kdump - cleanup cpu-stamp formatting
[dragonfly.git] / sys / kern / lwkt_thread.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2003-2011 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35/*
36 * Each cpu in a system has its own self-contained light weight kernel
37 * thread scheduler, which means that generally speaking we only need
38 * to use a critical section to avoid problems. Foreign thread
39 * scheduling is queued via (async) IPIs.
40 */
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/proc.h>
46#include <sys/rtprio.h>
47#include <sys/kinfo.h>
48#include <sys/queue.h>
49#include <sys/sysctl.h>
50#include <sys/kthread.h>
51#include <machine/cpu.h>
52#include <sys/lock.h>
53#include <sys/caps.h>
54#include <sys/spinlock.h>
55#include <sys/ktr.h>
56
57#include <sys/thread2.h>
58#include <sys/spinlock2.h>
59#include <sys/mplock2.h>
60
61#include <sys/dsched.h>
62
63#include <vm/vm.h>
64#include <vm/vm_param.h>
65#include <vm/vm_kern.h>
66#include <vm/vm_object.h>
67#include <vm/vm_page.h>
68#include <vm/vm_map.h>
69#include <vm/vm_pager.h>
70#include <vm/vm_extern.h>
71
72#include <machine/stdarg.h>
73#include <machine/smp.h>
74
75#if !defined(KTR_CTXSW)
76#define KTR_CTXSW KTR_ALL
77#endif
78KTR_INFO_MASTER(ctxsw);
79KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
80KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
81KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
82KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
83
84static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
85
86#ifdef INVARIANTS
87static int panic_on_cscount = 0;
88#endif
89static __int64_t switch_count = 0;
90static __int64_t preempt_hit = 0;
91static __int64_t preempt_miss = 0;
92static __int64_t preempt_weird = 0;
93static __int64_t token_contention_count[TDPRI_MAX+1] __debugvar;
94static int lwkt_use_spin_port;
95static struct objcache *thread_cache;
96
97#ifdef SMP
98static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
99static void lwkt_setcpu_remote(void *arg);
100#endif
101
102extern void cpu_heavy_restore(void);
103extern void cpu_lwkt_restore(void);
104extern void cpu_kthread_restore(void);
105extern void cpu_idle_restore(void);
106
107/*
108 * We can make all thread ports use the spin backend instead of the thread
109 * backend. This should only be set to debug the spin backend.
110 */
111TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
112
113#ifdef INVARIANTS
114SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
115 "Panic if attempting to switch lwkt's while mastering cpusync");
116#endif
117SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
118 "Number of switched threads");
119SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
120 "Successful preemption events");
121SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
122 "Failed preemption events");
123SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
124 "Number of preempted threads.");
125#ifdef INVARIANTS
126SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_00, CTLFLAG_RW,
127 &token_contention_count[0], 0, "spinning due to token contention");
128SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_01, CTLFLAG_RW,
129 &token_contention_count[1], 0, "spinning due to token contention");
130SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_02, CTLFLAG_RW,
131 &token_contention_count[2], 0, "spinning due to token contention");
132SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_03, CTLFLAG_RW,
133 &token_contention_count[3], 0, "spinning due to token contention");
134SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_04, CTLFLAG_RW,
135 &token_contention_count[4], 0, "spinning due to token contention");
136SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_05, CTLFLAG_RW,
137 &token_contention_count[5], 0, "spinning due to token contention");
138SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_06, CTLFLAG_RW,
139 &token_contention_count[6], 0, "spinning due to token contention");
140SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_07, CTLFLAG_RW,
141 &token_contention_count[7], 0, "spinning due to token contention");
142SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_08, CTLFLAG_RW,
143 &token_contention_count[8], 0, "spinning due to token contention");
144SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_09, CTLFLAG_RW,
145 &token_contention_count[9], 0, "spinning due to token contention");
146SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_10, CTLFLAG_RW,
147 &token_contention_count[10], 0, "spinning due to token contention");
148SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_11, CTLFLAG_RW,
149 &token_contention_count[11], 0, "spinning due to token contention");
150SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_12, CTLFLAG_RW,
151 &token_contention_count[12], 0, "spinning due to token contention");
152SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_13, CTLFLAG_RW,
153 &token_contention_count[13], 0, "spinning due to token contention");
154SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_14, CTLFLAG_RW,
155 &token_contention_count[14], 0, "spinning due to token contention");
156SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_15, CTLFLAG_RW,
157 &token_contention_count[15], 0, "spinning due to token contention");
158SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_16, CTLFLAG_RW,
159 &token_contention_count[16], 0, "spinning due to token contention");
160SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_17, CTLFLAG_RW,
161 &token_contention_count[17], 0, "spinning due to token contention");
162SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_18, CTLFLAG_RW,
163 &token_contention_count[18], 0, "spinning due to token contention");
164SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_19, CTLFLAG_RW,
165 &token_contention_count[19], 0, "spinning due to token contention");
166SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_20, CTLFLAG_RW,
167 &token_contention_count[20], 0, "spinning due to token contention");
168SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_21, CTLFLAG_RW,
169 &token_contention_count[21], 0, "spinning due to token contention");
170SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_22, CTLFLAG_RW,
171 &token_contention_count[22], 0, "spinning due to token contention");
172SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_23, CTLFLAG_RW,
173 &token_contention_count[23], 0, "spinning due to token contention");
174SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_24, CTLFLAG_RW,
175 &token_contention_count[24], 0, "spinning due to token contention");
176SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_25, CTLFLAG_RW,
177 &token_contention_count[25], 0, "spinning due to token contention");
178SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_26, CTLFLAG_RW,
179 &token_contention_count[26], 0, "spinning due to token contention");
180SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_27, CTLFLAG_RW,
181 &token_contention_count[27], 0, "spinning due to token contention");
182SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_28, CTLFLAG_RW,
183 &token_contention_count[28], 0, "spinning due to token contention");
184SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_29, CTLFLAG_RW,
185 &token_contention_count[29], 0, "spinning due to token contention");
186SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_30, CTLFLAG_RW,
187 &token_contention_count[30], 0, "spinning due to token contention");
188SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count_31, CTLFLAG_RW,
189 &token_contention_count[31], 0, "spinning due to token contention");
190#endif
191static int fairq_enable = 0;
192SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
193 &fairq_enable, 0, "Turn on fairq priority accumulators");
194static int fairq_bypass = -1;
195SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW,
196 &fairq_bypass, 0, "Allow fairq to bypass td on token failure");
197extern int lwkt_sched_debug;
198int lwkt_sched_debug = 0;
199SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
200 &lwkt_sched_debug, 0, "Scheduler debug");
201static int lwkt_spin_loops = 10;
202SYSCTL_INT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
203 &lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
204static int lwkt_spin_reseq = 0;
205SYSCTL_INT(_lwkt, OID_AUTO, spin_reseq, CTLFLAG_RW,
206 &lwkt_spin_reseq, 0, "Scheduler resequencer enable");
207static int lwkt_spin_monitor = 0;
208SYSCTL_INT(_lwkt, OID_AUTO, spin_monitor, CTLFLAG_RW,
209 &lwkt_spin_monitor, 0, "Scheduler uses monitor/mwait");
210static int lwkt_spin_fatal = 0; /* disabled */
211SYSCTL_INT(_lwkt, OID_AUTO, spin_fatal, CTLFLAG_RW,
212 &lwkt_spin_fatal, 0, "LWKT scheduler spin loops till fatal panic");
213static int preempt_enable = 1;
214SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
215 &preempt_enable, 0, "Enable preemption");
216static int lwkt_cache_threads = 0;
217SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
218 &lwkt_cache_threads, 0, "thread+kstack cache");
219
220static __cachealign int lwkt_cseq_rindex;
221static __cachealign int lwkt_cseq_windex;
222
223/*
224 * These helper procedures handle the runq, they can only be called from
225 * within a critical section.
