kernel - Attempt to fix lost rpc issue with NFS timeout/retry
[dragonfly.git] / sys / vfs / nfs / nfs_socket.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1989, 1991, 1993, 1995
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
37 * $FreeBSD: src/sys/nfs/nfs_socket.c,v 1.60.2.6 2003/03/26 01:44:46 alfred Exp $
38 * $DragonFly: src/sys/vfs/nfs/nfs_socket.c,v 1.45 2007/05/18 17:05:13 dillon Exp $
39 */
40
41/*
42 * Socket operations for use by nfs
43 */
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/proc.h>
48#include <sys/malloc.h>
49#include <sys/mount.h>
50#include <sys/kernel.h>
51#include <sys/mbuf.h>
52#include <sys/vnode.h>
53#include <sys/fcntl.h>
54#include <sys/protosw.h>
55#include <sys/resourcevar.h>
56#include <sys/socket.h>
57#include <sys/socketvar.h>
58#include <sys/socketops.h>
59#include <sys/syslog.h>
60#include <sys/thread.h>
61#include <sys/tprintf.h>
62#include <sys/sysctl.h>
63#include <sys/signalvar.h>
64
65#include <sys/signal2.h>
66#include <sys/mutex2.h>
67#include <sys/socketvar2.h>
68
69#include <netinet/in.h>
70#include <netinet/tcp.h>
71#include <sys/thread2.h>
72
73#include "rpcv2.h"
74#include "nfsproto.h"
75#include "nfs.h"
76#include "xdr_subs.h"
77#include "nfsm_subs.h"
78#include "nfsmount.h"
79#include "nfsnode.h"
80#include "nfsrtt.h"
81
82#define TRUE 1
83#define FALSE 0
84
85/*
86 * RTT calculations are scaled by 256 (8 bits). A proper fractional
87 * RTT will still be calculated even with a slow NFS timer.
88 */
89#define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum]]
90#define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum]]
91#define NFS_RTT_SCALE_BITS 8 /* bits */
92#define NFS_RTT_SCALE 256 /* value */
93
94/*
95 * Defines which timer to use for the procnum.
96 * 0 - default
97 * 1 - getattr
98 * 2 - lookup
99 * 3 - read
100 * 4 - write
101 */
102static int proct[NFS_NPROCS] = {
103 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, /* 00-09 */
104 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, /* 10-19 */
105 0, 5, 0, 0, 0, 0, /* 20-29 */
106};
107
108static int multt[NFS_NPROCS] = {
109 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 00-09 */
110 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 10-19 */
111 1, 2, 1, 1, 1, 1, /* 20-29 */
112};
113
114static int nfs_backoff[8] = { 2, 3, 5, 8, 13, 21, 34, 55 };
115static int nfs_realign_test;
116static int nfs_realign_count;
117static int nfs_showrtt;
118static int nfs_showrexmit;
119int nfs_maxasyncbio = NFS_MAXASYNCBIO;
120
121SYSCTL_DECL(_vfs_nfs);
122
123SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_test, CTLFLAG_RW, &nfs_realign_test, 0, "");
124SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_count, CTLFLAG_RW, &nfs_realign_count, 0, "");
125SYSCTL_INT(_vfs_nfs, OID_AUTO, showrtt, CTLFLAG_RW, &nfs_showrtt, 0, "");
126SYSCTL_INT(_vfs_nfs, OID_AUTO, showrexmit, CTLFLAG_RW, &nfs_showrexmit, 0, "");
127SYSCTL_INT(_vfs_nfs, OID_AUTO, maxasyncbio, CTLFLAG_RW, &nfs_maxasyncbio, 0, "");
128
129static int nfs_request_setup(nfsm_info_t info);
130static int nfs_request_auth(struct nfsreq *rep);
131static int nfs_request_try(struct nfsreq *rep);
132static int nfs_request_waitreply(struct nfsreq *rep);
133static int nfs_request_processreply(nfsm_info_t info, int);
134
135int nfsrtton = 0;
136struct nfsrtt nfsrtt;
137struct callout nfs_timer_handle;
138
139static int nfs_msg (struct thread *,char *,char *);
140static int nfs_rcvlock (struct nfsmount *nmp, struct nfsreq *myreq);
141static void nfs_rcvunlock (struct nfsmount *nmp);
142static void nfs_realign (struct mbuf **pm, int hsiz);
143static int nfs_receive (struct nfsmount *nmp, struct nfsreq *rep,
144 struct sockaddr **aname, struct mbuf **mp);
145static void nfs_softterm (struct nfsreq *rep, int islocked);
146static void nfs_hardterm (struct nfsreq *rep, int islocked);
147static int nfs_reconnect (struct nfsmount *nmp, struct nfsreq *rep);
148#ifndef NFS_NOSERVER
149static int nfsrv_getstream (struct nfssvc_sock *, int, int *);
150static void nfs_timer_req(struct nfsreq *req);
151static void nfs_checkpkt(struct mbuf *m, int len);
152
153int (*nfsrv3_procs[NFS_NPROCS]) (struct nfsrv_descript *nd,
154 struct nfssvc_sock *slp,
155 struct thread *td,
156 struct mbuf **mreqp) = {
157 nfsrv_null,
158 nfsrv_getattr,
159 nfsrv_setattr,
160 nfsrv_lookup,
161 nfsrv3_access,
162 nfsrv_readlink,
163 nfsrv_read,
164 nfsrv_write,
165 nfsrv_create,
166 nfsrv_mkdir,
167 nfsrv_symlink,
168 nfsrv_mknod,
169 nfsrv_remove,
170 nfsrv_rmdir,
171 nfsrv_rename,
172 nfsrv_link,
173 nfsrv_readdir,
174 nfsrv_readdirplus,
175 nfsrv_statfs,
176 nfsrv_fsinfo,
177 nfsrv_pathconf,
178 nfsrv_commit,
179 nfsrv_noop,
180 nfsrv_noop,
181 nfsrv_noop,
182 nfsrv_noop
183};
184#endif /* NFS_NOSERVER */
185
186/*
187 * Initialize sockets and congestion for a new NFS connection.
188 * We do not free the sockaddr if error.
189 */
190int
191nfs_connect(struct nfsmount *nmp, struct nfsreq *rep)
192{
193 struct socket *so;
194 int error;
195 struct sockaddr *saddr;
196 struct sockaddr_in *sin;
197 struct thread *td = &thread0; /* only used for socreate and sobind */
198
199 nmp->nm_so = so = NULL;
200 if (nmp->nm_flag & NFSMNT_FORCE)
201 return (EINVAL);
202 saddr = nmp->nm_nam;
203 error = socreate(saddr->sa_family, &so, nmp->nm_sotype,
204 nmp->nm_soproto, td);
205 if (error)
206 goto bad;
207 nmp->nm_soflags = so->so_proto->pr_flags;
208
209 /*
210 * Some servers require that the client port be a reserved port number.
211 */
212 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
213 struct sockopt sopt;
214 int ip;
215 struct sockaddr_in ssin;
216
217 bzero(&sopt, sizeof sopt);
218 ip = IP_PORTRANGE_LOW;
219 sopt.sopt_level = IPPROTO_IP;
220 sopt.sopt_name = IP_PORTRANGE;
221 sopt.sopt_val = (void *)&ip;
222 sopt.sopt_valsize = sizeof(ip);
223 sopt.sopt_td = NULL;
224 error = sosetopt(so, &sopt);
225 if (error)
226 goto bad;
227 bzero(&ssin, sizeof ssin);
228 sin = &ssin;
229 sin->sin_len = sizeof (struct sockaddr_in);
230 sin->sin_family = AF_INET;
231 sin->sin_addr.s_addr = INADDR_ANY;
232 sin->sin_port = htons(0);
233 error = sobind(so, (struct sockaddr *)sin, td);
234 if (error)
235 goto bad;
236 bzero(&sopt, sizeof sopt);
237 ip = IP_PORTRANGE_DEFAULT;
238 sopt.sopt_level = IPPROTO_IP;
239 sopt.sopt_name = IP_PORTRANGE;
240 sopt.sopt_val = (void *)&ip;
241 sopt.sopt_valsize = sizeof(ip);
242 sopt.sopt_td = NULL;
243 error = sosetopt(so, &sopt);
244 if (error)
245 goto bad;
246 }
247
248 /*
249 * Protocols that do not require connections may be optionally left
250 * unconnected for servers that reply from a port other than NFS_PORT.
251 */
252 if (nmp->nm_flag & NFSMNT_NOCONN) {
253 if (nmp->nm_soflags & PR_CONNREQUIRED) {
254 error = ENOTCONN;
255 goto bad;
256 }
257 } else {
258 error = soconnect(so, nmp->nm_nam, td);
259 if (error)
260 goto bad;
261
262 /*
263 * Wait for the connection to complete. Cribbed from the
264 * connect system call but with the wait timing out so
265 * that interruptible mounts don't hang here for a long time.
266 */
267 crit_enter();
268 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
269 (void) tsleep((caddr_t)&so->so_timeo, 0,
270 "nfscon", 2 * hz);
271 if ((so->so_state & SS_ISCONNECTING) &&
272 so->so_error == 0 && rep &&
273 (error = nfs_sigintr(nmp, rep, rep->r_td)) != 0){
274 soclrstate(so, SS_ISCONNECTING);
275 crit_exit();
276 goto bad;
277 }
278 }
279 if (so->so_error) {
280 error = so->so_error;
281 so->so_error = 0;
282 crit_exit();
283 goto bad;
284 }
285 crit_exit();
286 }
287 so->so_rcv.ssb_timeo = (5 * hz);
288 so->so_snd.ssb_timeo = (5 * hz);
289
290 /*
291 * Get buffer reservation size from sysctl, but impose reasonable
292 * limits.
293 */
294 if (nmp->nm_sotype == SOCK_STREAM) {
295 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
296 struct sockopt sopt;
297 int val;
298
299 bzero(&sopt, sizeof sopt);
300 sopt.sopt_level = SOL_SOCKET;
301 sopt.sopt_name = SO_KEEPALIVE;
302 sopt.sopt_val = &val;
303 sopt.sopt_valsize = sizeof val;
304 val = 1;
305 sosetopt(so, &sopt);
306 }
307 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
308 struct sockopt sopt;
309 int val;
310
311 bzero(&sopt, sizeof sopt);
312 sopt.sopt_level = IPPROTO_TCP;
313 sopt.sopt_name = TCP_NODELAY;
314 sopt.sopt_val = &val;
315 sopt.sopt_valsize = sizeof val;
316 val = 1;
317 sosetopt(so, &sopt);
318
319 bzero(&sopt, sizeof sopt);
320 sopt.sopt_level = IPPROTO_TCP;
321 sopt.sopt_name = TCP_FASTKEEP;
322 sopt.sopt_val = &val;
323 sopt.sopt_valsize = sizeof val;
324 val = 1;
325 sosetopt(so, &sopt);
326 }
327 }
328 error = soreserve(so, nfs_soreserve, nfs_soreserve, NULL);
329 if (error)
330 goto bad;
331 atomic_set_int(&so->so_rcv.ssb_flags, SSB_NOINTR);
332 atomic_set_int(&so->so_snd.ssb_flags, SSB_NOINTR);
333
334 /* Initialize other non-zero congestion variables */
335 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] =
336 nmp->nm_srtt[3] = (NFS_TIMEO << NFS_RTT_SCALE_BITS);
337 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
338 nmp->nm_sdrtt[3] = 0;
339 nmp->nm_maxasync_scaled = NFS_MINASYNC_SCALED;
340 nmp->nm_timeouts = 0;
341
342 /*
343 * Assign nm_so last. The moment nm_so is assigned the nfs_timer()
344 * can mess with the socket.
345 */
346 nmp->nm_so = so;
347 return (0);
348
349bad:
350 if (so) {
351 soshutdown(so, SHUT_RDWR);
352 soclose(so, FNONBLOCK);
353 }
354 return (error);
355}
356
357/*
358 * Reconnect routine:
359 * Called when a connection is broken on a reliable protocol.
360 * - clean up the old socket
361 * - nfs_connect() again
362 * - set R_NEEDSXMIT for all outstanding requests on mount point
363 * If this fails the mount point is DEAD!
364 * nb: Must be called with the nfs_sndlock() set on the mount point.
365 */
366static int
367nfs_reconnect(struct nfsmount *nmp, struct nfsreq *rep)
368{
369 struct nfsreq *req;
370 int error;
371
372 nfs_disconnect(nmp);
373 if (nmp->nm_rxstate >= NFSSVC_STOPPING)
374 return (EINTR);
375 while ((error = nfs_connect(nmp, rep)) != 0) {
376 if (error == EINTR || error == ERESTART)
377 return (EINTR);
378 if (error == EINVAL)
379 return (error);
380 if (nmp->nm_rxstate >= NFSSVC_STOPPING)
381 return (EINTR);
382 (void) tsleep((caddr_t)&lbolt, 0, "nfscon", 0);
383 }
384
385 /*
386 * Loop through outstanding request list and fix up all requests
387 * on old socket.
