
509 adapter->num_tx_desc = em_txd;
510 }
511 if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
512 (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
513 (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
514 em_rxd < EM_MIN_RXD) {
515 device_printf(dev, "Using %d RX descriptors instead of %d!\n",
516 EM_DEFAULT_RXD, em_rxd);
517 adapter->num_rx_desc = EM_DEFAULT_RXD;
518 } else {
519 adapter->num_rx_desc = em_rxd;
520 }
521
522 adapter->hw.mac.autoneg = DO_AUTO_NEG;
523 adapter->hw.phy.autoneg_wait_to_complete = FALSE;
524 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
525 adapter->rx_buffer_len = MCLBYTES;
526
527 /*
528 * Interrupt throttle rate
529 */
530 if (em_int_throttle_ceil == 0) {
531 adapter->int_throttle_ceil = 0;
532 } else {
533 int throttle = em_int_throttle_ceil;
534
535 if (throttle < 0)
536 throttle = EM_DEFAULT_ITR;
537
538 /* Recalculate the tunable value to get the exact frequency. */
539 throttle = 1000000000 / 256 / throttle;
540
541 /* Upper 16bits of ITR is reserved and should be zero */
542 if (throttle & 0xffff0000)
543 throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
544
545 adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
546 }
547
548 e1000_init_script_state_82541(&adapter->hw, TRUE);
549 e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
550
551 /* Copper options */
552 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
553 adapter->hw.phy.mdix = AUTO_ALL_MODES;
554 adapter->hw.phy.disable_polarity_correction = FALSE;
555 adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
556 }
557
558 /* Set the frame limits assuming standard ethernet sized frames. */
559 adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
560 adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
561
562 /* This controls when hardware reports transmit completion status. */
563 adapter->hw.mac.report_tx_early = 1;
564
565 /*
566 * Create top level busdma tag
567 */
568 error = bus_dma_tag_create(NULL, 1, 0,
569 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
570 NULL, NULL,
571 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
572 0, &adapter->parent_dtag);
573 if (error) {
574 device_printf(dev, "could not create top level DMA tag\n");
575 goto fail;
576 }
577
578 /*
579 * Allocate Transmit Descriptor ring
580 */
581 tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
582 EM_DBA_ALIGN);
583 error = em_dma_malloc(adapter, tsize, &adapter->txdma);
584 if (error) {
585 device_printf(dev, "Unable to allocate tx_desc memory\n");
586 goto fail;
587 }
588 adapter->tx_desc_base = adapter->txdma.dma_vaddr;
589
590 /*
591 * Allocate Receive Descriptor ring
592 */
593 rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
594 EM_DBA_ALIGN);
595 error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
596 if (error) {
597 device_printf(dev, "Unable to allocate rx_desc memory\n");
598 goto fail;
599 }
600 adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
601
602 /* Allocate multicast array memory. */
603 adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
604 M_DEVBUF, M_WAITOK);
605
606 /* Indicate SOL/IDER usage */
607 if (e1000_check_reset_block(&adapter->hw)) {
608 device_printf(dev,
609 "PHY reset is blocked due to SOL/IDER session.\n");
610 }
611
612 /*
613 * Start from a known state, this is important in reading the
614 * nvm and mac from that.
615 */
616 e1000_reset_hw(&adapter->hw);
617
618 /* Make sure we have a good EEPROM before we read from it */
619 if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
620 /*
621 * Some PCI-E parts fail the first check due to
622 * the link being in sleep state, call it again,
623 * if it fails a second time its a real issue.
624 */
625 if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
626 device_printf(dev,
627 "The EEPROM Checksum Is Not Valid\n");
628 error = EIO;
629 goto fail;
630 }
631 }
632
633 /* Copy the permanent MAC address out of the EEPROM */
634 if (e1000_read_mac_addr(&adapter->hw) < 0) {
635 device_printf(dev, "EEPROM read error while reading MAC"
636 " address\n");
637 error = EIO;
638 goto fail;
639 }
640 if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
641 device_printf(dev, "Invalid MAC address\n");
642 error = EIO;
643 goto fail;
644 }
645
646 /* Allocate transmit descriptors and buffers */
647 error = em_create_tx_ring(adapter);
648 if (error) {
649 device_printf(dev, "Could not setup transmit structures\n");
650 goto fail;
651 }
652
653 /* Allocate receive descriptors and buffers */
654 error = em_create_rx_ring(adapter);
655 if (error) {
656 device_printf(dev, "Could not setup receive structures\n");
657 goto fail;
658 }
659
660 /* Manually turn off all interrupts */
661 E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
662
663 /* Determine if we have to control management hardware */
664 adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
665
666 /*
667 * Setup Wake-on-Lan
668 */
669 apme_mask = EM_EEPROM_APME;
670 eeprom_data = 0;
671 switch (adapter->hw.mac.type) {
672 case e1000_82542:
673 case e1000_82543:
674 break;
675
676 case e1000_82573:
677 case e1000_82583:
678 adapter->has_amt = 1;
679 /* FALL THROUGH */
680
681 case e1000_82546:
682 case e1000_82546_rev_3:
683 case e1000_82571:
684 case e1000_82572:
685 case e1000_80003es2lan:
686 if (adapter->hw.bus.func == 1) {
687 e1000_read_nvm(&adapter->hw,
688 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
689 } else {
690 e1000_read_nvm(&adapter->hw,
691 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
692 }
693 break;
694
695 case e1000_ich8lan:
696 case e1000_ich9lan:
697 case e1000_ich10lan:
698 case e1000_pchlan:
699 case e1000_pch2lan:
700 apme_mask = E1000_WUC_APME;
701 adapter->has_amt = TRUE;
702 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
703 break;
704
705 default:
706 e1000_read_nvm(&adapter->hw,
707 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
708 break;
709 }
710 if (eeprom_data & apme_mask)
711 adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
712
713 /*
714 * We have the eeprom settings, now apply the special cases
715 * where the eeprom may be wrong or the board won't support
716 * wake on lan on a particular port
717 */
718 device_id = pci_get_device(dev);
719 switch (device_id) {
720 case E1000_DEV_ID_82546GB_PCIE:
721 adapter->wol = 0;
722 break;
723
724 case E1000_DEV_ID_82546EB_FIBER:
725 case E1000_DEV_ID_82546GB_FIBER:
726 case E1000_DEV_ID_82571EB_FIBER:
727 /*
728 * Wake events only supported on port A for dual fiber
729 * regardless of eeprom setting
730 */
731 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
732 E1000_STATUS_FUNC_1)
733 adapter->wol = 0;
734 break;
735
736 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
737 case E1000_DEV_ID_82571EB_QUAD_COPPER:
738 case E1000_DEV_ID_82571EB_QUAD_FIBER:
739 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
740 /* if quad port adapter, disable WoL on all but port A */
741 if (em_global_quad_port_a != 0)
742 adapter->wol = 0;
743 /* Reset for multiple quad port adapters */
744 if (++em_global_quad_port_a == 4)
745 em_global_quad_port_a = 0;
746 break;
747 }
748
749 /* XXX disable wol */
750 adapter->wol = 0;
751
752 /* Setup OS specific network interface */
753 em_setup_ifp(adapter);
754
755 /* Add sysctl tree, must after em_setup_ifp() */
756 em_add_sysctl(adapter);
757
758 /* Reset the hardware */
759 error = em_reset(adapter);
760 if (error) {
761 device_printf(dev, "Unable to reset the hardware\n");
762 goto fail;
763 }
764
765 /* Initialize statistics */
766 em_update_stats(adapter);
767
768 adapter->hw.mac.get_link_status = 1;
769 em_update_link_status(adapter);
770
771 /* Do we need workaround for 82544 PCI-X adapter? */
772 if (adapter->hw.bus.type == e1000_bus_type_pcix &&
773 adapter->hw.mac.type == e1000_82544)
774 adapter->pcix_82544 = TRUE;
775 else
776 adapter->pcix_82544 = FALSE;
777
778 if (adapter->pcix_82544) {
779 /*
780 * 82544 on PCI-X may split one TX segment
781 * into two TX descs, so we double its number
782 * of spare TX desc here.
783 */
784 adapter->spare_tx_desc = 2 * EM_TX_SPARE;
785 } else {
786 adapter->spare_tx_desc = EM_TX_SPARE;
787 }
788
789 /*
790 * Keep following relationship between spare_tx_desc, oact_tx_desc
791 * and tx_int_nsegs:
792 * (spare_tx_desc + EM_TX_RESERVED) <=
793 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
794 */
795 adapter->oact_tx_desc = adapter->num_tx_desc / 8;
796 if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
797 adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
798 if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
799 adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
800
801 adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
802 if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
803 adapter->tx_int_nsegs = adapter->oact_tx_desc;
804
805 /* Non-AMT based hardware can now take control from firmware */
806 if (adapter->has_manage && !adapter->has_amt &&
807 adapter->hw.mac.type >= e1000_82571)
808 em_get_hw_control(adapter);
809
810 /*
811 * Missing Interrupt Following ICR read:
812 *
813 * 82571/82572 specification update errata #76
814 * 82573 specification update errata #31
815 * 82574 specification update errata #12
816 * 82583 specification update errata #4
817 */
818 intr_func = em_intr;
819 if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
820 (adapter->hw.mac.type == e1000_82571 ||
821 adapter->hw.mac.type == e1000_82572 ||
822 adapter->hw.mac.type == e1000_82573 ||
823 adapter->hw.mac.type == e1000_82574 ||
824 adapter->hw.mac.type == e1000_82583))
825 intr_func = em_intr_mask;
826
827 error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
828 intr_func, adapter, &adapter->intr_tag,
829 ifp->if_serializer);
830 if (error) {
831 device_printf(dev, "Failed to register interrupt handler");
832 ether_ifdetach(&adapter->arpcom.ac_if);
833 goto fail;
834 }
835
836 ifp->if_cpuid = rman_get_cpuid(adapter->intr_res);
837 KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
838 return (0);
839fail:
840 em_detach(dev);
841 return (error);
842}
843
844static int
845em_detach(device_t dev)
846{
847 struct adapter *adapter = device_get_softc(dev);
848
849 if (device_is_attached(dev)) {
850 struct ifnet *ifp = &adapter->arpcom.ac_if;
851
852 lwkt_serialize_enter(ifp->if_serializer);
853
854 em_stop(adapter);
855
856 e1000_phy_hw_reset(&adapter->hw);
857
858 em_rel_mgmt(adapter);
859 em_rel_hw_control(adapter);
860
861 if (adapter->wol) {
862 E1000_WRITE_REG(&adapter->hw, E1000_WUC,
863 E1000_WUC_PME_EN);
864 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
865 em_enable_wol(dev);
866 }
867
868 bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
869
870 lwkt_serialize_exit(ifp->if_serializer);
871
872 ether_ifdetach(ifp);
873 } else {
874 em_rel_hw_control(adapter);
875 }
876 bus_generic_detach(dev);
877
878 em_free_pci_res(adapter);
879
880 em_destroy_tx_ring(adapter, adapter->num_tx_desc);
881 em_destroy_rx_ring(adapter, adapter->num_rx_desc);
882
883 /* Free Transmit Descriptor ring */
884 if (adapter->tx_desc_base)
885 em_dma_free(adapter, &adapter->txdma);
886
887 /* Free Receive Descriptor ring */
888 if (adapter->rx_desc_base)
889 em_dma_free(adapter, &adapter->rxdma);
890
891 /* Free top level busdma tag */
892 if (adapter->parent_dtag != NULL)
893 bus_dma_tag_destroy(adapter->parent_dtag);
894
895 /* Free sysctl tree */
896 if (adapter->sysctl_tree != NULL)
897 sysctl_ctx_free(&adapter->sysctl_ctx);
898
899 return (0);
900}
901
902static int
903em_shutdown(device_t dev)
904{
905 return em_suspend(dev);
906}
907
908static int
909em_suspend(device_t dev)
910{
911 struct adapter *adapter = device_get_softc(dev);
912 struct ifnet *ifp = &adapter->arpcom.ac_if;
913
914 lwkt_serialize_enter(ifp->if_serializer);
915
916 em_stop(adapter);
917
918 em_rel_mgmt(adapter);
919 em_rel_hw_control(adapter);
920
921 if (adapter->wol) {
922 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
923 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
924 em_enable_wol(dev);
925 }
926
927 lwkt_serialize_exit(ifp->if_serializer);
928
929 return bus_generic_suspend(dev);
930}
931
932static int
933em_resume(device_t dev)
934{
935 struct adapter *adapter = device_get_softc(dev);
936 struct ifnet *ifp = &adapter->arpcom.ac_if;
937
938 lwkt_serialize_enter(ifp->if_serializer);
939
940 em_init(adapter);
941 em_get_mgmt(adapter);
942 if_devstart(ifp);
943
944 lwkt_serialize_exit(ifp->if_serializer);
945
946 return bus_generic_resume(dev);
947}
948
949static void
950em_start(struct ifnet *ifp)
951{
952 struct adapter *adapter = ifp->if_softc;
953 struct mbuf *m_head;
954
955 ASSERT_SERIALIZED(ifp->if_serializer);
956
957 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
958 return;
959
960 if (!adapter->link_active) {
961 ifq_purge(&ifp->if_snd);
962 return;
963 }
964
965 while (!ifq_is_empty(&ifp->if_snd)) {
966 /* Now do we at least have a minimal? */
967 if (EM_IS_OACTIVE(adapter)) {
968 em_tx_collect(adapter);
969 if (EM_IS_OACTIVE(adapter)) {
970 ifp->if_flags |= IFF_OACTIVE;
971 adapter->no_tx_desc_avail1++;
972 break;
973 }
974 }
975
976 logif(pkt_txqueue);
977 m_head = ifq_dequeue(&ifp->if_snd, NULL);
978 if (m_head == NULL)
979 break;
980
981 if (em_encap(adapter, &m_head)) {
982 ifp->if_oerrors++;
983 em_tx_collect(adapter);
984 continue;
985 }
986
987 /* Send a copy of the frame to the BPF listener */
988 ETHER_BPF_MTAP(ifp, m_head);
989
990 /* Set timeout in case hardware has problems transmitting. */
991 ifp->if_timer = EM_TX_TIMEOUT;
992 }
993}
994
995static int
996em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
997{
998 struct adapter *adapter = ifp->if_softc;
999 struct ifreq *ifr = (struct ifreq *)data;
1000 uint16_t eeprom_data = 0;
1001 int max_frame_size, mask, reinit;
1002 int error = 0;
1003
1004 ASSERT_SERIALIZED(ifp->if_serializer);
1005
1006 switch (command) {
1007 case SIOCSIFMTU:
1008 switch (adapter->hw.mac.type) {
1009 case e1000_82573:
1010 /*
1011 * 82573 only supports jumbo frames
1012 * if ASPM is disabled.