226 *
227 * WARNING! Prior to SMP being brought up it is possible to enqueue and
228 * dequeue threads belonging to other cpus, so be sure to use td->td_gd
229 * instead of 'mycpu' when referencing the globaldata structure. Once
230 * SMP live enqueuing and dequeueing only occurs on the current cpu.
231 */
232static __inline
233void
234_lwkt_dequeue(thread_t td)
235{
236 if (td->td_flags & TDF_RUNQ) {
237 struct globaldata *gd = td->td_gd;
238
239 td->td_flags &= ~TDF_RUNQ;
240 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
241 if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
242 atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
243 }
244}
245
246/*
247 * Priority enqueue.
248 *
249 * NOTE: There are a limited number of lwkt threads runnable since user
250 * processes only schedule one at a time per cpu.
251 */
252static __inline
253void
254_lwkt_enqueue(thread_t td)
255{
256 thread_t xtd;
257
258 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
259 struct globaldata *gd = td->td_gd;
260
261 td->td_flags |= TDF_RUNQ;
262 xtd = TAILQ_FIRST(&gd->gd_tdrunq);
263 if (xtd == NULL) {
264 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
265 atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
266 } else {
267 while (xtd && xtd->td_pri >= td->td_pri)
268 xtd = TAILQ_NEXT(xtd, td_threadq);
269 if (xtd)
270 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
271 else
272 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
273 }
274
275 /*
276 * Request a LWKT reschedule if we are now at the head of the queue.
277 */
278 if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
279 need_lwkt_resched();
280 }
281}
282
283static __boolean_t
284_lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
285{
286 struct thread *td = (struct thread *)obj;
287
288 td->td_kstack = NULL;
289 td->td_kstack_size = 0;
290 td->td_flags = TDF_ALLOCATED_THREAD;
291 td->td_mpflags = 0;
292 return (1);
293}
294
295static void
296_lwkt_thread_dtor(void *obj, void *privdata)
297{
298 struct thread *td = (struct thread *)obj;
299
300 KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
301 ("_lwkt_thread_dtor: not allocated from objcache"));
302 KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
303 td->td_kstack_size > 0,
304 ("_lwkt_thread_dtor: corrupted stack"));
305 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
306 td->td_kstack = NULL;
307 td->td_flags = 0;
308}
309
310/*
311 * Initialize the lwkt s/system.
312 *
313 * Nominally cache up to 32 thread + kstack structures. Cache more on
314 * systems with a lot of cpu cores.
315 */
316void
317lwkt_init(void)
318{
319 TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
320 if (lwkt_cache_threads == 0) {
321 lwkt_cache_threads = ncpus * 4;
322 if (lwkt_cache_threads < 32)
323 lwkt_cache_threads = 32;
324 }
325 thread_cache = objcache_create_mbacked(
326 M_THREAD, sizeof(struct thread),
327 NULL, lwkt_cache_threads,
328 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
329}
330
331/*
332 * Schedule a thread to run. As the current thread we can always safely
333 * schedule ourselves, and a shortcut procedure is provided for that
334 * function.
335 *
336 * (non-blocking, self contained on a per cpu basis)
337 */
338void
339lwkt_schedule_self(thread_t td)
340{
341 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
342 crit_enter_quick(td);
343 KASSERT(td != &td->td_gd->gd_idlethread,
344 ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
345 KKASSERT(td->td_lwp == NULL ||
346 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
347 _lwkt_enqueue(td);
348 crit_exit_quick(td);
349}
350
351/*
352 * Deschedule a thread.
353 *
354 * (non-blocking, self contained on a per cpu basis)
355 */
356void
357lwkt_deschedule_self(thread_t td)
358{
359 crit_enter_quick(td);
360 _lwkt_dequeue(td);
361 crit_exit_quick(td);
362}
363
364/*
365 * LWKTs operate on a per-cpu basis
366 *
367 * WARNING! Called from early boot, 'mycpu' may not work yet.
368 */
369void
370lwkt_gdinit(struct globaldata *gd)
371{
372 TAILQ_INIT(&gd->gd_tdrunq);
373 TAILQ_INIT(&gd->gd_tdallq);
374}
375
376/*
377 * Create a new thread. The thread must be associated with a process context
378 * or LWKT start address before it can be scheduled. If the target cpu is
379 * -1 the thread will be created on the current cpu.
380 *
381 * If you intend to create a thread without a process context this function
382 * does everything except load the startup and switcher function.
383 */
384thread_t
385lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
386{
387 static int cpu_rotator;
388 globaldata_t gd = mycpu;
389 void *stack;
390
391 /*
392 * If static thread storage is not supplied allocate a thread. Reuse
393 * a cached free thread if possible. gd_freetd is used to keep an exiting
394 * thread intact through the exit.
395 */
396 if (td == NULL) {
397 crit_enter_gd(gd);
398 if ((td = gd->gd_freetd) != NULL) {
399 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
400 TDF_RUNQ)) == 0);
401 gd->gd_freetd = NULL;
402 } else {
403 td = objcache_get(thread_cache, M_WAITOK);
404 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
405 TDF_RUNQ)) == 0);
406 }
407 crit_exit_gd(gd);
408 KASSERT((td->td_flags &
409 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
410 TDF_ALLOCATED_THREAD,
411 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
412 flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
413 }
414
415 /*
416 * Try to reuse cached stack.
417 */
418 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
419 if (flags & TDF_ALLOCATED_STACK) {
420 kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
421 stack = NULL;
422 }
423 }
424 if (stack == NULL) {
425 stack = (void *)kmem_alloc_stack(&kernel_map, stksize);
426 flags |= TDF_ALLOCATED_STACK;
427 }
428 if (cpu < 0) {
429 cpu = ++cpu_rotator;
430 cpu_ccfence();
431 cpu %= ncpus;
432 }
433 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
434 return(td);
435}
436
437/*
438 * Initialize a preexisting thread structure. This function is used by
439 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
440 *
441 * All threads start out in a critical section at a priority of
442 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as
443 * appropriate. This function may send an IPI message when the
444 * requested cpu is not the current cpu and consequently gd_tdallq may
445 * not be initialized synchronously from the point of view of the originating
446 * cpu.
447 *
448 * NOTE! we have to be careful in regards to creating threads for other cpus
449 * if SMP has not yet been activated.
450 */
451#ifdef SMP
452
453static void
454lwkt_init_thread_remote(void *arg)
455{
456 thread_t td = arg;
457
458 /*
459 * Protected by critical section held by IPI dispatch
460 */
461 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
462}
463
464#endif
465
466/*
467 * lwkt core thread structural initialization.
468 *
469 * NOTE: All threads are initialized as mpsafe threads.