388 */
389 crit_enter();
390 TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
391 KKASSERT(req->r_nmp == nmp);
392 req->r_flags |= R_NEEDSXMIT;
393 }
394 crit_exit();
395 return (0);
396}
397
398/*
399 * NFS disconnect. Clean up and unlink.
400 */
401void
402nfs_disconnect(struct nfsmount *nmp)
403{
404 struct socket *so;
405
406 if (nmp->nm_so) {
407 so = nmp->nm_so;
408 nmp->nm_so = NULL;
409 soshutdown(so, SHUT_RDWR);
410 soclose(so, FNONBLOCK);
411 }
412}
413
414void
415nfs_safedisconnect(struct nfsmount *nmp)
416{
417 nfs_rcvlock(nmp, NULL);
418 nfs_disconnect(nmp);
419 nfs_rcvunlock(nmp);
420}
421
422/*
423 * This is the nfs send routine. For connection based socket types, it
424 * must be called with an nfs_sndlock() on the socket.
425 * "rep == NULL" indicates that it has been called from a server.
426 * For the client side:
427 * - return EINTR if the RPC is terminated, 0 otherwise
428 * - set R_NEEDSXMIT if the send fails for any reason
429 * - do any cleanup required by recoverable socket errors (?)
430 * For the server side:
431 * - return EINTR or ERESTART if interrupted by a signal
432 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
433 * - do any cleanup required by recoverable socket errors (?)
434 */
435int
436nfs_send(struct socket *so, struct sockaddr *nam, struct mbuf *top,
437 struct nfsreq *rep)
438{
439 struct sockaddr *sendnam;
440 int error, soflags, flags;
441
442 if (rep) {
443 if (rep->r_flags & R_SOFTTERM) {
444 m_freem(top);
445 return (EINTR);
446 }
447 if ((so = rep->r_nmp->nm_so) == NULL) {
448 rep->r_flags |= R_NEEDSXMIT;
449 m_freem(top);
450 return (0);
451 }
452 rep->r_flags &= ~R_NEEDSXMIT;
453 soflags = rep->r_nmp->nm_soflags;
454 } else {
455 soflags = so->so_proto->pr_flags;
456 }
457 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
458 sendnam = NULL;
459 else
460 sendnam = nam;
461 if (so->so_type == SOCK_SEQPACKET)
462 flags = MSG_EOR;
463 else
464 flags = 0;
465
466 /*
467 * calls pru_sosend -> sosend -> so_pru_send -> netrpc
468 */
469 error = so_pru_sosend(so, sendnam, NULL, top, NULL, flags,
470 curthread /*XXX*/);
471
472 /*
473 * ENOBUFS for dgram sockets is transient and non fatal.
474 * No need to log, and no need to break a soft mount.
475 */
476 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
477 error = 0;
478 /*
479 * do backoff retransmit on client
480 */
481 if (rep) {
482 if ((rep->r_nmp->nm_state & NFSSTA_SENDSPACE) == 0) {
483 rep->r_nmp->nm_state |= NFSSTA_SENDSPACE;
484 kprintf("Warning: NFS: Insufficient sendspace "
485 "(%lu),\n"
486 "\t You must increase vfs.nfs.soreserve"
487 "or decrease vfs.nfs.maxasyncbio\n",
488 so->so_snd.ssb_hiwat);
489 }
490 rep->r_flags |= R_NEEDSXMIT;
491 }
492 }
493
494 if (error) {
495 if (rep) {
496 log(LOG_INFO, "nfs send error %d for server %s\n",error,
497 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
498 /*
499 * Deal with errors for the client side.
500 */
501 if (rep->r_flags & R_SOFTTERM)
502 error = EINTR;
503 else
504 rep->r_flags |= R_NEEDSXMIT;
505 } else {
506 log(LOG_INFO, "nfsd send error %d\n", error);
507 }
508
509 /*
510 * Handle any recoverable (soft) socket errors here. (?)
511 */
512 if (error != EINTR && error != ERESTART &&
513 error != EWOULDBLOCK && error != EPIPE)
514 error = 0;
515 }
516 return (error);
517}
518
519/*
520 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
521 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
522 * Mark and consolidate the data into a new mbuf list.
523 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
524 * small mbufs.
525 * For SOCK_STREAM we must be very careful to read an entire record once
526 * we have read any of it, even if the system call has been interrupted.
527 */
528static int
529nfs_receive(struct nfsmount *nmp, struct nfsreq *rep,
530 struct sockaddr **aname, struct mbuf **mp)
531{
532 struct socket *so;
533 struct sockbuf sio;
534 struct uio auio;
535 struct iovec aio;
536 struct mbuf *m;
537 struct mbuf *control;
538 u_int32_t len;
539 struct sockaddr **getnam;
540 int error, sotype, rcvflg;
541 struct thread *td = curthread; /* XXX */
542
543 /*
544 * Set up arguments for soreceive()
545 */
546 *mp = NULL;
547 *aname = NULL;
548 sotype = nmp->nm_sotype;
549
550 /*
551 * For reliable protocols, lock against other senders/receivers
552 * in case a reconnect is necessary.
553 * For SOCK_STREAM, first get the Record Mark to find out how much
554 * more there is to get.
555 * We must lock the socket against other receivers
556 * until we have an entire rpc request/reply.
557 */
558 if (sotype != SOCK_DGRAM) {
559 error = nfs_sndlock(nmp, rep);
560 if (error)
561 return (error);
562tryagain:
563 /*
564 * Check for fatal errors and resending request.
565 */
566 /*
567 * Ugh: If a reconnect attempt just happened, nm_so
568 * would have changed. NULL indicates a failed
569 * attempt that has essentially shut down this
570 * mount point.
571 */
572 if (rep && (rep->r_mrep || (rep->r_flags & R_SOFTTERM))) {
573 nfs_sndunlock(nmp);
574 return (EINTR);
575 }
576 so = nmp->nm_so;
577 if (so == NULL) {
578 error = nfs_reconnect(nmp, rep);
579 if (error) {
580 nfs_sndunlock(nmp);
581 return (error);
582 }
583 goto tryagain;
584 }
585 while (rep && (rep->r_flags & R_NEEDSXMIT)) {
586 m = m_copym(rep->r_mreq, 0, M_COPYALL, MB_WAIT);
587 nfsstats.rpcretries++;
588 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
589 if (error) {
590 if (error == EINTR || error == ERESTART ||
591 (error = nfs_reconnect(nmp, rep)) != 0) {
592 nfs_sndunlock(nmp);
593 return (error);
594 }
595 goto tryagain;
596 }
597 }
598 nfs_sndunlock(nmp);
599 if (sotype == SOCK_STREAM) {
600 /*
601 * Get the length marker from the stream
602 */
603 aio.iov_base = (caddr_t)&len;
604 aio.iov_len = sizeof(u_int32_t);
605 auio.uio_iov = &aio;
606 auio.uio_iovcnt = 1;
607 auio.uio_segflg = UIO_SYSSPACE;
608 auio.uio_rw = UIO_READ;
609 auio.uio_offset = 0;
610 auio.uio_resid = sizeof(u_int32_t);
611 auio.uio_td = td;
612 do {
613 rcvflg = MSG_WAITALL;
614 error = so_pru_soreceive(so, NULL, &auio, NULL,
615 NULL, &rcvflg);
616 if (error == EWOULDBLOCK && rep) {
617 if (rep->r_flags & R_SOFTTERM)
618 return (EINTR);
619 }
620 } while (error == EWOULDBLOCK);
621
622 if (error == 0 && auio.uio_resid > 0) {
623 /*
624 * Only log short packets if not EOF
625 */
626 if (auio.uio_resid != sizeof(u_int32_t))
627 log(LOG_INFO,
628 "short receive (%d/%d) from nfs server %s\n",
629 (int)(sizeof(u_int32_t) - auio.uio_resid),
630 (int)sizeof(u_int32_t),
631 nmp->nm_mountp->mnt_stat.f_mntfromname);
632 error = EPIPE;
633 }
634 if (error)
635 goto errout;
636 len = ntohl(len) & ~0x80000000;
637 /*
638 * This is SERIOUS! We are out of sync with the sender
639 * and forcing a disconnect/reconnect is all I can do.
640 */
641 if (len > NFS_MAXPACKET) {
642 log(LOG_ERR, "%s (%d) from nfs server %s\n",
643 "impossible packet length",
644 len,
645 nmp->nm_mountp->mnt_stat.f_mntfromname);
646 error = EFBIG;
647 goto errout;
648 }
649
650 /*
651 * Get the rest of the packet as an mbuf chain
652 */
653 sbinit(&sio, len);
654 do {
655 rcvflg = MSG_WAITALL;
656 error = so_pru_soreceive(so, NULL, NULL, &sio,
657 NULL, &rcvflg);
658 } while (error == EWOULDBLOCK || error == EINTR ||
659 error == ERESTART);
660 if (error == 0 && sio.sb_cc != len) {
661 if (sio.sb_cc != 0)
662 log(LOG_INFO,
663 "short receive (%zu/%d) from nfs server %s\n",
664 (size_t)len - auio.uio_resid, len,
665 nmp->nm_mountp->mnt_stat.f_mntfromname);
666 error = EPIPE;
667 }
668 *mp = sio.sb_mb;
669 } else {
670 /*
671 * Non-stream, so get the whole packet by not
672 * specifying MSG_WAITALL and by specifying a large
673 * length.
674 *
675 * We have no use for control msg., but must grab them
676 * and then throw them away so we know what is going
677 * on.
678 */
679 sbinit(&sio, 100000000);
680 do {
681 rcvflg = 0;
682 error = so_pru_soreceive(so, NULL, NULL, &sio,
683 &control, &rcvflg);
684 if (control)
685 m_freem(control);
686 if (error == EWOULDBLOCK && rep) {
687 if (rep->r_flags & R_SOFTTERM) {
688 m_freem(sio.sb_mb);
689 return (EINTR);
690 }
691 }
692 } while (error == EWOULDBLOCK ||
693 (error == 0 && sio.sb_mb == NULL && control));
694 if ((rcvflg & MSG_EOR) == 0)
695 kprintf("Egad!!\n");
696 if (error == 0 && sio.sb_mb == NULL)
697 error = EPIPE;
698 len = sio.sb_cc;
699 *mp = sio.sb_mb;
700 }
701errout:
702 if (error && error != EINTR && error != ERESTART) {
703 m_freem(*mp);
704 *mp = NULL;
705 if (error != EPIPE) {
706 log(LOG_INFO,
707 "receive error %d from nfs server %s\n",
708 error,
709 nmp->nm_mountp->mnt_stat.f_mntfromname);
710 }
711 error = nfs_sndlock(nmp, rep);
712 if (!error) {
713 error = nfs_reconnect(nmp, rep);
714 if (!error)
715 goto tryagain;
716 else
717 nfs_sndunlock(nmp);
718 }
719 }
720 } else {
721 if ((so = nmp->nm_so) == NULL)
722 return (EACCES);
723 if (so->so_state & SS_ISCONNECTED)
724 getnam = NULL;
725 else
726 getnam = aname;
727 sbinit(&sio, 100000000);
728 do {
729 rcvflg = 0;
730 error = so_pru_soreceive(so, getnam, NULL, &sio,
731 NULL, &rcvflg);
732 if (error == EWOULDBLOCK && rep &&
733 (rep->r_flags & R_SOFTTERM)) {
734 m_freem(sio.sb_mb);
735 return (EINTR);
736 }
737 } while (error == EWOULDBLOCK);
738
739 len = sio.sb_cc;
740 *mp = sio.sb_mb;
741
742 /*
743 * A shutdown may result in no error and no mbuf.
744 * Convert to EPIPE.
745 */
746 if (*mp == NULL && error == 0)
747 error = EPIPE;
748 }
749 if (error) {
750 m_freem(*mp);
751 *mp = NULL;
752 }
753
754 /*
755 * Search for any mbufs that are not a multiple of 4 bytes long
756 * or with m_data not longword aligned.
757 * These could cause pointer alignment problems, so copy them to
758 * well aligned mbufs.
759 */
760 nfs_realign(mp, 5 * NFSX_UNSIGNED);
761 return (error);
762}
763
764/*
765 * Implement receipt of reply on a socket.
766 *
767 * We must search through the list of received datagrams matching them
768 * with outstanding requests using the xid, until ours is found.