1013 */
1014 e1000_read_nvm(&adapter->hw,
1015 NVM_INIT_3GIO_3, 1, &eeprom_data);
1016 if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1017 max_frame_size = ETHER_MAX_LEN;
1018 break;
1019 }
1020 /* FALL THROUGH */
1021
1022 /* Limit Jumbo Frame size */
1023 case e1000_82571:
1024 case e1000_82572:
1025 case e1000_ich9lan:
1026 case e1000_ich10lan:
1027 case e1000_pch2lan:
1028 case e1000_82574:
1029 case e1000_82583:
1030 case e1000_80003es2lan:
1031 max_frame_size = 9234;
1032 break;
1033
1034 case e1000_pchlan:
1035 max_frame_size = 4096;
1036 break;
1037
1038 /* Adapters that do not support jumbo frames */
1039 case e1000_82542:
1040 case e1000_ich8lan:
1041 max_frame_size = ETHER_MAX_LEN;
1042 break;
1043
1044 default:
1045 max_frame_size = MAX_JUMBO_FRAME_SIZE;
1046 break;
1047 }
1048 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1049 ETHER_CRC_LEN) {
1050 error = EINVAL;
1051 break;
1052 }
1053
1054 ifp->if_mtu = ifr->ifr_mtu;
1055 adapter->max_frame_size =
1056 ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1057
1058 if (ifp->if_flags & IFF_RUNNING)
1059 em_init(adapter);
1060 break;
1061
1062 case SIOCSIFFLAGS:
1063 if (ifp->if_flags & IFF_UP) {
1064 if ((ifp->if_flags & IFF_RUNNING)) {
1065 if ((ifp->if_flags ^ adapter->if_flags) &
1066 (IFF_PROMISC | IFF_ALLMULTI)) {
1067 em_disable_promisc(adapter);
1068 em_set_promisc(adapter);
1069 }
1070 } else {
1071 em_init(adapter);
1072 }
1073 } else if (ifp->if_flags & IFF_RUNNING) {
1074 em_stop(adapter);
1075 }
1076 adapter->if_flags = ifp->if_flags;
1077 break;
1078
1079 case SIOCADDMULTI:
1080 case SIOCDELMULTI:
1081 if (ifp->if_flags & IFF_RUNNING) {
1082 em_disable_intr(adapter);
1083 em_set_multi(adapter);
1084 if (adapter->hw.mac.type == e1000_82542 &&
1085 adapter->hw.revision_id == E1000_REVISION_2)
1086 em_init_rx_unit(adapter);
1087#ifdef DEVICE_POLLING
1088 if (!(ifp->if_flags & IFF_POLLING))
1089#endif
1090 em_enable_intr(adapter);
1091 }
1092 break;
1093
1094 case SIOCSIFMEDIA:
1095 /* Check SOL/IDER usage */
1096 if (e1000_check_reset_block(&adapter->hw)) {
1097 device_printf(adapter->dev, "Media change is"
1098 " blocked due to SOL/IDER session.\n");
1099 break;
1100 }
1101 /* FALL THROUGH */
1102
1103 case SIOCGIFMEDIA:
1104 error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1105 break;
1106
1107 case SIOCSIFCAP:
1108 reinit = 0;
1109 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1110 if (mask & IFCAP_HWCSUM) {
1111 ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
1112 reinit = 1;
1113 }
1114 if (mask & IFCAP_VLAN_HWTAGGING) {
1115 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1116 reinit = 1;
1117 }
1118 if (reinit && (ifp->if_flags & IFF_RUNNING))
1119 em_init(adapter);
1120 break;
1121
1122 default:
1123 error = ether_ioctl(ifp, command, data);
1124 break;
1125 }
1126 return (error);
1127}
1128
1129static void
1130em_watchdog(struct ifnet *ifp)
1131{
1132 struct adapter *adapter = ifp->if_softc;
1133
1134 ASSERT_SERIALIZED(ifp->if_serializer);
1135
1136 /*
1137 * The timer is set to 5 every time start queues a packet.
1138 * Then txeof keeps resetting it as long as it cleans at
1139 * least one descriptor.
1140 * Finally, anytime all descriptors are clean the timer is
1141 * set to 0.
1142 */
1143
1144 if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1145 E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1146 /*
1147 * If we reach here, all TX jobs are completed and
1148 * the TX engine should have been idled for some time.
1149 * We don't need to call if_devstart() here.
1150 */
1151 ifp->if_flags &= ~IFF_OACTIVE;
1152 ifp->if_timer = 0;
1153 return;
1154 }
1155
1156 /*
1157 * If we are in this routine because of pause frames, then
1158 * don't reset the hardware.
1159 */
1160 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1161 E1000_STATUS_TXOFF) {
1162 ifp->if_timer = EM_TX_TIMEOUT;
1163 return;
1164 }
1165
1166 if (e1000_check_for_link(&adapter->hw) == 0)
1167 if_printf(ifp, "watchdog timeout -- resetting\n");
1168
1169 ifp->if_oerrors++;
1170 adapter->watchdog_events++;
1171
1172 em_init(adapter);
1173
1174 if (!ifq_is_empty(&ifp->if_snd))
1175 if_devstart(ifp);
1176}
1177
1178static void
1179em_init(void *xsc)
1180{
1181 struct adapter *adapter = xsc;
1182 struct ifnet *ifp = &adapter->arpcom.ac_if;
1183 device_t dev = adapter->dev;
1184 uint32_t pba;
1185
1186 ASSERT_SERIALIZED(ifp->if_serializer);
1187
1188 em_stop(adapter);
1189
1190 /*
1191 * Packet Buffer Allocation (PBA)
1192 * Writing PBA sets the receive portion of the buffer
1193 * the remainder is used for the transmit buffer.
1194 *
1195 * Devices before the 82547 had a Packet Buffer of 64K.
1196 * Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1197 * After the 82547 the buffer was reduced to 40K.
1198 * Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1199 * Note: default does not leave enough room for Jumbo Frame >10k.
1200 */
1201 switch (adapter->hw.mac.type) {
1202 case e1000_82547:
1203 case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1204 if (adapter->max_frame_size > 8192)
1205 pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1206 else
1207 pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1208 adapter->tx_fifo_head = 0;
1209 adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1210 adapter->tx_fifo_size =
1211 (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1212 break;
1213
1214 /* Total Packet Buffer on these is 48K */
1215 case e1000_82571:
1216 case e1000_82572:
1217 case e1000_80003es2lan:
1218 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1219 break;
1220
1221 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1222 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1223 break;
1224
1225 case e1000_82574:
1226 case e1000_82583:
1227 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1228 break;
1229
1230 case e1000_ich8lan:
1231 pba = E1000_PBA_8K;
1232 break;
1233
1234 case e1000_ich9lan:
1235 case e1000_ich10lan:
1236#define E1000_PBA_10K 0x000A
1237 pba = E1000_PBA_10K;
1238 break;
1239
1240 case e1000_pchlan:
1241 case e1000_pch2lan:
1242 pba = E1000_PBA_26K;
1243 break;
1244
1245 default:
1246 /* Devices before 82547 had a Packet Buffer of 64K. */
1247 if (adapter->max_frame_size > 8192)
1248 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1249 else
1250 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1251 }
1252 E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
1253
1254 /* Get the latest mac address, User can use a LAA */
1255 bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1256
1257 /* Put the address into the Receive Address Array */
1258 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1259
1260 /*
1261 * With the 82571 adapter, RAR[0] may be overwritten
1262 * when the other port is reset, we make a duplicate
1263 * in RAR[14] for that eventuality, this assures
1264 * the interface continues to function.
1265 */
1266 if (adapter->hw.mac.type == e1000_82571) {
1267 e1000_set_laa_state_82571(&adapter->hw, TRUE);
1268 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1269 E1000_RAR_ENTRIES - 1);
1270 }
1271
1272 /* Reset the hardware */
1273 if (em_reset(adapter)) {
1274 device_printf(dev, "Unable to reset the hardware\n");
1275 /* XXX em_stop()? */
1276 return;
1277 }
1278 em_update_link_status(adapter);
1279
1280 /* Setup VLAN support, basic and offload if available */
1281 E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1282
1283 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1284 uint32_t ctrl;
1285
1286 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1287 ctrl |= E1000_CTRL_VME;
1288 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1289 }
1290
1291 /* Set hardware offload abilities */
1292 if (ifp->if_capenable & IFCAP_TXCSUM)
1293 ifp->if_hwassist = EM_CSUM_FEATURES;
1294 else
1295 ifp->if_hwassist = 0;
1296
1297 /* Configure for OS presence */
1298 em_get_mgmt(adapter);
1299
1300 /* Prepare transmit descriptors and buffers */
1301 em_init_tx_ring(adapter);
1302 em_init_tx_unit(adapter);
1303
1304 /* Setup Multicast table */
1305 em_set_multi(adapter);
1306
1307 /* Prepare receive descriptors and buffers */
1308 if (em_init_rx_ring(adapter)) {
1309 device_printf(dev, "Could not setup receive structures\n");
1310 em_stop(adapter);
1311 return;
1312 }
1313 em_init_rx_unit(adapter);
1314
1315 /* Don't lose promiscuous settings */
1316 em_set_promisc(adapter);
1317
1318 ifp->if_flags |= IFF_RUNNING;
1319 ifp->if_flags &= ~IFF_OACTIVE;
1320
1321 callout_reset(&adapter->timer, hz, em_timer, adapter);
1322 e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1323
1324 /* MSI/X configuration for 82574 */
1325 if (adapter->hw.mac.type == e1000_82574) {
1326 int tmp;
1327
1328 tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1329 tmp |= E1000_CTRL_EXT_PBA_CLR;
1330 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1331 /*
1332 * XXX MSIX
1333 * Set the IVAR - interrupt vector routing.
1334 * Each nibble represents a vector, high bit
1335 * is enable, other 3 bits are the MSIX table
1336 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1337 * Link (other) to 2, hence the magic number.
1338 */
1339 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1340 }
1341
1342#ifdef DEVICE_POLLING
1343 /*
1344 * Only enable interrupts if we are not polling, make sure
1345 * they are off otherwise.
1346 */
1347 if (ifp->if_flags & IFF_POLLING)
1348 em_disable_intr(adapter);
1349 else
1350#endif /* DEVICE_POLLING */
1351 em_enable_intr(adapter);
1352
1353 /* AMT based hardware can now take control from firmware */
1354 if (adapter->has_manage && adapter->has_amt &&
1355 adapter->hw.mac.type >= e1000_82571)
1356 em_get_hw_control(adapter);
1357
1358 /* Don't reset the phy next time init gets called */
1359 adapter->hw.phy.reset_disable = TRUE;
1360}
1361
1362#ifdef DEVICE_POLLING
1363
1364static void
1365em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1366{
1367 struct adapter *adapter = ifp->if_softc;
1368 uint32_t reg_icr;
1369
1370 ASSERT_SERIALIZED(ifp->if_serializer);
1371
1372 switch (cmd) {
1373 case POLL_REGISTER:
1374 em_disable_intr(adapter);
1375 break;
1376
1377 case POLL_DEREGISTER:
1378 em_enable_intr(adapter);
1379 break;
1380
1381 case POLL_AND_CHECK_STATUS:
1382 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1383 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1384 callout_stop(&adapter->timer);
1385 adapter->hw.mac.get_link_status = 1;
1386 em_update_link_status(adapter);
1387 callout_reset(&adapter->timer, hz, em_timer, adapter);
1388 }
1389 /* FALL THROUGH */
1390 case POLL_ONLY:
1391 if (ifp->if_flags & IFF_RUNNING) {
1392 em_rxeof(adapter, count);
1393 em_txeof(adapter);
1394
1395 if (!ifq_is_empty(&ifp->if_snd))
1396 if_devstart(ifp);
1397 }
1398 break;
1399 }
1400}
1401
1402#endif /* DEVICE_POLLING */
1403
1404static void
1405em_intr(void *xsc)
1406{
1407 em_intr_body(xsc, TRUE);
1408}
1409
1410static void
1411em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1412{
1413 struct ifnet *ifp = &adapter->arpcom.ac_if;
1414 uint32_t reg_icr;
1415
1416 logif(intr_beg);
1417 ASSERT_SERIALIZED(ifp->if_serializer);
1418
1419 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1420
1421 if (chk_asserted &&
1422 ((adapter->hw.mac.type >= e1000_82571 &&
1423 (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1424 reg_icr == 0)) {
1425 logif(intr_end);
1426 return;
1427 }
1428
1429 /*
1430 * XXX: some laptops trigger several spurious interrupts
1431 * on em(4) when in the resume cycle. The ICR register
1432 * reports all-ones value in this case. Processing such
1433 * interrupts would lead to a freeze. I don't know why.
1434 */
1435 if (reg_icr == 0xffffffff) {
1436 logif(intr_end);
1437 return;
1438 }
1439
1440 if (ifp->if_flags & IFF_RUNNING) {
1441 if (reg_icr &
1442 (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1443 em_rxeof(adapter, -1);
1444 if (reg_icr & E1000_ICR_TXDW) {
1445 em_txeof(adapter);
1446 if (!ifq_is_empty(&ifp->if_snd))
1447 if_devstart(ifp);
1448 }
1449 }
1450
1451 /* Link status change */
1452 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1453 callout_stop(&adapter->timer);
1454 adapter->hw.mac.get_link_status = 1;
1455 em_update_link_status(adapter);
1456
1457 /* Deal with TX cruft when link lost */
1458 em_tx_purge(adapter);
1459
1460 callout_reset(&adapter->timer, hz, em_timer, adapter);
1461 }
1462
1463 if (reg_icr & E1000_ICR_RXO)
1464 adapter->rx_overruns++;
1465
1466 logif(intr_end);
1467}
1468
1469static void
1470em_intr_mask(void *xsc)
1471{
1472 struct adapter *adapter = xsc;
1473
1474 E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1475 /*
1476 * NOTE:
1477 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1478 * so don't check it.
