proc->thread stage 4: post commit cleanup. Fix minor issues when recompiling
[dragonfly.git] / sys / kern / vfs_aio.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1997 John S. Dyson. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. John S. Dyson's name may not be used to endorse or promote products
10 * derived from this software without specific prior written permission.
11 *
12 * DISCLAIMER: This code isn't warranted to do anything useful. Anything
13 * bad that happens because of using this software isn't the responsibility
14 * of the author. This software is distributed AS-IS.
15 *
16 * $FreeBSD: src/sys/kern/vfs_aio.c,v 1.70.2.28 2003/05/29 06:15:35 alc Exp $
17 * $DragonFly: src/sys/kern/vfs_aio.c,v 1.4 2003/06/23 17:55:41 dillon Exp $
18 */
19
20/*
21 * This file contains support for the POSIX 1003.1B AIO/LIO facility.
22 */
23
24#include <sys/param.h>
25#include <sys/systm.h>
26#include <sys/buf.h>
27#include <sys/sysproto.h>
28#include <sys/filedesc.h>
29#include <sys/kernel.h>
30#include <sys/fcntl.h>
31#include <sys/file.h>
32#include <sys/lock.h>
33#include <sys/unistd.h>
34#include <sys/proc.h>
35#include <sys/resourcevar.h>
36#include <sys/signalvar.h>
37#include <sys/protosw.h>
38#include <sys/socketvar.h>
39#include <sys/sysctl.h>
40#include <sys/vnode.h>
41#include <sys/conf.h>
42#include <sys/event.h>
43
44#include <vm/vm.h>
45#include <vm/vm_extern.h>
46#include <vm/pmap.h>
47#include <vm/vm_map.h>
48#include <vm/vm_zone.h>
49#include <sys/aio.h>
50
51#include <machine/limits.h>
52#include "opt_vfs_aio.h"
53
54#ifdef VFS_AIO
55
56/*
57 * Counter for allocating reference ids to new jobs. Wrapped to 1 on
58 * overflow.
59 */
60static long jobrefid;
61
62#define JOBST_NULL 0x0
63#define JOBST_JOBQGLOBAL 0x2
64#define JOBST_JOBRUNNING 0x3
65#define JOBST_JOBFINISHED 0x4
66#define JOBST_JOBQBUF 0x5
67#define JOBST_JOBBFINISHED 0x6
68
69#ifndef MAX_AIO_PER_PROC
70#define MAX_AIO_PER_PROC 32
71#endif
72
73#ifndef MAX_AIO_QUEUE_PER_PROC
74#define MAX_AIO_QUEUE_PER_PROC 256 /* Bigger than AIO_LISTIO_MAX */
75#endif
76
77#ifndef MAX_AIO_PROCS
78#define MAX_AIO_PROCS 32
79#endif
80
81#ifndef MAX_AIO_QUEUE
82#define MAX_AIO_QUEUE 1024 /* Bigger than AIO_LISTIO_MAX */
83#endif
84
85#ifndef TARGET_AIO_PROCS
86#define TARGET_AIO_PROCS 4
87#endif
88
89#ifndef MAX_BUF_AIO
90#define MAX_BUF_AIO 16
91#endif
92
93#ifndef AIOD_TIMEOUT_DEFAULT
94#define AIOD_TIMEOUT_DEFAULT (10 * hz)
95#endif
96
97#ifndef AIOD_LIFETIME_DEFAULT
98#define AIOD_LIFETIME_DEFAULT (30 * hz)
99#endif
100
101SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management");
102
103static int max_aio_procs = MAX_AIO_PROCS;
104SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs,
105 CTLFLAG_RW, &max_aio_procs, 0,
106 "Maximum number of kernel threads to use for handling async IO");
107
108static int num_aio_procs = 0;
109SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs,
110 CTLFLAG_RD, &num_aio_procs, 0,
111 "Number of presently active kernel threads for async IO");
112
113/*
114 * The code will adjust the actual number of AIO processes towards this
115 * number when it gets a chance.
116 */
117static int target_aio_procs = TARGET_AIO_PROCS;
118SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
119 0, "Preferred number of ready kernel threads for async IO");
120
121static int max_queue_count = MAX_AIO_QUEUE;
122SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
123 "Maximum number of aio requests to queue, globally");
124
125static int num_queue_count = 0;
126SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
127 "Number of queued aio requests");
128
129static int num_buf_aio = 0;
130SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
131 "Number of aio requests presently handled by the buf subsystem");
132
133/* Number of async I/O thread in the process of being started */
134/* XXX This should be local to _aio_aqueue() */
135static int num_aio_resv_start = 0;
136
137static int aiod_timeout;
138SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0,
139 "Timeout value for synchronous aio operations");
140
141static int aiod_lifetime;
142SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
143 "Maximum lifetime for idle aiod");
144
145static int max_aio_per_proc = MAX_AIO_PER_PROC;
146SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
147 0, "Maximum active aio requests per process (stored in the process)");
148
149static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
150SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
151 &max_aio_queue_per_proc, 0,
152 "Maximum queued aio requests per process (stored in the process)");
153
154static int max_buf_aio = MAX_BUF_AIO;
155SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
156 "Maximum buf aio requests per process (stored in the process)");
157
158/*
159 * AIO process info
160 */
161#define AIOP_FREE 0x1 /* proc on free queue */
162#define AIOP_SCHED 0x2 /* proc explicitly scheduled */
163
164struct aioproclist {
165 int aioprocflags; /* AIO proc flags */
166 TAILQ_ENTRY(aioproclist) list; /* List of processes */
167 struct proc *aioproc; /* The AIO thread */
168};
169
170/*
171 * data-structure for lio signal management
172 */
173struct aio_liojob {
174 int lioj_flags;
175 int lioj_buffer_count;
176 int lioj_buffer_finished_count;
177 int lioj_queue_count;
178 int lioj_queue_finished_count;
179 struct sigevent lioj_signal; /* signal on all I/O done */
180 TAILQ_ENTRY(aio_liojob) lioj_list;
181 struct kaioinfo *lioj_ki;
182};
183#define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */
184#define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */
185
186/*
187 * per process aio data structure
188 */
189struct kaioinfo {
190 int kaio_flags; /* per process kaio flags */
191 int kaio_maxactive_count; /* maximum number of AIOs */
192 int kaio_active_count; /* number of currently used AIOs */
193 int kaio_qallowed_count; /* maxiumu size of AIO queue */
194 int kaio_queue_count; /* size of AIO queue */
195 int kaio_ballowed_count; /* maximum number of buffers */
196 int kaio_queue_finished_count; /* number of daemon jobs finished */
197 int kaio_buffer_count; /* number of physio buffers */
198 int kaio_buffer_finished_count; /* count of I/O done */
199 struct proc *kaio_p; /* process that uses this kaio block */
200 TAILQ_HEAD(,aio_liojob) kaio_liojoblist; /* list of lio jobs */
201 TAILQ_HEAD(,aiocblist) kaio_jobqueue; /* job queue for process */
202 TAILQ_HEAD(,aiocblist) kaio_jobdone; /* done queue for process */
203 TAILQ_HEAD(,aiocblist) kaio_bufqueue; /* buffer job queue for process */
204 TAILQ_HEAD(,aiocblist) kaio_bufdone; /* buffer done queue for process */
205 TAILQ_HEAD(,aiocblist) kaio_sockqueue; /* queue for aios waiting on sockets */
206};
207
208#define KAIO_RUNDOWN 0x1 /* process is being run down */
209#define KAIO_WAKEUP 0x2 /* wakeup process when there is a significant event */
210
211static TAILQ_HEAD(,aioproclist) aio_freeproc, aio_activeproc;
212static TAILQ_HEAD(,aiocblist) aio_jobs; /* Async job list */
213static TAILQ_HEAD(,aiocblist) aio_bufjobs; /* Phys I/O job list */
214static TAILQ_HEAD(,aiocblist) aio_freejobs; /* Pool of free jobs */
215
216static void aio_init_aioinfo(struct proc *p);
217static void aio_onceonly(void *);
218static int aio_free_entry(struct aiocblist *aiocbe);
219static void aio_process(struct aiocblist *aiocbe);
220static int aio_newproc(void);
221static int aio_aqueue(struct aiocb *job, int type);
222static void aio_physwakeup(struct buf *bp);
223static int aio_fphysio(struct aiocblist *aiocbe);
224static int aio_qphysio(struct proc *p, struct aiocblist *iocb);
225static void aio_daemon(void *uproc);
226static void process_signal(void *aioj);
227
228SYSINIT(aio, SI_SUB_VFS, SI_ORDER_ANY, aio_onceonly, NULL);
229
230/*
231 * Zones for:
232 * kaio Per process async io info
233 * aiop async io thread data
234 * aiocb async io jobs
235 * aiol list io job pointer - internal to aio_suspend XXX
236 * aiolio list io jobs
237 */
238static vm_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone;
239
240/*
241 * Startup initialization
242 */
243static void
244aio_onceonly(void *na)
245{
246 TAILQ_INIT(&aio_freeproc);
247 TAILQ_INIT(&aio_activeproc);
248 TAILQ_INIT(&aio_jobs);
249 TAILQ_INIT(&aio_bufjobs);
250 TAILQ_INIT(&aio_freejobs);
251 kaio_zone = zinit("AIO", sizeof(struct kaioinfo), 0, 0, 1);
252 aiop_zone = zinit("AIOP", sizeof(struct aioproclist), 0, 0, 1);
253 aiocb_zone = zinit("AIOCB", sizeof(struct aiocblist), 0, 0, 1);
254 aiol_zone = zinit("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t), 0, 0, 1);
255 aiolio_zone = zinit("AIOLIO", sizeof(struct aio_liojob), 0, 0, 1);
256 aiod_timeout = AIOD_TIMEOUT_DEFAULT;
257 aiod_lifetime = AIOD_LIFETIME_DEFAULT;
258 jobrefid = 1;
259}
260
261/*
262 * Init the per-process aioinfo structure. The aioinfo limits are set
263 * per-process for user limit (resource) management.