769 *
770 * If myrep is NULL we process packets on the socket until
771 * interrupted or until nm_reqrxq is non-empty.
772 */
773/* ARGSUSED */
774int
775nfs_reply(struct nfsmount *nmp, struct nfsreq *myrep)
776{
777 struct nfsreq *rep;
778 struct sockaddr *nam;
779 u_int32_t rxid;
780 u_int32_t *tl;
781 int error;
782 struct nfsm_info info;
783
784 /*
785 * Loop around until we get our own reply
786 */
787 for (;;) {
788 /*
789 * Lock against other receivers so that I don't get stuck in
790 * sbwait() after someone else has received my reply for me.
791 * Also necessary for connection based protocols to avoid
792 * race conditions during a reconnect.
793 *
794 * If nfs_rcvlock() returns EALREADY, that means that
795 * the reply has already been recieved by another
796 * process and we can return immediately. In this
797 * case, the lock is not taken to avoid races with
798 * other processes.
799 */
800 info.mrep = NULL;
801
802 error = nfs_rcvlock(nmp, myrep);
803 if (error == EALREADY)
804 return (0);
805 if (error)
806 return (error);
807
808 /*
809 * If myrep is NULL we are the receiver helper thread.
810 * Stop waiting for incoming replies if there are
811 * messages sitting on reqrxq that we need to process,
812 * or if a shutdown request is pending.
813 */
814 if (myrep == NULL && (TAILQ_FIRST(&nmp->nm_reqrxq) ||
815 nmp->nm_rxstate > NFSSVC_PENDING)) {
816 nfs_rcvunlock(nmp);
817 return(EWOULDBLOCK);
818 }
819
820 /*
821 * Get the next Rpc reply off the socket
822 *
823 * We cannot release the receive lock until we've
824 * filled in rep->r_mrep, otherwise a waiting
825 * thread may deadlock in soreceive with no incoming
826 * packets expected.
827 */
828 error = nfs_receive(nmp, myrep, &nam, &info.mrep);
829 if (error) {
830 /*
831 * Ignore routing errors on connectionless protocols??
832 */
833 nfs_rcvunlock(nmp);
834 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
835 if (nmp->nm_so == NULL)
836 return (error);
837 nmp->nm_so->so_error = 0;
838 continue;
839 }
840 return (error);
841 }
842 if (nam)
843 FREE(nam, M_SONAME);
844
845 /*
846 * Get the xid and check that it is an rpc reply
847 */
848 info.md = info.mrep;
849 info.dpos = mtod(info.md, caddr_t);
850 NULLOUT(tl = nfsm_dissect(&info, 2*NFSX_UNSIGNED));
851 rxid = *tl++;
852 if (*tl != rpc_reply) {
853 nfsstats.rpcinvalid++;
854 m_freem(info.mrep);
855 info.mrep = NULL;
856nfsmout:
857 nfs_rcvunlock(nmp);
858 continue;
859 }
860
861 /*
862 * Loop through the request list to match up the reply
863 * Iff no match, just drop the datagram. On match, set
864 * r_mrep atomically to prevent the timer from messing
865 * around with the request after we have exited the critical
866 * section.
867 */
868 crit_enter();
869 TAILQ_FOREACH(rep, &nmp->nm_reqq, r_chain) {
870 if (rep->r_mrep == NULL && rxid == rep->r_xid)
871 break;
872 }
873
874 /*
875 * Fill in the rest of the reply if we found a match.
876 *
877 * Deal with duplicate responses if there was no match.
878 */
879 if (rep) {
880 rep->r_md = info.md;
881 rep->r_dpos = info.dpos;
882 if (nfsrtton) {
883 struct rttl *rt;
884
885 rt = &nfsrtt.rttl[nfsrtt.pos];
886 rt->proc = rep->r_procnum;
887 rt->rto = 0;
888 rt->sent = 0;
889 rt->cwnd = nmp->nm_maxasync_scaled;
890 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
891 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
892 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
893 getmicrotime(&rt->tstamp);
894 if (rep->r_flags & R_TIMING)
895 rt->rtt = rep->r_rtt;
896 else
897 rt->rtt = 1000000;
898 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
899 }
900
901 /*
902 * New congestion control is based only on async
903 * requests.
904 */
905 if (nmp->nm_maxasync_scaled < NFS_MAXASYNC_SCALED)
906 ++nmp->nm_maxasync_scaled;
907 if (rep->r_flags & R_SENT) {
908 rep->r_flags &= ~R_SENT;
909 }
910 /*
911 * Update rtt using a gain of 0.125 on the mean
912 * and a gain of 0.25 on the deviation.
913 *
914 * NOTE SRTT/SDRTT are only good if R_TIMING is set.
915 */
916 if ((rep->r_flags & R_TIMING) && rep->r_rexmit == 0) {
917 /*
918 * Since the timer resolution of
919 * NFS_HZ is so course, it can often
920 * result in r_rtt == 0. Since
921 * r_rtt == N means that the actual
922 * rtt is between N+dt and N+2-dt ticks,
923 * add 1.
924 */
925 int n;
926 int d;
927
928#define NFSRSB NFS_RTT_SCALE_BITS
929 n = ((NFS_SRTT(rep) * 7) +
930 (rep->r_rtt << NFSRSB)) >> 3;
931 d = n - NFS_SRTT(rep);
932 NFS_SRTT(rep) = n;
933
934 /*
935 * Don't let the jitter calculation decay
936 * too quickly, but we want a fast rampup.
937 */
938 if (d < 0)
939 d = -d;
940 d <<= NFSRSB;
941 if (d < NFS_SDRTT(rep))
942 n = ((NFS_SDRTT(rep) * 15) + d) >> 4;
943 else
944 n = ((NFS_SDRTT(rep) * 3) + d) >> 2;
945 NFS_SDRTT(rep) = n;
946#undef NFSRSB
947 }
948 nmp->nm_timeouts = 0;
949 rep->r_mrep = info.mrep;
950 nfs_hardterm(rep, 0);
951 } else {
952 /*
953 * Extract vers, prog, nfsver, procnum. A duplicate
954 * response means we didn't wait long enough so
955 * we increase the SRTT to avoid future spurious
956 * timeouts.
957 */
958 u_int procnum = nmp->nm_lastreprocnum;
959 int n;
960
961 if (procnum < NFS_NPROCS && proct[procnum]) {
962 if (nfs_showrexmit)
963 kprintf("D");
964 n = nmp->nm_srtt[proct[procnum]];
965 n += NFS_ASYSCALE * NFS_HZ;
966 if (n < NFS_ASYSCALE * NFS_HZ * 10)
967 n = NFS_ASYSCALE * NFS_HZ * 10;
968 nmp->nm_srtt[proct[procnum]] = n;
969 }
970 }
971 nfs_rcvunlock(nmp);
972 crit_exit();
973
974 /*
975 * If not matched to a request, drop it.
976 * If it's mine, get out.
977 */
978 if (rep == NULL) {
979 nfsstats.rpcunexpected++;
980 m_freem(info.mrep);
981 info.mrep = NULL;
982 } else if (rep == myrep) {
983 if (rep->r_mrep == NULL)
984 panic("nfsreply nil");
985 return (0);
986 }
987 }
988}
989
990/*
991 * Run the request state machine until the target state is reached
992 * or a fatal error occurs. The target state is not run. Specifying
993 * a target of NFSM_STATE_DONE runs the state machine until the rpc
994 * is complete.
995 *
996 * EINPROGRESS is returned for all states other then the DONE state,
997 * indicating that the rpc is still in progress.
998 */
999int
1000nfs_request(struct nfsm_info *info, nfsm_state_t bstate, nfsm_state_t estate)
1001{
1002 struct nfsreq *req;
1003
1004 while (info->state >= bstate && info->state < estate) {
1005 switch(info->state) {
1006 case NFSM_STATE_SETUP:
1007 /*
1008 * Setup the nfsreq. Any error which occurs during
1009 * this state is fatal.
1010 */
1011 info->error = nfs_request_setup(info);
1012 if (info->error) {
1013 info->state = NFSM_STATE_DONE;
1014 return (info->error);
1015 } else {
1016 req = info->req;
1017 req->r_mrp = &info->mrep;
1018 req->r_mdp = &info->md;
1019 req->r_dposp = &info->dpos;
1020 info->state = NFSM_STATE_AUTH;
1021 }
1022 break;
1023 case NFSM_STATE_AUTH:
1024 /*
1025 * Authenticate the nfsreq. Any error which occurs
1026 * during this state is fatal.
1027 */
1028 info->error = nfs_request_auth(info->req);
1029 if (info->error) {
1030 info->state = NFSM_STATE_DONE;
1031 return (info->error);
1032 } else {
1033 info->state = NFSM_STATE_TRY;
1034 }
1035 break;
1036 case NFSM_STATE_TRY:
1037 /*
1038 * Transmit or retransmit attempt. An error in this
1039 * state is ignored and we always move on to the
1040 * next state.
1041 *
1042 * This can trivially race the receiver if the
1043 * request is asynchronous. nfs_request_try()
1044 * will thus set the state for us and we
1045 * must also return immediately if we are
1046 * running an async state machine, because
1047 * info can become invalid due to races after
1048 * try() returns.
1049 */
1050 if (info->req->r_flags & R_ASYNC) {
1051 nfs_request_try(info->req);
1052 if (estate == NFSM_STATE_WAITREPLY)
1053 return (EINPROGRESS);
1054 } else {
1055 nfs_request_try(info->req);
1056 info->state = NFSM_STATE_WAITREPLY;
1057 }
1058 break;
1059 case NFSM_STATE_WAITREPLY:
1060 /*
1061 * Wait for a reply or timeout and move on to the
1062 * next state. The error returned by this state
1063 * is passed to the processing code in the next
1064 * state.
1065 */
1066 info->error = nfs_request_waitreply(info->req);
1067 info->state = NFSM_STATE_PROCESSREPLY;
1068 break;
1069 case NFSM_STATE_PROCESSREPLY:
1070 /*
1071 * Process the reply or timeout. Errors which occur
1072 * in this state may cause the state machine to
1073 * go back to an earlier state, and are fatal
1074 * otherwise.
1075 */
1076 info->error = nfs_request_processreply(info,
1077 info->error);
1078 switch(info->error) {
1079 case ENEEDAUTH:
1080 info->state = NFSM_STATE_AUTH;
1081 break;
1082 case EAGAIN:
1083 info->state = NFSM_STATE_TRY;
1084 break;
1085 default:
1086 /*
1087 * Operation complete, with or without an
1088 * error. We are done.
1089 */
1090 info->req = NULL;
1091 info->state = NFSM_STATE_DONE;
1092 return (info->error);
1093 }
1094 break;
1095 case NFSM_STATE_DONE:
1096 /*
1097 * Shouldn't be reached
1098 */
1099 return (info->error);
1100 /* NOT REACHED */
1101 }
1102 }
1103
1104 /*
1105 * If we are done return the error code (if any).
1106 * Otherwise return EINPROGRESS.
1107 */
1108 if (info->state == NFSM_STATE_DONE)
1109 return (info->error);
1110 return (EINPROGRESS);
1111}
1112
1113/*
1114 * nfs_request - goes something like this
1115 * - fill in request struct
1116 * - links it into list
1117 * - calls nfs_send() for first transmit
1118 * - calls nfs_receive() to get reply
1119 * - break down rpc header and return with nfs reply pointed to
1120 * by mrep or error
1121 * nb: always frees up mreq mbuf list
1122 */
1123static int
1124nfs_request_setup(nfsm_info_t info)
1125{
1126 struct nfsreq *req;
1127 struct nfsmount *nmp;
1128 struct mbuf *m;
1129 int i;
1130
1131 /*
1132 * Reject requests while attempting a forced unmount.
1133 */
1134 if (info->vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) {
1135 m_freem(info->mreq);
1136 info->mreq = NULL;
1137 return (ESTALE);
1138 }
1139 nmp = VFSTONFS(info->vp->v_mount);
1140 req = kmalloc(sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
1141 req->r_nmp = nmp;
1142 req->r_vp = info->vp;
1143 req->r_td = info->td;
1144 req->r_procnum = info->procnum;
1145 req->r_mreq = NULL;
1146 req->r_cred = info->cred;
1147
1148 i = 0;
1149 m = info->mreq;
1150 while (m) {
1151 i += m->m_len;
1152 m = m->m_next;
1153 }
1154 req->r_mrest = info->mreq;
1155 req->r_mrest_len = i;
1156
1157 /*
1158 * The presence of a non-NULL r_info in req indicates
1159 * async completion via our helper threads. See the receiver
1160 * code.