470 */
471void
472lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
473 struct globaldata *gd)
474{
475 globaldata_t mygd = mycpu;
476
477 bzero(td, sizeof(struct thread));
478 td->td_kstack = stack;
479 td->td_kstack_size = stksize;
480 td->td_flags = flags;
481 td->td_mpflags = 0;
482 td->td_gd = gd;
483 td->td_pri = TDPRI_KERN_DAEMON;
484 td->td_critcount = 1;
485 td->td_toks_have = NULL;
486 td->td_toks_stop = &td->td_toks_base;
487 if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT))
488 lwkt_initport_spin(&td->td_msgport, td);
489 else
490 lwkt_initport_thread(&td->td_msgport, td);
491 pmap_init_thread(td);
492#ifdef SMP
493 /*
494 * Normally initializing a thread for a remote cpu requires sending an
495 * IPI. However, the idlethread is setup before the other cpus are
496 * activated so we have to treat it as a special case. XXX manipulation
497 * of gd_tdallq requires the BGL.
498 */
499 if (gd == mygd || td == &gd->gd_idlethread) {
500 crit_enter_gd(mygd);
501 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
502 crit_exit_gd(mygd);
503 } else {
504 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
505 }
506#else
507 crit_enter_gd(mygd);
508 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
509 crit_exit_gd(mygd);
510#endif
511
512 dsched_new_thread(td);
513}
514
515void
516lwkt_set_comm(thread_t td, const char *ctl, ...)
517{
518 __va_list va;
519
520 __va_start(va, ctl);
521 kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
522 __va_end(va);
523 KTR_LOG(ctxsw_newtd, td, td->td_comm);
524}
525
526/*
527 * Prevent the thread from getting destroyed. Note that unlike PHOLD/PRELE
528 * this does not prevent the thread from migrating to another cpu so the
529 * gd_tdallq state is not protected by this.
530 */
531void
532lwkt_hold(thread_t td)
533{
534 atomic_add_int(&td->td_refs, 1);
535}
536
537void
538lwkt_rele(thread_t td)
539{
540 KKASSERT(td->td_refs > 0);
541 atomic_add_int(&td->td_refs, -1);
542}
543
544void
545lwkt_free_thread(thread_t td)
546{
547 KKASSERT(td->td_refs == 0);
548 KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
549 TDF_RUNQ | TDF_TSLEEPQ)) == 0);
550 if (td->td_flags & TDF_ALLOCATED_THREAD) {
551 objcache_put(thread_cache, td);
552 } else if (td->td_flags & TDF_ALLOCATED_STACK) {
553 /* client-allocated struct with internally allocated stack */
554 KASSERT(td->td_kstack && td->td_kstack_size > 0,
555 ("lwkt_free_thread: corrupted stack"));
556 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
557 td->td_kstack = NULL;
558 td->td_kstack_size = 0;
559 }
560 KTR_LOG(ctxsw_deadtd, td);
561}
562
563
564/*
565 * Switch to the next runnable lwkt. If no LWKTs are runnable then
566 * switch to the idlethread. Switching must occur within a critical
567 * section to avoid races with the scheduling queue.
568 *
569 * We always have full control over our cpu's run queue. Other cpus
570 * that wish to manipulate our queue must use the cpu_*msg() calls to
571 * talk to our cpu, so a critical section is all that is needed and
572 * the result is very, very fast thread switching.
573 *
574 * The LWKT scheduler uses a fixed priority model and round-robins at
575 * each priority level. User process scheduling is a totally
576 * different beast and LWKT priorities should not be confused with
577 * user process priorities.
578 *
579 * PREEMPTION NOTE: Preemption occurs via lwkt_preempt(). lwkt_switch()
580 * is not called by the current thread in the preemption case, only when
581 * the preempting thread blocks (in order to return to the original thread).
582 *
583 * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
584 * migration and tsleep deschedule the current lwkt thread and call
585 * lwkt_switch(). In particular, the target cpu of the migration fully
586 * expects the thread to become non-runnable and can deadlock against
587 * cpusync operations if we run any IPIs prior to switching the thread out.
588 *
589 * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
590 * THE CURRENT THREAD HAS BEEN DESCHEDULED!
591 */
592void
593lwkt_switch(void)
594{
595 globaldata_t gd = mycpu;
596 thread_t td = gd->gd_curthread;
597 thread_t ntd;
598 int spinning = 0;
599
600 KKASSERT(gd->gd_processing_ipiq == 0);
601 KKASSERT(td->td_flags & TDF_RUNNING);
602
603 /*
604 * Switching from within a 'fast' (non thread switched) interrupt or IPI
605 * is illegal. However, we may have to do it anyway if we hit a fatal
606 * kernel trap or we have paniced.
607 *
608 * If this case occurs save and restore the interrupt nesting level.
609 */
610 if (gd->gd_intr_nesting_level) {
611 int savegdnest;
612 int savegdtrap;
613
614 if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
615 panic("lwkt_switch: Attempt to switch from a "
616 "fast interrupt, ipi, or hard code section, "
617 "td %p\n",
618 td);
619 } else {
620 savegdnest = gd->gd_intr_nesting_level;
621 savegdtrap = gd->gd_trap_nesting_level;
622 gd->gd_intr_nesting_level = 0;
623 gd->gd_trap_nesting_level = 0;
624 if ((td->td_flags & TDF_PANICWARN) == 0) {
625 td->td_flags |= TDF_PANICWARN;
626 kprintf("Warning: thread switch from interrupt, IPI, "
627 "or hard code section.\n"
628 "thread %p (%s)\n", td, td->td_comm);
629 print_backtrace(-1);
630 }
631 lwkt_switch();
632 gd->gd_intr_nesting_level = savegdnest;
633 gd->gd_trap_nesting_level = savegdtrap;
634 return;
635 }
636 }
637
638 /*
639 * Release our current user process designation if we are blocking
640 * or if a user reschedule was requested.
641 *
642 * NOTE: This function is NOT called if we are switching into or
643 * returning from a preemption.
644 *
645 * NOTE: Releasing our current user process designation may cause
646 * it to be assigned to another thread, which in turn will
647 * cause us to block in the usched acquire code when we attempt
648 * to return to userland.
649 *
650 * NOTE: On SMP systems this can be very nasty when heavy token
651 * contention is present so we want to be careful not to
652 * release the designation gratuitously.
653 */
654 if (td->td_release &&
655 (user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
656 td->td_release(td);
657 }
658
659 /*
660 * Release all tokens
661 */
662 crit_enter_gd(gd);
663 if (TD_TOKS_HELD(td))
664 lwkt_relalltokens(td);
665
666 /*
667 * We had better not be holding any spin locks, but don't get into an
668 * endless panic loop.
669 */
670 KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
671 ("lwkt_switch: still holding %d exclusive spinlocks!",
672 gd->gd_spinlocks_wr));
673
674
675#ifdef SMP
676#ifdef INVARIANTS
677 if (td->td_cscount) {
678 kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
679 td);
680 if (panic_on_cscount)
681 panic("switching while mastering cpusync");
682 }
683#endif
684#endif
685
686 /*
687 * If we had preempted another thread on this cpu, resume the preempted
688 * thread. This occurs transparently, whether the preempted thread
689 * was scheduled or not (it may have been preempted after descheduling
690 * itself).
