kernel -- ffs: Compile fix for ffs_softdep.c
[dragonfly.git] / sys / vfs / ufs / ffs_softdep.c
... / ...
CommitLineData
1/*
2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
3 *
4 * The soft updates code is derived from the appendix of a University
5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6 * "Soft Updates: A Solution to the Metadata Update Problem in File
7 * Systems", CSE-TR-254-95, August 1995).
8 *
9 * Further information about soft updates can be obtained from:
10 *
11 * Marshall Kirk McKusick http://www.mckusick.com/softdep/
12 * 1614 Oxford Street mckusick@mckusick.com
13 * Berkeley, CA 94709-1608 +1-510-843-9542
14 * USA
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 *
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 *
26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00
39 * $FreeBSD: src/sys/ufs/ffs/ffs_softdep.c,v 1.57.2.11 2002/02/05 18:46:53 dillon Exp $
40 */
41
42/*
43 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
44 */
45#ifndef DIAGNOSTIC
46#define DIAGNOSTIC
47#endif
48#ifndef DEBUG
49#define DEBUG
50#endif
51
52#include <sys/param.h>
53#include <sys/kernel.h>
54#include <sys/systm.h>
55#include <sys/buf.h>
56#include <sys/malloc.h>
57#include <sys/mount.h>
58#include <sys/proc.h>
59#include <sys/syslog.h>
60#include <sys/vnode.h>
61#include <sys/conf.h>
62#include <machine/inttypes.h>
63#include "dir.h"
64#include "quota.h"
65#include "inode.h"
66#include "ufsmount.h"
67#include "fs.h"
68#include "softdep.h"
69#include "ffs_extern.h"
70#include "ufs_extern.h"
71
72#include <sys/buf2.h>
73#include <sys/thread2.h>
74#include <sys/lock.h>
75
76/*
77 * These definitions need to be adapted to the system to which
78 * this file is being ported.
79 */
80/*
81 * malloc types defined for the softdep system.
82 */
83MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
84MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
85MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
86MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
87MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
88MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
89MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
90MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
91MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
92MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
93MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
94MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
95MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
96
97#define M_SOFTDEP_FLAGS (M_WAITOK | M_USE_RESERVE)
98
99#define D_PAGEDEP 0
100#define D_INODEDEP 1
101#define D_NEWBLK 2
102#define D_BMSAFEMAP 3
103#define D_ALLOCDIRECT 4
104#define D_INDIRDEP 5
105#define D_ALLOCINDIR 6
106#define D_FREEFRAG 7
107#define D_FREEBLKS 8
108#define D_FREEFILE 9
109#define D_DIRADD 10
110#define D_MKDIR 11
111#define D_DIRREM 12
112#define D_LAST D_DIRREM
113
114/*
115 * translate from workitem type to memory type
116 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
117 */
118static struct malloc_type *memtype[] = {
119 M_PAGEDEP,
120 M_INODEDEP,
121 M_NEWBLK,
122 M_BMSAFEMAP,
123 M_ALLOCDIRECT,
124 M_INDIRDEP,
125 M_ALLOCINDIR,
126 M_FREEFRAG,
127 M_FREEBLKS,
128 M_FREEFILE,
129 M_DIRADD,
130 M_MKDIR,
131 M_DIRREM
132};
133
134#define DtoM(type) (memtype[type])
135
136/*
137 * Names of malloc types.
138 */
139#define TYPENAME(type) \
140 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
141/*
142 * End system adaptaion definitions.
143 */
144
145/*
146 * Internal function prototypes.
147 */
148static void softdep_error(char *, int);
149static void drain_output(struct vnode *, int);
150static int getdirtybuf(struct buf **, int);
151static void clear_remove(struct thread *);
152static void clear_inodedeps(struct thread *);
153static int flush_pagedep_deps(struct vnode *, struct mount *,
154 struct diraddhd *);
155static int flush_inodedep_deps(struct fs *, ino_t);
156static int handle_written_filepage(struct pagedep *, struct buf *);
157static void diradd_inode_written(struct diradd *, struct inodedep *);
158static int handle_written_inodeblock(struct inodedep *, struct buf *);
159static void handle_allocdirect_partdone(struct allocdirect *);
160static void handle_allocindir_partdone(struct allocindir *);
161static void initiate_write_filepage(struct pagedep *, struct buf *);
162static void handle_written_mkdir(struct mkdir *, int);
163static void initiate_write_inodeblock(struct inodedep *, struct buf *);
164static void handle_workitem_freefile(struct freefile *);
165static void handle_workitem_remove(struct dirrem *);
166static struct dirrem *newdirrem(struct buf *, struct inode *,
167 struct inode *, int, struct dirrem **);
168static void free_diradd(struct diradd *);
169static void free_allocindir(struct allocindir *, struct inodedep *);
170static int indir_trunc (struct inode *, off_t, int, ufs_lbn_t, long *);
171static void deallocate_dependencies(struct buf *, struct inodedep *);
172static void free_allocdirect(struct allocdirectlst *,
173 struct allocdirect *, int);
174static int check_inode_unwritten(struct inodedep *);
175static int free_inodedep(struct inodedep *);
176static void handle_workitem_freeblocks(struct freeblks *);
177static void merge_inode_lists(struct inodedep *);
178static void setup_allocindir_phase2(struct buf *, struct inode *,
179 struct allocindir *);
180static struct allocindir *newallocindir(struct inode *, int, ufs_daddr_t,
181 ufs_daddr_t);
182static void handle_workitem_freefrag(struct freefrag *);
183static struct freefrag *newfreefrag(struct inode *, ufs_daddr_t, long);
184static void allocdirect_merge(struct allocdirectlst *,
185 struct allocdirect *, struct allocdirect *);
186static struct bmsafemap *bmsafemap_lookup(struct buf *);
187static int newblk_lookup(struct fs *, ufs_daddr_t, int,
188 struct newblk **);
189static int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **);
190static int pagedep_lookup(struct inode *, ufs_lbn_t, int,
191 struct pagedep **);
192static int request_cleanup(int, int);
193static int process_worklist_item(struct mount *, int);
194static void add_to_worklist(struct worklist *);
195
196/*
197 * Exported softdep operations.