1161 */
1162 if (info->bio) {
1163 req->r_info = info;
1164 req->r_flags = R_ASYNC;
1165 } else {
1166 req->r_info = NULL;
1167 req->r_flags = 0;
1168 }
1169 info->req = req;
1170 return(0);
1171}
1172
1173static int
1174nfs_request_auth(struct nfsreq *rep)
1175{
1176 struct nfsmount *nmp = rep->r_nmp;
1177 struct mbuf *m;
1178 char nickv[RPCX_NICKVERF];
1179 int error = 0, auth_len, auth_type;
1180 int verf_len;
1181 u_int32_t xid;
1182 char *auth_str, *verf_str;
1183 struct ucred *cred;
1184
1185 cred = rep->r_cred;
1186 rep->r_failed_auth = 0;
1187
1188 /*
1189 * Get the RPC header with authorization.
1190 */
1191 verf_str = auth_str = NULL;
1192 if (nmp->nm_flag & NFSMNT_KERB) {
1193 verf_str = nickv;
1194 verf_len = sizeof (nickv);
1195 auth_type = RPCAUTH_KERB4;
1196 bzero((caddr_t)rep->r_key, sizeof(rep->r_key));
1197 if (rep->r_failed_auth ||
1198 nfs_getnickauth(nmp, cred, &auth_str, &auth_len,
1199 verf_str, verf_len)) {
1200 error = nfs_getauth(nmp, rep, cred, &auth_str,
1201 &auth_len, verf_str, &verf_len, rep->r_key);
1202 if (error) {
1203 m_freem(rep->r_mrest);
1204 rep->r_mrest = NULL;
1205 kfree((caddr_t)rep, M_NFSREQ);
1206 return (error);
1207 }
1208 }
1209 } else {
1210 auth_type = RPCAUTH_UNIX;
1211 if (cred->cr_ngroups < 1)
1212 panic("nfsreq nogrps");
1213 auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ?
1214 nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) +
1215 5 * NFSX_UNSIGNED;
1216 }
1217 if (rep->r_mrest)
1218 nfs_checkpkt(rep->r_mrest, rep->r_mrest_len);
1219 m = nfsm_rpchead(cred, nmp->nm_flag, rep->r_procnum, auth_type,
1220 auth_len, auth_str, verf_len, verf_str,
1221 rep->r_mrest, rep->r_mrest_len, &rep->r_mheadend, &xid);
1222 rep->r_mrest = NULL;
1223 if (auth_str)
1224 kfree(auth_str, M_TEMP);
1225
1226 /*
1227 * For stream protocols, insert a Sun RPC Record Mark.
1228 */
1229 if (nmp->nm_sotype == SOCK_STREAM) {
1230 M_PREPEND(m, NFSX_UNSIGNED, MB_WAIT);
1231 if (m == NULL) {
1232 kfree(rep, M_NFSREQ);
1233 return (ENOBUFS);
1234 }
1235 *mtod(m, u_int32_t *) = htonl(0x80000000 |
1236 (m->m_pkthdr.len - NFSX_UNSIGNED));
1237 }
1238
1239 nfs_checkpkt(m, m->m_pkthdr.len);
1240
1241 rep->r_mreq = m;
1242 rep->r_xid = xid;
1243 return (0);
1244}
1245
1246static int
1247nfs_request_try(struct nfsreq *rep)
1248{
1249 struct nfsmount *nmp = rep->r_nmp;
1250 struct mbuf *m2;
1251 int error;
1252
1253 /*
1254 * Request is not on any queue, only the owner has access to it
1255 * so it should not be locked by anyone atm.
1256 *
1257 * Interlock to prevent races. While locked the only remote
1258 * action possible is for r_mrep to be set (once we enqueue it).
1259 */
1260 if (rep->r_flags == 0xdeadc0de) {
1261 print_backtrace(-1);
1262 panic("flags nbad\n");
1263 }
1264 KKASSERT((rep->r_flags & (R_LOCKED | R_ONREQQ)) == 0);
1265 if (nmp->nm_flag & NFSMNT_SOFT)
1266 rep->r_retry = nmp->nm_retry;
1267 else
1268 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
1269 rep->r_rtt = rep->r_rexmit = 0;
1270 if (proct[rep->r_procnum] > 0)
1271 rep->r_flags |= R_TIMING | R_LOCKED;
1272 else
1273 rep->r_flags |= R_LOCKED;
1274 rep->r_mrep = NULL;
1275
1276 nfsstats.rpcrequests++;
1277
1278 if (nmp->nm_flag & NFSMNT_FORCE) {
1279 rep->r_flags |= R_SOFTTERM;
1280 rep->r_flags &= ~R_LOCKED;
1281 return (0);
1282 }
1283 rep->r_flags |= R_NEEDSXMIT; /* in case send lock races us */
1284
1285 /*
1286 * Do the client side RPC.
1287 *
1288 * Chain request into list of outstanding requests. Be sure
1289 * to put it LAST so timer finds oldest requests first. Note
1290 * that our control of R_LOCKED prevents the request from
1291 * getting ripped out from under us or transmitted by the
1292 * timer code.
1293 *
1294 * For requests with info structures we must atomically set the
1295 * info's state because the structure could become invalid upon
1296 * return due to races (i.e., if async)
1297 */
1298 crit_enter();
1299 mtx_link_init(&rep->r_link);
1300 KKASSERT((rep->r_flags & R_ONREQQ) == 0);
1301 TAILQ_INSERT_TAIL(&nmp->nm_reqq, rep, r_chain);
1302 rep->r_flags |= R_ONREQQ;
1303 ++nmp->nm_reqqlen;
1304 if (rep->r_flags & R_ASYNC)
1305 rep->r_info->state = NFSM_STATE_WAITREPLY;
1306 crit_exit();
1307
1308 error = 0;
1309
1310 /*
1311 * Send if we can. Congestion control is not handled here any more
1312 * becausing trying to defer the initial send based on the nfs_timer
1313 * requires having a very fast nfs_timer, which is silly.
1314 */
1315 if (nmp->nm_so) {
1316 if (nmp->nm_soflags & PR_CONNREQUIRED)
1317 error = nfs_sndlock(nmp, rep);
1318 if (error == 0 && (rep->r_flags & R_NEEDSXMIT)) {
1319 m2 = m_copym(rep->r_mreq, 0, M_COPYALL, MB_WAIT);
1320 error = nfs_send(nmp->nm_so, nmp->nm_nam, m2, rep);
1321 rep->r_flags &= ~R_NEEDSXMIT;
1322 if ((rep->r_flags & R_SENT) == 0) {
1323 rep->r_flags |= R_SENT;
1324 }
1325 if (nmp->nm_soflags & PR_CONNREQUIRED)
1326 nfs_sndunlock(nmp);
1327 }
1328 } else {
1329 rep->r_rtt = -1;
1330 }
1331 if (error == EPIPE)
1332 error = 0;
1333
1334 /*
1335 * Release the lock. The only remote action that may have occurred
1336 * would have been the setting of rep->r_mrep. If this occured
1337 * and the request was async we have to move it to the reader
1338 * thread's queue for action.
1339 *
1340 * For async requests also make sure the reader is woken up so
1341 * it gets on the socket to read responses.
1342 */
1343 crit_enter();
1344 if (rep->r_flags & R_ASYNC) {
1345 if (rep->r_mrep)
1346 nfs_hardterm(rep, 1);
1347 rep->r_flags &= ~R_LOCKED;
1348 nfssvc_iod_reader_wakeup(nmp);
1349 } else {
1350 rep->r_flags &= ~R_LOCKED;
1351 }
1352 if (rep->r_flags & R_WANTED) {
1353 rep->r_flags &= ~R_WANTED;
1354 wakeup(rep);
1355 }
1356 crit_exit();
1357 return (error);
1358}
1359
1360/*
1361 * This code is only called for synchronous requests. Completed synchronous
1362 * requests are left on reqq and we remove them before moving on to the
1363 * processing state.
1364 */
1365static int
1366nfs_request_waitreply(struct nfsreq *rep)
1367{
1368 struct nfsmount *nmp = rep->r_nmp;
1369 int error;
1370
1371 KKASSERT((rep->r_flags & R_ASYNC) == 0);
1372
1373 /*
1374 * Wait until the request is finished.
1375 */
1376 error = nfs_reply(nmp, rep);
1377
1378 /*
1379 * RPC done, unlink the request, but don't rip it out from under
1380 * the callout timer.
1381 *
1382 * Once unlinked no other receiver or the timer will have
1383 * visibility, so we do not have to set R_LOCKED.
1384 */
1385 crit_enter();
1386 while (rep->r_flags & R_LOCKED) {
1387 rep->r_flags |= R_WANTED;
1388 tsleep(rep, 0, "nfstrac", 0);
1389 }
1390 KKASSERT(rep->r_flags & R_ONREQQ);
1391 TAILQ_REMOVE(&nmp->nm_reqq, rep, r_chain);
1392 rep->r_flags &= ~R_ONREQQ;
1393 --nmp->nm_reqqlen;
1394 if (TAILQ_FIRST(&nmp->nm_bioq) &&
1395 nmp->nm_reqqlen <= nfs_maxasyncbio * 2 / 3) {
1396 nfssvc_iod_writer_wakeup(nmp);
1397 }
1398 crit_exit();
1399
1400 /*
1401 * Decrement the outstanding request count.
1402 */
1403 if (rep->r_flags & R_SENT) {
1404 rep->r_flags &= ~R_SENT;
1405 }
1406 return (error);
1407}
1408
1409/*
1410 * Process reply with error returned from nfs_requet_waitreply().
1411 *
1412 * Returns EAGAIN if it wants us to loop up to nfs_request_try() again.
1413 * Returns ENEEDAUTH if it wants us to loop up to nfs_request_auth() again.
1414 */
1415static int
1416nfs_request_processreply(nfsm_info_t info, int error)
1417{
1418 struct nfsreq *req = info->req;
1419 struct nfsmount *nmp = req->r_nmp;
1420 u_int32_t *tl;
1421 int verf_type;
1422 int i;
1423
1424 /*
1425 * If there was a successful reply and a tprintf msg.
1426 * tprintf a response.
1427 */
1428 if (error == 0 && (req->r_flags & R_TPRINTFMSG)) {
1429 nfs_msg(req->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname,
1430 "is alive again");
1431 }
1432 info->mrep = req->r_mrep;
1433 info->md = req->r_md;
1434 info->dpos = req->r_dpos;
1435 if (error) {
1436 m_freem(req->r_mreq);
1437 req->r_mreq = NULL;
1438 kfree(req, M_NFSREQ);
1439 info->req = NULL;
1440 return (error);
1441 }
1442
1443 /*
1444 * break down the rpc header and check if ok
1445 */
1446 NULLOUT(tl = nfsm_dissect(info, 3 * NFSX_UNSIGNED));
1447 if (*tl++ == rpc_msgdenied) {
1448 if (*tl == rpc_mismatch) {
1449 error = EOPNOTSUPP;
1450 } else if ((nmp->nm_flag & NFSMNT_KERB) &&
1451 *tl++ == rpc_autherr) {
1452 if (req->r_failed_auth == 0) {
1453 req->r_failed_auth++;
1454 req->r_mheadend->m_next = NULL;
1455 m_freem(info->mrep);
1456 info->mrep = NULL;
1457 m_freem(req->r_mreq);
1458 req->r_mreq = NULL;
1459 return (ENEEDAUTH);
1460 } else {
1461 error = EAUTH;
1462 }
1463 } else {
1464 error = EACCES;
1465 }
1466 m_freem(info->mrep);
1467 info->mrep = NULL;
1468 m_freem(req->r_mreq);
1469 req->r_mreq = NULL;
1470 kfree(req, M_NFSREQ);
1471 info->req = NULL;
1472 return (error);
1473 }
1474
1475 /*
1476 * Grab any Kerberos verifier, otherwise just throw it away.
1477 */
1478 verf_type = fxdr_unsigned(int, *tl++);
1479 i = fxdr_unsigned(int32_t, *tl);
1480 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1481 error = nfs_savenickauth(nmp, req->r_cred, i, req->r_key,
1482 &info->md, &info->dpos, info->mrep);
1483 if (error)
1484 goto nfsmout;
1485 } else if (i > 0) {
1486 ERROROUT(nfsm_adv(info, nfsm_rndup(i)));
1487 }
1488 NULLOUT(tl = nfsm_dissect(info, NFSX_UNSIGNED));
1489 /* 0 == ok */
1490 if (*tl == 0) {
1491 NULLOUT(tl = nfsm_dissect(info, NFSX_UNSIGNED));
1492 if (*tl != 0) {
1493 error = fxdr_unsigned(int, *tl);
1494
1495 /*
1496 * Does anyone even implement this? Just impose
1497 * a 1-second delay.