264 */
265static void
266aio_init_aioinfo(struct proc *p)
267{
268 struct kaioinfo *ki;
269 if (p->p_aioinfo == NULL) {
270 ki = zalloc(kaio_zone);
271 p->p_aioinfo = ki;
272 ki->kaio_flags = 0;
273 ki->kaio_maxactive_count = max_aio_per_proc;
274 ki->kaio_active_count = 0;
275 ki->kaio_qallowed_count = max_aio_queue_per_proc;
276 ki->kaio_queue_count = 0;
277 ki->kaio_ballowed_count = max_buf_aio;
278 ki->kaio_buffer_count = 0;
279 ki->kaio_buffer_finished_count = 0;
280 ki->kaio_p = p;
281 TAILQ_INIT(&ki->kaio_jobdone);
282 TAILQ_INIT(&ki->kaio_jobqueue);
283 TAILQ_INIT(&ki->kaio_bufdone);
284 TAILQ_INIT(&ki->kaio_bufqueue);
285 TAILQ_INIT(&ki->kaio_liojoblist);
286 TAILQ_INIT(&ki->kaio_sockqueue);
287 }
288
289 while (num_aio_procs < target_aio_procs)
290 aio_newproc();
291}
292
293/*
294 * Free a job entry. Wait for completion if it is currently active, but don't
295 * delay forever. If we delay, we return a flag that says that we have to
296 * restart the queue scan.
297 */
298static int
299aio_free_entry(struct aiocblist *aiocbe)
300{
301 struct kaioinfo *ki;
302 struct aio_liojob *lj;
303 struct proc *p;
304 int error;
305 int s;
306
307 if (aiocbe->jobstate == JOBST_NULL)
308 panic("aio_free_entry: freeing already free job");
309
310 p = aiocbe->userproc;
311 ki = p->p_aioinfo;
312 lj = aiocbe->lio;
313 if (ki == NULL)
314 panic("aio_free_entry: missing p->p_aioinfo");
315
316 while (aiocbe->jobstate == JOBST_JOBRUNNING) {
317 aiocbe->jobflags |= AIOCBLIST_RUNDOWN;
318 tsleep(aiocbe, PRIBIO, "jobwai", 0);
319 }
320 if (aiocbe->bp == NULL) {
321 if (ki->kaio_queue_count <= 0)
322 panic("aio_free_entry: process queue size <= 0");
323 if (num_queue_count <= 0)
324 panic("aio_free_entry: system wide queue size <= 0");
325
326 if (lj) {
327 lj->lioj_queue_count--;
328 if (aiocbe->jobflags & AIOCBLIST_DONE)
329 lj->lioj_queue_finished_count--;
330 }
331 ki->kaio_queue_count--;
332 if (aiocbe->jobflags & AIOCBLIST_DONE)
333 ki->kaio_queue_finished_count--;
334 num_queue_count--;
335 } else {
336 if (lj) {
337 lj->lioj_buffer_count--;
338 if (aiocbe->jobflags & AIOCBLIST_DONE)
339 lj->lioj_buffer_finished_count--;
340 }
341 if (aiocbe->jobflags & AIOCBLIST_DONE)
342 ki->kaio_buffer_finished_count--;
343 ki->kaio_buffer_count--;
344 num_buf_aio--;
345 }
346
347 /* aiocbe is going away, we need to destroy any knotes */
348 knote_remove(p, &aiocbe->klist);
349
350 if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags & KAIO_RUNDOWN)
351 && ((ki->kaio_buffer_count == 0) && (ki->kaio_queue_count == 0)))) {
352 ki->kaio_flags &= ~KAIO_WAKEUP;
353 wakeup(p);
354 }
355
356 if (aiocbe->jobstate == JOBST_JOBQBUF) {
357 if ((error = aio_fphysio(aiocbe)) != 0)
358 return error;
359 if (aiocbe->jobstate != JOBST_JOBBFINISHED)
360 panic("aio_free_entry: invalid physio finish-up state");
361 s = splbio();
362 TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist);
363 splx(s);
364 } else if (aiocbe->jobstate == JOBST_JOBQGLOBAL) {
365 s = splnet();
366 TAILQ_REMOVE(&aio_jobs, aiocbe, list);
367 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist);
368 splx(s);
369 } else if (aiocbe->jobstate == JOBST_JOBFINISHED)
370 TAILQ_REMOVE(&ki->kaio_jobdone, aiocbe, plist);
371 else if (aiocbe->jobstate == JOBST_JOBBFINISHED) {
372 s = splbio();
373 TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist);
374 splx(s);
375 if (aiocbe->bp) {
376 vunmapbuf(aiocbe->bp);
377 relpbuf(aiocbe->bp, NULL);
378 aiocbe->bp = NULL;
379 }
380 }
381 if (lj && (lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 0)) {
382 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
383 zfree(aiolio_zone, lj);
384 }
385 aiocbe->jobstate = JOBST_NULL;
386 untimeout(process_signal, aiocbe, aiocbe->timeouthandle);
387 fdrop(aiocbe->fd_file, curproc);
388 TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
389 return 0;
390}
391#endif /* VFS_AIO */
392
393/*
394 * Rundown the jobs for a given process.
395 */
396void
397aio_proc_rundown(struct proc *p)
398{
399#ifndef VFS_AIO
400 return;
401#else
402 int s;
403 struct kaioinfo *ki;
404 struct aio_liojob *lj, *ljn;
405 struct aiocblist *aiocbe, *aiocbn;
406 struct file *fp;
407 struct socket *so;
408
409 ki = p->p_aioinfo;
410 if (ki == NULL)
411 return;
412
413 ki->kaio_flags |= LIOJ_SIGNAL_POSTED;
414 while ((ki->kaio_active_count > 0) || (ki->kaio_buffer_count >
415 ki->kaio_buffer_finished_count)) {
416 ki->kaio_flags |= KAIO_RUNDOWN;
417 if (tsleep(p, PRIBIO, "kaiowt", aiod_timeout))
418 break;
419 }
420
421 /*
422 * Move any aio ops that are waiting on socket I/O to the normal job
423 * queues so they are cleaned up with any others.
424 */
425 s = splnet();
426 for (aiocbe = TAILQ_FIRST(&ki->kaio_sockqueue); aiocbe; aiocbe =
427 aiocbn) {
428 aiocbn = TAILQ_NEXT(aiocbe, plist);
429 fp = aiocbe->fd_file;
430 if (fp != NULL) {
431 so = (struct socket *)fp->f_data;
432 TAILQ_REMOVE(&so->so_aiojobq, aiocbe, list);
433 if (TAILQ_EMPTY(&so->so_aiojobq)) {
434 so->so_snd.sb_flags &= ~SB_AIO;
435 so->so_rcv.sb_flags &= ~SB_AIO;
436 }
437 }
438 TAILQ_REMOVE(&ki->kaio_sockqueue, aiocbe, plist);
439 TAILQ_INSERT_HEAD(&aio_jobs, aiocbe, list);
440 TAILQ_INSERT_HEAD(&ki->kaio_jobqueue, aiocbe, plist);
441 }
442 splx(s);
443
444restart1:
445 for (aiocbe = TAILQ_FIRST(&ki->kaio_jobdone); aiocbe; aiocbe = aiocbn) {
446 aiocbn = TAILQ_NEXT(aiocbe, plist);
447 if (aio_free_entry(aiocbe))
448 goto restart1;
449 }
450
451restart2:
452 for (aiocbe = TAILQ_FIRST(&ki->kaio_jobqueue); aiocbe; aiocbe =
453 aiocbn) {
454 aiocbn = TAILQ_NEXT(aiocbe, plist);
455 if (aio_free_entry(aiocbe))
456 goto restart2;
457 }
458
459/*
460 * Note the use of lots of splbio here, trying to avoid splbio for long chains
461 * of I/O. Probably unnecessary.
462 */
463restart3:
464 s = splbio();
465 while (TAILQ_FIRST(&ki->kaio_bufqueue)) {
466 ki->kaio_flags |= KAIO_WAKEUP;
467 tsleep(p, PRIBIO, "aioprn", 0);
468 splx(s);
469 goto restart3;
470 }
471 splx(s);
472
473restart4:
474 s = splbio();
475 for (aiocbe = TAILQ_FIRST(&ki->kaio_bufdone); aiocbe; aiocbe = aiocbn) {
476 aiocbn = TAILQ_NEXT(aiocbe, plist);
477 if (aio_free_entry(aiocbe)) {
478 splx(s);
479 goto restart4;
480 }
481 }
482 splx(s);
483
484 /*
485 * If we've slept, jobs might have moved from one queue to another.
486 * Retry rundown if we didn't manage to empty the queues.