691 *
692 * We have to setup the MP lock for the original thread after backing
693 * out the adjustment that was made to curthread when the original
694 * was preempted.
695 */
696 if ((ntd = td->td_preempted) != NULL) {
697 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
698 ntd->td_flags |= TDF_PREEMPT_DONE;
699
700 /*
701 * The interrupt may have woken a thread up, we need to properly
702 * set the reschedule flag if the originally interrupted thread is
703 * at a lower priority.
704 *
705 * The interrupt may not have descheduled.
706 */
707 if (TAILQ_FIRST(&gd->gd_tdrunq) != ntd)
708 need_lwkt_resched();
709 goto havethread_preempted;
710 }
711
712 /*
713 * If we cannot obtain ownership of the tokens we cannot immediately
714 * schedule the target thread.
715 *
716 * Reminder: Again, we cannot afford to run any IPIs in this path if
717 * the current thread has been descheduled.
718 */
719 for (;;) {
720 clear_lwkt_resched();
721
722 /*
723 * Hotpath - pull the head of the run queue and attempt to schedule
724 * it.
725 */
726 ntd = TAILQ_FIRST(&gd->gd_tdrunq);
727
728 if (ntd == NULL) {
729 /*
730 * Runq is empty, switch to idle to allow it to halt.
731 */
732 ntd = &gd->gd_idlethread;
733#ifdef SMP
734 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
735 ASSERT_NO_TOKENS_HELD(ntd);
736#endif
737 cpu_time.cp_msg[0] = 0;
738 cpu_time.cp_stallpc = 0;
739 goto haveidle;
740 }
741
742 /*
743 * Hotpath - schedule ntd.
744 *
745 * NOTE: For UP there is no mplock and lwkt_getalltokens()
746 * always succeeds.
747 */
748 if (TD_TOKS_NOT_HELD(ntd) ||
749 lwkt_getalltokens(ntd, (spinning >= lwkt_spin_loops)))
750 {
751 goto havethread;
752 }
753
754 /*
755 * Coldpath (SMP only since tokens always succeed on UP)
756 *
757 * We had some contention on the thread we wanted to schedule.
758 * What we do now is try to find a thread that we can schedule
759 * in its stead.
760 *
761 * The coldpath scan does NOT rearrange threads in the run list.
762 * The lwkt_schedulerclock() will assert need_lwkt_resched() on
763 * the next tick whenever the current head is not the current thread.
764 */
765#ifdef INVARIANTS
766 ++token_contention_count[ntd->td_pri];
767 ++ntd->td_contended;
768#endif
769
770 if (fairq_bypass > 0)
771 goto skip;
772
773 while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
774 /*
775 * Never schedule threads returning to userland or the
776 * user thread scheduler helper thread when higher priority
777 * threads are present. The runq is sorted by priority
778 * so we can give up traversing it when we find the first
779 * low priority thread.
780 */
781 if (ntd->td_pri < TDPRI_KERN_LPSCHED) {
782 ntd = NULL;
783 break;
784 }
785
786 /*
787 * Try this one.
788 */
789 if (TD_TOKS_NOT_HELD(ntd) ||
790 lwkt_getalltokens(ntd, (spinning >= lwkt_spin_loops))) {
791 goto havethread;
792 }
793#ifdef INVARIANTS
794 ++token_contention_count[ntd->td_pri];
795 ++ntd->td_contended;
796#endif
797 }
798
799skip:
800 /*
801 * We exhausted the run list, meaning that all runnable threads
802 * are contested.
803 */
804 cpu_pause();
805 ntd = &gd->gd_idlethread;
806#ifdef SMP
807 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
808 ASSERT_NO_TOKENS_HELD(ntd);
809 /* contention case, do not clear contention mask */
810#endif
811
812 /*
813 * We are going to have to retry but if the current thread is not
814 * on the runq we instead switch through the idle thread to get away
815 * from the current thread. We have to flag for lwkt reschedule
816 * to prevent the idle thread from halting.
817 *
818 * NOTE: A non-zero spinning is passed to lwkt_getalltokens() to
819 * instruct it to deal with the potential for deadlocks by
820 * ordering the tokens by address.
821 */
822 if ((td->td_flags & TDF_RUNQ) == 0) {
823 need_lwkt_resched(); /* prevent hlt */
824 goto haveidle;
825 }
826#if defined(INVARIANTS) && defined(__amd64__)
827 if ((read_rflags() & PSL_I) == 0) {
828 cpu_enable_intr();
829 panic("lwkt_switch() called with interrupts disabled");
830 }
831#endif
832
833 /*
834 * Number iterations so far. After a certain point we switch to
835 * a sorted-address/monitor/mwait version of lwkt_getalltokens()
836 */
837 if (spinning < 0x7FFFFFFF)
838 ++spinning;
839
840#ifdef SMP
841 /*
842 * lwkt_getalltokens() failed in sorted token mode, we can use
843 * monitor/mwait in this case.
844 */
845 if (spinning >= lwkt_spin_loops &&
846 (cpu_mi_feature & CPU_MI_MONITOR) &&
847 lwkt_spin_monitor)
848 {
849 cpu_mmw_pause_int(&gd->gd_reqflags,
850 (gd->gd_reqflags | RQF_SPINNING) &
851 ~RQF_IDLECHECK_WK_MASK);
852 }
853#endif
854
855 /*
856 * We already checked that td is still scheduled so this should be
857 * safe.
858 */
859 splz_check();
860
861 /*
862 * This experimental resequencer is used as a fall-back to reduce
863 * hw cache line contention by placing each core's scheduler into a
864 * time-domain-multplexed slot.
865 *
866 * The resequencer is disabled by default. It's functionality has
867 * largely been superceeded by the token algorithm which limits races
868 * to a subset of cores.
869 *
870 * The resequencer algorithm tends to break down when more than
871 * 20 cores are contending. What appears to happen is that new
872 * tokens can be obtained out of address-sorted order by new cores
873 * while existing cores languish in long delays between retries and
874 * wind up being starved-out of the token acquisition.
875 */
876 if (lwkt_spin_reseq && spinning >= lwkt_spin_reseq) {
877 int cseq = atomic_fetchadd_int(&lwkt_cseq_windex, 1);
878 int oseq;
879
880 while ((oseq = lwkt_cseq_rindex) != cseq) {
881 cpu_ccfence();
882#if 1
883 if (cpu_mi_feature & CPU_MI_MONITOR) {
884 cpu_mmw_pause_int(&lwkt_cseq_rindex, oseq);
885 } else {
886#endif
887 cpu_pause();
888 cpu_lfence();
889#if 1
890 }
891#endif
892 }
893 DELAY(1);
894 atomic_add_int(&lwkt_cseq_rindex, 1);
895 }
896 /* highest level for(;;) loop */
897 }
898
899havethread:
900 /*
901 * Clear gd_idle_repeat when doing a normal switch to a non-idle
902 * thread.
903 */
904 ntd->td_wmesg = NULL;
905 ++gd->gd_cnt.v_swtch;
906 gd->gd_idle_repeat = 0;
907
908havethread_preempted:
909 /*
910 * If the new target does not need the MP lock and we are holding it,
911 * release the MP lock. If the new target requires the MP lock we have
912 * already acquired it for the target.