1498 */
1499 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1500 error == NFSERR_TRYLATER) {
1501 m_freem(info->mrep);
1502 info->mrep = NULL;
1503 error = 0;
1504
1505 tsleep((caddr_t)&lbolt, 0, "nqnfstry", 0);
1506 return (EAGAIN); /* goto tryagain */
1507 }
1508
1509 /*
1510 * If the File Handle was stale, invalidate the
1511 * lookup cache, just in case.
1512 *
1513 * To avoid namecache<->vnode deadlocks we must
1514 * release the vnode lock if we hold it.
1515 */
1516 if (error == ESTALE) {
1517 struct vnode *vp = req->r_vp;
1518 int ltype;
1519
1520 ltype = lockstatus(&vp->v_lock, curthread);
1521 if (ltype == LK_EXCLUSIVE || ltype == LK_SHARED)
1522 lockmgr(&vp->v_lock, LK_RELEASE);
1523 cache_inval_vp(vp, CINV_CHILDREN);
1524 if (ltype == LK_EXCLUSIVE || ltype == LK_SHARED)
1525 lockmgr(&vp->v_lock, ltype);
1526 }
1527 if (nmp->nm_flag & NFSMNT_NFSV3) {
1528 KKASSERT(*req->r_mrp == info->mrep);
1529 KKASSERT(*req->r_mdp == info->md);
1530 KKASSERT(*req->r_dposp == info->dpos);
1531 error |= NFSERR_RETERR;
1532 } else {
1533 m_freem(info->mrep);
1534 info->mrep = NULL;
1535 }
1536 m_freem(req->r_mreq);
1537 req->r_mreq = NULL;
1538 kfree(req, M_NFSREQ);
1539 info->req = NULL;
1540 return (error);
1541 }
1542
1543 KKASSERT(*req->r_mrp == info->mrep);
1544 KKASSERT(*req->r_mdp == info->md);
1545 KKASSERT(*req->r_dposp == info->dpos);
1546 m_freem(req->r_mreq);
1547 req->r_mreq = NULL;
1548 FREE(req, M_NFSREQ);
1549 return (0);
1550 }
1551 m_freem(info->mrep);
1552 info->mrep = NULL;
1553 error = EPROTONOSUPPORT;
1554nfsmout:
1555 m_freem(req->r_mreq);
1556 req->r_mreq = NULL;
1557 kfree(req, M_NFSREQ);
1558 info->req = NULL;
1559 return (error);
1560}
1561
1562#ifndef NFS_NOSERVER
1563/*
1564 * Generate the rpc reply header
1565 * siz arg. is used to decide if adding a cluster is worthwhile
1566 */
1567int
1568nfs_rephead(int siz, struct nfsrv_descript *nd, struct nfssvc_sock *slp,
1569 int err, struct mbuf **mrq, struct mbuf **mbp, caddr_t *bposp)
1570{
1571 u_int32_t *tl;
1572 struct nfsm_info info;
1573
1574 siz += RPC_REPLYSIZ;
1575 info.mb = m_getl(max_hdr + siz, MB_WAIT, MT_DATA, M_PKTHDR, NULL);
1576 info.mreq = info.mb;
1577 info.mreq->m_pkthdr.len = 0;
1578 /*
1579 * If this is not a cluster, try and leave leading space
1580 * for the lower level headers.
1581 */
1582 if ((max_hdr + siz) < MINCLSIZE)
1583 info.mreq->m_data += max_hdr;
1584 tl = mtod(info.mreq, u_int32_t *);
1585 info.mreq->m_len = 6 * NFSX_UNSIGNED;
1586 info.bpos = ((caddr_t)tl) + info.mreq->m_len;
1587 *tl++ = txdr_unsigned(nd->nd_retxid);
1588 *tl++ = rpc_reply;
1589 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1590 *tl++ = rpc_msgdenied;
1591 if (err & NFSERR_AUTHERR) {
1592 *tl++ = rpc_autherr;
1593 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1594 info.mreq->m_len -= NFSX_UNSIGNED;
1595 info.bpos -= NFSX_UNSIGNED;
1596 } else {
1597 *tl++ = rpc_mismatch;
1598 *tl++ = txdr_unsigned(RPC_VER2);
1599 *tl = txdr_unsigned(RPC_VER2);
1600 }
1601 } else {
1602 *tl++ = rpc_msgaccepted;
1603
1604 /*
1605 * For Kerberos authentication, we must send the nickname
1606 * verifier back, otherwise just RPCAUTH_NULL.
1607 */
1608 if (nd->nd_flag & ND_KERBFULL) {
1609 struct nfsuid *nuidp;
1610 struct timeval ktvin, ktvout;
1611
1612 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1613 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1614 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1615 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1616 &nuidp->nu_haddr, nd->nd_nam2)))
1617 break;
1618 }
1619 if (nuidp) {
1620 ktvin.tv_sec =
1621 txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
1622 ktvin.tv_usec =
1623 txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1624
1625 /*
1626 * Encrypt the timestamp in ecb mode using the
1627 * session key.
1628 */
1629#ifdef NFSKERB
1630 XXX
1631#else
1632 ktvout.tv_sec = 0;
1633 ktvout.tv_usec = 0;
1634#endif
1635
1636 *tl++ = rpc_auth_kerb;
1637 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1638 *tl = ktvout.tv_sec;
1639 tl = nfsm_build(&info, 3 * NFSX_UNSIGNED);
1640 *tl++ = ktvout.tv_usec;
1641 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1642 } else {
1643 *tl++ = 0;
1644 *tl++ = 0;
1645 }
1646 } else {
1647 *tl++ = 0;
1648 *tl++ = 0;
1649 }
1650 switch (err) {
1651 case EPROGUNAVAIL:
1652 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1653 break;
1654 case EPROGMISMATCH:
1655 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1656 tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
1657 *tl++ = txdr_unsigned(2);
1658 *tl = txdr_unsigned(3);
1659 break;
1660 case EPROCUNAVAIL:
1661 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1662 break;
1663 case EBADRPC:
1664 *tl = txdr_unsigned(RPC_GARBAGE);
1665 break;
1666 default:
1667 *tl = 0;
1668 if (err != NFSERR_RETVOID) {
1669 tl = nfsm_build(&info, NFSX_UNSIGNED);
1670 if (err)
1671 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1672 else
1673 *tl = 0;
1674 }
1675 break;
1676 };
1677 }
1678
1679 if (mrq != NULL)
1680 *mrq = info.mreq;
1681 *mbp = info.mb;
1682 *bposp = info.bpos;
1683 if (err != 0 && err != NFSERR_RETVOID)
1684 nfsstats.srvrpc_errs++;
1685 return (0);
1686}
1687
1688
1689#endif /* NFS_NOSERVER */
1690
1691/*
1692 * Nfs timer routine.
1693 *
1694 * Scan the nfsreq list and retranmit any requests that have timed out
1695 * To avoid retransmission attempts on STREAM sockets (in the future) make
1696 * sure to set the r_retry field to 0 (implies nm_retry == 0).
1697 *
1698 * Requests with attached responses, terminated requests, and
1699 * locked requests are ignored. Locked requests will be picked up
1700 * in a later timer call.
1701 */
1702void
1703nfs_timer_callout(void *arg /* never used */)
1704{
1705 struct nfsmount *nmp;
1706 struct nfsreq *req;
1707#ifndef NFS_NOSERVER
1708 struct nfssvc_sock *slp;
1709 u_quad_t cur_usec;
1710#endif /* NFS_NOSERVER */
1711
1712 lwkt_gettoken(&nfs_token);
1713 TAILQ_FOREACH(nmp, &nfs_mountq, nm_entry) {
1714 lwkt_gettoken(&nmp->nm_token);
1715 TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1716 KKASSERT(nmp == req->r_nmp);
1717 if (req->r_mrep)
1718 continue;
1719 if (req->r_flags & (R_SOFTTERM | R_LOCKED))
1720 continue;
1721
1722 /*
1723 * Handle timeout/retry. Be sure to process r_mrep
1724 * for async requests that completed while we had
1725 * the request locked or they will hang in the reqq
1726 * forever.
1727 */
1728 req->r_flags |= R_LOCKED;
1729 if (nfs_sigintr(nmp, req, req->r_td)) {
1730 nfs_softterm(req, 1);
1731 req->r_flags &= ~R_LOCKED;
1732 } else {
1733 nfs_timer_req(req);
1734 if (req->r_flags & R_ASYNC) {
1735 if (req->r_mrep)
1736 nfs_hardterm(req, 1);
1737 req->r_flags &= ~R_LOCKED;
1738 nfssvc_iod_reader_wakeup(nmp);
1739 } else {
1740 req->r_flags &= ~R_LOCKED;
1741 }
1742 }
1743 if (req->r_flags & R_WANTED) {
1744 req->r_flags &= ~R_WANTED;
1745 wakeup(req);
1746 }
1747 }
1748 lwkt_reltoken(&nmp->nm_token);
1749 }
1750#ifndef NFS_NOSERVER
1751
1752 /*
1753 * Scan the write gathering queues for writes that need to be
1754 * completed now.
1755 */
1756 cur_usec = nfs_curusec();
1757
1758 TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) {
1759 /* XXX race against removal */
1760 if (lwkt_trytoken(&slp->ns_token)) {
1761 if (slp->ns_tq.lh_first &&
1762 (slp->ns_tq.lh_first->nd_time <= cur_usec)) {
1763 nfsrv_wakenfsd(slp, 1);
1764 }
1765 lwkt_reltoken(&slp->ns_token);
1766 }
1767 }
1768#endif /* NFS_NOSERVER */
1769
1770 callout_reset(&nfs_timer_handle, nfs_ticks, nfs_timer_callout, NULL);
1771 lwkt_reltoken(&nfs_token);
1772}
1773
1774static
1775void
1776nfs_timer_req(struct nfsreq *req)
1777{
1778 struct thread *td = &thread0; /* XXX for creds, will break if sleep */
1779 struct nfsmount *nmp = req->r_nmp;
1780 struct mbuf *m;
1781 struct socket *so;
1782 int timeo;
1783 int error;
1784
1785 /*
1786 * rtt ticks and timeout calculation. Return if the timeout
1787 * has not been reached yet, unless the packet is flagged
1788 * for an immediate send.
1789 *
1790 * The mean rtt doesn't help when we get random I/Os, we have
1791 * to multiply by fairly large numbers.
1792 */
1793 if (req->r_rtt >= 0) {
1794 /*
1795 * Calculate the timeout to test against.
1796 */
1797 req->r_rtt++;
1798 if (nmp->nm_flag & NFSMNT_DUMBTIMR) {
1799 timeo = nmp->nm_timeo << NFS_RTT_SCALE_BITS;
1800 } else if (req->r_flags & R_TIMING) {
1801 timeo = NFS_SRTT(req) + NFS_SDRTT(req);
1802 } else {
1803 timeo = nmp->nm_timeo << NFS_RTT_SCALE_BITS;
1804 }
1805 timeo *= multt[req->r_procnum];
1806 /* timeo is still scaled by SCALE_BITS */
1807
1808#define NFSFS (NFS_RTT_SCALE * NFS_HZ)
1809 if (req->r_flags & R_TIMING) {
1810 static long last_time;
1811 if (nfs_showrtt && last_time != time_second) {
1812 kprintf("rpccmd %d NFS SRTT %d SDRTT %d "
1813 "timeo %d.%03d\n",
1814 proct[req->r_procnum],
1815 NFS_SRTT(req), NFS_SDRTT(req),
1816 timeo / NFSFS,
1817 timeo % NFSFS * 1000 / NFSFS);
1818 last_time = time_second;
1819 }
1820 }
1821#undef NFSFS
1822
1823 /*
1824 * deal with nfs_timer jitter.
1825 */
1826 timeo = (timeo >> NFS_RTT_SCALE_BITS) + 1;
1827 if (timeo < 2)
1828 timeo = 2;
1829
1830 if (nmp->nm_timeouts > 0)
1831 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1832 if (timeo > NFS_MAXTIMEO)
1833 timeo = NFS_MAXTIMEO;
1834 if (req->r_rtt <= timeo) {
1835 if ((req->r_flags & R_NEEDSXMIT) == 0)
1836 return;
1837 } else if (nmp->nm_timeouts < 8) {
1838 nmp->nm_timeouts++;
1839 }
1840 }
1841
1842 /*
1843 * Check for server not responding
1844 */
1845 if ((req->r_flags & R_TPRINTFMSG) == 0 &&
1846 req->r_rexmit > nmp->nm_deadthresh) {
1847 nfs_msg(req->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname,
1848 "not responding");
1849 req->r_flags |= R_TPRINTFMSG;
1850 }
1851 if (req->r_rexmit >= req->r_retry) { /* too many */
1852 nfsstats.rpctimeouts++;
1853 nfs_softterm(req, 1);
1854 return;
1855 }
1856
1857 /*
1858 * Generally disable retransmission on reliable sockets,
1859 * unless the request is flagged for immediate send.