487 */
488 if (TAILQ_FIRST(&ki->kaio_jobdone) != NULL ||
489 TAILQ_FIRST(&ki->kaio_jobqueue) != NULL ||
490 TAILQ_FIRST(&ki->kaio_bufqueue) != NULL ||
491 TAILQ_FIRST(&ki->kaio_bufdone) != NULL)
492 goto restart1;
493
494 for (lj = TAILQ_FIRST(&ki->kaio_liojoblist); lj; lj = ljn) {
495 ljn = TAILQ_NEXT(lj, lioj_list);
496 if ((lj->lioj_buffer_count == 0) && (lj->lioj_queue_count ==
497 0)) {
498 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
499 zfree(aiolio_zone, lj);
500 } else {
501#ifdef DIAGNOSTIC
502 printf("LIO job not cleaned up: B:%d, BF:%d, Q:%d, "
503 "QF:%d\n", lj->lioj_buffer_count,
504 lj->lioj_buffer_finished_count,
505 lj->lioj_queue_count,
506 lj->lioj_queue_finished_count);
507#endif
508 }
509 }
510
511 zfree(kaio_zone, ki);
512 p->p_aioinfo = NULL;
513#endif /* VFS_AIO */
514}
515
516#ifdef VFS_AIO
517/*
518 * Select a job to run (called by an AIO daemon).
519 */
520static struct aiocblist *
521aio_selectjob(struct aioproclist *aiop)
522{
523 int s;
524 struct aiocblist *aiocbe;
525 struct kaioinfo *ki;
526 struct proc *userp;
527
528 s = splnet();
529 for (aiocbe = TAILQ_FIRST(&aio_jobs); aiocbe; aiocbe =
530 TAILQ_NEXT(aiocbe, list)) {
531 userp = aiocbe->userproc;
532 ki = userp->p_aioinfo;
533
534 if (ki->kaio_active_count < ki->kaio_maxactive_count) {
535 TAILQ_REMOVE(&aio_jobs, aiocbe, list);
536 splx(s);
537 return aiocbe;
538 }
539 }
540 splx(s);
541
542 return NULL;
543}
544
545/*
546 * The AIO processing activity. This is the code that does the I/O request for
547 * the non-physio version of the operations. The normal vn operations are used,
548 * and this code should work in all instances for every type of file, including
549 * pipes, sockets, fifos, and regular files.
550 */
551static void
552aio_process(struct aiocblist *aiocbe)
553{
554 struct proc *mycp;
555 struct aiocb *cb;
556 struct file *fp;
557 struct uio auio;
558 struct iovec aiov;
559 int cnt;
560 int error;
561 int oublock_st, oublock_end;
562 int inblock_st, inblock_end;
563
564 mycp = curproc;
565 cb = &aiocbe->uaiocb;
566 fp = aiocbe->fd_file;
567
568 aiov.iov_base = (void *)(uintptr_t)cb->aio_buf;
569 aiov.iov_len = cb->aio_nbytes;
570
571 auio.uio_iov = &aiov;
572 auio.uio_iovcnt = 1;
573 auio.uio_offset = cb->aio_offset;
574 auio.uio_resid = cb->aio_nbytes;
575 cnt = cb->aio_nbytes;
576 auio.uio_segflg = UIO_USERSPACE;
577 auio.uio_procp = mycp;
578
579 inblock_st = mycp->p_stats->p_ru.ru_inblock;
580 oublock_st = mycp->p_stats->p_ru.ru_oublock;
581 /*
582 * _aio_aqueue() acquires a reference to the file that is
583 * released in aio_free_entry().
584 */
585 if (cb->aio_lio_opcode == LIO_READ) {
586 auio.uio_rw = UIO_READ;
587 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, mycp);
588 } else {
589 auio.uio_rw = UIO_WRITE;
590 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, mycp);
591 }
592 inblock_end = mycp->p_stats->p_ru.ru_inblock;
593 oublock_end = mycp->p_stats->p_ru.ru_oublock;
594
595 aiocbe->inputcharge = inblock_end - inblock_st;
596 aiocbe->outputcharge = oublock_end - oublock_st;
597
598 if ((error) && (auio.uio_resid != cnt)) {
599 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
600 error = 0;
601 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE))
602 psignal(aiocbe->userproc, SIGPIPE);
603 }
604
605 cnt -= auio.uio_resid;
606 cb->_aiocb_private.error = error;
607 cb->_aiocb_private.status = cnt;
608}
609
610/*
611 * The AIO daemon, most of the actual work is done in aio_process,
612 * but the setup (and address space mgmt) is done in this routine.
613 */
614static void
615aio_daemon(void *uproc)
616{
617 int s;
618 struct aio_liojob *lj;
619 struct aiocb *cb;
620 struct aiocblist *aiocbe;
621 struct aioproclist *aiop;
622 struct kaioinfo *ki;
623 struct proc *curcp, *mycp, *userp;
624 struct vmspace *myvm, *tmpvm;
625
626 /*
627 * Local copies of curproc (cp) and vmspace (myvm)
628 */
629 mycp = curproc;
630 myvm = mycp->p_vmspace;
631
632 if (mycp->p_textvp) {
633 vrele(mycp->p_textvp);
634 mycp->p_textvp = NULL;
635 }
636
637 /*
638 * Allocate and ready the aio control info. There is one aiop structure
639 * per daemon.
640 */
641 aiop = zalloc(aiop_zone);
642 aiop->aioproc = mycp;
643 aiop->aioprocflags |= AIOP_FREE;
644
645 s = splnet();
646
647 /*
648 * Place thread (lightweight process) onto the AIO free thread list.
649 */
650 if (TAILQ_EMPTY(&aio_freeproc))
651 wakeup(&aio_freeproc);
652 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
653
654 splx(s);
655
656 /* Make up a name for the daemon. */
657 strcpy(mycp->p_comm, "aiod");
658
659 /*
660 * Get rid of our current filedescriptors. AIOD's don't need any
661 * filedescriptors, except as temporarily inherited from the client.
662 * Credentials are also cloned, and made equivalent to "root".
663 */
664 fdfree(mycp);
665 mycp->p_fd = NULL;
666 mycp->p_ucred = crcopy(mycp->p_ucred);
667 mycp->p_ucred->cr_uid = 0;
668 uifree(mycp->p_ucred->cr_uidinfo);
669 mycp->p_ucred->cr_uidinfo = uifind(0);
670 mycp->p_ucred->cr_ngroups = 1;
671 mycp->p_ucred->cr_groups[0] = 1;
672
673 /* The daemon resides in its own pgrp. */
674 enterpgrp(mycp, mycp->p_pid, 1);
675
676 /* Mark special process type. */
677 mycp->p_flag |= P_SYSTEM | P_KTHREADP;
678
679 /*
680 * Wakeup parent process. (Parent sleeps to keep from blasting away
681 * and creating too many daemons.)
682 */
683 wakeup(mycp);
684
685 for (;;) {
686 /*
687 * curcp is the current daemon process context.
688 * userp is the current user process context.
689 */
690 curcp = mycp;
691
692 /*
693 * Take daemon off of free queue
694 */
695 if (aiop->aioprocflags & AIOP_FREE) {
696 s = splnet();
697 TAILQ_REMOVE(&aio_freeproc, aiop, list);
698 TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list);
699 aiop->aioprocflags &= ~AIOP_FREE;
700 splx(s);
701 }
702 aiop->aioprocflags &= ~AIOP_SCHED;
703
704 /*
705 * Check for jobs.
706 */
707 while ((aiocbe = aio_selectjob(aiop)) != NULL) {
708 cb = &aiocbe->uaiocb;
709 userp = aiocbe->userproc;
710
711 aiocbe->jobstate = JOBST_JOBRUNNING;
712
713 /*
714 * Connect to process address space for user program.
715 */
716 if (userp != curcp) {
717 /*
718 * Save the current address space that we are
719 * connected to.
720 */
721 tmpvm = mycp->p_vmspace;
722
723 /*
724 * Point to the new user address space, and
725 * refer to it.
726 */
727 mycp->p_vmspace = userp->p_vmspace;
728 mycp->p_vmspace->vm_refcnt++;
729
730 /* Activate the new mapping. */
731 pmap_activate(mycp);
732
733 /*
734 * If the old address space wasn't the daemons
735 * own address space, then we need to remove the
736 * daemon's reference from the other process
737 * that it was acting on behalf of.
738 */
739 if (tmpvm != myvm) {
740 vmspace_free(tmpvm);
741 }
742 curcp = userp;
743 }
744
745 ki = userp->p_aioinfo;
746 lj = aiocbe->lio;
747
748 /* Account for currently active jobs. */
749 ki->kaio_active_count++;
750
751 /* Do the I/O function. */
752 aio_process(aiocbe);
753
754 /* Decrement the active job count. */
755 ki->kaio_active_count--;
756
757 /*
758 * Increment the completion count for wakeup/signal
759 * comparisons.
760 */
761 aiocbe->jobflags |= AIOCBLIST_DONE;
762 ki->kaio_queue_finished_count++;
763 if (lj)
764 lj->lioj_queue_finished_count++;
765 if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags
766 & KAIO_RUNDOWN) && (ki->kaio_active_count == 0))) {
767 ki->kaio_flags &= ~KAIO_WAKEUP;
768 wakeup(userp);
769 }
770
771 s = splbio();
772 if (lj && (lj->lioj_flags &
773 (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL) {
774 if ((lj->lioj_queue_finished_count ==
775 lj->lioj_queue_count) &&
776 (lj->lioj_buffer_finished_count ==
777 lj->lioj_buffer_count)) {
778 psignal(userp,
779 lj->lioj_signal.sigev_signo);
780 lj->lioj_flags |=
781 LIOJ_SIGNAL_POSTED;
782 }
783 }
784 splx(s);
785
786 aiocbe->jobstate = JOBST_JOBFINISHED;
787
788 s = splnet();
789 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist);
790 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, aiocbe, plist);
791 splx(s);
792 KNOTE(&aiocbe->klist, 0);
793
794 if (aiocbe->jobflags & AIOCBLIST_RUNDOWN) {
795 wakeup(aiocbe);
796 aiocbe->jobflags &= ~AIOCBLIST_RUNDOWN;
797 }
798
799 if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL) {
800 psignal(userp, cb->aio_sigevent.sigev_signo);
801 }
802 }
803
804 /*
805 * Disconnect from user address space.