913 */
914 ;
915haveidle:
916 KASSERT(ntd->td_critcount,
917 ("priority problem in lwkt_switch %d %d",
918 td->td_critcount, ntd->td_critcount));
919
920 if (td != ntd) {
921 /*
922 * Execute the actual thread switch operation. This function
923 * returns to the current thread and returns the previous thread
924 * (which may be different from the thread we switched to).
925 *
926 * We are responsible for marking ntd as TDF_RUNNING.
927 */
928 KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
929 ++switch_count;
930 KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
931 ntd->td_flags |= TDF_RUNNING;
932 lwkt_switch_return(td->td_switch(ntd));
933 /* ntd invalid, td_switch() can return a different thread_t */
934 }
935
936 /*
937 * catch-all. XXX is this strictly needed?
938 */
939 splz_check();
940
941 /* NOTE: current cpu may have changed after switch */
942 crit_exit_quick(td);
943}
944
945/*
946 * Called by assembly in the td_switch (thread restore path) for thread
947 * bootstrap cases which do not 'return' to lwkt_switch().
948 */
949void
950lwkt_switch_return(thread_t otd)
951{
952#ifdef SMP
953 globaldata_t rgd;
954
955 /*
956 * Check if otd was migrating. Now that we are on ntd we can finish
957 * up the migration. This is a bit messy but it is the only place
958 * where td is known to be fully descheduled.
959 *
960 * We can only activate the migration if otd was migrating but not
961 * held on the cpu due to a preemption chain. We still have to
962 * clear TDF_RUNNING on the old thread either way.
963 *
964 * We are responsible for clearing the previously running thread's
965 * TDF_RUNNING.
966 */
967 if ((rgd = otd->td_migrate_gd) != NULL &&
968 (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
969 KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
970 (TDF_MIGRATING | TDF_RUNNING));
971 otd->td_migrate_gd = NULL;
972 otd->td_flags &= ~TDF_RUNNING;
973 lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
974 } else {
975 otd->td_flags &= ~TDF_RUNNING;
976 }
977#else
978 otd->td_flags &= ~TDF_RUNNING;
979#endif
980
981 /*
982 * Final exit validations (see lwp_wait()). Note that otd becomes
983 * invalid the *instant* we set TDF_MP_EXITSIG.
984 */
985 while (otd->td_flags & TDF_EXITING) {
986 u_int mpflags;
987
988 mpflags = otd->td_mpflags;
989 cpu_ccfence();
990
991 if (mpflags & TDF_MP_EXITWAIT) {
992 if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
993 mpflags | TDF_MP_EXITSIG)) {
994 wakeup(otd);
995 break;
996 }
997 } else {
998 if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
999 mpflags | TDF_MP_EXITSIG)) {
1000 wakeup(otd);
1001 break;
1002 }
1003 }
1004 }
1005}
1006
1007/*
1008 * Request that the target thread preempt the current thread. Preemption
1009 * can only occur if our only critical section is the one that we were called
1010 * with, the relative priority of the target thread is higher, and the target
1011 * thread holds no tokens. This also only works if we are not holding any
1012 * spinlocks (obviously).
1013 *
1014 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically
1015 * this is called via lwkt_schedule() through the td_preemptable callback.
1016 * critcount is the managed critical priority that we should ignore in order
1017 * to determine whether preemption is possible (aka usually just the crit
1018 * priority of lwkt_schedule() itself).
1019 *
1020 * Preemption is typically limited to interrupt threads.
1021 *
1022 * Operation works in a fairly straight-forward manner. The normal
1023 * scheduling code is bypassed and we switch directly to the target
1024 * thread. When the target thread attempts to block or switch away
1025 * code at the base of lwkt_switch() will switch directly back to our
1026 * thread. Our thread is able to retain whatever tokens it holds and
1027 * if the target needs one of them the target will switch back to us
1028 * and reschedule itself normally.
1029 */
1030void
1031lwkt_preempt(thread_t ntd, int critcount)
1032{
1033 struct globaldata *gd = mycpu;
1034 thread_t xtd;
1035 thread_t td;
1036 int save_gd_intr_nesting_level;
1037
1038 /*
1039 * The caller has put us in a critical section. We can only preempt
1040 * if the caller of the caller was not in a critical section (basically
1041 * a local interrupt), as determined by the 'critcount' parameter. We
1042 * also can't preempt if the caller is holding any spinlocks (even if
1043 * he isn't in a critical section). This also handles the tokens test.
1044 *
1045 * YYY The target thread must be in a critical section (else it must
1046 * inherit our critical section? I dunno yet).
1047 */
1048 KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
1049
1050 td = gd->gd_curthread;
1051 if (preempt_enable == 0) {
1052 ++preempt_miss;
1053 return;
1054 }
1055 if (ntd->td_pri <= td->td_pri) {
1056 ++preempt_miss;
1057 return;
1058 }
1059 if (td->td_critcount > critcount) {
1060 ++preempt_miss;
1061 return;
1062 }
1063#ifdef SMP
1064 if (td->td_cscount) {
1065 ++preempt_miss;
1066 return;
1067 }
1068 if (ntd->td_gd != gd) {
1069 ++preempt_miss;
1070 return;
1071 }
1072#endif
1073 /*
1074 * We don't have to check spinlocks here as they will also bump
1075 * td_critcount.
1076 *
1077 * Do not try to preempt if the target thread is holding any tokens.
1078 * We could try to acquire the tokens but this case is so rare there
1079 * is no need to support it.
1080 */
1081 KKASSERT(gd->gd_spinlocks_wr == 0);
1082
1083 if (TD_TOKS_HELD(ntd)) {
1084 ++preempt_miss;
1085 return;
1086 }
1087 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1088 ++preempt_weird;
1089 return;
1090 }
1091 if (ntd->td_preempted) {
1092 ++preempt_hit;
1093 return;
1094 }
1095 KKASSERT(gd->gd_processing_ipiq == 0);
1096
1097 /*
1098 * Since we are able to preempt the current thread, there is no need to
1099 * call need_lwkt_resched().
1100 *
1101 * We must temporarily clear gd_intr_nesting_level around the switch
1102 * since switchouts from the target thread are allowed (they will just
1103 * return to our thread), and since the target thread has its own stack.
1104 *
1105 * A preemption must switch back to the original thread, assert the
1106 * case.
1107 */
1108 ++preempt_hit;
1109 ntd->td_preempted = td;
1110 td->td_flags |= TDF_PREEMPT_LOCK;
1111 KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1112 save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
1113 gd->gd_intr_nesting_level = 0;
1114
1115 KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
1116 ntd->td_flags |= TDF_RUNNING;
1117 xtd = td->td_switch(ntd);
1118 KKASSERT(xtd == ntd);
1119 lwkt_switch_return(xtd);
1120 gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1121
1122 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1123 ntd->td_preempted = NULL;
1124 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1125}
1126
1127/*
1128 * Conditionally call splz() if gd_reqflags indicates work is pending.
1129 * This will work inside a critical section but not inside a hard code
1130 * section.