1860 */
1861 if (nmp->nm_sotype != SOCK_DGRAM) {
1862 if (++req->r_rexmit > NFS_MAXREXMIT)
1863 req->r_rexmit = NFS_MAXREXMIT;
1864 if ((req->r_flags & R_NEEDSXMIT) == 0)
1865 return;
1866 }
1867
1868 /*
1869 * Stop here if we do not have a socket!
1870 */
1871 if ((so = nmp->nm_so) == NULL)
1872 return;
1873
1874 /*
1875 * If there is enough space and the window allows.. resend it.
1876 *
1877 * r_rtt is left intact in case we get an answer after the
1878 * retry that was a reply to the original packet.
1879 *
1880 * NOTE: so_pru_send()
1881 */
1882 if (ssb_space(&so->so_snd) >= req->r_mreq->m_pkthdr.len &&
1883 (req->r_flags & (R_SENT | R_NEEDSXMIT)) &&
1884 (m = m_copym(req->r_mreq, 0, M_COPYALL, MB_DONTWAIT))){
1885 if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
1886 error = so_pru_send(so, 0, m, NULL, NULL, td);
1887 else
1888 error = so_pru_send(so, 0, m, nmp->nm_nam, NULL, td);
1889 if (error) {
1890 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
1891 so->so_error = 0;
1892 req->r_flags |= R_NEEDSXMIT;
1893 } else if (req->r_mrep == NULL) {
1894 /*
1895 * Iff first send, start timing
1896 * else turn timing off, backoff timer
1897 * and divide congestion window by 2.
1898 *
1899 * It is possible for the so_pru_send() to
1900 * block and for us to race a reply so we
1901 * only do this if the reply field has not
1902 * been filled in. R_LOCKED will prevent
1903 * the request from being ripped out from under
1904 * us entirely.
1905 *
1906 * Record the last resent procnum to aid us
1907 * in duplicate detection on receive.
1908 */
1909 if ((req->r_flags & R_NEEDSXMIT) == 0) {
1910 if (nfs_showrexmit)
1911 kprintf("X");
1912 if (++req->r_rexmit > NFS_MAXREXMIT)
1913 req->r_rexmit = NFS_MAXREXMIT;
1914 nmp->nm_maxasync_scaled >>= 1;
1915 if (nmp->nm_maxasync_scaled < NFS_MINASYNC_SCALED)
1916 nmp->nm_maxasync_scaled = NFS_MINASYNC_SCALED;
1917 nfsstats.rpcretries++;
1918 nmp->nm_lastreprocnum = req->r_procnum;
1919 } else {
1920 req->r_flags |= R_SENT;
1921 req->r_flags &= ~R_NEEDSXMIT;
1922 }
1923 }
1924 }
1925}
1926
1927/*
1928 * Mark all of an nfs mount's outstanding requests with R_SOFTTERM and
1929 * wait for all requests to complete. This is used by forced unmounts
1930 * to terminate any outstanding RPCs.
1931 *
1932 * Locked requests cannot be canceled but will be marked for
1933 * soft-termination.
1934 */
1935int
1936nfs_nmcancelreqs(struct nfsmount *nmp)
1937{
1938 struct nfsreq *req;
1939 int i;
1940
1941 crit_enter();
1942 TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1943 if (req->r_mrep != NULL || (req->r_flags & R_SOFTTERM))
1944 continue;
1945 nfs_softterm(req, 0);
1946 }
1947 /* XXX the other two queues as well */
1948 crit_exit();
1949
1950 for (i = 0; i < 30; i++) {
1951 crit_enter();
1952 TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1953 if (nmp == req->r_nmp)
1954 break;
1955 }
1956 crit_exit();
1957 if (req == NULL)
1958 return (0);
1959 tsleep(&lbolt, 0, "nfscancel", 0);
1960 }
1961 return (EBUSY);
1962}
1963
1964/*
1965 * Soft-terminate a request, effectively marking it as failed.
1966 *
1967 * Must be called from within a critical section.
1968 */
1969static void
1970nfs_softterm(struct nfsreq *rep, int islocked)
1971{
1972 rep->r_flags |= R_SOFTTERM;
1973 nfs_hardterm(rep, islocked);
1974}
1975
1976/*
1977 * Hard-terminate a request, typically after getting a response.
1978 *
1979 * The state machine can still decide to re-issue it later if necessary.
1980 *
1981 * Must be called from within a critical section.
1982 */
1983static void
1984nfs_hardterm(struct nfsreq *rep, int islocked)
1985{
1986 struct nfsmount *nmp = rep->r_nmp;
1987
1988 /*
1989 * The nm_send count is decremented now to avoid deadlocks
1990 * when the process in soreceive() hasn't yet managed to send
1991 * its own request.
1992 */
1993 if (rep->r_flags & R_SENT) {
1994 rep->r_flags &= ~R_SENT;
1995 }
1996
1997 /*
1998 * If we locked the request or nobody else has locked the request,
1999 * and the request is async, we can move it to the reader thread's
2000 * queue now and fix up the state.
2001 *
2002 * If we locked the request or nobody else has locked the request,
2003 * we can wake up anyone blocked waiting for a response on the
2004 * request.
2005 */
2006 if (islocked || (rep->r_flags & R_LOCKED) == 0) {
2007 if ((rep->r_flags & (R_ONREQQ | R_ASYNC)) ==
2008 (R_ONREQQ | R_ASYNC)) {
2009 rep->r_flags &= ~R_ONREQQ;
2010 TAILQ_REMOVE(&nmp->nm_reqq, rep, r_chain);
2011 --nmp->nm_reqqlen;
2012 TAILQ_INSERT_TAIL(&nmp->nm_reqrxq, rep, r_chain);
2013 KKASSERT(rep->r_info->state == NFSM_STATE_TRY ||
2014 rep->r_info->state == NFSM_STATE_WAITREPLY);
2015 rep->r_info->state = NFSM_STATE_PROCESSREPLY;
2016 nfssvc_iod_reader_wakeup(nmp);
2017 if (TAILQ_FIRST(&nmp->nm_bioq) &&
2018 nmp->nm_reqqlen <= nfs_maxasyncbio * 2 / 3) {
2019 nfssvc_iod_writer_wakeup(nmp);
2020 }
2021 }
2022 mtx_abort_ex_link(&nmp->nm_rxlock, &rep->r_link);
2023 }
2024}
2025
2026/*
2027 * Test for a termination condition pending on the process.
2028 * This is used for NFSMNT_INT mounts.
2029 */
2030int
2031nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct thread *td)
2032{
2033 sigset_t tmpset;
2034 struct proc *p;
2035 struct lwp *lp;
2036
2037 if (rep && (rep->r_flags & R_SOFTTERM))
2038 return (EINTR);
2039 /* Terminate all requests while attempting a forced unmount. */
2040 if (nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF)
2041 return (EINTR);
2042 if (!(nmp->nm_flag & NFSMNT_INT))
2043 return (0);
2044 /* td might be NULL YYY */
2045 if (td == NULL || (p = td->td_proc) == NULL)
2046 return (0);
2047
2048 lp = td->td_lwp;
2049 tmpset = lwp_sigpend(lp);
2050 SIGSETNAND(tmpset, lp->lwp_sigmask);
2051 SIGSETNAND(tmpset, p->p_sigignore);
2052 if (SIGNOTEMPTY(tmpset) && NFSINT_SIGMASK(tmpset))
2053 return (EINTR);
2054
2055 return (0);
2056}
2057
2058/*
2059 * Lock a socket against others.
2060 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
2061 * and also to avoid race conditions between the processes with nfs requests
2062 * in progress when a reconnect is necessary.
2063 */
2064int
2065nfs_sndlock(struct nfsmount *nmp, struct nfsreq *rep)
2066{
2067 mtx_t mtx = &nmp->nm_txlock;
2068 struct thread *td;
2069 int slptimeo;
2070 int slpflag;
2071 int error;
2072
2073 slpflag = 0;
2074 slptimeo = 0;
2075 td = rep ? rep->r_td : NULL;
2076 if (nmp->nm_flag & NFSMNT_INT)
2077 slpflag = PCATCH;
2078
2079 while ((error = mtx_lock_ex_try(mtx)) != 0) {
2080 if (nfs_sigintr(nmp, rep, td)) {
2081 error = EINTR;
2082 break;
2083 }
2084 error = mtx_lock_ex(mtx, "nfsndlck", slpflag, slptimeo);
2085 if (error == 0)
2086 break;
2087 if (slpflag == PCATCH) {
2088 slpflag = 0;
2089 slptimeo = 2 * hz;
2090 }
2091 }
2092 /* Always fail if our request has been cancelled. */
2093 if (rep && (rep->r_flags & R_SOFTTERM)) {
2094 if (error == 0)
2095 mtx_unlock(mtx);
2096 error = EINTR;
2097 }
2098 return (error);
2099}
2100
2101/*
2102 * Unlock the stream socket for others.
2103 */
2104void
2105nfs_sndunlock(struct nfsmount *nmp)
2106{
2107 mtx_unlock(&nmp->nm_txlock);
2108}
2109
2110/*
2111 * Lock the receiver side of the socket.
2112 *
2113 * rep may be NULL.
2114 */
2115static int
2116nfs_rcvlock(struct nfsmount *nmp, struct nfsreq *rep)
2117{
2118 mtx_t mtx = &nmp->nm_rxlock;
2119 int slpflag;
2120 int slptimeo;
2121 int error;
2122
2123 /*
2124 * Unconditionally check for completion in case another nfsiod
2125 * get the packet while the caller was blocked, before the caller
2126 * called us. Packet reception is handled by mainline code which
2127 * is protected by the BGL at the moment.
2128 *
2129 * We do not strictly need the second check just before the
2130 * tsleep(), but it's good defensive programming.
2131 */
2132 if (rep && rep->r_mrep != NULL)
2133 return (EALREADY);
2134
2135 if (nmp->nm_flag & NFSMNT_INT)
2136 slpflag = PCATCH;
2137 else
2138 slpflag = 0;
2139 slptimeo = 0;
2140
2141 while ((error = mtx_lock_ex_try(mtx)) != 0) {
2142 if (nfs_sigintr(nmp, rep, (rep ? rep->r_td : NULL))) {
2143 error = EINTR;
2144 break;
2145 }
2146 if (rep && rep->r_mrep != NULL) {
2147 error = EALREADY;
2148 break;
2149 }
2150
2151 /*
2152 * NOTE: can return ENOLCK, but in that case rep->r_mrep
2153 * will already be set.
2154 */
2155 if (rep) {
2156 error = mtx_lock_ex_link(mtx, &rep->r_link,
2157 "nfsrcvlk",
2158 slpflag, slptimeo);
2159 } else {
2160 error = mtx_lock_ex(mtx, "nfsrcvlk", slpflag, slptimeo);
2161 }
2162 if (error == 0)
2163 break;
2164
2165 /*
2166 * If our reply was recieved while we were sleeping,
2167 * then just return without taking the lock to avoid a
2168 * situation where a single iod could 'capture' the
2169 * recieve lock.
2170 */
2171 if (rep && rep->r_mrep != NULL) {
2172 error = EALREADY;
2173 break;
2174 }
2175 if (slpflag == PCATCH) {
2176 slpflag = 0;
2177 slptimeo = 2 * hz;
2178 }
2179 }
2180 if (error == 0) {
2181 if (rep && rep->r_mrep != NULL) {
2182 error = EALREADY;
2183 mtx_unlock(mtx);
2184 }
2185 }
2186 return (error);
2187}
2188
2189/*
2190 * Unlock the stream socket for others.
2191 */
2192static void
2193nfs_rcvunlock(struct nfsmount *nmp)
2194{
2195 mtx_unlock(&nmp->nm_rxlock);
2196}
2197
2198/*
2199 * nfs_realign:
2200 *
2201 * Check for badly aligned mbuf data and realign by copying the unaligned
2202 * portion of the data into a new mbuf chain and freeing the portions
2203 * of the old chain that were replaced.
2204 *
2205 * We cannot simply realign the data within the existing mbuf chain
2206 * because the underlying buffers may contain other rpc commands and
2207 * we cannot afford to overwrite them.
2208 *
2209 * We would prefer to avoid this situation entirely. The situation does
2210 * not occur with NFS/UDP and is supposed to only occassionally occur
2211 * with TCP. Use vfs.nfs.realign_count and realign_test to check this.