806 */
807 if (curcp != mycp) {
808 /* Get the user address space to disconnect from. */
809 tmpvm = mycp->p_vmspace;
810
811 /* Get original address space for daemon. */
812 mycp->p_vmspace = myvm;
813
814 /* Activate the daemon's address space. */
815 pmap_activate(mycp);
816#ifdef DIAGNOSTIC
817 if (tmpvm == myvm) {
818 printf("AIOD: vmspace problem -- %d\n",
819 mycp->p_pid);
820 }
821#endif
822 /* Remove our vmspace reference. */
823 vmspace_free(tmpvm);
824
825 curcp = mycp;
826 }
827
828 /*
829 * If we are the first to be put onto the free queue, wakeup
830 * anyone waiting for a daemon.
831 */
832 s = splnet();
833 TAILQ_REMOVE(&aio_activeproc, aiop, list);
834 if (TAILQ_EMPTY(&aio_freeproc))
835 wakeup(&aio_freeproc);
836 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
837 aiop->aioprocflags |= AIOP_FREE;
838 splx(s);
839
840 /*
841 * If daemon is inactive for a long time, allow it to exit,
842 * thereby freeing resources.
843 */
844 if (((aiop->aioprocflags & AIOP_SCHED) == 0) && tsleep(mycp,
845 PRIBIO, "aiordy", aiod_lifetime)) {
846 s = splnet();
847 if (TAILQ_EMPTY(&aio_jobs)) {
848 if ((aiop->aioprocflags & AIOP_FREE) &&
849 (num_aio_procs > target_aio_procs)) {
850 TAILQ_REMOVE(&aio_freeproc, aiop, list);
851 splx(s);
852 zfree(aiop_zone, aiop);
853 num_aio_procs--;
854#ifdef DIAGNOSTIC
855 if (mycp->p_vmspace->vm_refcnt <= 1) {
856 printf("AIOD: bad vm refcnt for"
857 " exiting daemon: %d\n",
858 mycp->p_vmspace->vm_refcnt);
859 }
860#endif
861 exit1(mycp, 0);
862 }
863 }
864 splx(s);
865 }
866 }
867}
868
869/*
870 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
871 * AIO daemon modifies its environment itself.
872 */
873static int
874aio_newproc()
875{
876 int error;
877 struct proc *p, *np;
878
879 p = &proc0;
880 error = fork1(p, RFPROC|RFMEM|RFNOWAIT, &np);
881 if (error)
882 return error;
883 cpu_set_fork_handler(np, aio_daemon, curproc);
884 start_forked_proc(p, np);
885
886 /*
887 * Wait until daemon is started, but continue on just in case to
888 * handle error conditions.
889 */
890 error = tsleep(np, PZERO, "aiosta", aiod_timeout);
891 num_aio_procs++;
892
893 return error;
894}
895
896/*
897 * Try the high-performance, low-overhead physio method for eligible
898 * VCHR devices. This method doesn't use an aio helper thread, and
899 * thus has very low overhead.
900 *
901 * Assumes that the caller, _aio_aqueue(), has incremented the file
902 * structure's reference count, preventing its deallocation for the
903 * duration of this call.
904 */
905static int
906aio_qphysio(struct proc *p, struct aiocblist *aiocbe)
907{
908 int error;
909 struct aiocb *cb;
910 struct file *fp;
911 struct buf *bp;
912 struct vnode *vp;
913 struct kaioinfo *ki;
914 struct aio_liojob *lj;
915 int s;
916 int notify;
917
918 cb = &aiocbe->uaiocb;
919 fp = aiocbe->fd_file;
920
921 if (fp->f_type != DTYPE_VNODE)
922 return (-1);
923
924 vp = (struct vnode *)fp->f_data;
925
926 /*
927 * If its not a disk, we don't want to return a positive error.
928 * It causes the aio code to not fall through to try the thread
929 * way when you're talking to a regular file.
930 */
931 if (!vn_isdisk(vp, &error)) {
932 if (error == ENOTBLK)
933 return (-1);
934 else
935 return (error);
936 }
937
938 if (cb->aio_nbytes % vp->v_rdev->si_bsize_phys)
939 return (-1);
940
941 if (cb->aio_nbytes >
942 MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK))
943 return (-1);
944
945 ki = p->p_aioinfo;
946 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count)
947 return (-1);
948
949 ki->kaio_buffer_count++;
950
951 lj = aiocbe->lio;
952 if (lj)
953 lj->lioj_buffer_count++;
954
955 /* Create and build a buffer header for a transfer. */
956 bp = (struct buf *)getpbuf(NULL);
957 BUF_KERNPROC(bp);
958
959 /*
960 * Get a copy of the kva from the physical buffer.
961 */
962 bp->b_caller1 = p;
963 bp->b_dev = vp->v_rdev;
964 error = 0;
965
966 bp->b_bcount = cb->aio_nbytes;
967 bp->b_bufsize = cb->aio_nbytes;
968 bp->b_flags = B_PHYS | B_CALL | (cb->aio_lio_opcode == LIO_WRITE ?
969 B_WRITE : B_READ);
970 bp->b_iodone = aio_physwakeup;
971 bp->b_saveaddr = bp->b_data;
972 bp->b_data = (void *)(uintptr_t)cb->aio_buf;
973 bp->b_blkno = btodb(cb->aio_offset);
974
975 /* Bring buffer into kernel space. */
976 if (vmapbuf(bp) < 0) {
977 error = EFAULT;
978 goto doerror;
979 }
980
981 s = splbio();
982 aiocbe->bp = bp;
983 bp->b_spc = (void *)aiocbe;
984 TAILQ_INSERT_TAIL(&aio_bufjobs, aiocbe, list);
985 TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist);
986 aiocbe->jobstate = JOBST_JOBQBUF;
987 cb->_aiocb_private.status = cb->aio_nbytes;
988 num_buf_aio++;
989 bp->b_error = 0;
990
991 splx(s);
992
993 /* Perform transfer. */
994 BUF_STRATEGY(bp, 0);
995
996 notify = 0;
997 s = splbio();
998
999 /*
1000 * If we had an error invoking the request, or an error in processing
1001 * the request before we have returned, we process it as an error in
1002 * transfer. Note that such an I/O error is not indicated immediately,
1003 * but is returned using the aio_error mechanism. In this case,
1004 * aio_suspend will return immediately.
1005 */
1006 if (bp->b_error || (bp->b_flags & B_ERROR)) {
1007 struct aiocb *job = aiocbe->uuaiocb;
1008
1009 aiocbe->uaiocb._aiocb_private.status = 0;
1010 suword(&job->_aiocb_private.status, 0);
1011 aiocbe->uaiocb._aiocb_private.error = bp->b_error;
1012 suword(&job->_aiocb_private.error, bp->b_error);
1013
1014 ki->kaio_buffer_finished_count++;
1015
1016 if (aiocbe->jobstate != JOBST_JOBBFINISHED) {
1017 aiocbe->jobstate = JOBST_JOBBFINISHED;
1018 aiocbe->jobflags |= AIOCBLIST_DONE;
1019 TAILQ_REMOVE(&aio_bufjobs, aiocbe, list);
1020 TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist);
1021 TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist);
1022 notify = 1;
1023 }
1024 }
1025 splx(s);
1026 if (notify)
1027 KNOTE(&aiocbe->klist, 0);
1028 return 0;
1029
1030doerror:
1031 ki->kaio_buffer_count--;
1032 if (lj)
1033 lj->lioj_buffer_count--;
1034 aiocbe->bp = NULL;
1035 relpbuf(bp, NULL);
1036 return error;
1037}
1038
1039/*
1040 * This waits/tests physio completion.
1041 */
1042static int
1043aio_fphysio(struct aiocblist *iocb)
1044{
1045 int s;
1046 struct buf *bp;
1047 int error;
1048
1049 bp = iocb->bp;
1050
1051 s = splbio();
1052 while ((bp->b_flags & B_DONE) == 0) {
1053 if (tsleep(bp, PRIBIO, "physstr", aiod_timeout)) {
1054 if ((bp->b_flags & B_DONE) == 0) {
1055 splx(s);
1056 return EINPROGRESS;
1057 } else
1058 break;
1059 }
1060 }
1061 splx(s);
1062
1063 /* Release mapping into kernel space. */
1064 vunmapbuf(bp);
1065 iocb->bp = 0;
1066
1067 error = 0;
1068
1069 /* Check for an error. */
1070 if (bp->b_flags & B_ERROR)
1071 error = bp->b_error;
1072
1073 relpbuf(bp, NULL);
1074 return (error);
1075}
1076#endif /* VFS_AIO */
1077
1078/*
1079 * Wake up aio requests that may be serviceable now.