1131 *
1132 * (self contained on a per cpu basis)
1133 */
1134void
1135splz_check(void)
1136{
1137 globaldata_t gd = mycpu;
1138 thread_t td = gd->gd_curthread;
1139
1140 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1141 gd->gd_intr_nesting_level == 0 &&
1142 td->td_nest_count < 2)
1143 {
1144 splz();
1145 }
1146}
1147
1148/*
1149 * This version is integrated into crit_exit, reqflags has already
1150 * been tested but td_critcount has not.
1151 *
1152 * We only want to execute the splz() on the 1->0 transition of
1153 * critcount and not in a hard code section or if too deeply nested.
1154 *
1155 * NOTE: gd->gd_spinlocks_wr is implied to be 0 when td_critcount is 0.
1156 */
1157void
1158lwkt_maybe_splz(thread_t td)
1159{
1160 globaldata_t gd = td->td_gd;
1161
1162 if (td->td_critcount == 0 &&
1163 gd->gd_intr_nesting_level == 0 &&
1164 td->td_nest_count < 2)
1165 {
1166 splz();
1167 }
1168}
1169
1170/*
1171 * Drivers which set up processing co-threads can call this function to
1172 * run the co-thread at a higher priority and to allow it to preempt
1173 * normal threads.
1174 */
1175void
1176lwkt_set_interrupt_support_thread(void)
1177{
1178 thread_t td = curthread;
1179
1180 lwkt_setpri_self(TDPRI_INT_SUPPORT);
1181 td->td_flags |= TDF_INTTHREAD;
1182 td->td_preemptable = lwkt_preempt;
1183}
1184
1185
1186/*
1187 * This function is used to negotiate a passive release of the current
1188 * process/lwp designation with the user scheduler, allowing the user
1189 * scheduler to schedule another user thread. The related kernel thread
1190 * (curthread) continues running in the released state.
1191 */
1192void
1193lwkt_passive_release(struct thread *td)
1194{
1195 struct lwp *lp = td->td_lwp;
1196
1197 td->td_release = NULL;
1198 lwkt_setpri_self(TDPRI_KERN_USER);
1199 lp->lwp_proc->p_usched->release_curproc(lp);
1200}
1201
1202
1203/*
1204 * This implements a LWKT yield, allowing a kernel thread to yield to other
1205 * kernel threads at the same or higher priority. This function can be
1206 * called in a tight loop and will typically only yield once per tick.
1207 *
1208 * Most kernel threads run at the same priority in order to allow equal
1209 * sharing.
1210 *
1211 * (self contained on a per cpu basis)
1212 */
1213void
1214lwkt_yield(void)
1215{
1216 globaldata_t gd = mycpu;
1217 thread_t td = gd->gd_curthread;
1218
1219 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1220 splz();
1221 if (lwkt_resched_wanted()) {
1222 lwkt_schedule_self(curthread);
1223 lwkt_switch();
1224 }
1225}
1226
1227/*
1228 * The quick version processes pending interrupts and higher-priority
1229 * LWKT threads but will not round-robin same-priority LWKT threads.
1230 */
1231void
1232lwkt_yield_quick(void)
1233{
1234 globaldata_t gd = mycpu;
1235 thread_t td = gd->gd_curthread;
1236
1237 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1238 splz();
1239 if (lwkt_resched_wanted()) {
1240 if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1241 clear_lwkt_resched();
1242 } else {
1243 lwkt_schedule_self(curthread);
1244 lwkt_switch();
1245 }
1246 }
1247}
1248
1249/*
1250 * This yield is designed for kernel threads with a user context.
1251 *
1252 * The kernel acting on behalf of the user is potentially cpu-bound,
1253 * this function will efficiently allow other threads to run and also
1254 * switch to other processes by releasing.
1255 *
1256 * The lwkt_user_yield() function is designed to have very low overhead
1257 * if no yield is determined to be needed.
1258 */
1259void
1260lwkt_user_yield(void)
1261{
1262 globaldata_t gd = mycpu;
1263 thread_t td = gd->gd_curthread;
1264
1265 /*
1266 * Always run any pending interrupts in case we are in a critical
1267 * section.
1268 */
1269 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1270 splz();
1271
1272 /*
1273 * Switch (which forces a release) if another kernel thread needs
1274 * the cpu, if userland wants us to resched, or if our kernel
1275 * quantum has run out.
1276 */
1277 if (lwkt_resched_wanted() ||
1278 user_resched_wanted())
1279 {
1280 lwkt_switch();
1281 }
1282
1283#if 0
1284 /*
1285 * Reacquire the current process if we are released.
1286 *
1287 * XXX not implemented atm. The kernel may be holding locks and such,
1288 * so we want the thread to continue to receive cpu.
1289 */
1290 if (td->td_release == NULL && lp) {
1291 lp->lwp_proc->p_usched->acquire_curproc(lp);
1292 td->td_release = lwkt_passive_release;
1293 lwkt_setpri_self(TDPRI_USER_NORM);
1294 }
1295#endif
1296}
1297
1298/*
1299 * Generic schedule. Possibly schedule threads belonging to other cpus and
1300 * deal with threads that might be blocked on a wait queue.
1301 *
1302 * We have a little helper inline function which does additional work after
1303 * the thread has been enqueued, including dealing with preemption and
1304 * setting need_lwkt_resched() (which prevents the kernel from returning
1305 * to userland until it has processed higher priority threads).
1306 *
1307 * It is possible for this routine to be called after a failed _enqueue
1308 * (due to the target thread migrating, sleeping, or otherwise blocked).
1309 * We have to check that the thread is actually on the run queue!
1310 */
1311static __inline
1312void
1313_lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1314{
1315 if (ntd->td_flags & TDF_RUNQ) {
1316 if (ntd->td_preemptable) {
1317 ntd->td_preemptable(ntd, ccount); /* YYY +token */
1318 }
1319 }
1320}
1321
1322static __inline
1323void
1324_lwkt_schedule(thread_t td)
1325{
1326 globaldata_t mygd = mycpu;
1327
1328 KASSERT(td != &td->td_gd->gd_idlethread,
1329 ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1330 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1331 crit_enter_gd(mygd);
1332 KKASSERT(td->td_lwp == NULL ||
1333 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1334
1335 if (td == mygd->gd_curthread) {
1336 _lwkt_enqueue(td);
1337 } else {
1338 /*
1339 * If we own the thread, there is no race (since we are in a
1340 * critical section). If we do not own the thread there might
1341 * be a race but the target cpu will deal with it.
1342 */
1343#ifdef SMP
1344 if (td->td_gd == mygd) {
1345 _lwkt_enqueue(td);
1346 _lwkt_schedule_post(mygd, td, 1);
1347 } else {
1348 lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1349 }
1350#else
1351 _lwkt_enqueue(td);
1352 _lwkt_schedule_post(mygd, td, 1);
1353#endif
1354 }
1355 crit_exit_gd(mygd);
1356}
1357
1358void
1359lwkt_schedule(thread_t td)
1360{
1361 _lwkt_schedule(td);
1362}
1363
1364void
1365lwkt_schedule_noresched(thread_t td) /* XXX not impl */
1366{
1367 _lwkt_schedule(td);
1368}
1369
1370#ifdef SMP
1371
1372/*
1373 * When scheduled remotely if frame != NULL the IPIQ is being
1374 * run via doreti or an interrupt then preemption can be allowed.
1375 *
1376 * To allow preemption we have to drop the critical section so only
1377 * one is present in _lwkt_schedule_post.