2212 *
2213 * NOTE! MB_DONTWAIT cannot be used here. The mbufs must be acquired
2214 * because the rpc request OR reply cannot be thrown away. TCP NFS
2215 * mounts do not retry their RPCs unless the TCP connection itself
2216 * is dropped so throwing away a RPC will basically cause the NFS
2217 * operation to lockup indefinitely.
2218 */
2219static void
2220nfs_realign(struct mbuf **pm, int hsiz)
2221{
2222 struct mbuf *m;
2223 struct mbuf *n = NULL;
2224
2225 /*
2226 * Check for misalignemnt
2227 */
2228 ++nfs_realign_test;
2229 while ((m = *pm) != NULL) {
2230 if ((m->m_len & 0x3) || (mtod(m, intptr_t) & 0x3))
2231 break;
2232 pm = &m->m_next;
2233 }
2234
2235 /*
2236 * If misalignment found make a completely new copy.
2237 */
2238 if (m) {
2239 ++nfs_realign_count;
2240 n = m_dup_data(m, MB_WAIT);
2241 m_freem(*pm);
2242 *pm = n;
2243 }
2244}
2245
2246#ifndef NFS_NOSERVER
2247
2248/*
2249 * Parse an RPC request
2250 * - verify it
2251 * - fill in the cred struct.
2252 */
2253int
2254nfs_getreq(struct nfsrv_descript *nd, struct nfsd *nfsd, int has_header)
2255{
2256 int len, i;
2257 u_int32_t *tl;
2258 struct uio uio;
2259 struct iovec iov;
2260 caddr_t cp;
2261 u_int32_t nfsvers, auth_type;
2262 uid_t nickuid;
2263 int error = 0, ticklen;
2264 struct nfsuid *nuidp;
2265 struct timeval tvin, tvout;
2266 struct nfsm_info info;
2267#if 0 /* until encrypted keys are implemented */
2268 NFSKERBKEYSCHED_T keys; /* stores key schedule */
2269#endif
2270
2271 info.mrep = nd->nd_mrep;
2272 info.md = nd->nd_md;
2273 info.dpos = nd->nd_dpos;
2274
2275 if (has_header) {
2276 NULLOUT(tl = nfsm_dissect(&info, 10 * NFSX_UNSIGNED));
2277 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
2278 if (*tl++ != rpc_call) {
2279 m_freem(info.mrep);
2280 return (EBADRPC);
2281 }
2282 } else {
2283 NULLOUT(tl = nfsm_dissect(&info, 8 * NFSX_UNSIGNED));
2284 }
2285 nd->nd_repstat = 0;
2286 nd->nd_flag = 0;
2287 if (*tl++ != rpc_vers) {
2288 nd->nd_repstat = ERPCMISMATCH;
2289 nd->nd_procnum = NFSPROC_NOOP;
2290 return (0);
2291 }
2292 if (*tl != nfs_prog) {
2293 nd->nd_repstat = EPROGUNAVAIL;
2294 nd->nd_procnum = NFSPROC_NOOP;
2295 return (0);
2296 }
2297 tl++;
2298 nfsvers = fxdr_unsigned(u_int32_t, *tl++);
2299 if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) {
2300 nd->nd_repstat = EPROGMISMATCH;
2301 nd->nd_procnum = NFSPROC_NOOP;
2302 return (0);
2303 }
2304 if (nfsvers == NFS_VER3)
2305 nd->nd_flag = ND_NFSV3;
2306 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
2307 if (nd->nd_procnum == NFSPROC_NULL)
2308 return (0);
2309 if (nd->nd_procnum >= NFS_NPROCS ||
2310 (nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
2311 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
2312 nd->nd_repstat = EPROCUNAVAIL;
2313 nd->nd_procnum = NFSPROC_NOOP;
2314 return (0);
2315 }
2316 if ((nd->nd_flag & ND_NFSV3) == 0)
2317 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
2318 auth_type = *tl++;
2319 len = fxdr_unsigned(int, *tl++);
2320 if (len < 0 || len > RPCAUTH_MAXSIZ) {
2321 m_freem(info.mrep);
2322 return (EBADRPC);
2323 }
2324
2325 nd->nd_flag &= ~ND_KERBAUTH;
2326 /*
2327 * Handle auth_unix or auth_kerb.
2328 */
2329 if (auth_type == rpc_auth_unix) {
2330 len = fxdr_unsigned(int, *++tl);
2331 if (len < 0 || len > NFS_MAXNAMLEN) {
2332 m_freem(info.mrep);
2333 return (EBADRPC);
2334 }
2335 ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2336 NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2337 bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred));
2338 nd->nd_cr.cr_ref = 1;
2339 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
2340 nd->nd_cr.cr_ruid = nd->nd_cr.cr_svuid = nd->nd_cr.cr_uid;
2341 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
2342 nd->nd_cr.cr_rgid = nd->nd_cr.cr_svgid = nd->nd_cr.cr_gid;
2343 len = fxdr_unsigned(int, *tl);
2344 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
2345 m_freem(info.mrep);
2346 return (EBADRPC);
2347 }
2348 NULLOUT(tl = nfsm_dissect(&info, (len + 2) * NFSX_UNSIGNED));
2349 for (i = 1; i <= len; i++)
2350 if (i < NGROUPS)
2351 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
2352 else
2353 tl++;
2354 nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1);
2355 if (nd->nd_cr.cr_ngroups > 1)
2356 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
2357 len = fxdr_unsigned(int, *++tl);
2358 if (len < 0 || len > RPCAUTH_MAXSIZ) {
2359 m_freem(info.mrep);
2360 return (EBADRPC);
2361 }
2362 if (len > 0) {
2363 ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2364 }
2365 } else if (auth_type == rpc_auth_kerb) {
2366 switch (fxdr_unsigned(int, *tl++)) {
2367 case RPCAKN_FULLNAME:
2368 ticklen = fxdr_unsigned(int, *tl);
2369 *((u_int32_t *)nfsd->nfsd_authstr) = *tl;
2370 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
2371 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
2372 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
2373 m_freem(info.mrep);
2374 return (EBADRPC);
2375 }
2376 uio.uio_offset = 0;
2377 uio.uio_iov = &iov;
2378 uio.uio_iovcnt = 1;
2379 uio.uio_segflg = UIO_SYSSPACE;
2380 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
2381 iov.iov_len = RPCAUTH_MAXSIZ - 4;
2382 ERROROUT(nfsm_mtouio(&info, &uio, uio.uio_resid));
2383 NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2384 if (*tl++ != rpc_auth_kerb ||
2385 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
2386 kprintf("Bad kerb verifier\n");
2387 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2388 nd->nd_procnum = NFSPROC_NOOP;
2389 return (0);
2390 }
2391 NULLOUT(cp = nfsm_dissect(&info, 4 * NFSX_UNSIGNED));
2392 tl = (u_int32_t *)cp;
2393 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
2394 kprintf("Not fullname kerb verifier\n");
2395 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2396 nd->nd_procnum = NFSPROC_NOOP;
2397 return (0);
2398 }
2399 cp += NFSX_UNSIGNED;
2400 bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED);
2401 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
2402 nd->nd_flag |= ND_KERBFULL;
2403 nfsd->nfsd_flag |= NFSD_NEEDAUTH;
2404 break;
2405 case RPCAKN_NICKNAME:
2406 if (len != 2 * NFSX_UNSIGNED) {
2407 kprintf("Kerb nickname short\n");
2408 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
2409 nd->nd_procnum = NFSPROC_NOOP;
2410 return (0);
2411 }
2412 nickuid = fxdr_unsigned(uid_t, *tl);
2413 NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2414 if (*tl++ != rpc_auth_kerb ||
2415 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
2416 kprintf("Kerb nick verifier bad\n");
2417 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2418 nd->nd_procnum = NFSPROC_NOOP;
2419 return (0);
2420 }
2421 NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2422 tvin.tv_sec = *tl++;
2423 tvin.tv_usec = *tl;
2424
2425 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
2426 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
2427 if (nuidp->nu_cr.cr_uid == nickuid &&
2428 (!nd->nd_nam2 ||
2429 netaddr_match(NU_NETFAM(nuidp),
2430 &nuidp->nu_haddr, nd->nd_nam2)))
2431 break;
2432 }
2433 if (!nuidp) {
2434 nd->nd_repstat =
2435 (NFSERR_AUTHERR|AUTH_REJECTCRED);
2436 nd->nd_procnum = NFSPROC_NOOP;
2437 return (0);
2438 }
2439
2440 /*
2441 * Now, decrypt the timestamp using the session key
2442 * and validate it.
2443 */
2444#ifdef NFSKERB
2445 XXX
2446#else
2447 tvout.tv_sec = 0;
2448 tvout.tv_usec = 0;
2449#endif
2450
2451 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
2452 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
2453 if (nuidp->nu_expire < time_second ||
2454 nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
2455 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
2456 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
2457 nuidp->nu_expire = 0;
2458 nd->nd_repstat =
2459 (NFSERR_AUTHERR|AUTH_REJECTVERF);
2460 nd->nd_procnum = NFSPROC_NOOP;
2461 return (0);
2462 }
2463 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
2464 nd->nd_flag |= ND_KERBNICK;
2465 };
2466 } else {
2467 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
2468 nd->nd_procnum = NFSPROC_NOOP;
2469 return (0);
2470 }
2471
2472 nd->nd_md = info.md;
2473 nd->nd_dpos = info.dpos;
2474 return (0);
2475nfsmout:
2476 return (error);
2477}
2478
2479#endif
2480
2481/*
2482 * Send a message to the originating process's terminal. The thread and/or
2483 * process may be NULL. YYY the thread should not be NULL but there may
2484 * still be some uio_td's that are still being passed as NULL through to
2485 * nfsm_request().
2486 */
2487static int
2488nfs_msg(struct thread *td, char *server, char *msg)
2489{
2490 tpr_t tpr;
2491
2492 if (td && td->td_proc)
2493 tpr = tprintf_open(td->td_proc);
2494 else
2495 tpr = NULL;
2496 tprintf(tpr, "nfs server %s: %s\n", server, msg);
2497 tprintf_close(tpr);
2498 return (0);
2499}
2500
2501#ifndef NFS_NOSERVER
2502
2503/*
2504 * Socket upcall routine for nfsd sockets. This runs in the protocol
2505 * thread and passes waitflag == MB_DONTWAIT.
2506 */
2507void
2508nfsrv_rcv_upcall(struct socket *so, void *arg, int waitflag)
2509{
2510 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2511
2512 if (slp->ns_needq_upcall == 0) {
2513 slp->ns_needq_upcall = 1; /* ok to race */
2514 lwkt_gettoken(&nfs_token);
2515 nfsrv_wakenfsd(slp, 1);
2516 lwkt_reltoken(&nfs_token);
2517 }
2518#if 0
2519 lwkt_gettoken(&slp->ns_token);
2520 slp->ns_flag |= SLP_NEEDQ;
2521 nfsrv_rcv(so, arg, waitflag);
2522 lwkt_reltoken(&slp->ns_token);
2523#endif
2524}
2525
2526/*
2527 * Process new data on a receive socket. Essentially do as much as we can
2528 * non-blocking, else punt and it will be called with MB_WAIT from an nfsd.
2529 *
2530 * slp->ns_token is held on call
2531 */
2532void
2533nfsrv_rcv(struct socket *so, void *arg, int waitflag)
2534{
2535 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2536 struct mbuf *m;
2537 struct sockaddr *nam;
2538 struct sockbuf sio;
2539 int flags, error;
2540 int nparallel_wakeup = 0;
2541
2542 ASSERT_LWKT_TOKEN_HELD(&slp->ns_token);
2543
2544 if ((slp->ns_flag & SLP_VALID) == 0)
2545 return;
2546
2547 /*
2548 * Do not allow an infinite number of completed RPC records to build
2549 * up before we stop reading data from the socket. Otherwise we could
2550 * end up holding onto an unreasonable number of mbufs for requests
2551 * waiting for service.
2552 *
2553 * This should give pretty good feedback to the TCP layer and
2554 * prevents a memory crunch for other protocols.
2555 *
2556 * Note that the same service socket can be dispatched to several
2557 * nfs servers simultaniously. The tcp protocol callback calls us
2558 * with MB_DONTWAIT. nfsd calls us with MB_WAIT (typically).
2559 */
2560 if (NFSRV_RECLIMIT(slp))
2561 return;
2562
2563 /*
2564 * Handle protocol specifics to parse an RPC request. We always
2565 * pull from the socket using non-blocking I/O.