1479 */
1480 em_intr_body(adapter, FALSE);
1481 E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1482}
1483
1484static void
1485em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1486{
1487 struct adapter *adapter = ifp->if_softc;
1488 u_char fiber_type = IFM_1000_SX;
1489
1490 ASSERT_SERIALIZED(ifp->if_serializer);
1491
1492 em_update_link_status(adapter);
1493
1494 ifmr->ifm_status = IFM_AVALID;
1495 ifmr->ifm_active = IFM_ETHER;
1496
1497 if (!adapter->link_active)
1498 return;
1499
1500 ifmr->ifm_status |= IFM_ACTIVE;
1501
1502 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1503 adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1504 if (adapter->hw.mac.type == e1000_82545)
1505 fiber_type = IFM_1000_LX;
1506 ifmr->ifm_active |= fiber_type | IFM_FDX;
1507 } else {
1508 switch (adapter->link_speed) {
1509 case 10:
1510 ifmr->ifm_active |= IFM_10_T;
1511 break;
1512 case 100:
1513 ifmr->ifm_active |= IFM_100_TX;
1514 break;
1515
1516 case 1000:
1517 ifmr->ifm_active |= IFM_1000_T;
1518 break;
1519 }
1520 if (adapter->link_duplex == FULL_DUPLEX)
1521 ifmr->ifm_active |= IFM_FDX;
1522 else
1523 ifmr->ifm_active |= IFM_HDX;
1524 }
1525}
1526
1527static int
1528em_media_change(struct ifnet *ifp)
1529{
1530 struct adapter *adapter = ifp->if_softc;
1531 struct ifmedia *ifm = &adapter->media;
1532
1533 ASSERT_SERIALIZED(ifp->if_serializer);
1534
1535 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1536 return (EINVAL);
1537
1538 switch (IFM_SUBTYPE(ifm->ifm_media)) {
1539 case IFM_AUTO:
1540 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1541 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1542 break;
1543
1544 case IFM_1000_LX:
1545 case IFM_1000_SX:
1546 case IFM_1000_T:
1547 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1548 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1549 break;
1550
1551 case IFM_100_TX:
1552 adapter->hw.mac.autoneg = FALSE;
1553 adapter->hw.phy.autoneg_advertised = 0;
1554 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1555 adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1556 else
1557 adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1558 break;
1559
1560 case IFM_10_T:
1561 adapter->hw.mac.autoneg = FALSE;
1562 adapter->hw.phy.autoneg_advertised = 0;
1563 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1564 adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1565 else
1566 adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1567 break;
1568
1569 default:
1570 if_printf(ifp, "Unsupported media type\n");
1571 break;
1572 }
1573
1574 /*
1575 * As the speed/duplex settings my have changed we need to
1576 * reset the PHY.
1577 */
1578 adapter->hw.phy.reset_disable = FALSE;
1579
1580 em_init(adapter);
1581
1582 return (0);
1583}
1584
1585static int
1586em_encap(struct adapter *adapter, struct mbuf **m_headp)
1587{
1588 bus_dma_segment_t segs[EM_MAX_SCATTER];
1589 bus_dmamap_t map;
1590 struct em_buffer *tx_buffer, *tx_buffer_mapped;
1591 struct e1000_tx_desc *ctxd = NULL;
1592 struct mbuf *m_head = *m_headp;
1593 uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1594 int maxsegs, nsegs, i, j, first, last = 0, error;
1595
1596 if (m_head->m_len < EM_TXCSUM_MINHL &&
1597 (m_head->m_flags & EM_CSUM_FEATURES)) {
1598 /*
1599 * Make sure that ethernet header and ip.ip_hl are in
1600 * contiguous memory, since if TXCSUM is enabled, later
1601 * TX context descriptor's setup need to access ip.ip_hl.
1602 */
1603 error = em_txcsum_pullup(adapter, m_headp);
1604 if (error) {
1605 KKASSERT(*m_headp == NULL);
1606 return error;
1607 }
1608 m_head = *m_headp;
1609 }
1610
1611 txd_upper = txd_lower = 0;
1612 txd_used = 0;
1613
1614 /*
1615 * Capture the first descriptor index, this descriptor
1616 * will have the index of the EOP which is the only one
1617 * that now gets a DONE bit writeback.
1618 */
1619 first = adapter->next_avail_tx_desc;
1620 tx_buffer = &adapter->tx_buffer_area[first];
1621 tx_buffer_mapped = tx_buffer;
1622 map = tx_buffer->map;
1623
1624 maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1625 KASSERT(maxsegs >= adapter->spare_tx_desc,
1626 ("not enough spare TX desc"));
1627 if (adapter->pcix_82544) {
1628 /* Half it; see the comment in em_attach() */
1629 maxsegs >>= 1;
1630 }
1631 if (maxsegs > EM_MAX_SCATTER)
1632 maxsegs = EM_MAX_SCATTER;
1633
1634 error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1635 segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1636 if (error) {
1637 if (error == ENOBUFS)
1638 adapter->mbuf_alloc_failed++;
1639 else
1640 adapter->no_tx_dma_setup++;
1641
1642 m_freem(*m_headp);
1643 *m_headp = NULL;
1644 return error;
1645 }
1646 bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1647
1648 m_head = *m_headp;
1649 adapter->tx_nsegs += nsegs;
1650
1651 if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1652 /* TX csum offloading will consume one TX desc */
1653 adapter->tx_nsegs += em_txcsum(adapter, m_head,
1654 &txd_upper, &txd_lower);
1655 }
1656 i = adapter->next_avail_tx_desc;
1657
1658 /* Set up our transmit descriptors */
1659 for (j = 0; j < nsegs; j++) {
1660 /* If adapter is 82544 and on PCIX bus */
1661 if(adapter->pcix_82544) {
1662 DESC_ARRAY desc_array;
1663 uint32_t array_elements, counter;
1664
1665 /*
1666 * Check the Address and Length combination and
1667 * split the data accordingly
1668 */
1669 array_elements = em_82544_fill_desc(segs[j].ds_addr,
1670 segs[j].ds_len, &desc_array);
1671 for (counter = 0; counter < array_elements; counter++) {
1672 KKASSERT(txd_used < adapter->num_tx_desc_avail);
1673
1674 tx_buffer = &adapter->tx_buffer_area[i];
1675 ctxd = &adapter->tx_desc_base[i];
1676
1677 ctxd->buffer_addr = htole64(
1678 desc_array.descriptor[counter].address);
1679 ctxd->lower.data = htole32(
1680 E1000_TXD_CMD_IFCS | txd_lower |
1681 desc_array.descriptor[counter].length);
1682 ctxd->upper.data = htole32(txd_upper);
1683
1684 last = i;
1685 if (++i == adapter->num_tx_desc)
1686 i = 0;
1687
1688 txd_used++;
1689 }
1690 } else {
1691 tx_buffer = &adapter->tx_buffer_area[i];
1692 ctxd = &adapter->tx_desc_base[i];
1693
1694 ctxd->buffer_addr = htole64(segs[j].ds_addr);
1695 ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1696 txd_lower | segs[j].ds_len);
1697 ctxd->upper.data = htole32(txd_upper);
1698
1699 last = i;
1700 if (++i == adapter->num_tx_desc)
1701 i = 0;
1702 }
1703 }
1704
1705 adapter->next_avail_tx_desc = i;
1706 if (adapter->pcix_82544) {
1707 KKASSERT(adapter->num_tx_desc_avail > txd_used);
1708 adapter->num_tx_desc_avail -= txd_used;
1709 } else {
1710 KKASSERT(adapter->num_tx_desc_avail > nsegs);
1711 adapter->num_tx_desc_avail -= nsegs;
1712 }
1713
1714 /* Handle VLAN tag */
1715 if (m_head->m_flags & M_VLANTAG) {
1716 /* Set the vlan id. */
1717 ctxd->upper.fields.special =
1718 htole16(m_head->m_pkthdr.ether_vlantag);
1719
1720 /* Tell hardware to add tag */
1721 ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1722 }
1723
1724 tx_buffer->m_head = m_head;
1725 tx_buffer_mapped->map = tx_buffer->map;
1726 tx_buffer->map = map;
1727
1728 if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1729 adapter->tx_nsegs = 0;
1730
1731 /*
1732 * Report Status (RS) is turned on
1733 * every tx_int_nsegs descriptors.
1734 */
1735 cmd = E1000_TXD_CMD_RS;
1736
1737 /*
1738 * Keep track of the descriptor, which will
1739 * be written back by hardware.
1740 */
1741 adapter->tx_dd[adapter->tx_dd_tail] = last;
1742 EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1743 KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1744 }
1745
1746 /*
1747 * Last Descriptor of Packet needs End Of Packet (EOP)
1748 */
1749 ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1750
1751 /*
1752 * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
1753 * that this frame is available to transmit.
1754 */
1755 if (adapter->hw.mac.type == e1000_82547 &&
1756 adapter->link_duplex == HALF_DUPLEX) {
1757 em_82547_move_tail_serialized(adapter);
1758 } else {
1759 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1760 if (adapter->hw.mac.type == e1000_82547) {
1761 em_82547_update_fifo_head(adapter,
1762 m_head->m_pkthdr.len);
1763 }
1764 }
1765 return (0);
1766}
1767
1768/*
1769 * 82547 workaround to avoid controller hang in half-duplex environment.
1770 * The workaround is to avoid queuing a large packet that would span
1771 * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
1772 * in this case. We do that only when FIFO is quiescent.
1773 */
1774static void
1775em_82547_move_tail_serialized(struct adapter *adapter)
1776{
1777 struct e1000_tx_desc *tx_desc;
1778 uint16_t hw_tdt, sw_tdt, length = 0;
1779 bool eop = 0;
1780
1781 ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1782
1783 hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1784 sw_tdt = adapter->next_avail_tx_desc;
1785
1786 while (hw_tdt != sw_tdt) {
1787 tx_desc = &adapter->tx_desc_base[hw_tdt];
1788 length += tx_desc->lower.flags.length;
1789 eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1790 if (++hw_tdt == adapter->num_tx_desc)
1791 hw_tdt = 0;
1792
1793 if (eop) {
1794 if (em_82547_fifo_workaround(adapter, length)) {
1795 adapter->tx_fifo_wrk_cnt++;
1796 callout_reset(&adapter->tx_fifo_timer, 1,
1797 em_82547_move_tail, adapter);
1798 break;
1799 }
1800 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1801 em_82547_update_fifo_head(adapter, length);
1802 length = 0;
1803 }
1804 }
1805}
1806
1807static void
1808em_82547_move_tail(void *xsc)
1809{
1810 struct adapter *adapter = xsc;
1811 struct ifnet *ifp = &adapter->arpcom.ac_if;
1812
1813 lwkt_serialize_enter(ifp->if_serializer);
1814 em_82547_move_tail_serialized(adapter);
1815 lwkt_serialize_exit(ifp->if_serializer);
1816}
1817
1818static int
1819em_82547_fifo_workaround(struct adapter *adapter, int len)
1820{
1821 int fifo_space, fifo_pkt_len;
1822
1823 fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1824
1825 if (adapter->link_duplex == HALF_DUPLEX) {
1826 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1827
1828 if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1829 if (em_82547_tx_fifo_reset(adapter))
1830 return (0);
1831 else
1832 return (1);
1833 }
1834 }
1835 return (0);
1836}
1837
1838static void
1839em_82547_update_fifo_head(struct adapter *adapter, int len)
1840{
1841 int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1842
1843 /* tx_fifo_head is always 16 byte aligned */
1844 adapter->tx_fifo_head += fifo_pkt_len;
1845 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1846 adapter->tx_fifo_head -= adapter->tx_fifo_size;
1847}
1848
1849static int
1850em_82547_tx_fifo_reset(struct adapter *adapter)
1851{
1852 uint32_t tctl;
1853
1854 if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1855 E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1856 (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1857 E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1858 (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1859 E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1860 (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1861 /* Disable TX unit */
1862 tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1863 E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1864 tctl & ~E1000_TCTL_EN);
1865
1866 /* Reset FIFO pointers */
1867 E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1868 adapter->tx_head_addr);
1869 E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1870 adapter->tx_head_addr);
1871 E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1872 adapter->tx_head_addr);
1873 E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1874 adapter->tx_head_addr);
1875
1876 /* Re-enable TX unit */
1877 E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1878 E1000_WRITE_FLUSH(&adapter->hw);
1879
1880 adapter->tx_fifo_head = 0;
1881 adapter->tx_fifo_reset_cnt++;
1882
1883 return (TRUE);
1884 } else {
1885 return (FALSE);
1886 }
1887}
1888
1889static void
1890em_set_promisc(struct adapter *adapter)
1891{
1892 struct ifnet *ifp = &adapter->arpcom.ac_if;
1893 uint32_t reg_rctl;
1894
1895 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1896
1897 if (ifp->if_flags & IFF_PROMISC) {
1898 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1899 /* Turn this on if you want to see bad packets */
1900 if (em_debug_sbp)
1901 reg_rctl |= E1000_RCTL_SBP;
1902 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1903 } else if (ifp->if_flags & IFF_ALLMULTI) {
1904 reg_rctl |= E1000_RCTL_MPE;
1905 reg_rctl &= ~E1000_RCTL_UPE;
1906 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1907 }
1908}
1909
1910static void
1911em_disable_promisc(struct adapter *adapter)
1912{
1913 uint32_t reg_rctl;
1914
1915 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1916
1917 reg_rctl &= ~E1000_RCTL_UPE;
1918 reg_rctl &= ~E1000_RCTL_MPE;
1919 reg_rctl &= ~E1000_RCTL_SBP;
1920 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1921}
1922
1923static void
1924em_set_multi(struct adapter *adapter)
1925{
1926 struct ifnet *ifp = &adapter->arpcom.ac_if;
1927 struct ifmultiaddr *ifma;
1928 uint32_t reg_rctl = 0;
1929 uint8_t *mta;
1930 int mcnt = 0;
1931
1932 mta = adapter->mta;
1933 bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1934
1935 if (adapter->hw.mac.type == e1000_82542 &&
1936 adapter->hw.revision_id == E1000_REVISION_2) {
1937 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1938 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1939 e1000_pci_clear_mwi(&adapter->hw);
1940 reg_rctl |= E1000_RCTL_RST;
1941 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1942 msec_delay(5);
1943 }
1944
1945 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1946 if (ifma->ifma_addr->sa_family != AF_LINK)
1947 continue;
1948
1949 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1950 break;
1951
1952 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1953 &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1954 mcnt++;
1955 }
1956
1957 if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1958 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1959 reg_rctl |= E1000_RCTL_MPE;
1960 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1961 } else {
1962 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1963 }
1964
1965 if (adapter->hw.mac.type == e1000_82542 &&
1966 adapter->hw.revision_id == E1000_REVISION_2) {
1967 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1968 reg_rctl &= ~E1000_RCTL_RST;
1969 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1970 msec_delay(5);
1971 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1972 e1000_pci_set_mwi(&adapter->hw);
1973 }
1974}
1975
1976/*
1977 * This routine checks for link status and updates statistics.