1378 */
1379static void
1380lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1381{
1382 thread_t td = curthread;
1383 thread_t ntd = arg;
1384
1385 if (frame && ntd->td_preemptable) {
1386 crit_exit_noyield(td);
1387 _lwkt_schedule(ntd);
1388 crit_enter_quick(td);
1389 } else {
1390 _lwkt_schedule(ntd);
1391 }
1392}
1393
1394/*
1395 * Thread migration using a 'Pull' method. The thread may or may not be
1396 * the current thread. It MUST be descheduled and in a stable state.
1397 * lwkt_giveaway() must be called on the cpu owning the thread.
1398 *
1399 * At any point after lwkt_giveaway() is called, the target cpu may
1400 * 'pull' the thread by calling lwkt_acquire().
1401 *
1402 * We have to make sure the thread is not sitting on a per-cpu tsleep
1403 * queue or it will blow up when it moves to another cpu.
1404 *
1405 * MPSAFE - must be called under very specific conditions.
1406 */
1407void
1408lwkt_giveaway(thread_t td)
1409{
1410 globaldata_t gd = mycpu;
1411
1412 crit_enter_gd(gd);
1413 if (td->td_flags & TDF_TSLEEPQ)
1414 tsleep_remove(td);
1415 KKASSERT(td->td_gd == gd);
1416 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1417 td->td_flags |= TDF_MIGRATING;
1418 crit_exit_gd(gd);
1419}
1420
1421void
1422lwkt_acquire(thread_t td)
1423{
1424 globaldata_t gd;
1425 globaldata_t mygd;
1426 int retry = 10000000;
1427
1428 KKASSERT(td->td_flags & TDF_MIGRATING);
1429 gd = td->td_gd;
1430 mygd = mycpu;
1431 if (gd != mycpu) {
1432 cpu_lfence();
1433 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1434 crit_enter_gd(mygd);
1435 DEBUG_PUSH_INFO("lwkt_acquire");
1436 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1437#ifdef SMP
1438 lwkt_process_ipiq();
1439#endif
1440 cpu_lfence();
1441 if (--retry == 0) {
1442 kprintf("lwkt_acquire: stuck: td %p td->td_flags %08x\n",
1443 td, td->td_flags);
1444 retry = 10000000;
1445 }
1446 }
1447 DEBUG_POP_INFO();
1448 cpu_mfence();
1449 td->td_gd = mygd;
1450 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1451 td->td_flags &= ~TDF_MIGRATING;
1452 crit_exit_gd(mygd);
1453 } else {
1454 crit_enter_gd(mygd);
1455 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1456 td->td_flags &= ~TDF_MIGRATING;
1457 crit_exit_gd(mygd);
1458 }
1459}
1460
1461#endif
1462
1463/*
1464 * Generic deschedule. Descheduling threads other then your own should be
1465 * done only in carefully controlled circumstances. Descheduling is
1466 * asynchronous.
1467 *
1468 * This function may block if the cpu has run out of messages.
1469 */
1470void
1471lwkt_deschedule(thread_t td)
1472{
1473 crit_enter();
1474#ifdef SMP
1475 if (td == curthread) {
1476 _lwkt_dequeue(td);
1477 } else {
1478 if (td->td_gd == mycpu) {
1479 _lwkt_dequeue(td);
1480 } else {
1481 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1482 }
1483 }
1484#else
1485 _lwkt_dequeue(td);
1486#endif
1487 crit_exit();
1488}
1489
1490/*
1491 * Set the target thread's priority. This routine does not automatically
1492 * switch to a higher priority thread, LWKT threads are not designed for
1493 * continuous priority changes. Yield if you want to switch.
1494 */
1495void
1496lwkt_setpri(thread_t td, int pri)
1497{
1498 if (td->td_pri != pri) {
1499 KKASSERT(pri >= 0);
1500 crit_enter();
1501 if (td->td_flags & TDF_RUNQ) {
1502 KKASSERT(td->td_gd == mycpu);
1503 _lwkt_dequeue(td);
1504 td->td_pri = pri;
1505 _lwkt_enqueue(td);
1506 } else {
1507 td->td_pri = pri;
1508 }
1509 crit_exit();
1510 }
1511}
1512
1513/*
1514 * Set the initial priority for a thread prior to it being scheduled for
1515 * the first time. The thread MUST NOT be scheduled before or during
1516 * this call. The thread may be assigned to a cpu other then the current
1517 * cpu.
1518 *
1519 * Typically used after a thread has been created with TDF_STOPPREQ,
1520 * and before the thread is initially scheduled.
1521 */
1522void
1523lwkt_setpri_initial(thread_t td, int pri)
1524{
1525 KKASSERT(pri >= 0);
1526 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1527 td->td_pri = pri;
1528}
1529
1530void
1531lwkt_setpri_self(int pri)
1532{
1533 thread_t td = curthread;
1534
1535 KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1536 crit_enter();
1537 if (td->td_flags & TDF_RUNQ) {
1538 _lwkt_dequeue(td);
1539 td->td_pri = pri;
1540 _lwkt_enqueue(td);
1541 } else {
1542 td->td_pri = pri;
1543 }
1544 crit_exit();
1545}
1546
1547/*
1548 * hz tick scheduler clock for LWKT threads
1549 */
1550void
1551lwkt_schedulerclock(thread_t td)
1552{
1553 globaldata_t gd = td->td_gd;
1554 thread_t xtd;
1555
1556 if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1557 /*
1558 * If the current thread is at the head of the runq shift it to the
1559 * end of any equal-priority threads and request a LWKT reschedule
1560 * if it moved.
1561 */
1562 xtd = TAILQ_NEXT(td, td_threadq);
1563 if (xtd && xtd->td_pri == td->td_pri) {
1564 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1565 while (xtd && xtd->td_pri == td->td_pri)
1566 xtd = TAILQ_NEXT(xtd, td_threadq);
1567 if (xtd)
1568 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1569 else
1570 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1571 need_lwkt_resched();
1572 }
1573 } else {
1574 /*
1575 * If we scheduled a thread other than the one at the head of the
1576 * queue always request a reschedule every tick.
1577 */
1578 need_lwkt_resched();
1579 }
1580}
1581
1582/*
1583 * Migrate the current thread to the specified cpu.
1584 *
1585 * This is accomplished by descheduling ourselves from the current cpu
1586 * and setting td_migrate_gd. The lwkt_switch() code will detect that the
1587 * 'old' thread wants to migrate after it has been completely switched out
1588 * and will complete the migration.
1589 *
1590 * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1591 *
1592 * We must be sure to release our current process designation (if a user
1593 * process) before clearing out any tsleepq we are on because the release
1594 * code may re-add us.
1595 *
1596 * We must be sure to remove ourselves from the current cpu's tsleepq
1597 * before potentially moving to another queue. The thread can be on
1598 * a tsleepq due to a left-over tsleep_interlock().
1599 */
1600
1601void
1602lwkt_setcpu_self(globaldata_t rgd)
1603{
1604#ifdef SMP
1605 thread_t td = curthread;
1606
1607 if (td->td_gd != rgd) {
1608 crit_enter_quick(td);
1609
1610 if (td->td_release)
1611 td->td_release(td);
1612 if (td->td_flags & TDF_TSLEEPQ)
1613 tsleep_remove(td);
1614
1615 /*
1616 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1617 * trying to deschedule ourselves and switch away, then deschedule
1618 * ourself, remove us from tdallq, and set td_migrate_gd. Finally,
1619 * call lwkt_switch() to complete the operation.