1080 */
1081void
1082aio_swake(struct socket *so, struct sockbuf *sb)
1083{
1084#ifndef VFS_AIO
1085 return;
1086#else
1087 struct aiocblist *cb,*cbn;
1088 struct proc *p;
1089 struct kaioinfo *ki = NULL;
1090 int opcode, wakecount = 0;
1091 struct aioproclist *aiop;
1092
1093 if (sb == &so->so_snd) {
1094 opcode = LIO_WRITE;
1095 so->so_snd.sb_flags &= ~SB_AIO;
1096 } else {
1097 opcode = LIO_READ;
1098 so->so_rcv.sb_flags &= ~SB_AIO;
1099 }
1100
1101 for (cb = TAILQ_FIRST(&so->so_aiojobq); cb; cb = cbn) {
1102 cbn = TAILQ_NEXT(cb, list);
1103 if (opcode == cb->uaiocb.aio_lio_opcode) {
1104 p = cb->userproc;
1105 ki = p->p_aioinfo;
1106 TAILQ_REMOVE(&so->so_aiojobq, cb, list);
1107 TAILQ_REMOVE(&ki->kaio_sockqueue, cb, plist);
1108 TAILQ_INSERT_TAIL(&aio_jobs, cb, list);
1109 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, cb, plist);
1110 wakecount++;
1111 if (cb->jobstate != JOBST_JOBQGLOBAL)
1112 panic("invalid queue value");
1113 }
1114 }
1115
1116 while (wakecount--) {
1117 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != 0) {
1118 TAILQ_REMOVE(&aio_freeproc, aiop, list);
1119 TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list);
1120 aiop->aioprocflags &= ~AIOP_FREE;
1121 wakeup(aiop->aioproc);
1122 }
1123 }
1124#endif /* VFS_AIO */
1125}
1126
1127#ifdef VFS_AIO
1128/*
1129 * Queue a new AIO request. Choosing either the threaded or direct physio VCHR
1130 * technique is done in this code.
1131 */
1132static int
1133_aio_aqueue(struct aiocb *job, struct aio_liojob *lj, int type)
1134{
1135 struct proc *p = curprpoc;
1136 struct filedesc *fdp;
1137 struct file *fp;
1138 unsigned int fd;
1139 struct socket *so;
1140 int s;
1141 int error;
1142 int opcode, user_opcode;
1143 struct aiocblist *aiocbe;
1144 struct aioproclist *aiop;
1145 struct kaioinfo *ki;
1146 struct kevent kev;
1147 struct kqueue *kq;
1148 struct file *kq_fp;
1149
1150 if ((aiocbe = TAILQ_FIRST(&aio_freejobs)) != NULL)
1151 TAILQ_REMOVE(&aio_freejobs, aiocbe, list);
1152 else
1153 aiocbe = zalloc (aiocb_zone);
1154
1155 aiocbe->inputcharge = 0;
1156 aiocbe->outputcharge = 0;
1157 callout_handle_init(&aiocbe->timeouthandle);
1158 SLIST_INIT(&aiocbe->klist);
1159
1160 suword(&job->_aiocb_private.status, -1);
1161 suword(&job->_aiocb_private.error, 0);
1162 suword(&job->_aiocb_private.kernelinfo, -1);
1163
1164 error = copyin(job, &aiocbe->uaiocb, sizeof(aiocbe->uaiocb));
1165 if (error) {
1166 suword(&job->_aiocb_private.error, error);
1167 TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1168 return error;
1169 }
1170 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL &&
1171 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) {
1172 TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1173 return EINVAL;
1174 }
1175
1176 /* Save userspace address of the job info. */
1177 aiocbe->uuaiocb = job;
1178
1179 /* Get the opcode. */
1180 user_opcode = aiocbe->uaiocb.aio_lio_opcode;
1181 if (type != LIO_NOP)
1182 aiocbe->uaiocb.aio_lio_opcode = type;
1183 opcode = aiocbe->uaiocb.aio_lio_opcode;
1184
1185 /* Get the fd info for process. */
1186 fdp = p->p_fd;
1187
1188 /*
1189 * Range check file descriptor.
1190 */
1191 fd = aiocbe->uaiocb.aio_fildes;
1192 if (fd >= fdp->fd_nfiles) {
1193 TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1194 if (type == 0)
1195 suword(&job->_aiocb_private.error, EBADF);
1196 return EBADF;
1197 }
1198
1199 fp = aiocbe->fd_file = fdp->fd_ofiles[fd];
1200 if ((fp == NULL) || ((opcode == LIO_WRITE) && ((fp->f_flag & FWRITE) ==
1201 0))) {
1202 TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1203 if (type == 0)
1204 suword(&job->_aiocb_private.error, EBADF);
1205 return EBADF;
1206 }
1207 fhold(fp);
1208
1209 if (aiocbe->uaiocb.aio_offset == -1LL) {
1210 error = EINVAL;
1211 goto aqueue_fail;
1212 }
1213 error = suword(&job->_aiocb_private.kernelinfo, jobrefid);
1214 if (error) {
1215 error = EINVAL;
1216 goto aqueue_fail;
1217 }
1218 aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jobrefid;
1219 if (jobrefid == LONG_MAX)
1220 jobrefid = 1;
1221 else
1222 jobrefid++;
1223
1224 if (opcode == LIO_NOP) {
1225 fdrop(fp, p);
1226 TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1227 if (type == 0) {
1228 suword(&job->_aiocb_private.error, 0);
1229 suword(&job->_aiocb_private.status, 0);
1230 suword(&job->_aiocb_private.kernelinfo, 0);
1231 }
1232 return 0;
1233 }
1234 if ((opcode != LIO_READ) && (opcode != LIO_WRITE)) {
1235 if (type == 0)
1236 suword(&job->_aiocb_private.status, 0);
1237 error = EINVAL;
1238 goto aqueue_fail;
1239 }
1240
1241 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_KEVENT) {
1242 kev.ident = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue;
1243 kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sigval_ptr;
1244 }
1245 else {
1246 /*
1247 * This method for requesting kevent-based notification won't
1248 * work on the alpha, since we're passing in a pointer
1249 * via aio_lio_opcode, which is an int. Use the SIGEV_KEVENT-
1250 * based method instead.
1251 */
1252 if (user_opcode == LIO_NOP || user_opcode == LIO_READ ||
1253 user_opcode == LIO_WRITE)
1254 goto no_kqueue;
1255
1256 error = copyin((struct kevent *)(uintptr_t)user_opcode,
1257 &kev, sizeof(kev));
1258 if (error)
1259 goto aqueue_fail;
1260 }
1261 if ((u_int)kev.ident >= fdp->fd_nfiles ||
1262 (kq_fp = fdp->fd_ofiles[kev.ident]) == NULL ||
1263 (kq_fp->f_type != DTYPE_KQUEUE)) {
1264 error = EBADF;
1265 goto aqueue_fail;
1266 }
1267 kq = (struct kqueue *)kq_fp->f_data;
1268 kev.ident = (uintptr_t)aiocbe->uuaiocb;
1269 kev.filter = EVFILT_AIO;
1270 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
1271 kev.data = (intptr_t)aiocbe;
1272 error = kqueue_register(kq, &kev, p);
1273aqueue_fail:
1274 if (error) {
1275 fdrop(fp, p);
1276 TAILQ_INSERT_HEAD(&aio_freejobs, aiocbe, list);
1277 if (type == 0)
1278 suword(&job->_aiocb_private.error, error);
1279 goto done;
1280 }
1281no_kqueue:
1282
1283 suword(&job->_aiocb_private.error, EINPROGRESS);
1284 aiocbe->uaiocb._aiocb_private.error = EINPROGRESS;
1285 aiocbe->userproc = p;
1286 aiocbe->jobflags = 0;
1287 aiocbe->lio = lj;
1288 ki = p->p_aioinfo;
1289
1290 if (fp->f_type == DTYPE_SOCKET) {
1291 /*
1292 * Alternate queueing for socket ops: Reach down into the
1293 * descriptor to get the socket data. Then check to see if the
1294 * socket is ready to be read or written (based on the requested
1295 * operation).
1296 *
1297 * If it is not ready for io, then queue the aiocbe on the
1298 * socket, and set the flags so we get a call when sbnotify()
1299 * happens.
1300 */
1301 so = (struct socket *)fp->f_data;
1302 s = splnet();
1303 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode ==
1304 LIO_WRITE) && (!sowriteable(so)))) {
1305 TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list);
1306 TAILQ_INSERT_TAIL(&ki->kaio_sockqueue, aiocbe, plist);
1307 if (opcode == LIO_READ)
1308 so->so_rcv.sb_flags |= SB_AIO;
1309 else
1310 so->so_snd.sb_flags |= SB_AIO;
1311 aiocbe->jobstate = JOBST_JOBQGLOBAL; /* XXX */
1312 ki->kaio_queue_count++;
1313 num_queue_count++;
1314 splx(s);
1315 error = 0;
1316 goto done;
1317 }
1318 splx(s);
1319 }
1320
1321 if ((error = aio_qphysio(p, aiocbe)) == 0)
1322 goto done;
1323 if (error > 0) {
1324 suword(&job->_aiocb_private.status, 0);
1325 aiocbe->uaiocb._aiocb_private.error = error;
1326 suword(&job->_aiocb_private.error, error);
1327 goto done;
1328 }
1329
1330 /* No buffer for daemon I/O. */
1331 aiocbe->bp = NULL;
1332
1333 ki->kaio_queue_count++;
1334 if (lj)
1335 lj->lioj_queue_count++;
1336 s = splnet();
1337 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
1338 TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list);
1339 splx(s);
1340 aiocbe->jobstate = JOBST_JOBQGLOBAL;
1341
1342 num_queue_count++;
1343 error = 0;
1344
1345 /*
1346 * If we don't have a free AIO process, and we are below our quota, then
1347 * start one. Otherwise, depend on the subsequent I/O completions to
1348 * pick-up this job. If we don't sucessfully create the new process
1349 * (thread) due to resource issues, we return an error for now (EAGAIN),
1350 * which is likely not the correct thing to do.