1978 */
1979static void
1980em_timer(void *xsc)
1981{
1982 struct adapter *adapter = xsc;
1983 struct ifnet *ifp = &adapter->arpcom.ac_if;
1984
1985 lwkt_serialize_enter(ifp->if_serializer);
1986
1987 em_update_link_status(adapter);
1988 em_update_stats(adapter);
1989
1990 /* Reset LAA into RAR[0] on 82571 */
1991 if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
1992 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1993
1994 if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1995 em_print_hw_stats(adapter);
1996
1997 em_smartspeed(adapter);
1998
1999 callout_reset(&adapter->timer, hz, em_timer, adapter);
2000
2001 lwkt_serialize_exit(ifp->if_serializer);
2002}
2003
2004static void
2005em_update_link_status(struct adapter *adapter)
2006{
2007 struct e1000_hw *hw = &adapter->hw;
2008 struct ifnet *ifp = &adapter->arpcom.ac_if;
2009 device_t dev = adapter->dev;
2010 uint32_t link_check = 0;
2011
2012 /* Get the cached link value or read phy for real */
2013 switch (hw->phy.media_type) {
2014 case e1000_media_type_copper:
2015 if (hw->mac.get_link_status) {
2016 /* Do the work to read phy */
2017 e1000_check_for_link(hw);
2018 link_check = !hw->mac.get_link_status;
2019 if (link_check) /* ESB2 fix */
2020 e1000_cfg_on_link_up(hw);
2021 } else {
2022 link_check = TRUE;
2023 }
2024 break;
2025
2026 case e1000_media_type_fiber:
2027 e1000_check_for_link(hw);
2028 link_check =
2029 E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2030 break;
2031
2032 case e1000_media_type_internal_serdes:
2033 e1000_check_for_link(hw);
2034 link_check = adapter->hw.mac.serdes_has_link;
2035 break;
2036
2037 case e1000_media_type_unknown:
2038 default:
2039 break;
2040 }
2041
2042 /* Now check for a transition */
2043 if (link_check && adapter->link_active == 0) {
2044 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2045 &adapter->link_duplex);
2046
2047 /*
2048 * Check if we should enable/disable SPEED_MODE bit on
2049 * 82571/82572
2050 */
2051 if (adapter->link_speed != SPEED_1000 &&
2052 (hw->mac.type == e1000_82571 ||
2053 hw->mac.type == e1000_82572)) {
2054 int tarc0;
2055
2056 tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2057 tarc0 &= ~SPEED_MODE_BIT;
2058 E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2059 }
2060 if (bootverbose) {
2061 device_printf(dev, "Link is up %d Mbps %s\n",
2062 adapter->link_speed,
2063 ((adapter->link_duplex == FULL_DUPLEX) ?
2064 "Full Duplex" : "Half Duplex"));
2065 }
2066 adapter->link_active = 1;
2067 adapter->smartspeed = 0;
2068 ifp->if_baudrate = adapter->link_speed * 1000000;
2069 ifp->if_link_state = LINK_STATE_UP;
2070 if_link_state_change(ifp);
2071 } else if (!link_check && adapter->link_active == 1) {
2072 ifp->if_baudrate = adapter->link_speed = 0;
2073 adapter->link_duplex = 0;
2074 if (bootverbose)
2075 device_printf(dev, "Link is Down\n");
2076 adapter->link_active = 0;
2077#if 0
2078 /* Link down, disable watchdog */
2079 if->if_timer = 0;
2080#endif
2081 ifp->if_link_state = LINK_STATE_DOWN;
2082 if_link_state_change(ifp);
2083 }
2084}
2085
2086static void
2087em_stop(struct adapter *adapter)
2088{
2089 struct ifnet *ifp = &adapter->arpcom.ac_if;
2090 int i;
2091
2092 ASSERT_SERIALIZED(ifp->if_serializer);
2093
2094 em_disable_intr(adapter);
2095
2096 callout_stop(&adapter->timer);
2097 callout_stop(&adapter->tx_fifo_timer);
2098
2099 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2100 ifp->if_timer = 0;
2101
2102 e1000_reset_hw(&adapter->hw);
2103 if (adapter->hw.mac.type >= e1000_82544)
2104 E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2105
2106 for (i = 0; i < adapter->num_tx_desc; i++) {
2107 struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2108
2109 if (tx_buffer->m_head != NULL) {
2110 bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2111 m_freem(tx_buffer->m_head);
2112 tx_buffer->m_head = NULL;
2113 }
2114 }
2115
2116 for (i = 0; i < adapter->num_rx_desc; i++) {
2117 struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2118
2119 if (rx_buffer->m_head != NULL) {
2120 bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2121 m_freem(rx_buffer->m_head);
2122 rx_buffer->m_head = NULL;
2123 }
2124 }
2125
2126 if (adapter->fmp != NULL)
2127 m_freem(adapter->fmp);
2128 adapter->fmp = NULL;
2129 adapter->lmp = NULL;
2130
2131 adapter->csum_flags = 0;
2132 adapter->csum_ehlen = 0;
2133 adapter->csum_iphlen = 0;
2134
2135 adapter->tx_dd_head = 0;
2136 adapter->tx_dd_tail = 0;
2137 adapter->tx_nsegs = 0;
2138}
2139
2140static int
2141em_get_hw_info(struct adapter *adapter)
2142{
2143 device_t dev = adapter->dev;
2144
2145 /* Save off the information about this board */
2146 adapter->hw.vendor_id = pci_get_vendor(dev);
2147 adapter->hw.device_id = pci_get_device(dev);
2148 adapter->hw.revision_id = pci_get_revid(dev);
2149 adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2150 adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2151
2152 /* Do Shared Code Init and Setup */
2153 if (e1000_set_mac_type(&adapter->hw))
2154 return ENXIO;
2155 return 0;
2156}
2157
2158static int
2159em_alloc_pci_res(struct adapter *adapter)
2160{
2161 device_t dev = adapter->dev;
2162 u_int intr_flags;
2163 int val, rid, msi_enable;
2164
2165 /* Enable bus mastering */
2166 pci_enable_busmaster(dev);
2167
2168 adapter->memory_rid = EM_BAR_MEM;
2169 adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2170 &adapter->memory_rid, RF_ACTIVE);
2171 if (adapter->memory == NULL) {
2172 device_printf(dev, "Unable to allocate bus resource: memory\n");
2173 return (ENXIO);
2174 }
2175 adapter->osdep.mem_bus_space_tag =
2176 rman_get_bustag(adapter->memory);
2177 adapter->osdep.mem_bus_space_handle =
2178 rman_get_bushandle(adapter->memory);
2179
2180 /* XXX This is quite goofy, it is not actually used */
2181 adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2182
2183 /* Only older adapters use IO mapping */
2184 if (adapter->hw.mac.type > e1000_82543 &&
2185 adapter->hw.mac.type < e1000_82571) {
2186 /* Figure our where our IO BAR is ? */
2187 for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2188 val = pci_read_config(dev, rid, 4);
2189 if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2190 adapter->io_rid = rid;
2191 break;
2192 }
2193 rid += 4;
2194 /* check for 64bit BAR */
2195 if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2196 rid += 4;
2197 }
2198 if (rid >= PCIR_CARDBUSCIS) {
2199 device_printf(dev, "Unable to locate IO BAR\n");
2200 return (ENXIO);
2201 }
2202 adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2203 &adapter->io_rid, RF_ACTIVE);
2204 if (adapter->ioport == NULL) {
2205 device_printf(dev, "Unable to allocate bus resource: "
2206 "ioport\n");
2207 return (ENXIO);
2208 }
2209 adapter->hw.io_base = 0;
2210 adapter->osdep.io_bus_space_tag =
2211 rman_get_bustag(adapter->ioport);
2212 adapter->osdep.io_bus_space_handle =
2213 rman_get_bushandle(adapter->ioport);
2214 }
2215
2216 /*
2217 * Don't enable MSI-X on 82574, see:
2218 * 82574 specification update errata #15
2219 *
2220 * Don't enable MSI on PCI/PCI-X chips, see:
2221 * 82540 specification update errata #6
2222 * 82545 specification update errata #4
2223 *
2224 * Don't enable MSI on 82571/82572, see:
2225 * 82571/82572 specification update errata #63
2226 */
2227 msi_enable = em_msi_enable;
2228 if (msi_enable &&
2229 (!pci_is_pcie(dev) ||
2230 adapter->hw.mac.type == e1000_82571 ||
2231 adapter->hw.mac.type == e1000_82572))
2232 msi_enable = 0;
2233
2234 adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2235 &adapter->intr_rid, &intr_flags);
2236
2237 if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2238 int unshared;
2239
2240 unshared = device_getenv_int(dev, "irq.unshared", 0);
2241 if (!unshared) {
2242 adapter->flags |= EM_FLAG_SHARED_INTR;
2243 if (bootverbose)
2244 device_printf(dev, "IRQ shared\n");
2245 } else {
2246 intr_flags &= ~RF_SHAREABLE;
2247 if (bootverbose)
2248 device_printf(dev, "IRQ unshared\n");
2249 }
2250 }
2251
2252 adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2253 &adapter->intr_rid, intr_flags);
2254 if (adapter->intr_res == NULL) {
2255 device_printf(dev, "Unable to allocate bus resource: "
2256 "interrupt\n");
2257 return (ENXIO);
2258 }
2259
2260 adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2261 adapter->hw.back = &adapter->osdep;
2262 return (0);
2263}
2264
2265static void
2266em_free_pci_res(struct adapter *adapter)
2267{
2268 device_t dev = adapter->dev;
2269
2270 if (adapter->intr_res != NULL) {
2271 bus_release_resource(dev, SYS_RES_IRQ,
2272 adapter->intr_rid, adapter->intr_res);
2273 }
2274
2275 if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2276 pci_release_msi(dev);
2277
2278 if (adapter->memory != NULL) {
2279 bus_release_resource(dev, SYS_RES_MEMORY,
2280 adapter->memory_rid, adapter->memory);
2281 }
2282
2283 if (adapter->flash != NULL) {
2284 bus_release_resource(dev, SYS_RES_MEMORY,
2285 adapter->flash_rid, adapter->flash);
2286 }
2287
2288 if (adapter->ioport != NULL) {
2289 bus_release_resource(dev, SYS_RES_IOPORT,
2290 adapter->io_rid, adapter->ioport);
2291 }
2292}
2293
2294static int
2295em_reset(struct adapter *adapter)
2296{
2297 device_t dev = adapter->dev;
2298 uint16_t rx_buffer_size;
2299
2300 /* When hardware is reset, fifo_head is also reset */
2301 adapter->tx_fifo_head = 0;
2302
2303 /* Set up smart power down as default off on newer adapters. */
2304 if (!em_smart_pwr_down &&
2305 (adapter->hw.mac.type == e1000_82571 ||
2306 adapter->hw.mac.type == e1000_82572)) {
2307 uint16_t phy_tmp = 0;
2308
2309 /* Speed up time to link by disabling smart power down. */
2310 e1000_read_phy_reg(&adapter->hw,
2311 IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2312 phy_tmp &= ~IGP02E1000_PM_SPD;
2313 e1000_write_phy_reg(&adapter->hw,
2314 IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2315 }
2316
2317 /*
2318 * These parameters control the automatic generation (Tx) and
2319 * response (Rx) to Ethernet PAUSE frames.
2320 * - High water mark should allow for at least two frames to be
2321 * received after sending an XOFF.
2322 * - Low water mark works best when it is very near the high water mark.
2323 * This allows the receiver to restart by sending XON when it has
2324 * drained a bit. Here we use an arbitary value of 1500 which will
2325 * restart after one full frame is pulled from the buffer. There
2326 * could be several smaller frames in the buffer and if so they will
2327 * not trigger the XON until their total number reduces the buffer
2328 * by 1500.
2329 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2330 */
2331 rx_buffer_size =
2332 (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2333
2334 adapter->hw.fc.high_water = rx_buffer_size -
2335 roundup2(adapter->max_frame_size, 1024);
2336 adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2337
2338 if (adapter->hw.mac.type == e1000_80003es2lan)
2339 adapter->hw.fc.pause_time = 0xFFFF;
2340 else
2341 adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2342
2343 adapter->hw.fc.send_xon = TRUE;
2344
2345 adapter->hw.fc.requested_mode = e1000_fc_full;
2346
2347 /* Workaround: no TX flow ctrl for PCH */
2348 if (adapter->hw.mac.type == e1000_pchlan)
2349 adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2350
2351 /* Override - settings for PCH2LAN, ya its magic :) */
2352 if (adapter->hw.mac.type == e1000_pch2lan) {
2353 adapter->hw.fc.high_water = 0x5C20;
2354 adapter->hw.fc.low_water = 0x5048;
2355 adapter->hw.fc.pause_time = 0x0650;
2356 adapter->hw.fc.refresh_time = 0x0400;
2357
2358 /* Jumbos need adjusted PBA */
2359 if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2360 E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2361 else
2362 E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2363 }
2364
2365 /* Issue a global reset */
2366 e1000_reset_hw(&adapter->hw);
2367 if (adapter->hw.mac.type >= e1000_82544)
2368 E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2369 em_disable_aspm(adapter);
2370
2371 if (e1000_init_hw(&adapter->hw) < 0) {
2372 device_printf(dev, "Hardware Initialization Failed\n");
2373 return (EIO);
2374 }
2375
2376 E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2377 e1000_get_phy_info(&adapter->hw);
2378 e1000_check_for_link(&adapter->hw);
2379
2380 return (0);
2381}
2382
2383static void
2384em_setup_ifp(struct adapter *adapter)
2385{
2386 struct ifnet *ifp = &adapter->arpcom.ac_if;
2387
2388 if_initname(ifp, device_get_name(adapter->dev),
2389 device_get_unit(adapter->dev));
2390 ifp->if_softc = adapter;
2391 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2392 ifp->if_init = em_init;
2393 ifp->if_ioctl = em_ioctl;
2394 ifp->if_start = em_start;
2395#ifdef DEVICE_POLLING
2396 ifp->if_poll = em_poll;
2397#endif
2398 ifp->if_watchdog = em_watchdog;
2399 ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2400 ifq_set_ready(&ifp->if_snd);
2401
2402 ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2403
2404 if (adapter->hw.mac.type >= e1000_82543)
2405 ifp->if_capabilities = IFCAP_HWCSUM;
2406
2407 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2408 ifp->if_capenable = ifp->if_capabilities;
2409
2410 if (ifp->if_capenable & IFCAP_TXCSUM)
2411 ifp->if_hwassist = EM_CSUM_FEATURES;
2412
2413 /*
2414 * Tell the upper layer(s) we support long frames.