1620 */
1621 td->td_flags |= TDF_MIGRATING;
1622 lwkt_deschedule_self(td);
1623 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1624 td->td_migrate_gd = rgd;
1625 lwkt_switch();
1626
1627 /*
1628 * We are now on the target cpu
1629 */
1630 KKASSERT(rgd == mycpu);
1631 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1632 crit_exit_quick(td);
1633 }
1634#endif
1635}
1636
1637void
1638lwkt_migratecpu(int cpuid)
1639{
1640#ifdef SMP
1641 globaldata_t rgd;
1642
1643 rgd = globaldata_find(cpuid);
1644 lwkt_setcpu_self(rgd);
1645#endif
1646}
1647
1648#ifdef SMP
1649/*
1650 * Remote IPI for cpu migration (called while in a critical section so we
1651 * do not have to enter another one).
1652 *
1653 * The thread (td) has already been completely descheduled from the
1654 * originating cpu and we can simply assert the case. The thread is
1655 * assigned to the new cpu and enqueued.
1656 *
1657 * The thread will re-add itself to tdallq when it resumes execution.
1658 */
1659static void
1660lwkt_setcpu_remote(void *arg)
1661{
1662 thread_t td = arg;
1663 globaldata_t gd = mycpu;
1664
1665 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1666 td->td_gd = gd;
1667 cpu_mfence();
1668 td->td_flags &= ~TDF_MIGRATING;
1669 KKASSERT(td->td_migrate_gd == NULL);
1670 KKASSERT(td->td_lwp == NULL ||
1671 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1672 _lwkt_enqueue(td);
1673}
1674#endif
1675
1676struct lwp *
1677lwkt_preempted_proc(void)
1678{
1679 thread_t td = curthread;
1680 while (td->td_preempted)
1681 td = td->td_preempted;
1682 return(td->td_lwp);
1683}
1684
1685/*
1686 * Create a kernel process/thread/whatever. It shares it's address space
1687 * with proc0 - ie: kernel only.
1688 *
1689 * If the cpu is not specified one will be selected. In the future
1690 * specifying a cpu of -1 will enable kernel thread migration between
1691 * cpus.
1692 */
1693int
1694lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1695 thread_t template, int tdflags, int cpu, const char *fmt, ...)
1696{
1697 thread_t td;
1698 __va_list ap;
1699
1700 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1701 tdflags);
1702 if (tdp)
1703 *tdp = td;
1704 cpu_set_thread_handler(td, lwkt_exit, func, arg);
1705
1706 /*
1707 * Set up arg0 for 'ps' etc
1708 */
1709 __va_start(ap, fmt);
1710 kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1711 __va_end(ap);
1712
1713 /*
1714 * Schedule the thread to run
1715 */
1716 if (td->td_flags & TDF_NOSTART)
1717 td->td_flags &= ~TDF_NOSTART;
1718 else
1719 lwkt_schedule(td);
1720 return 0;
1721}
1722
1723/*
1724 * Destroy an LWKT thread. Warning! This function is not called when
1725 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1726 * uses a different reaping mechanism.
1727 */
1728void
1729lwkt_exit(void)
1730{
1731 thread_t td = curthread;
1732 thread_t std;
1733 globaldata_t gd;
1734
1735 /*
1736 * Do any cleanup that might block here
1737 */
1738 if (td->td_flags & TDF_VERBOSE)
1739 kprintf("kthread %p %s has exited\n", td, td->td_comm);
1740 caps_exit(td);
1741 biosched_done(td);
1742 dsched_exit_thread(td);
1743
1744 /*
1745 * Get us into a critical section to interlock gd_freetd and loop
1746 * until we can get it freed.
1747 *
1748 * We have to cache the current td in gd_freetd because objcache_put()ing
1749 * it would rip it out from under us while our thread is still active.
1750 *
1751 * We are the current thread so of course our own TDF_RUNNING bit will
1752 * be set, so unlike the lwp reap code we don't wait for it to clear.
1753 */
1754 gd = mycpu;
1755 crit_enter_quick(td);
1756 for (;;) {
1757 if (td->td_refs) {
1758 tsleep(td, 0, "tdreap", 1);
1759 continue;
1760 }
1761 if ((std = gd->gd_freetd) != NULL) {
1762 KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1763 gd->gd_freetd = NULL;
1764 objcache_put(thread_cache, std);
1765 continue;
1766 }
1767 break;
1768 }
1769
1770 /*
1771 * Remove thread resources from kernel lists and deschedule us for
1772 * the last time. We cannot block after this point or we may end
1773 * up with a stale td on the tsleepq.
1774 *
1775 * None of this may block, the critical section is the only thing
1776 * protecting tdallq and the only thing preventing new lwkt_hold()
1777 * thread refs now.
1778 */
1779 if (td->td_flags & TDF_TSLEEPQ)
1780 tsleep_remove(td);
1781 lwkt_deschedule_self(td);
1782 lwkt_remove_tdallq(td);
1783 KKASSERT(td->td_refs == 0);
1784
1785 /*
1786 * Final cleanup
1787 */
1788 KKASSERT(gd->gd_freetd == NULL);
1789 if (td->td_flags & TDF_ALLOCATED_THREAD)
1790 gd->gd_freetd = td;
1791 cpu_thread_exit();
1792}
1793
1794void
1795lwkt_remove_tdallq(thread_t td)
1796{
1797 KKASSERT(td->td_gd == mycpu);
1798 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1799}
1800
1801/*
1802 * Code reduction and branch prediction improvements. Call/return
1803 * overhead on modern cpus often degenerates into 0 cycles due to
1804 * the cpu's branch prediction hardware and return pc cache. We
1805 * can take advantage of this by not inlining medium-complexity
1806 * functions and we can also reduce the branch prediction impact
1807 * by collapsing perfectly predictable branches into a single
1808 * procedure instead of duplicating it.
1809 *
1810 * Is any of this noticeable? Probably not, so I'll take the
1811 * smaller code size.
1812 */
1813void
1814crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1815{
1816 _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1817}
1818
1819void
1820crit_panic(void)
1821{
1822 thread_t td = curthread;
1823 int lcrit = td->td_critcount;
1824
1825 td->td_critcount = 0;
1826 panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1827 /* NOT REACHED */
1828}
1829
1830#ifdef SMP
1831
1832/*
1833 * Called from debugger/panic on cpus which have been stopped. We must still
1834 * process the IPIQ while stopped, even if we were stopped while in a critical
1835 * section (XXX).
1836 *
1837 * If we are dumping also try to process any pending interrupts. This may
1838 * or may not work depending on the state of the cpu at the point it was
1839 * stopped.
1840 */
1841void
1842lwkt_smp_stopped(void)
1843{
1844 globaldata_t gd = mycpu;
1845
1846 crit_enter_gd(gd);
1847 if (dumping) {
1848 lwkt_process_ipiq();
1849 splz();
1850 } else {
1851 lwkt_process_ipiq();
1852 }
1853 crit_exit_gd(gd);
1854}
1855
1856#endif