1351 */
1352 s = splnet();
1353retryproc:
1354 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1355 TAILQ_REMOVE(&aio_freeproc, aiop, list);
1356 TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list);
1357 aiop->aioprocflags &= ~AIOP_FREE;
1358 wakeup(aiop->aioproc);
1359 } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
1360 ((ki->kaio_active_count + num_aio_resv_start) <
1361 ki->kaio_maxactive_count)) {
1362 num_aio_resv_start++;
1363 if ((error = aio_newproc()) == 0) {
1364 num_aio_resv_start--;
1365 goto retryproc;
1366 }
1367 num_aio_resv_start--;
1368 }
1369 splx(s);
1370done:
1371 return error;
1372}
1373
1374/*
1375 * This routine queues an AIO request, checking for quotas.
1376 */
1377static int
1378aio_aqueue(struct aiocb *job, int type)
1379{
1380 struct proc *p = curprpoc;
1381 struct kaioinfo *ki;
1382
1383 if (p->p_aioinfo == NULL)
1384 aio_init_aioinfo(p);
1385
1386 if (num_queue_count >= max_queue_count)
1387 return EAGAIN;
1388
1389 ki = p->p_aioinfo;
1390 if (ki->kaio_queue_count >= ki->kaio_qallowed_count)
1391 return EAGAIN;
1392
1393 return _aio_aqueue(job, NULL, type);
1394}
1395#endif /* VFS_AIO */
1396
1397/*
1398 * Support the aio_return system call, as a side-effect, kernel resources are
1399 * released.
1400 */
1401int
1402aio_return(struct aio_return_args *uap)
1403{
1404#ifndef VFS_AIO
1405 return ENOSYS;
1406#else
1407 struct proc *p = curproc;
1408 int s;
1409 long jobref;
1410 struct aiocblist *cb, *ncb;
1411 struct aiocb *ujob;
1412 struct kaioinfo *ki;
1413
1414 ki = p->p_aioinfo;
1415 if (ki == NULL)
1416 return EINVAL;
1417
1418 ujob = uap->aiocbp;
1419
1420 jobref = fuword(&ujob->_aiocb_private.kernelinfo);
1421 if (jobref == -1 || jobref == 0)
1422 return EINVAL;
1423
1424 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) {
1425 if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) ==
1426 jobref) {
1427 if (ujob == cb->uuaiocb) {
1428 p->p_retval[0] =
1429 cb->uaiocb._aiocb_private.status;
1430 } else
1431 p->p_retval[0] = EFAULT;
1432 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
1433 p->p_stats->p_ru.ru_oublock +=
1434 cb->outputcharge;
1435 cb->outputcharge = 0;
1436 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
1437 p->p_stats->p_ru.ru_inblock += cb->inputcharge;
1438 cb->inputcharge = 0;
1439 }
1440 aio_free_entry(cb);
1441 return 0;
1442 }
1443 }
1444 s = splbio();
1445 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = ncb) {
1446 ncb = TAILQ_NEXT(cb, plist);
1447 if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo)
1448 == jobref) {
1449 splx(s);
1450 if (ujob == cb->uuaiocb) {
1451 p->p_retval[0] =
1452 cb->uaiocb._aiocb_private.status;
1453 } else
1454 p->p_retval[0] = EFAULT;
1455 aio_free_entry(cb);
1456 return 0;
1457 }
1458 }
1459 splx(s);
1460
1461 return (EINVAL);
1462#endif /* VFS_AIO */
1463}
1464
1465/*
1466 * Allow a process to wakeup when any of the I/O requests are completed.
1467 */
1468int
1469aio_suspend(struct aio_suspend_args *uap)
1470{
1471#ifndef VFS_AIO
1472 return ENOSYS;
1473#else
1474 struct proc *p = curproc;
1475 struct timeval atv;
1476 struct timespec ts;
1477 struct aiocb *const *cbptr, *cbp;
1478 struct kaioinfo *ki;
1479 struct aiocblist *cb;
1480 int i;
1481 int njoblist;
1482 int error, s, timo;
1483 long *ijoblist;
1484 struct aiocb **ujoblist;
1485
1486 if (uap->nent > AIO_LISTIO_MAX)
1487 return EINVAL;
1488
1489 timo = 0;
1490 if (uap->timeout) {
1491 /* Get timespec struct. */
1492 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
1493 return error;
1494
1495 if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000)
1496 return (EINVAL);
1497
1498 TIMESPEC_TO_TIMEVAL(&atv, &ts);
1499 if (itimerfix(&atv))
1500 return (EINVAL);
1501 timo = tvtohz(&atv);
1502 }
1503
1504 ki = p->p_aioinfo;
1505 if (ki == NULL)
1506 return EAGAIN;
1507
1508 njoblist = 0;
1509 ijoblist = zalloc(aiol_zone);
1510 ujoblist = zalloc(aiol_zone);
1511 cbptr = uap->aiocbp;
1512
1513 for (i = 0; i < uap->nent; i++) {
1514 cbp = (struct aiocb *)(intptr_t)fuword(&cbptr[i]);
1515 if (cbp == 0)
1516 continue;
1517 ujoblist[njoblist] = cbp;
1518 ijoblist[njoblist] = fuword(&cbp->_aiocb_private.kernelinfo);
1519 njoblist++;
1520 }
1521
1522 if (njoblist == 0) {
1523 zfree(aiol_zone, ijoblist);
1524 zfree(aiol_zone, ujoblist);
1525 return 0;
1526 }
1527
1528 error = 0;
1529 for (;;) {
1530 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) {
1531 for (i = 0; i < njoblist; i++) {
1532 if (((intptr_t)
1533 cb->uaiocb._aiocb_private.kernelinfo) ==
1534 ijoblist[i]) {
1535 if (ujoblist[i] != cb->uuaiocb)
1536 error = EINVAL;
1537 zfree(aiol_zone, ijoblist);
1538 zfree(aiol_zone, ujoblist);
1539 return error;
1540 }
1541 }
1542 }
1543
1544 s = splbio();
1545 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb =
1546 TAILQ_NEXT(cb, plist)) {
1547 for (i = 0; i < njoblist; i++) {
1548 if (((intptr_t)
1549 cb->uaiocb._aiocb_private.kernelinfo) ==
1550 ijoblist[i]) {
1551 splx(s);
1552 if (ujoblist[i] != cb->uuaiocb)
1553 error = EINVAL;
1554 zfree(aiol_zone, ijoblist);
1555 zfree(aiol_zone, ujoblist);
1556 return error;
1557 }
1558 }
1559 }
1560
1561 ki->kaio_flags |= KAIO_WAKEUP;
1562 error = tsleep(p, PRIBIO | PCATCH, "aiospn", timo);
1563 splx(s);
1564
1565 if (error == ERESTART || error == EINTR) {
1566 zfree(aiol_zone, ijoblist);
1567 zfree(aiol_zone, ujoblist);
1568 return EINTR;
1569 } else if (error == EWOULDBLOCK) {
1570 zfree(aiol_zone, ijoblist);
1571 zfree(aiol_zone, ujoblist);
1572 return EAGAIN;
1573 }
1574 }
1575
1576/* NOTREACHED */
1577 return EINVAL;
1578#endif /* VFS_AIO */
1579}
1580
1581/*
1582 * aio_cancel cancels any non-physio aio operations not currently in
1583 * progress.