2415 */
2416 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2417
2418 /*
2419 * Specify the media types supported by this adapter and register
2420 * callbacks to update media and link information
2421 */
2422 ifmedia_init(&adapter->media, IFM_IMASK,
2423 em_media_change, em_media_status);
2424 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2425 adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2426 u_char fiber_type = IFM_1000_SX; /* default type */
2427
2428 if (adapter->hw.mac.type == e1000_82545)
2429 fiber_type = IFM_1000_LX;
2430 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2431 0, NULL);
2432 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2433 } else {
2434 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2435 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2436 0, NULL);
2437 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2438 0, NULL);
2439 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2440 0, NULL);
2441 if (adapter->hw.phy.type != e1000_phy_ife) {
2442 ifmedia_add(&adapter->media,
2443 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2444 ifmedia_add(&adapter->media,
2445 IFM_ETHER | IFM_1000_T, 0, NULL);
2446 }
2447 }
2448 ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2449 ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2450}
2451
2452
2453/*
2454 * Workaround for SmartSpeed on 82541 and 82547 controllers
2455 */
2456static void
2457em_smartspeed(struct adapter *adapter)
2458{
2459 uint16_t phy_tmp;
2460
2461 if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2462 adapter->hw.mac.autoneg == 0 ||
2463 (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2464 return;
2465
2466 if (adapter->smartspeed == 0) {
2467 /*
2468 * If Master/Slave config fault is asserted twice,
2469 * we assume back-to-back
2470 */
2471 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2472 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2473 return;
2474 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2475 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2476 e1000_read_phy_reg(&adapter->hw,
2477 PHY_1000T_CTRL, &phy_tmp);
2478 if (phy_tmp & CR_1000T_MS_ENABLE) {
2479 phy_tmp &= ~CR_1000T_MS_ENABLE;
2480 e1000_write_phy_reg(&adapter->hw,
2481 PHY_1000T_CTRL, phy_tmp);
2482 adapter->smartspeed++;
2483 if (adapter->hw.mac.autoneg &&
2484 !e1000_phy_setup_autoneg(&adapter->hw) &&
2485 !e1000_read_phy_reg(&adapter->hw,
2486 PHY_CONTROL, &phy_tmp)) {
2487 phy_tmp |= MII_CR_AUTO_NEG_EN |
2488 MII_CR_RESTART_AUTO_NEG;
2489 e1000_write_phy_reg(&adapter->hw,
2490 PHY_CONTROL, phy_tmp);
2491 }
2492 }
2493 }
2494 return;
2495 } else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2496 /* If still no link, perhaps using 2/3 pair cable */
2497 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2498 phy_tmp |= CR_1000T_MS_ENABLE;
2499 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2500 if (adapter->hw.mac.autoneg &&
2501 !e1000_phy_setup_autoneg(&adapter->hw) &&
2502 !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2503 phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2504 e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2505 }
2506 }
2507
2508 /* Restart process after EM_SMARTSPEED_MAX iterations */
2509 if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2510 adapter->smartspeed = 0;
2511}
2512
2513static int
2514em_dma_malloc(struct adapter *adapter, bus_size_t size,
2515 struct em_dma_alloc *dma)
2516{
2517 dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2518 EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2519 &dma->dma_tag, &dma->dma_map,
2520 &dma->dma_paddr);
2521 if (dma->dma_vaddr == NULL)
2522 return ENOMEM;
2523 else
2524 return 0;
2525}
2526
2527static void
2528em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2529{
2530 if (dma->dma_tag == NULL)
2531 return;
2532 bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2533 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2534 bus_dma_tag_destroy(dma->dma_tag);
2535}
2536
2537static int
2538em_create_tx_ring(struct adapter *adapter)
2539{
2540 device_t dev = adapter->dev;
2541 struct em_buffer *tx_buffer;
2542 int error, i;
2543
2544 adapter->tx_buffer_area =
2545 kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2546 M_DEVBUF, M_WAITOK | M_ZERO);
2547
2548 /*
2549 * Create DMA tags for tx buffers
2550 */
2551 error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2552 1, 0, /* alignment, bounds */
2553 BUS_SPACE_MAXADDR, /* lowaddr */
2554 BUS_SPACE_MAXADDR, /* highaddr */
2555 NULL, NULL, /* filter, filterarg */
2556 EM_TSO_SIZE, /* maxsize */
2557 EM_MAX_SCATTER, /* nsegments */
2558 EM_MAX_SEGSIZE, /* maxsegsize */
2559 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2560 BUS_DMA_ONEBPAGE, /* flags */
2561 &adapter->txtag);
2562 if (error) {
2563 device_printf(dev, "Unable to allocate TX DMA tag\n");
2564 kfree(adapter->tx_buffer_area, M_DEVBUF);
2565 adapter->tx_buffer_area = NULL;
2566 return error;
2567 }
2568
2569 /*
2570 * Create DMA maps for tx buffers
2571 */
2572 for (i = 0; i < adapter->num_tx_desc; i++) {
2573 tx_buffer = &adapter->tx_buffer_area[i];
2574
2575 error = bus_dmamap_create(adapter->txtag,
2576 BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2577 &tx_buffer->map);
2578 if (error) {
2579 device_printf(dev, "Unable to create TX DMA map\n");
2580 em_destroy_tx_ring(adapter, i);
2581 return error;
2582 }
2583 }
2584 return (0);
2585}
2586
2587static void
2588em_init_tx_ring(struct adapter *adapter)
2589{
2590 /* Clear the old ring contents */
2591 bzero(adapter->tx_desc_base,
2592 (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2593
2594 /* Reset state */
2595 adapter->next_avail_tx_desc = 0;
2596 adapter->next_tx_to_clean = 0;
2597 adapter->num_tx_desc_avail = adapter->num_tx_desc;
2598}
2599
2600static void
2601em_init_tx_unit(struct adapter *adapter)
2602{
2603 uint32_t tctl, tarc, tipg = 0;
2604 uint64_t bus_addr;
2605
2606 /* Setup the Base and Length of the Tx Descriptor Ring */
2607 bus_addr = adapter->txdma.dma_paddr;
2608 E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2609 adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2610 E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2611 (uint32_t)(bus_addr >> 32));
2612 E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2613 (uint32_t)bus_addr);
2614 /* Setup the HW Tx Head and Tail descriptor pointers */
2615 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2616 E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2617
2618 /* Set the default values for the Tx Inter Packet Gap timer */
2619 switch (adapter->hw.mac.type) {
2620 case e1000_82542:
2621 tipg = DEFAULT_82542_TIPG_IPGT;
2622 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2623 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2624 break;
2625
2626 case e1000_80003es2lan:
2627 tipg = DEFAULT_82543_TIPG_IPGR1;
2628 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2629 E1000_TIPG_IPGR2_SHIFT;
2630 break;
2631
2632 default:
2633 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2634 adapter->hw.phy.media_type ==
2635 e1000_media_type_internal_serdes)
2636 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2637 else
2638 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2639 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2640 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2641 break;
2642 }
2643
2644 E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2645
2646 /* NOTE: 0 is not allowed for TIDV */
2647 E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2648 if(adapter->hw.mac.type >= e1000_82540)
2649 E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2650
2651 if (adapter->hw.mac.type == e1000_82571 ||
2652 adapter->hw.mac.type == e1000_82572) {
2653 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2654 tarc |= SPEED_MODE_BIT;
2655 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2656 } else if (adapter->hw.mac.type == e1000_80003es2lan) {
2657 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2658 tarc |= 1;
2659 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2660 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2661 tarc |= 1;
2662 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2663 }
2664
2665 /* Program the Transmit Control Register */
2666 tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2667 tctl &= ~E1000_TCTL_CT;
2668 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2669 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2670
2671 if (adapter->hw.mac.type >= e1000_82571)
2672 tctl |= E1000_TCTL_MULR;
2673
2674 /* This write will effectively turn on the transmit unit. */
2675 E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2676}
2677
2678static void
2679em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2680{
2681 struct em_buffer *tx_buffer;
2682 int i;
2683
2684 if (adapter->tx_buffer_area == NULL)
2685 return;
2686
2687 for (i = 0; i < ndesc; i++) {
2688 tx_buffer = &adapter->tx_buffer_area[i];
2689
2690 KKASSERT(tx_buffer->m_head == NULL);
2691 bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2692 }
2693 bus_dma_tag_destroy(adapter->txtag);
2694
2695 kfree(adapter->tx_buffer_area, M_DEVBUF);
2696 adapter->tx_buffer_area = NULL;
2697}
2698
2699/*
2700 * The offload context needs to be set when we transfer the first
2701 * packet of a particular protocol (TCP/UDP). This routine has been
2702 * enhanced to deal with inserted VLAN headers.
2703 *
2704 * If the new packet's ether header length, ip header length and
2705 * csum offloading type are same as the previous packet, we should
2706 * avoid allocating a new csum context descriptor; mainly to take
2707 * advantage of the pipeline effect of the TX data read request.
2708 *
2709 * This function returns number of TX descrptors allocated for
2710 * csum context.
2711 */
2712static int
2713em_txcsum(struct adapter *adapter, struct mbuf *mp,
2714 uint32_t *txd_upper, uint32_t *txd_lower)
2715{
2716 struct e1000_context_desc *TXD;
2717 struct em_buffer *tx_buffer;
2718 struct ether_vlan_header *eh;
2719 struct ip *ip;
2720 int curr_txd, ehdrlen, csum_flags;
2721 uint32_t cmd, hdr_len, ip_hlen;
2722 uint16_t etype;
2723
2724 /*
2725 * Determine where frame payload starts.
2726 * Jump over vlan headers if already present,
2727 * helpful for QinQ too.
2728 */
2729 KASSERT(mp->m_len >= ETHER_HDR_LEN,
2730 ("em_txcsum_pullup is not called (eh)?"));
2731 eh = mtod(mp, struct ether_vlan_header *);
2732 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2733 KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
2734 ("em_txcsum_pullup is not called (evh)?"));
2735 etype = ntohs(eh->evl_proto);
2736 ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
2737 } else {
2738 etype = ntohs(eh->evl_encap_proto);
2739 ehdrlen = ETHER_HDR_LEN;
2740 }
2741
2742 /*
2743 * We only support TCP/UDP for IPv4 for the moment.
2744 * TODO: Support SCTP too when it hits the tree.
2745 */
2746 if (etype != ETHERTYPE_IP)
2747 return 0;
2748
2749 KASSERT(mp->m_len >= ehdrlen + EM_IPVHL_SIZE,
2750 ("em_txcsum_pullup is not called (eh+ip_vhl)?"));
2751
2752 /* NOTE: We could only safely access ip.ip_vhl part */
2753 ip = (struct ip *)(mp->m_data + ehdrlen);
2754 ip_hlen = ip->ip_hl << 2;
2755
2756 csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2757
2758 if (adapter->csum_ehlen == ehdrlen &&
2759 adapter->csum_iphlen == ip_hlen &&
2760 adapter->csum_flags == csum_flags) {
2761 /*
2762 * Same csum offload context as the previous packets;
2763 * just return.
2764 */
2765 *txd_upper = adapter->csum_txd_upper;
2766 *txd_lower = adapter->csum_txd_lower;
2767 return 0;
2768 }
2769
2770 /*
2771 * Setup a new csum offload context.
2772 */
2773
2774 curr_txd = adapter->next_avail_tx_desc;
2775 tx_buffer = &adapter->tx_buffer_area[curr_txd];
2776 TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2777
2778 cmd = 0;
2779
2780 /* Setup of IP header checksum. */
2781 if (csum_flags & CSUM_IP) {
2782 /*
2783 * Start offset for header checksum calculation.
2784 * End offset for header checksum calculation.
2785 * Offset of place to put the checksum.
2786 */
2787 TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2788 TXD->lower_setup.ip_fields.ipcse =
2789 htole16(ehdrlen + ip_hlen - 1);
2790 TXD->lower_setup.ip_fields.ipcso =
2791 ehdrlen + offsetof(struct ip, ip_sum);
2792 cmd |= E1000_TXD_CMD_IP;
2793 *txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2794 }
2795 hdr_len = ehdrlen + ip_hlen;
2796
2797 if (csum_flags & CSUM_TCP) {
2798 /*
2799 * Start offset for payload checksum calculation.
2800 * End offset for payload checksum calculation.
2801 * Offset of place to put the checksum.
2802 */
2803 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2804 TXD->upper_setup.tcp_fields.tucse = htole16(0);
2805 TXD->upper_setup.tcp_fields.tucso =
2806 hdr_len + offsetof(struct tcphdr, th_sum);
2807 cmd |= E1000_TXD_CMD_TCP;
2808 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2809 } else if (csum_flags & CSUM_UDP) {
2810 /*
2811 * Start offset for header checksum calculation.
2812 * End offset for header checksum calculation.
2813 * Offset of place to put the checksum.