2566 */
2567 if (so->so_type == SOCK_STREAM) {
2568 /*
2569 * The data has to be read in an orderly fashion from a TCP
2570 * stream, unlike a UDP socket. It is possible for soreceive
2571 * and/or nfsrv_getstream() to block, so make sure only one
2572 * entity is messing around with the TCP stream at any given
2573 * moment. The receive sockbuf's lock in soreceive is not
2574 * sufficient.
2575 */
2576 if (slp->ns_flag & SLP_GETSTREAM)
2577 return;
2578 slp->ns_flag |= SLP_GETSTREAM;
2579
2580 /*
2581 * Do soreceive(). Pull out as much data as possible without
2582 * blocking.
2583 */
2584 sbinit(&sio, 1000000000);
2585 flags = MSG_DONTWAIT;
2586 error = so_pru_soreceive(so, &nam, NULL, &sio, NULL, &flags);
2587 if (error || sio.sb_mb == NULL) {
2588 if (error != EWOULDBLOCK)
2589 slp->ns_flag |= SLP_DISCONN;
2590 slp->ns_flag &= ~(SLP_GETSTREAM | SLP_NEEDQ);
2591 goto done;
2592 }
2593 m = sio.sb_mb;
2594 if (slp->ns_rawend) {
2595 slp->ns_rawend->m_next = m;
2596 slp->ns_cc += sio.sb_cc;
2597 } else {
2598 slp->ns_raw = m;
2599 slp->ns_cc = sio.sb_cc;
2600 }
2601 while (m->m_next)
2602 m = m->m_next;
2603 slp->ns_rawend = m;
2604
2605 /*
2606 * Now try and parse as many record(s) as we can out of the
2607 * raw stream data. This will set SLP_DOREC.
2608 */
2609 error = nfsrv_getstream(slp, waitflag, &nparallel_wakeup);
2610 if (error && error != EWOULDBLOCK)
2611 slp->ns_flag |= SLP_DISCONN;
2612 slp->ns_flag &= ~SLP_GETSTREAM;
2613 } else {
2614 /*
2615 * For UDP soreceive typically pulls just one packet, loop
2616 * to get the whole batch.
2617 */
2618 do {
2619 sbinit(&sio, 1000000000);
2620 flags = MSG_DONTWAIT;
2621 error = so_pru_soreceive(so, &nam, NULL, &sio,
2622 NULL, &flags);
2623 if (sio.sb_mb) {
2624 struct nfsrv_rec *rec;
2625 int mf = (waitflag & MB_DONTWAIT) ?
2626 M_NOWAIT : M_WAITOK;
2627 rec = kmalloc(sizeof(struct nfsrv_rec),
2628 M_NFSRVDESC, mf);
2629 if (!rec) {
2630 if (nam)
2631 FREE(nam, M_SONAME);
2632 m_freem(sio.sb_mb);
2633 continue;
2634 }
2635 nfs_realign(&sio.sb_mb, 10 * NFSX_UNSIGNED);
2636 rec->nr_address = nam;
2637 rec->nr_packet = sio.sb_mb;
2638 STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2639 ++slp->ns_numrec;
2640 slp->ns_flag |= SLP_DOREC;
2641 ++nparallel_wakeup;
2642 } else {
2643 slp->ns_flag &= ~SLP_NEEDQ;
2644 }
2645 if (error) {
2646 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2647 && error != EWOULDBLOCK) {
2648 slp->ns_flag |= SLP_DISCONN;
2649 break;
2650 }
2651 }
2652 if (NFSRV_RECLIMIT(slp))
2653 break;
2654 } while (sio.sb_mb);
2655 }
2656
2657 /*
2658 * If we were upcalled from the tcp protocol layer and we have
2659 * fully parsed records ready to go, or there is new data pending,
2660 * or something went wrong, try to wake up a nfsd thread to deal
2661 * with it.
2662 */
2663done:
2664 /* XXX this code is currently not executed (nfsrv_rcv_upcall) */
2665 if (waitflag == MB_DONTWAIT && (slp->ns_flag & SLP_ACTION_MASK)) {
2666 lwkt_gettoken(&nfs_token);
2667 nfsrv_wakenfsd(slp, nparallel_wakeup);
2668 lwkt_reltoken(&nfs_token);
2669 }
2670}
2671
2672/*
2673 * Try and extract an RPC request from the mbuf data list received on a
2674 * stream socket. The "waitflag" argument indicates whether or not it
2675 * can sleep.
2676 */
2677static int
2678nfsrv_getstream(struct nfssvc_sock *slp, int waitflag, int *countp)
2679{
2680 struct mbuf *m, **mpp;
2681 char *cp1, *cp2;
2682 int len;
2683 struct mbuf *om, *m2, *recm;
2684 u_int32_t recmark;
2685
2686 for (;;) {
2687 if (slp->ns_reclen == 0) {
2688 if (slp->ns_cc < NFSX_UNSIGNED)
2689 return (0);
2690 m = slp->ns_raw;
2691 if (m->m_len >= NFSX_UNSIGNED) {
2692 bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
2693 m->m_data += NFSX_UNSIGNED;
2694 m->m_len -= NFSX_UNSIGNED;
2695 } else {
2696 cp1 = (caddr_t)&recmark;
2697 cp2 = mtod(m, caddr_t);
2698 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
2699 while (m->m_len == 0) {
2700 m = m->m_next;
2701 cp2 = mtod(m, caddr_t);
2702 }
2703 *cp1++ = *cp2++;
2704 m->m_data++;
2705 m->m_len--;
2706 }
2707 }
2708 slp->ns_cc -= NFSX_UNSIGNED;
2709 recmark = ntohl(recmark);
2710 slp->ns_reclen = recmark & ~0x80000000;
2711 if (recmark & 0x80000000)
2712 slp->ns_flag |= SLP_LASTFRAG;
2713 else
2714 slp->ns_flag &= ~SLP_LASTFRAG;
2715 if (slp->ns_reclen > NFS_MAXPACKET || slp->ns_reclen <= 0) {
2716 log(LOG_ERR, "%s (%d) from nfs client\n",
2717 "impossible packet length",
2718 slp->ns_reclen);
2719 return (EPERM);
2720 }
2721 }
2722
2723 /*
2724 * Now get the record part.
2725 *
2726 * Note that slp->ns_reclen may be 0. Linux sometimes
2727 * generates 0-length RPCs
2728 */
2729 recm = NULL;
2730 if (slp->ns_cc == slp->ns_reclen) {
2731 recm = slp->ns_raw;
2732 slp->ns_raw = slp->ns_rawend = NULL;
2733 slp->ns_cc = slp->ns_reclen = 0;
2734 } else if (slp->ns_cc > slp->ns_reclen) {
2735 len = 0;
2736 m = slp->ns_raw;
2737 om = NULL;
2738
2739 while (len < slp->ns_reclen) {
2740 if ((len + m->m_len) > slp->ns_reclen) {
2741 m2 = m_copym(m, 0, slp->ns_reclen - len,
2742 waitflag);
2743 if (m2) {
2744 if (om) {
2745 om->m_next = m2;
2746 recm = slp->ns_raw;
2747 } else
2748 recm = m2;
2749 m->m_data += slp->ns_reclen - len;
2750 m->m_len -= slp->ns_reclen - len;
2751 len = slp->ns_reclen;
2752 } else {
2753 return (EWOULDBLOCK);
2754 }
2755 } else if ((len + m->m_len) == slp->ns_reclen) {
2756 om = m;
2757 len += m->m_len;
2758 m = m->m_next;
2759 recm = slp->ns_raw;
2760 om->m_next = NULL;
2761 } else {
2762 om = m;
2763 len += m->m_len;
2764 m = m->m_next;
2765 }
2766 }
2767 slp->ns_raw = m;
2768 slp->ns_cc -= len;
2769 slp->ns_reclen = 0;
2770 } else {
2771 return (0);
2772 }
2773
2774 /*
2775 * Accumulate the fragments into a record.
2776 */
2777 mpp = &slp->ns_frag;
2778 while (*mpp)
2779 mpp = &((*mpp)->m_next);
2780 *mpp = recm;
2781 if (slp->ns_flag & SLP_LASTFRAG) {
2782 struct nfsrv_rec *rec;
2783 int mf = (waitflag & MB_DONTWAIT) ? M_NOWAIT : M_WAITOK;
2784 rec = kmalloc(sizeof(struct nfsrv_rec), M_NFSRVDESC, mf);
2785 if (!rec) {
2786 m_freem(slp->ns_frag);
2787 } else {
2788 nfs_realign(&slp->ns_frag, 10 * NFSX_UNSIGNED);
2789 rec->nr_address = NULL;
2790 rec->nr_packet = slp->ns_frag;
2791 STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2792 ++slp->ns_numrec;
2793 slp->ns_flag |= SLP_DOREC;
2794 ++*countp;
2795 }
2796 slp->ns_frag = NULL;
2797 }
2798 }
2799}
2800
2801#ifdef INVARIANTS
2802
2803/*
2804 * Sanity check our mbuf chain.
2805 */
2806static void
2807nfs_checkpkt(struct mbuf *m, int len)
2808{
2809 int xlen = 0;
2810 while (m) {
2811 xlen += m->m_len;
2812 m = m->m_next;
2813 }
2814 if (xlen != len) {
2815 panic("nfs_checkpkt: len mismatch %d/%d mbuf %p\n",
2816 xlen, len, m);
2817 }
2818}
2819
2820#else
2821
2822static void
2823nfs_checkpkt(struct mbuf *m __unused, int len __unused)
2824{
2825}
2826
2827#endif
2828
2829/*
2830 * Parse an RPC header.
2831 *
2832 * If the socket is invalid or no records are pending we return ENOBUFS.
2833 * The caller must deal with NEEDQ races.
2834 */
2835int
2836nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd,
2837 struct nfsrv_descript **ndp)
2838{
2839 struct nfsrv_rec *rec;
2840 struct mbuf *m;
2841 struct sockaddr *nam;
2842 struct nfsrv_descript *nd;
2843 int error;
2844
2845 *ndp = NULL;
2846 if ((slp->ns_flag & SLP_VALID) == 0 || !STAILQ_FIRST(&slp->ns_rec))
2847 return (ENOBUFS);
2848 rec = STAILQ_FIRST(&slp->ns_rec);
2849 STAILQ_REMOVE_HEAD(&slp->ns_rec, nr_link);
2850 KKASSERT(slp->ns_numrec > 0);
2851 if (--slp->ns_numrec == 0)
2852 slp->ns_flag &= ~SLP_DOREC;
2853 nam = rec->nr_address;
2854 m = rec->nr_packet;
2855 kfree(rec, M_NFSRVDESC);
2856 MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
2857 M_NFSRVDESC, M_WAITOK);
2858 nd->nd_md = nd->nd_mrep = m;
2859 nd->nd_nam2 = nam;
2860 nd->nd_dpos = mtod(m, caddr_t);
2861 error = nfs_getreq(nd, nfsd, TRUE);
2862 if (error) {
2863 if (nam) {
2864 FREE(nam, M_SONAME);
2865 }
2866 kfree((caddr_t)nd, M_NFSRVDESC);
2867 return (error);
2868 }
2869 *ndp = nd;
2870 nfsd->nfsd_nd = nd;
2871 return (0);
2872}
2873
2874/*
2875 * Try to assign service sockets to nfsd threads based on the number
2876 * of new rpc requests that have been queued on the service socket.
2877 *
2878 * If no nfsd's are available or additonal requests are pending, set the
2879 * NFSD_CHECKSLP flag so that one of the running nfsds will go look for
2880 * the work in the nfssvc_sock list when it is finished processing its
2881 * current work. This flag is only cleared when an nfsd can not find
2882 * any new work to perform.
2883 */
2884void
2885nfsrv_wakenfsd(struct nfssvc_sock *slp, int nparallel)
2886{
2887 struct nfsd *nd;
2888
2889 if ((slp->ns_flag & SLP_VALID) == 0)
2890 return;
2891 if (nparallel <= 1)
2892 nparallel = 1;
2893 TAILQ_FOREACH(nd, &nfsd_head, nfsd_chain) {
2894 if (nd->nfsd_flag & NFSD_WAITING) {
2895 nd->nfsd_flag &= ~NFSD_WAITING;
2896 if (nd->nfsd_slp)
2897 panic("nfsd wakeup");
2898 nfsrv_slpref(slp);
2899 nd->nfsd_slp = slp;
2900 wakeup((caddr_t)nd);
2901 if (--nparallel == 0)
2902 break;
2903 }
2904 }
2905
2906 /*
2907 * If we couldn't assign slp then the NFSDs are all busy and
2908 * we set a flag indicating that there is pending work.
2909 */
2910 if (nparallel)
2911 nfsd_head_flag |= NFSD_CHECKSLP;
2912}
2913#endif /* NFS_NOSERVER */