1584 */
1585int
1586aio_cancel(struct aio_cancel_args *uap)
1587{
1588#ifndef VFS_AIO
1589 return ENOSYS;
1590#else
1591 struct proc *p = curproc;
1592 struct kaioinfo *ki;
1593 struct aiocblist *cbe, *cbn;
1594 struct file *fp;
1595 struct filedesc *fdp;
1596 struct socket *so;
1597 struct proc *po;
1598 int s,error;
1599 int cancelled=0;
1600 int notcancelled=0;
1601 struct vnode *vp;
1602
1603 fdp = p->p_fd;
1604 if ((u_int)uap->fd >= fdp->fd_nfiles ||
1605 (fp = fdp->fd_ofiles[uap->fd]) == NULL)
1606 return (EBADF);
1607
1608 if (fp->f_type == DTYPE_VNODE) {
1609 vp = (struct vnode *)fp->f_data;
1610
1611 if (vn_isdisk(vp,&error)) {
1612 p->p_retval[0] = AIO_NOTCANCELED;
1613 return 0;
1614 }
1615 } else if (fp->f_type == DTYPE_SOCKET) {
1616 so = (struct socket *)fp->f_data;
1617
1618 s = splnet();
1619
1620 for (cbe = TAILQ_FIRST(&so->so_aiojobq); cbe; cbe = cbn) {
1621 cbn = TAILQ_NEXT(cbe, list);
1622 if ((uap->aiocbp == NULL) ||
1623 (uap->aiocbp == cbe->uuaiocb) ) {
1624 po = cbe->userproc;
1625 ki = po->p_aioinfo;
1626 TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
1627 TAILQ_REMOVE(&ki->kaio_sockqueue, cbe, plist);
1628 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe, plist);
1629 if (ki->kaio_flags & KAIO_WAKEUP) {
1630 wakeup(po);
1631 }
1632 cbe->jobstate = JOBST_JOBFINISHED;
1633 cbe->uaiocb._aiocb_private.status=-1;
1634 cbe->uaiocb._aiocb_private.error=ECANCELED;
1635 cancelled++;
1636/* XXX cancelled, knote? */
1637 if (cbe->uaiocb.aio_sigevent.sigev_notify ==
1638 SIGEV_SIGNAL)
1639 psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo);
1640 if (uap->aiocbp)
1641 break;
1642 }
1643 }
1644 splx(s);
1645
1646 if ((cancelled) && (uap->aiocbp)) {
1647 p->p_retval[0] = AIO_CANCELED;
1648 return 0;
1649 }
1650 }
1651 ki=p->p_aioinfo;
1652 if (ki == NULL)
1653 goto done;
1654 s = splnet();
1655
1656 for (cbe = TAILQ_FIRST(&ki->kaio_jobqueue); cbe; cbe = cbn) {
1657 cbn = TAILQ_NEXT(cbe, plist);
1658
1659 if ((uap->fd == cbe->uaiocb.aio_fildes) &&
1660 ((uap->aiocbp == NULL ) ||
1661 (uap->aiocbp == cbe->uuaiocb))) {
1662
1663 if (cbe->jobstate == JOBST_JOBQGLOBAL) {
1664 TAILQ_REMOVE(&aio_jobs, cbe, list);
1665 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
1666 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe,
1667 plist);
1668 cancelled++;
1669 ki->kaio_queue_finished_count++;
1670 cbe->jobstate = JOBST_JOBFINISHED;
1671 cbe->uaiocb._aiocb_private.status = -1;
1672 cbe->uaiocb._aiocb_private.error = ECANCELED;
1673/* XXX cancelled, knote? */
1674 if (cbe->uaiocb.aio_sigevent.sigev_notify ==
1675 SIGEV_SIGNAL)
1676 psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo);
1677 } else {
1678 notcancelled++;
1679 }
1680 }
1681 }
1682 splx(s);
1683done:
1684 if (notcancelled) {
1685 p->p_retval[0] = AIO_NOTCANCELED;
1686 return 0;
1687 }
1688 if (cancelled) {
1689 p->p_retval[0] = AIO_CANCELED;
1690 return 0;
1691 }
1692 p->p_retval[0] = AIO_ALLDONE;
1693
1694 return 0;
1695#endif /* VFS_AIO */
1696}
1697
1698/*
1699 * aio_error is implemented in the kernel level for compatibility purposes only.
1700 * For a user mode async implementation, it would be best to do it in a userland
1701 * subroutine.
1702 */
1703int
1704aio_error(struct aio_error_args *uap)
1705{
1706#ifndef VFS_AIO
1707 return ENOSYS;
1708#else
1709 struct proc *p = curproc;
1710 int s;
1711 struct aiocblist *cb;
1712 struct kaioinfo *ki;
1713 long jobref;
1714
1715 ki = p->p_aioinfo;
1716 if (ki == NULL)
1717 return EINVAL;
1718
1719 jobref = fuword(&uap->aiocbp->_aiocb_private.kernelinfo);
1720 if ((jobref == -1) || (jobref == 0))
1721 return EINVAL;
1722
1723 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) {
1724 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
1725 jobref) {
1726 p->p_retval[0] = cb->uaiocb._aiocb_private.error;
1727 return 0;
1728 }
1729 }
1730
1731 s = splnet();
1732
1733 for (cb = TAILQ_FIRST(&ki->kaio_jobqueue); cb; cb = TAILQ_NEXT(cb,
1734 plist)) {
1735 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
1736 jobref) {
1737 p->p_retval[0] = EINPROGRESS;
1738 splx(s);
1739 return 0;
1740 }
1741 }
1742
1743 for (cb = TAILQ_FIRST(&ki->kaio_sockqueue); cb; cb = TAILQ_NEXT(cb,
1744 plist)) {
1745 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
1746 jobref) {
1747 p->p_retval[0] = EINPROGRESS;
1748 splx(s);
1749 return 0;
1750 }
1751 }
1752 splx(s);
1753
1754 s = splbio();
1755 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = TAILQ_NEXT(cb,
1756 plist)) {
1757 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
1758 jobref) {
1759 p->p_retval[0] = cb->uaiocb._aiocb_private.error;
1760 splx(s);
1761 return 0;
1762 }
1763 }
1764
1765 for (cb = TAILQ_FIRST(&ki->kaio_bufqueue); cb; cb = TAILQ_NEXT(cb,
1766 plist)) {
1767 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
1768 jobref) {
1769 p->p_retval[0] = EINPROGRESS;
1770 splx(s);
1771 return 0;
1772 }
1773 }
1774 splx(s);
1775
1776#if (0)
1777 /*
1778 * Hack for lio.
1779 */
1780 status = fuword(&uap->aiocbp->_aiocb_private.status);
1781 if (status == -1)
1782 return fuword(&uap->aiocbp->_aiocb_private.error);
1783#endif
1784 return EINVAL;
1785#endif /* VFS_AIO */
1786}
1787
1788/* syscall - asynchronous read from a file (REALTIME) */
1789int
1790aio_read(struct aio_read_args *uap)
1791{
1792#ifndef VFS_AIO
1793 return ENOSYS;
1794#else
1795 return aio_aqueue(uap->aiocbp, LIO_READ);
1796#endif /* VFS_AIO */
1797}
1798
1799/* syscall - asynchronous write to a file (REALTIME) */
1800int
1801aio_write(struct aio_write_args *uap)
1802{
1803#ifndef VFS_AIO
1804 return ENOSYS;
1805#else
1806 return aio_aqueue(uap->aiocbp, LIO_WRITE);
1807#endif /* VFS_AIO */
1808}
1809
1810/* syscall - XXX undocumented */
1811int
1812lio_listio(struct lio_listio_args *uap)
1813{
1814#ifndef VFS_AIO
1815 return ENOSYS;
1816#else
1817 struct proc *p = curproc;
1818 int nent, nentqueued;
1819 struct aiocb *iocb, * const *cbptr;
1820 struct aiocblist *cb;
1821 struct kaioinfo *ki;
1822 struct aio_liojob *lj;
1823 int error, runningcode;
1824 int nerror;
1825 int i;
1826 int s;
1827
1828 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
1829 return EINVAL;
1830
1831 nent = uap->nent;
1832 if (nent > AIO_LISTIO_MAX)
1833 return EINVAL;
1834
1835 if (p->p_aioinfo == NULL)
1836 aio_init_aioinfo(p);
1837
1838 if ((nent + num_queue_count) > max_queue_count)
1839 return EAGAIN;
1840
1841 ki = p->p_aioinfo;
1842 if ((nent + ki->kaio_queue_count) > ki->kaio_qallowed_count)
1843 return EAGAIN;
1844
1845 lj = zalloc(aiolio_zone);
1846 if (!lj)
1847 return EAGAIN;
1848
1849 lj->lioj_flags = 0;
1850 lj->lioj_buffer_count = 0;
1851 lj->lioj_buffer_finished_count = 0;
1852 lj->lioj_queue_count = 0;
1853 lj->lioj_queue_finished_count = 0;
1854 lj->lioj_ki = ki;
1855
1856 /*
1857 * Setup signal.
1858 */
1859 if (uap->sig && (uap->mode == LIO_NOWAIT)) {
1860 error = copyin(uap->sig, &lj->lioj_signal,
1861 sizeof(lj->lioj_signal));
1862 if (error) {
1863 zfree(aiolio_zone, lj);
1864 return error;
1865 }
1866 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
1867 zfree(aiolio_zone, lj);
1868 return EINVAL;
1869 }
1870 lj->lioj_flags |= LIOJ_SIGNAL;
1871 lj->lioj_flags &= ~LIOJ_SIGNAL_POSTED;
1872 } else
1873 lj->lioj_flags &= ~LIOJ_SIGNAL;
1874
1875 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
1876 /*
1877 * Get pointers to the list of I/O requests.
1878 */
1879 nerror = 0;
1880 nentqueued = 0;
1881 cbptr = uap->acb_list;
1882 for (i = 0; i < uap->nent; i++) {
1883 iocb = (struct aiocb *)(intptr_t)fuword(&cbptr[i]);
1884 if (((intptr_t)iocb != -1) && ((intptr_t)iocb != 0)) {
1885 error = _aio_aqueue(iocb, lj, 0);
1886 if (error == 0)
1887 nentqueued++;
1888 else
1889 nerror++;
1890 }
1891 }
1892
1893 /*
1894 * If we haven't queued any, then just return error.
1895 */
1896 if (nentqueued == 0)
1897 return 0;
1898
1899 /*
1900 * Calculate the appropriate error return.
1901 */
1902 runningcode = 0;
1903 if (nerror)
1904 runningcode = EIO;
1905
1906 if (uap->mode == LIO_WAIT) {
1907 int command, found, jobref;
1908
1909 for (;;) {
1910 found = 0;
1911 for (i = 0; i < uap->nent; i++) {
1912 /*
1913 * Fetch address of the control buf pointer in
1914 * user space.
1915 */
1916 iocb = (struct aiocb *)
1917 (intptr_t)fuword(&cbptr[i]);
1918 if (((intptr_t)iocb == -1) || ((intptr_t)iocb
1919 == 0))
1920 continue;
1921
1922 /*
1923 * Fetch the associated command from user space.