2814 */
2815 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2816 TXD->upper_setup.tcp_fields.tucse = htole16(0);
2817 TXD->upper_setup.tcp_fields.tucso =
2818 hdr_len + offsetof(struct udphdr, uh_sum);
2819 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2820 }
2821
2822 *txd_lower = E1000_TXD_CMD_DEXT | /* Extended descr type */
2823 E1000_TXD_DTYP_D; /* Data descr */
2824
2825 /* Save the information for this csum offloading context */
2826 adapter->csum_ehlen = ehdrlen;
2827 adapter->csum_iphlen = ip_hlen;
2828 adapter->csum_flags = csum_flags;
2829 adapter->csum_txd_upper = *txd_upper;
2830 adapter->csum_txd_lower = *txd_lower;
2831
2832 TXD->tcp_seg_setup.data = htole32(0);
2833 TXD->cmd_and_length =
2834 htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2835
2836 if (++curr_txd == adapter->num_tx_desc)
2837 curr_txd = 0;
2838
2839 KKASSERT(adapter->num_tx_desc_avail > 0);
2840 adapter->num_tx_desc_avail--;
2841
2842 adapter->next_avail_tx_desc = curr_txd;
2843 return 1;
2844}
2845
2846static int
2847em_txcsum_pullup(struct adapter *adapter, struct mbuf **m0)
2848{
2849 struct mbuf *m = *m0;
2850 struct ether_header *eh;
2851 int len;
2852
2853 adapter->tx_csum_try_pullup++;
2854
2855 len = ETHER_HDR_LEN + EM_IPVHL_SIZE;
2856
2857 if (__predict_false(!M_WRITABLE(m))) {
2858 if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2859 adapter->tx_csum_drop1++;
2860 m_freem(m);
2861 *m0 = NULL;
2862 return ENOBUFS;
2863 }
2864 eh = mtod(m, struct ether_header *);
2865
2866 if (eh->ether_type == htons(ETHERTYPE_VLAN))
2867 len += EVL_ENCAPLEN;
2868
2869 if (m->m_len < len) {
2870 adapter->tx_csum_drop2++;
2871 m_freem(m);
2872 *m0 = NULL;
2873 return ENOBUFS;
2874 }
2875 return 0;
2876 }
2877
2878 if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2879 adapter->tx_csum_pullup1++;
2880 m = m_pullup(m, ETHER_HDR_LEN);
2881 if (m == NULL) {
2882 adapter->tx_csum_pullup1_failed++;
2883 *m0 = NULL;
2884 return ENOBUFS;
2885 }
2886 *m0 = m;
2887 }
2888 eh = mtod(m, struct ether_header *);
2889
2890 if (eh->ether_type == htons(ETHERTYPE_VLAN))
2891 len += EVL_ENCAPLEN;
2892
2893 if (m->m_len < len) {
2894 adapter->tx_csum_pullup2++;
2895 m = m_pullup(m, len);
2896 if (m == NULL) {
2897 adapter->tx_csum_pullup2_failed++;
2898 *m0 = NULL;
2899 return ENOBUFS;
2900 }
2901 *m0 = m;
2902 }
2903 return 0;
2904}
2905
2906static void
2907em_txeof(struct adapter *adapter)
2908{
2909 struct ifnet *ifp = &adapter->arpcom.ac_if;
2910 struct em_buffer *tx_buffer;
2911 int first, num_avail;
2912
2913 if (adapter->tx_dd_head == adapter->tx_dd_tail)
2914 return;
2915
2916 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2917 return;
2918
2919 num_avail = adapter->num_tx_desc_avail;
2920 first = adapter->next_tx_to_clean;
2921
2922 while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2923 struct e1000_tx_desc *tx_desc;
2924 int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2925
2926 tx_desc = &adapter->tx_desc_base[dd_idx];
2927 if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2928 EM_INC_TXDD_IDX(adapter->tx_dd_head);
2929
2930 if (++dd_idx == adapter->num_tx_desc)
2931 dd_idx = 0;
2932
2933 while (first != dd_idx) {
2934 logif(pkt_txclean);
2935
2936 num_avail++;
2937
2938 tx_buffer = &adapter->tx_buffer_area[first];
2939 if (tx_buffer->m_head) {
2940 ifp->if_opackets++;
2941 bus_dmamap_unload(adapter->txtag,
2942 tx_buffer->map);
2943 m_freem(tx_buffer->m_head);
2944 tx_buffer->m_head = NULL;
2945 }
2946
2947 if (++first == adapter->num_tx_desc)
2948 first = 0;
2949 }
2950 } else {
2951 break;
2952 }
2953 }
2954 adapter->next_tx_to_clean = first;
2955 adapter->num_tx_desc_avail = num_avail;
2956
2957 if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2958 adapter->tx_dd_head = 0;
2959 adapter->tx_dd_tail = 0;
2960 }
2961
2962 if (!EM_IS_OACTIVE(adapter)) {
2963 ifp->if_flags &= ~IFF_OACTIVE;
2964
2965 /* All clean, turn off the timer */
2966 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2967 ifp->if_timer = 0;
2968 }
2969}
2970
2971static void
2972em_tx_collect(struct adapter *adapter)
2973{
2974 struct ifnet *ifp = &adapter->arpcom.ac_if;
2975 struct em_buffer *tx_buffer;
2976 int tdh, first, num_avail, dd_idx = -1;
2977
2978 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2979 return;
2980
2981 tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
2982 if (tdh == adapter->next_tx_to_clean)
2983 return;
2984
2985 if (adapter->tx_dd_head != adapter->tx_dd_tail)
2986 dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2987
2988 num_avail = adapter->num_tx_desc_avail;
2989 first = adapter->next_tx_to_clean;
2990
2991 while (first != tdh) {
2992 logif(pkt_txclean);
2993
2994 num_avail++;
2995
2996 tx_buffer = &adapter->tx_buffer_area[first];
2997 if (tx_buffer->m_head) {
2998 ifp->if_opackets++;
2999 bus_dmamap_unload(adapter->txtag,
3000 tx_buffer->map);
3001 m_freem(tx_buffer->m_head);
3002 tx_buffer->m_head = NULL;
3003 }
3004
3005 if (first == dd_idx) {
3006 EM_INC_TXDD_IDX(adapter->tx_dd_head);
3007 if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3008 adapter->tx_dd_head = 0;
3009 adapter->tx_dd_tail = 0;
3010 dd_idx = -1;
3011 } else {
3012 dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3013 }
3014 }
3015
3016 if (++first == adapter->num_tx_desc)
3017 first = 0;
3018 }
3019 adapter->next_tx_to_clean = first;
3020 adapter->num_tx_desc_avail = num_avail;
3021
3022 if (!EM_IS_OACTIVE(adapter)) {
3023 ifp->if_flags &= ~IFF_OACTIVE;
3024
3025 /* All clean, turn off the timer */
3026 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3027 ifp->if_timer = 0;
3028 }
3029}
3030
3031/*
3032 * When Link is lost sometimes there is work still in the TX ring
3033 * which will result in a watchdog, rather than allow that do an
3034 * attempted cleanup and then reinit here. Note that this has been
3035 * seens mostly with fiber adapters.
3036 */
3037static void
3038em_tx_purge(struct adapter *adapter)
3039{
3040 struct ifnet *ifp = &adapter->arpcom.ac_if;
3041
3042 if (!adapter->link_active && ifp->if_timer) {
3043 em_tx_collect(adapter);
3044 if (ifp->if_timer) {
3045 if_printf(ifp, "Link lost, TX pending, reinit\n");
3046 ifp->if_timer = 0;
3047 em_init(adapter);
3048 }
3049 }
3050}
3051
3052static int
3053em_newbuf(struct adapter *adapter, int i, int init)
3054{
3055 struct mbuf *m;
3056 bus_dma_segment_t seg;
3057 bus_dmamap_t map;
3058 struct em_buffer *rx_buffer;
3059 int error, nseg;
3060
3061 m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3062 if (m == NULL) {
3063 adapter->mbuf_cluster_failed++;
3064 if (init) {
3065 if_printf(&adapter->arpcom.ac_if,
3066 "Unable to allocate RX mbuf\n");
3067 }
3068 return (ENOBUFS);
3069 }
3070 m->m_len = m->m_pkthdr.len = MCLBYTES;
3071
3072 if (adapter->max_frame_size <= MCLBYTES - ETHER_ALIGN)
3073 m_adj(m, ETHER_ALIGN);
3074
3075 error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3076 adapter->rx_sparemap, m,
3077 &seg, 1, &nseg, BUS_DMA_NOWAIT);
3078 if (error) {
3079 m_freem(m);
3080 if (init) {
3081 if_printf(&adapter->arpcom.ac_if,
3082 "Unable to load RX mbuf\n");
3083 }
3084 return (error);
3085 }
3086
3087 rx_buffer = &adapter->rx_buffer_area[i];
3088 if (rx_buffer->m_head != NULL)
3089 bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3090
3091 map = rx_buffer->map;
3092 rx_buffer->map = adapter->rx_sparemap;
3093 adapter->rx_sparemap = map;
3094
3095 rx_buffer->m_head = m;
3096
3097 adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3098 return (0);
3099}
3100
3101static int
3102em_create_rx_ring(struct adapter *adapter)
3103{
3104 device_t dev = adapter->dev;
3105 struct em_buffer *rx_buffer;
3106 int i, error;
3107
3108 adapter->rx_buffer_area =
3109 kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3110 M_DEVBUF, M_WAITOK | M_ZERO);
3111
3112 /*
3113 * Create DMA tag for rx buffers
3114 */
3115 error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3116 1, 0, /* alignment, bounds */
3117 BUS_SPACE_MAXADDR, /* lowaddr */
3118 BUS_SPACE_MAXADDR, /* highaddr */
3119 NULL, NULL, /* filter, filterarg */
3120 MCLBYTES, /* maxsize */
3121 1, /* nsegments */
3122 MCLBYTES, /* maxsegsize */
3123 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3124 &adapter->rxtag);
3125 if (error) {
3126 device_printf(dev, "Unable to allocate RX DMA tag\n");
3127 kfree(adapter->rx_buffer_area, M_DEVBUF);
3128 adapter->rx_buffer_area = NULL;
3129 return error;
3130 }
3131
3132 /*
3133 * Create spare DMA map for rx buffers
3134 */
3135 error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3136 &adapter->rx_sparemap);
3137 if (error) {
3138 device_printf(dev, "Unable to create spare RX DMA map\n");
3139 bus_dma_tag_destroy(adapter->rxtag);
3140 kfree(adapter->rx_buffer_area, M_DEVBUF);
3141 adapter->rx_buffer_area = NULL;
3142 return error;
3143 }
3144
3145 /*
3146 * Create DMA maps for rx buffers
3147 */
3148 for (i = 0; i < adapter->num_rx_desc; i++) {
3149 rx_buffer = &adapter->rx_buffer_area[i];
3150
3151 error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3152 &rx_buffer->map);
3153 if (error) {
3154 device_printf(dev, "Unable to create RX DMA map\n");
3155 em_destroy_rx_ring(adapter, i);
3156 return error;
3157 }
3158 }
3159 return (0);
3160}
3161
3162static int
3163em_init_rx_ring(struct adapter *adapter)
3164{
3165 int i, error;
3166
3167 /* Reset descriptor ring */
3168 bzero(adapter->rx_desc_base,
3169 (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3170
3171 /* Allocate new ones. */
3172 for (i = 0; i < adapter->num_rx_desc; i++) {
3173 error = em_newbuf(adapter, i, 1);
3174 if (error)
3175 return (error);
3176 }
3177
3178 /* Setup our descriptor pointers */
3179 adapter->next_rx_desc_to_check = 0;
3180
3181 return (0);
3182}
3183
3184static void
3185em_init_rx_unit(struct adapter *adapter)
3186{
3187 struct ifnet *ifp = &adapter->arpcom.ac_if;
3188 uint64_t bus_addr;
3189 uint32_t rctl;
3190
3191 /*
3192 * Make sure receives are disabled while setting
3193 * up the descriptor ring
3194 */
3195 rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3196 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3197
3198 if (adapter->hw.mac.type >= e1000_82540) {
3199 uint32_t itr;
3200
3201 /*
3202 * Set the interrupt throttling rate. Value is calculated
3203 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3204 */
3205 if (adapter->int_throttle_ceil)
3206 itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3207 else
3208 itr = 0;
3209 em_set_itr(adapter, itr);
3210 }
3211
3212 /* Disable accelerated ackknowledge */
3213 if (adapter->hw.mac.type == e1000_82574) {
3214 E1000_WRITE_REG(&adapter->hw,
3215 E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3216 }
3217
3218 /* Receive Checksum Offload for TCP and UDP */
3219 if (ifp->if_capenable & IFCAP_RXCSUM) {
3220 uint32_t rxcsum;
3221
3222 rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3223 rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3224 E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3225 }
3226
3227 /*
3228 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3229 * long latencies are observed, like Lenovo X60. This
3230 * change eliminates the problem, but since having positive
3231 * values in RDTR is a known source of problems on other
3232 * platforms another solution is being sought.
3233 */
3234 if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3235 E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3236 E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3237 }
3238
3239 /*
3240 * Setup the Base and Length of the Rx Descriptor Ring
3241 */
3242 bus_addr = adapter->rxdma.dma_paddr;
3243 E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3244 adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3245 E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3246 (uint32_t)(bus_addr >> 32));
3247 E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3248 (uint32_t)bus_addr);
3249
3250 /*
3251 * Setup the HW Rx Head and Tail Descriptor Pointers
3252 */
3253 E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3254 E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3255
3256 /* Set early receive threshold on appropriate hw */
3257 if (((adapter->hw.mac.type == e1000_ich9lan) ||
3258 (adapter->hw.mac.type == e1000_pch2lan) ||
3259 (adapter->hw.mac.type == e1000_ich10lan)) &&
3260 (ifp->if_mtu > ETHERMTU)) {
3261 uint32_t rxdctl;
3262
3263 rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3264 E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3265 E1000_WRITE_REG(&adapter->hw, E1000_ERT, 0x100 | (1 << 13));
3266 }
3267
3268 if (adapter->hw.mac.type == e1000_pch2lan) {
3269 if (ifp->if_mtu > ETHERMTU)
3270 e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3271 else
3272 e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3273 }
3274
3275 /* Setup the Receive Control Register */
3276 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3277 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3278 E1000_RCTL_RDMTS_HALF |
3279 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3280
3281 /* Make sure VLAN Filters are off */
3282 rctl &= ~E1000_RCTL_VFE;
3283
3284 if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3285 rctl |= E1000_RCTL_SBP;
3286 else
3287 rctl &= ~E1000_RCTL_SBP;
3288
3289 switch (adapter->rx_buffer_len) {
3290 default:
3291 case 2048:
3292 rctl |= E1000_RCTL_SZ_2048;
3293 break;
3294
3295 case 4096:
3296 rctl |= E1000_RCTL_SZ_4096 |
3297 E1000_RCTL_BSEX | E1000_RCTL_LPE;
3298 break;
3299
3300 case 8192:
3301 rctl |= E1000_RCTL_SZ_8192 |
3302 E1000_RCTL_BSEX | E1000_RCTL_LPE;
3303 break;
3304
3305 case 16384:
3306 rctl |= E1000_RCTL_SZ_16384 |
3307 E1000_RCTL_BSEX | E1000_RCTL_LPE;
3308 break;
3309 }
3310
3311 if (ifp->if_mtu > ETHERMTU)
3312 rctl |= E1000_RCTL_LPE;
3313 else
3314 rctl &= ~E1000_RCTL_LPE;
3315
3316 /* Enable Receives */
3317 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3318}
3319
3320static void
3321em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3322{
3323 struct em_buffer *rx_buffer;
3324 int i;
3325
3326 if (adapter->rx_buffer_area == NULL)
3327 return;
3328
3329 for (i = 0; i < ndesc; i++) {
3330 rx_buffer = &adapter->rx_buffer_area[i];
3331
3332 KKASSERT(rx_buffer->m_head == NULL);
3333 bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3334 }
3335 bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3336 bus_dma_tag_destroy(adapter->rxtag);
3337
3338 kfree(adapter->rx_buffer_area, M_DEVBUF);
3339 adapter->rx_buffer_area = NULL;
3340}
3341
3342static void
3343em_rxeof(struct adapter *adapter, int count)
3344{
3345 struct ifnet *ifp = &adapter->arpcom.ac_if;
3346 uint8_t status, accept_frame = 0, eop = 0;
3347 uint16_t len, desc_len, prev_len_adj;
3348 struct e1000_rx_desc *current_desc;
3349 struct mbuf *mp;
3350 int i;
3351
3352 i = adapter->next_rx_desc_to_check;
3353 current_desc = &adapter->rx_desc_base[i];
3354
3355 if (!(current_desc->status & E1000_RXD_STAT_DD))
3356 return;
3357
3358 while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3359 struct mbuf *m = NULL;
3360
3361 logif(pkt_receive);
3362
3363 mp = adapter->rx_buffer_area[i].m_head;
3364
3365 /*
3366 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3367 * needs to access the last received byte in the mbuf.
3368 */
3369 bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3370 BUS_DMASYNC_POSTREAD);
3371
3372 accept_frame = 1;
3373 prev_len_adj = 0;
3374 desc_len = le16toh(current_desc->length);
3375 status = current_desc->status;
3376 if (status & E1000_RXD_STAT_EOP) {
3377 count--;
3378 eop = 1;
3379 if (desc_len < ETHER_CRC_LEN) {
3380 len = 0;
3381 prev_len_adj = ETHER_CRC_LEN - desc_len;
3382 } else {
3383 len = desc_len - ETHER_CRC_LEN;
3384 }
3385 } else {
3386 eop = 0;
3387 len = desc_len;
3388 }
3389
3390 if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3391 uint8_t last_byte;
3392 uint32_t pkt_len = desc_len;
3393
3394 if (adapter->fmp != NULL)
3395 pkt_len += adapter->fmp->m_pkthdr.len;
3396
3397 last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3398 if (TBI_ACCEPT(&adapter->hw, status,
3399 current_desc->errors, pkt_len, last_byte,
3400 adapter->min_frame_size, adapter->max_frame_size)) {
3401 e1000_tbi_adjust_stats_82543(&adapter->hw,
3402 &adapter->stats, pkt_len,
3403 adapter->hw.mac.addr,
3404 adapter->max_frame_size);
3405 if (len > 0)
3406 len--;
3407 } else {
3408 accept_frame = 0;
3409 }
3410 }
3411
3412 if (accept_frame) {
3413 if (em_newbuf(adapter, i, 0) != 0) {
3414 ifp->if_iqdrops++;
3415 goto discard;
3416 }
3417
3418 /* Assign correct length to the current fragment */
3419 mp->m_len = len;
3420
3421 if (adapter->fmp == NULL) {
3422 mp->m_pkthdr.len = len;
3423 adapter->fmp = mp; /* Store the first mbuf */
3424 adapter->lmp = mp;
3425 } else {
3426 /*
3427 * Chain mbuf's together
3428 */
3429
3430 /*
3431 * Adjust length of previous mbuf in chain if
3432 * we received less than 4 bytes in the last
3433 * descriptor.
3434 */
3435 if (prev_len_adj > 0) {
3436 adapter->lmp->m_len -= prev_len_adj;
3437 adapter->fmp->m_pkthdr.len -=
3438 prev_len_adj;
3439 }
3440 adapter->lmp->m_next = mp;
3441 adapter->lmp = adapter->lmp->m_next;
3442 adapter->fmp->m_pkthdr.len += len;
3443 }
3444
3445 if (eop) {
3446 adapter->fmp->m_pkthdr.rcvif = ifp;
3447 ifp->if_ipackets++;
3448
3449 if (ifp->if_capenable & IFCAP_RXCSUM) {
3450 em_rxcsum(adapter, current_desc,
3451 adapter->fmp);
3452 }
3453
3454 if (status & E1000_RXD_STAT_VP) {
3455 adapter->fmp->m_pkthdr.ether_vlantag =
3456 (le16toh(current_desc->special) &
3457 E1000_RXD_SPC_VLAN_MASK);
3458 adapter->fmp->m_flags |= M_VLANTAG;
3459 }
3460 m = adapter->fmp;
3461 adapter->fmp = NULL;
3462 adapter->lmp = NULL;
3463 }
3464 } else {
3465 ifp->if_ierrors++;
3466discard:
3467#ifdef foo
3468 /* Reuse loaded DMA map and just update mbuf chain */
3469 mp = adapter->rx_buffer_area[i].m_head;
3470 mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3471 mp->m_data = mp->m_ext.ext_buf;
3472 mp->m_next = NULL;
3473 if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
3474 m_adj(mp, ETHER_ALIGN);
3475#endif
3476 if (adapter->fmp != NULL) {
3477 m_freem(adapter->fmp);
3478 adapter->fmp = NULL;
3479 adapter->lmp = NULL;
3480 }
3481 m = NULL;
3482 }
3483
3484 /* Zero out the receive descriptors status. */
3485 current_desc->status = 0;
3486
3487 if (m != NULL)
3488 ifp->if_input(ifp, m);
3489
3490 /* Advance our pointers to the next descriptor. */
3491 if (++i == adapter->num_rx_desc)
3492 i = 0;
3493 current_desc = &adapter->rx_desc_base[i];
3494 }
3495 adapter->next_rx_desc_to_check = i;
3496
3497 /* Advance the E1000's Receive Queue #0 "Tail Pointer". */
3498 if (--i < 0)
3499 i = adapter->num_rx_desc - 1;
3500 E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3501}
3502
3503static void
3504em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3505 struct mbuf *mp)
3506{
3507 /* 82543 or newer only */
3508 if (adapter->hw.mac.type < e1000_82543 ||
3509 /* Ignore Checksum bit is set */
3510 (rx_desc->status & E1000_RXD_STAT_IXSM))
3511 return;
3512
3513 if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3514 !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3515 /* IP Checksum Good */
3516 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3517 }
3518
3519 if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3520 !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3521 mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3522 CSUM_PSEUDO_HDR |
3523 CSUM_FRAG_NOT_CHECKED;
3524 mp->m_pkthdr.csum_data = htons(0xffff);
3525 }
3526}
3527
3528static void
3529em_enable_intr(struct adapter *adapter)
3530{
3531 uint32_t ims_mask = IMS_ENABLE_MASK;
3532
3533 lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3534
3535#if 0
3536 /* XXX MSIX */
3537 if (adapter->hw.mac.type == e1000_82574) {
3538 E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3539 ims_mask |= EM_MSIX_MASK;
3540 }
3541#endif
3542 E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3543}
3544
3545static void
3546em_disable_intr(struct adapter *adapter)
3547{
3548 uint32_t clear = 0xffffffff;
3549
3550 /*
3551 * The first version of 82542 had an errata where when link was forced
3552 * it would stay up even up even if the cable was disconnected.
3553 * Sequence errors were used to detect the disconnect and then the
3554 * driver would unforce the link. This code in the in the ISR. For
3555 * this to work correctly the Sequence error interrupt had to be
3556 * enabled all the time.
3557 */
3558 if (adapter->hw.mac.type == e1000_82542 &&
3559 adapter->hw.revision_id == E1000_REVISION_2)
3560 clear &= ~E1000_ICR_RXSEQ;
3561 else if (adapter->hw.mac.type == e1000_82574)
3562 E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3563
3564 E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3565
3566 lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3567}
3568
3569/*
3570 * Bit of a misnomer, what this really means is
3571 * to enable OS management of the system... aka
3572 * to disable special hardware management features
3573 */
3574static void
3575em_get_mgmt(struct adapter *adapter)
3576{
3577 /* A shared code workaround */
3578#define E1000_82542_MANC2H E1000_MANC2H
3579 if (adapter->has_manage) {
3580 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3581 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3582
3583 /* disable hardware interception of ARP */
3584 manc &= ~(E1000_MANC_ARP_EN);
3585
3586 /* enable receiving management packets to the host */
3587 if (adapter->hw.mac.type >= e1000_82571) {
3588 manc |= E1000_MANC_EN_MNG2HOST;
3589#define E1000_MNG2HOST_PORT_623 (1 << 5)
3590#define E1000_MNG2HOST_PORT_664 (1 << 6)
3591 manc2h |= E1000_MNG2HOST_PORT_623;
3592 manc2h |= E1000_MNG2HOST_PORT_664;
3593 E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3594 }
3595
3596 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3597 }
3598}
3599
3600/*
3601 * Give control back to hardware management
3602 * controller if there is one.
3603 */
3604static void
3605em_rel_mgmt(struct adapter *adapter)
3606{
3607 if (adapter->has_manage) {
3608 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3609
3610 /* re-enable hardware interception of ARP */
3611 manc |= E1000_MANC_ARP_EN;
3612
3613 if (adapter->hw.mac.type >= e1000_82571)
3614 manc &= ~E1000_MANC_EN_MNG2HOST;
3615
3616 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3617 }
3618}
3619
3620/*
3621 * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3622 * For ASF and Pass Through versions of f/w this means that
3623 * the driver is loaded. For AMT version (only with 82573)
3624 * of the f/w this means that the network i/f is open.
3625 */
3626static void
3627em_get_hw_control(struct adapter *adapter)
3628{
3629 /* Let firmware know the driver has taken over */
3630 if (adapter->hw.mac.type == e1000_82573) {
3631 uint32_t swsm;
3632
3633 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3634 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3635 swsm | E1000_SWSM_DRV_LOAD);
3636 } else {
3637 uint32_t ctrl_ext;
3638
3639 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3640 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3641 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3642 }
3643 adapter->control_hw = 1;
3644}
3645
3646/*
3647 * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3648 * For ASF and Pass Through versions of f/w this means that the
3649 * driver is no longer loaded. For AMT version (only with 82573)
3650 * of the f/w this means that the network i/f is closed.
3651 */
3652static void
3653em_rel_hw_control(struct adapter *adapter)
3654{
3655 if (!adapter->control_hw)
3656 return;
3657 adapter->control_hw = 0;
3658
3659 /* Let firmware taken over control of h/w */
3660 if (adapter->hw.mac.type == e1000_82573) {
3661 uint32_t swsm;
3662
3663 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3664 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3665 swsm & ~E1000_SWSM_DRV_LOAD);
3666 } else {
3667 uint32_t ctrl_ext;
3668
3669 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3670 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3671 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3672 }
3673}
3674
3675static int
3676em_is_valid_eaddr(const uint8_t *addr)
3677{
3678 char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3679
3680 if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3681 return (FALSE);
3682
3683 return (TRUE);
3684}
3685
3686/*
3687 * Enable PCI Wake On Lan capability
3688 */
3689void
3690em_enable_wol(device_t dev)
3691{
3692 uint16_t cap, status;
3693 uint8_t id;
3694
3695 /* First find the capabilities pointer*/
3696 cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3697
3698 /* Read the PM Capabilities */
3699 id = pci_read_config(dev, cap, 1);
3700 if (id != PCIY_PMG) /* Something wrong */
3701 return;
3702
3703 /*
3704 * OK, we have the power capabilities,
3705 * so now get the status register
3706 */
3707 cap += PCIR_POWER_STATUS;
3708 status = pci_read_config(dev, cap, 2);
3709 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3710 pci_write_config(dev, cap, status, 2);
3711}
3712
3713
3714/*
3715 * 82544 Coexistence issue workaround.
3716 * There are 2 issues.
3717 * 1. Transmit Hang issue.
3718 * To detect this issue, following equation can be used...
3719 * SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3720 * If SUM[3:0] is in between 1 to 4, we will have this issue.
3721 *
3722 * 2. DAC issue.
3723 * To detect this issue, following equation can be used...
3724 * SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3725 * If SUM[3:0] is in between 9 to c, we will have this issue.
3726 *
3727 * WORKAROUND:
3728 * Make sure we do not have ending address
3729 * as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3730 */
3731static uint32_t
3732em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3733{
3734 uint32_t safe_terminator;
3735
3736 /*
3737 * Since issue is sensitive to length and address.
3738 * Let us first check the address...