1924 */
1925 command = fuword(&iocb->aio_lio_opcode);
1926 if (command == LIO_NOP) {
1927 found++;
1928 continue;
1929 }
1930
1931 jobref = fuword(&iocb->_aiocb_private.kernelinfo);
1932
1933 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) {
1934 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo)
1935 == jobref) {
1936 if (cb->uaiocb.aio_lio_opcode
1937 == LIO_WRITE) {
1938 p->p_stats->p_ru.ru_oublock
1939 +=
1940 cb->outputcharge;
1941 cb->outputcharge = 0;
1942 } else if (cb->uaiocb.aio_lio_opcode
1943 == LIO_READ) {
1944 p->p_stats->p_ru.ru_inblock
1945 += cb->inputcharge;
1946 cb->inputcharge = 0;
1947 }
1948 found++;
1949 break;
1950 }
1951 }
1952
1953 s = splbio();
1954 TAILQ_FOREACH(cb, &ki->kaio_bufdone, plist) {
1955 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo)
1956 == jobref) {
1957 found++;
1958 break;
1959 }
1960 }
1961 splx(s);
1962 }
1963
1964 /*
1965 * If all I/Os have been disposed of, then we can
1966 * return.
1967 */
1968 if (found == nentqueued)
1969 return runningcode;
1970
1971 ki->kaio_flags |= KAIO_WAKEUP;
1972 error = tsleep(p, PRIBIO | PCATCH, "aiospn", 0);
1973
1974 if (error == EINTR)
1975 return EINTR;
1976 else if (error == EWOULDBLOCK)
1977 return EAGAIN;
1978 }
1979 }
1980
1981 return runningcode;
1982#endif /* VFS_AIO */
1983}
1984
1985#ifdef VFS_AIO
1986/*
1987 * This is a weird hack so that we can post a signal. It is safe to do so from
1988 * a timeout routine, but *not* from an interrupt routine.
1989 */
1990static void
1991process_signal(void *aioj)
1992{
1993 struct aiocblist *aiocbe = aioj;
1994 struct aio_liojob *lj = aiocbe->lio;
1995 struct aiocb *cb = &aiocbe->uaiocb;
1996
1997 if ((lj) && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL) &&
1998 (lj->lioj_queue_count == lj->lioj_queue_finished_count)) {
1999 psignal(lj->lioj_ki->kaio_p, lj->lioj_signal.sigev_signo);
2000 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2001 }
2002
2003 if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL)
2004 psignal(aiocbe->userproc, cb->aio_sigevent.sigev_signo);
2005}
2006
2007/*
2008 * Interrupt handler for physio, performs the necessary process wakeups, and
2009 * signals.
2010 */
2011static void
2012aio_physwakeup(struct buf *bp)
2013{
2014 struct aiocblist *aiocbe;
2015 struct proc *p;
2016 struct kaioinfo *ki;
2017 struct aio_liojob *lj;
2018
2019 wakeup(bp);
2020
2021 aiocbe = (struct aiocblist *)bp->b_spc;
2022 if (aiocbe) {
2023 p = bp->b_caller1;
2024
2025 aiocbe->jobstate = JOBST_JOBBFINISHED;
2026 aiocbe->uaiocb._aiocb_private.status -= bp->b_resid;
2027 aiocbe->uaiocb._aiocb_private.error = 0;
2028 aiocbe->jobflags |= AIOCBLIST_DONE;
2029
2030 if (bp->b_flags & B_ERROR)
2031 aiocbe->uaiocb._aiocb_private.error = bp->b_error;
2032
2033 lj = aiocbe->lio;
2034 if (lj) {
2035 lj->lioj_buffer_finished_count++;
2036
2037 /*
2038 * wakeup/signal if all of the interrupt jobs are done.
2039 */
2040 if (lj->lioj_buffer_finished_count ==
2041 lj->lioj_buffer_count) {
2042 /*
2043 * Post a signal if it is called for.
2044 */
2045 if ((lj->lioj_flags &
2046 (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) ==
2047 LIOJ_SIGNAL) {
2048 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2049 aiocbe->timeouthandle =
2050 timeout(process_signal,
2051 aiocbe, 0);
2052 }
2053 }
2054 }
2055
2056 ki = p->p_aioinfo;
2057 if (ki) {
2058 ki->kaio_buffer_finished_count++;
2059 TAILQ_REMOVE(&aio_bufjobs, aiocbe, list);
2060 TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist);
2061 TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist);
2062
2063 KNOTE(&aiocbe->klist, 0);
2064 /* Do the wakeup. */
2065 if (ki->kaio_flags & (KAIO_RUNDOWN|KAIO_WAKEUP)) {
2066 ki->kaio_flags &= ~KAIO_WAKEUP;
2067 wakeup(p);
2068 }
2069 }
2070
2071 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL)
2072 aiocbe->timeouthandle =
2073 timeout(process_signal, aiocbe, 0);
2074 }
2075}
2076#endif /* VFS_AIO */
2077
2078/* syscall - wait for the next completion of an aio request */
2079int
2080aio_waitcomplete(struct aio_waitcomplete_args *uap)
2081{
2082#ifndef VFS_AIO
2083 return ENOSYS;
2084#else
2085 struct proc *p = curproc;
2086 struct timeval atv;
2087 struct timespec ts;
2088 struct kaioinfo *ki;
2089 struct aiocblist *cb = NULL;
2090 int error, s, timo;
2091
2092 suword(uap->aiocbp, (int)NULL);
2093
2094 timo = 0;
2095 if (uap->timeout) {
2096 /* Get timespec struct. */
2097 error = copyin(uap->timeout, &ts, sizeof(ts));
2098 if (error)
2099 return error;
2100
2101 if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000))
2102 return (EINVAL);
2103
2104 TIMESPEC_TO_TIMEVAL(&atv, &ts);
2105 if (itimerfix(&atv))
2106 return (EINVAL);
2107 timo = tvtohz(&atv);
2108 }
2109
2110 ki = p->p_aioinfo;
2111 if (ki == NULL)
2112 return EAGAIN;
2113
2114 for (;;) {
2115 if ((cb = TAILQ_FIRST(&ki->kaio_jobdone)) != 0) {
2116 suword(uap->aiocbp, (uintptr_t)cb->uuaiocb);
2117 p->p_retval[0] = cb->uaiocb._aiocb_private.status;
2118 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
2119 p->p_stats->p_ru.ru_oublock +=
2120 cb->outputcharge;
2121 cb->outputcharge = 0;
2122 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
2123 p->p_stats->p_ru.ru_inblock += cb->inputcharge;
2124 cb->inputcharge = 0;
2125 }
2126 aio_free_entry(cb);
2127 return cb->uaiocb._aiocb_private.error;
2128 }
2129
2130 s = splbio();
2131 if ((cb = TAILQ_FIRST(&ki->kaio_bufdone)) != 0 ) {
2132 splx(s);
2133 suword(uap->aiocbp, (uintptr_t)cb->uuaiocb);
2134 p->p_retval[0] = cb->uaiocb._aiocb_private.status;
2135 aio_free_entry(cb);
2136 return cb->uaiocb._aiocb_private.error;
2137 }
2138
2139 ki->kaio_flags |= KAIO_WAKEUP;
2140 error = tsleep(p, PRIBIO | PCATCH, "aiowc", timo);
2141 splx(s);
2142
2143 if (error == ERESTART)
2144 return EINTR;
2145 else if (error < 0)
2146 return error;
2147 else if (error == EINTR)
2148 return EINTR;
2149 else if (error == EWOULDBLOCK)
2150 return EAGAIN;
2151 }
2152#endif /* VFS_AIO */
2153}
2154
2155#ifndef VFS_AIO
2156static int
2157filt_aioattach(struct knote *kn)
2158{
2159
2160 return (ENXIO);
2161}
2162
2163struct filterops aio_filtops =
2164 { 0, filt_aioattach, NULL, NULL };
2165
2166#else
2167/* kqueue attach function */
2168static int
2169filt_aioattach(struct knote *kn)
2170{
2171 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
2172
2173 /*
2174 * The aiocbe pointer must be validated before using it, so
2175 * registration is restricted to the kernel; the user cannot
2176 * set EV_FLAG1.
2177 */
2178 if ((kn->kn_flags & EV_FLAG1) == 0)
2179 return (EPERM);
2180 kn->kn_flags &= ~EV_FLAG1;
2181
2182 SLIST_INSERT_HEAD(&aiocbe->klist, kn, kn_selnext);
2183
2184 return (0);
2185}
2186
2187/* kqueue detach function */
2188static void
2189filt_aiodetach(struct knote *kn)
2190{
2191 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
2192
2193 SLIST_REMOVE(&aiocbe->klist, kn, knote, kn_selnext);
2194}
2195
2196/* kqueue filter function */
2197/*ARGSUSED*/
2198static int
2199filt_aio(struct knote *kn, long hint)
2200{
2201 struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
2202
2203 kn->kn_data = aiocbe->uaiocb._aiocb_private.error;
2204 if (aiocbe->jobstate != JOBST_JOBFINISHED &&
2205 aiocbe->jobstate != JOBST_JOBBFINISHED)
2206 return (0);
2207 kn->kn_flags |= EV_EOF;
2208 return (1);
2209}
2210
2211struct filterops aio_filtops =
2212 { 0, filt_aioattach, filt_aiodetach, filt_aio };
2213#endif /* VFS_AIO */