3739 */
3740 if (length <= 4) {
3741 desc_array->descriptor[0].address = address;
3742 desc_array->descriptor[0].length = length;
3743 desc_array->elements = 1;
3744 return (desc_array->elements);
3745 }
3746
3747 safe_terminator =
3748 (uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3749
3750 /* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3751 if (safe_terminator == 0 ||
3752 (safe_terminator > 4 && safe_terminator < 9) ||
3753 (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3754 desc_array->descriptor[0].address = address;
3755 desc_array->descriptor[0].length = length;
3756 desc_array->elements = 1;
3757 return (desc_array->elements);
3758 }
3759
3760 desc_array->descriptor[0].address = address;
3761 desc_array->descriptor[0].length = length - 4;
3762 desc_array->descriptor[1].address = address + (length - 4);
3763 desc_array->descriptor[1].length = 4;
3764 desc_array->elements = 2;
3765 return (desc_array->elements);
3766}
3767
3768static void
3769em_update_stats(struct adapter *adapter)
3770{
3771 struct ifnet *ifp = &adapter->arpcom.ac_if;
3772
3773 if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3774 (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3775 adapter->stats.symerrs +=
3776 E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3777 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3778 }
3779 adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3780 adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3781 adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3782 adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3783
3784 adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3785 adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3786 adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3787 adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3788 adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3789 adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3790 adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3791 adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3792 adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3793 adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3794 adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3795 adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3796 adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3797 adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3798 adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3799 adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3800 adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3801 adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3802 adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3803 adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3804
3805 /* For the 64-bit byte counters the low dword must be read first. */
3806 /* Both registers clear on the read of the high dword */
3807
3808 adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3809 adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3810
3811 adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3812 adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3813 adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3814 adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3815 adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3816
3817 adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3818 adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3819
3820 adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3821 adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3822 adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3823 adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3824 adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3825 adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3826 adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3827 adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3828 adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3829 adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3830
3831 if (adapter->hw.mac.type >= e1000_82543) {
3832 adapter->stats.algnerrc +=
3833 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3834 adapter->stats.rxerrc +=
3835 E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3836 adapter->stats.tncrs +=
3837 E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3838 adapter->stats.cexterr +=
3839 E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3840 adapter->stats.tsctc +=
3841 E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3842 adapter->stats.tsctfc +=
3843 E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3844 }
3845
3846 ifp->if_collisions = adapter->stats.colc;
3847
3848 /* Rx Errors */
3849 ifp->if_ierrors =
3850 adapter->dropped_pkts + adapter->stats.rxerrc +
3851 adapter->stats.crcerrs + adapter->stats.algnerrc +
3852 adapter->stats.ruc + adapter->stats.roc +
3853 adapter->stats.mpc + adapter->stats.cexterr;
3854
3855 /* Tx Errors */
3856 ifp->if_oerrors =
3857 adapter->stats.ecol + adapter->stats.latecol +
3858 adapter->watchdog_events;
3859}
3860
3861static void
3862em_print_debug_info(struct adapter *adapter)
3863{
3864 device_t dev = adapter->dev;
3865 uint8_t *hw_addr = adapter->hw.hw_addr;
3866
3867 device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3868 device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3869 E1000_READ_REG(&adapter->hw, E1000_CTRL),
3870 E1000_READ_REG(&adapter->hw, E1000_RCTL));
3871 device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3872 ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3873 (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3874 device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3875 adapter->hw.fc.high_water,
3876 adapter->hw.fc.low_water);
3877 device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3878 E1000_READ_REG(&adapter->hw, E1000_TIDV),
3879 E1000_READ_REG(&adapter->hw, E1000_TADV));
3880 device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3881 E1000_READ_REG(&adapter->hw, E1000_RDTR),
3882 E1000_READ_REG(&adapter->hw, E1000_RADV));
3883 device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3884 (long long)adapter->tx_fifo_wrk_cnt,
3885 (long long)adapter->tx_fifo_reset_cnt);
3886 device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3887 E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3888 E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3889 device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3890 E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3891 E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3892 device_printf(dev, "Num Tx descriptors avail = %d\n",
3893 adapter->num_tx_desc_avail);
3894 device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3895 adapter->no_tx_desc_avail1);
3896 device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3897 adapter->no_tx_desc_avail2);
3898 device_printf(dev, "Std mbuf failed = %ld\n",
3899 adapter->mbuf_alloc_failed);
3900 device_printf(dev, "Std mbuf cluster failed = %ld\n",
3901 adapter->mbuf_cluster_failed);
3902 device_printf(dev, "Driver dropped packets = %ld\n",
3903 adapter->dropped_pkts);
3904 device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3905 adapter->no_tx_dma_setup);
3906
3907 device_printf(dev, "TXCSUM try pullup = %lu\n",
3908 adapter->tx_csum_try_pullup);
3909 device_printf(dev, "TXCSUM m_pullup(eh) called = %lu\n",
3910 adapter->tx_csum_pullup1);
3911 device_printf(dev, "TXCSUM m_pullup(eh) failed = %lu\n",
3912 adapter->tx_csum_pullup1_failed);
3913 device_printf(dev, "TXCSUM m_pullup(eh+ip) called = %lu\n",
3914 adapter->tx_csum_pullup2);
3915 device_printf(dev, "TXCSUM m_pullup(eh+ip) failed = %lu\n",
3916 adapter->tx_csum_pullup2_failed);
3917 device_printf(dev, "TXCSUM non-writable(eh) droped = %lu\n",
3918 adapter->tx_csum_drop1);
3919 device_printf(dev, "TXCSUM non-writable(eh+ip) droped = %lu\n",
3920 adapter->tx_csum_drop2);
3921}
3922
3923static void
3924em_print_hw_stats(struct adapter *adapter)
3925{
3926 device_t dev = adapter->dev;
3927
3928 device_printf(dev, "Excessive collisions = %lld\n",
3929 (long long)adapter->stats.ecol);
3930#if (DEBUG_HW > 0) /* Dont output these errors normally */
3931 device_printf(dev, "Symbol errors = %lld\n",
3932 (long long)adapter->stats.symerrs);
3933#endif
3934 device_printf(dev, "Sequence errors = %lld\n",
3935 (long long)adapter->stats.sec);
3936 device_printf(dev, "Defer count = %lld\n",
3937 (long long)adapter->stats.dc);
3938 device_printf(dev, "Missed Packets = %lld\n",
3939 (long long)adapter->stats.mpc);
3940 device_printf(dev, "Receive No Buffers = %lld\n",
3941 (long long)adapter->stats.rnbc);
3942 /* RLEC is inaccurate on some hardware, calculate our own. */
3943 device_printf(dev, "Receive Length Errors = %lld\n",
3944 ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3945 device_printf(dev, "Receive errors = %lld\n",
3946 (long long)adapter->stats.rxerrc);
3947 device_printf(dev, "Crc errors = %lld\n",
3948 (long long)adapter->stats.crcerrs);
3949 device_printf(dev, "Alignment errors = %lld\n",
3950 (long long)adapter->stats.algnerrc);
3951 device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3952 (long long)adapter->stats.cexterr);
3953 device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3954 device_printf(dev, "watchdog timeouts = %ld\n",
3955 adapter->watchdog_events);
3956 device_printf(dev, "XON Rcvd = %lld\n",
3957 (long long)adapter->stats.xonrxc);
3958 device_printf(dev, "XON Xmtd = %lld\n",
3959 (long long)adapter->stats.xontxc);
3960 device_printf(dev, "XOFF Rcvd = %lld\n",
3961 (long long)adapter->stats.xoffrxc);
3962 device_printf(dev, "XOFF Xmtd = %lld\n",
3963 (long long)adapter->stats.xofftxc);
3964 device_printf(dev, "Good Packets Rcvd = %lld\n",
3965 (long long)adapter->stats.gprc);
3966 device_printf(dev, "Good Packets Xmtd = %lld\n",
3967 (long long)adapter->stats.gptc);
3968}
3969
3970static void
3971em_print_nvm_info(struct adapter *adapter)
3972{
3973 uint16_t eeprom_data;
3974 int i, j, row = 0;
3975
3976 /* Its a bit crude, but it gets the job done */
3977 kprintf("\nInterface EEPROM Dump:\n");
3978 kprintf("Offset\n0x0000 ");
3979 for (i = 0, j = 0; i < 32; i++, j++) {
3980 if (j == 8) { /* Make the offset block */
3981 j = 0; ++row;
3982 kprintf("\n0x00%x0 ",row);
3983 }
3984 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3985 kprintf("%04x ", eeprom_data);
3986 }
3987 kprintf("\n");
3988}
3989
3990static int
3991em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3992{
3993 struct adapter *adapter;
3994 struct ifnet *ifp;
3995 int error, result;
3996
3997 result = -1;
3998 error = sysctl_handle_int(oidp, &result, 0, req);
3999 if (error || !req->newptr)
4000 return (error);
4001
4002 adapter = (struct adapter *)arg1;
4003 ifp = &adapter->arpcom.ac_if;
4004
4005 lwkt_serialize_enter(ifp->if_serializer);
4006
4007 if (result == 1)
4008 em_print_debug_info(adapter);
4009
4010 /*
4011 * This value will cause a hex dump of the
4012 * first 32 16-bit words of the EEPROM to
4013 * the screen.
4014 */
4015 if (result == 2)
4016 em_print_nvm_info(adapter);
4017
4018 lwkt_serialize_exit(ifp->if_serializer);
4019
4020 return (error);
4021}
4022
4023static int
4024em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4025{
4026 int error, result;
4027
4028 result = -1;
4029 error = sysctl_handle_int(oidp, &result, 0, req);
4030 if (error || !req->newptr)
4031 return (error);
4032
4033 if (result == 1) {
4034 struct adapter *adapter = (struct adapter *)arg1;
4035 struct ifnet *ifp = &adapter->arpcom.ac_if;
4036
4037 lwkt_serialize_enter(ifp->if_serializer);
4038 em_print_hw_stats(adapter);
4039 lwkt_serialize_exit(ifp->if_serializer);
4040 }
4041 return (error);
4042}
4043
4044static void
4045em_add_sysctl(struct adapter *adapter)
4046{
4047 sysctl_ctx_init(&adapter->sysctl_ctx);
4048 adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
4049 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
4050 device_get_nameunit(adapter->dev),
4051 CTLFLAG_RD, 0, "");
4052 if (adapter->sysctl_tree == NULL) {
4053 device_printf(adapter->dev, "can't add sysctl node\n");
4054 } else {
4055 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4056 SYSCTL_CHILDREN(adapter->sysctl_tree),
4057 OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4058 em_sysctl_debug_info, "I", "Debug Information");
4059
4060 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4061 SYSCTL_CHILDREN(adapter->sysctl_tree),
4062 OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4063 em_sysctl_stats, "I", "Statistics");
4064
4065 SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4066 SYSCTL_CHILDREN(adapter->sysctl_tree),
4067 OID_AUTO, "rxd", CTLFLAG_RD,
4068 &adapter->num_rx_desc, 0, NULL);
4069 SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4070 SYSCTL_CHILDREN(adapter->sysctl_tree),
4071 OID_AUTO, "txd", CTLFLAG_RD,
4072 &adapter->num_tx_desc, 0, NULL);
4073
4074 if (adapter->hw.mac.type >= e1000_82540) {
4075 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4076 SYSCTL_CHILDREN(adapter->sysctl_tree),
4077 OID_AUTO, "int_throttle_ceil",
4078 CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4079 em_sysctl_int_throttle, "I",
4080 "interrupt throttling rate");
4081 }
4082 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4083 SYSCTL_CHILDREN(adapter->sysctl_tree),
4084 OID_AUTO, "int_tx_nsegs",
4085 CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4086 em_sysctl_int_tx_nsegs, "I",
4087 "# segments per TX interrupt");
4088 }
4089}
4090
4091static int
4092em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4093{
4094 struct adapter *adapter = (void *)arg1;
4095 struct ifnet *ifp = &adapter->arpcom.ac_if;
4096 int error, throttle;
4097
4098 throttle = adapter->int_throttle_ceil;
4099 error = sysctl_handle_int(oidp, &throttle, 0, req);
4100 if (error || req->newptr == NULL)
4101 return error;
4102 if (throttle < 0 || throttle > 1000000000 / 256)
4103 return EINVAL;
4104
4105 if (throttle) {
4106 /*
4107 * Set the interrupt throttling rate in 256ns increments,
4108 * recalculate sysctl value assignment to get exact frequency.
4109 */
4110 throttle = 1000000000 / 256 / throttle;
4111
4112 /* Upper 16bits of ITR is reserved and should be zero */
4113 if (throttle & 0xffff0000)
4114 return EINVAL;
4115 }
4116
4117 lwkt_serialize_enter(ifp->if_serializer);
4118
4119 if (throttle)
4120 adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4121 else
4122 adapter->int_throttle_ceil = 0;
4123
4124 if (ifp->if_flags & IFF_RUNNING)
4125 em_set_itr(adapter, throttle);
4126
4127 lwkt_serialize_exit(ifp->if_serializer);
4128
4129 if (bootverbose) {
4130 if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4131 adapter->int_throttle_ceil);
4132 }
4133 return 0;
4134}
4135
4136static int
4137em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4138{
4139 struct adapter *adapter = (void *)arg1;
4140 struct ifnet *ifp = &adapter->arpcom.ac_if;
4141 int error, segs;
4142
4143 segs = adapter->tx_int_nsegs;
4144 error = sysctl_handle_int(oidp, &segs, 0, req);
4145 if (error || req->newptr == NULL)
4146 return error;
4147 if (segs <= 0)
4148 return EINVAL;
4149
4150 lwkt_serialize_enter(ifp->if_serializer);
4151
4152 /*
4153 * Don't allow int_tx_nsegs to become:
4154 * o Less the oact_tx_desc
4155 * o Too large that no TX desc will cause TX interrupt to
4156 * be generated (OACTIVE will never recover)
4157 * o Too small that will cause tx_dd[] overflow
4158 */
4159 if (segs < adapter->oact_tx_desc ||
4160 segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4161 segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4162 error = EINVAL;
4163 } else {
4164 error = 0;
4165 adapter->tx_int_nsegs = segs;
4166 }
4167
4168 lwkt_serialize_exit(ifp->if_serializer);
4169
4170 return error;
4171}
4172
4173static void
4174em_set_itr(struct adapter *adapter, uint32_t itr)
4175{
4176 E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4177 if (adapter->hw.mac.type == e1000_82574) {
4178 int i;
4179
4180 /*
4181 * When using MSIX interrupts we need to
4182 * throttle using the EITR register
4183 */
4184 for (i = 0; i < 4; ++i) {
4185 E1000_WRITE_REG(&adapter->hw,
4186 E1000_EITR_82574(i), itr);
4187 }
4188 }
4189}
4190
4191static void
4192em_disable_aspm(struct adapter *adapter)
4193{
4194 uint16_t link_cap, link_ctrl, disable;
4195 uint8_t pcie_ptr, reg;
4196 device_t dev = adapter->dev;
4197
4198 switch (adapter->hw.mac.type) {
4199 case e1000_82571:
4200 case e1000_82572:
4201 case e1000_82573:
4202 /*
4203 * 82573 specification update
4204 * errata #8 disable L0s
4205 * errata #41 disable L1
4206 *
4207 * 82571/82572 specification update
4208 # errata #13 disable L1
4209 * errata #68 disable L0s
4210 */
4211 disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4212 break;
4213
4214 case e1000_82574:
4215 case e1000_82583:
4216 /*
4217 * 82574 specification update errata #20
4218 * 82583 specification update errata #9
4219 *
4220 * There is no need to disable L1
4221 */
4222 disable = PCIEM_LNKCTL_ASPM_L0S;
4223 break;
4224
4225 default:
4226 return;
4227 }
4228
4229 pcie_ptr = pci_get_pciecap_ptr(dev);
4230 if (pcie_ptr == 0)
4231 return;
4232
4233 link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4234 if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4235 return;
4236
4237 if (bootverbose) {
4238 if_printf(&adapter->arpcom.ac_if,
4239 "disable ASPM %#02x\n", disable);
4240 }
4241
4242 reg = pcie_ptr + PCIER_LINKCTRL;
4243 link_ctrl = pci_read_config(dev, reg, 2);
4244 link_ctrl &= ~disable;
4245 pci_write_config(dev, reg, link_ctrl, 2);
4246}