198 */
199static void softdep_disk_io_initiation(struct buf *);
200static void softdep_disk_write_complete(struct buf *);
201static void softdep_deallocate_dependencies(struct buf *);
202static int softdep_fsync(struct vnode *);
203static int softdep_process_worklist(struct mount *);
204static void softdep_move_dependencies(struct buf *, struct buf *);
205static int softdep_count_dependencies(struct buf *bp, int);
206static int softdep_checkread(struct buf *bp);
207static int softdep_checkwrite(struct buf *bp);
208
209static struct bio_ops softdep_bioops = {
210 .io_start = softdep_disk_io_initiation,
211 .io_complete = softdep_disk_write_complete,
212 .io_deallocate = softdep_deallocate_dependencies,
213 .io_fsync = softdep_fsync,
214 .io_sync = softdep_process_worklist,
215 .io_movedeps = softdep_move_dependencies,
216 .io_countdeps = softdep_count_dependencies,
217 .io_checkread = softdep_checkread,
218 .io_checkwrite = softdep_checkwrite
219};
220
221/*
222 * Locking primitives.
223 */
224static void acquire_lock(struct lock *);
225static void free_lock(struct lock *);
226#ifdef INVARIANTS
227static int lock_held(struct lock *);
228#endif
229
230static struct lock lk;
231
232#define ACQUIRE_LOCK(lkp) acquire_lock(lkp)
233#define FREE_LOCK(lkp) free_lock(lkp)
234
235static void
236acquire_lock(struct lock *lkp)
237{
238 lockmgr(lkp, LK_EXCLUSIVE);
239}
240
241static void
242free_lock(struct lock *lkp)
243{
244 lockmgr(lkp, LK_RELEASE);
245}
246
247#ifdef INVARIANTS
248static int
249lock_held(struct lock *lkp)
250{
251 return lockcountnb(lkp);
252}
253#endif
254
255/*
256 * Place holder for real semaphores.
257 */
258struct sema {
259 int value;
260 thread_t holder;
261 char *name;
262 int timo;
263 struct spinlock spin;
264};
265static void sema_init(struct sema *, char *, int);
266static int sema_get(struct sema *, struct lock *);
267static void sema_release(struct sema *, struct lock *);
268
269#define NOHOLDER ((struct thread *) -1)
270
271static void
272sema_init(struct sema *semap, char *name, int timo)
273{
274 semap->holder = NOHOLDER;
275 semap->value = 0;
276 semap->name = name;
277 semap->timo = timo;
278 spin_init(&semap->spin);
279}
280
281/*
282 * Obtain exclusive access, semaphore is protected by the interlock.
283 * If interlock is NULL we must protect the semaphore ourselves.
284 */
285static int
286sema_get(struct sema *semap, struct lock *interlock)
287{
288 int rv;
289
290 if (interlock) {
291 if (semap->value > 0) {
292 ++semap->value; /* serves as wakeup flag */
293 lksleep(semap, interlock, 0,
294 semap->name, semap->timo);
295 rv = 0;
296 } else {
297 semap->value = 1; /* serves as owned flag */
298 semap->holder = curthread;
299 rv = 1;
300 }
301 } else {
302 spin_lock(&semap->spin);
303 if (semap->value > 0) {
304 ++semap->value; /* serves as wakeup flag */
305 ssleep(semap, &semap->spin, 0,
306 semap->name, semap->timo);
307 spin_unlock(&semap->spin);
308 rv = 0;
309 } else {
310 semap->value = 1; /* serves as owned flag */
311 semap->holder = curthread;
312 spin_unlock(&semap->spin);
313 rv = 1;
314 }
315 }
316 return (rv);
317}
318
319static void
320sema_release(struct sema *semap, struct lock *lk)
321{
322 if (semap->value <= 0 || semap->holder != curthread)
323 panic("sema_release: not held");
324 if (lk) {
325 semap->holder = NOHOLDER;
326 if (--semap->value > 0) {
327 semap->value = 0;
328 wakeup(semap);
329 }
330 } else {
331 spin_lock(&semap->spin);
332 semap->holder = NOHOLDER;
333 if (--semap->value > 0) {
334 semap->value = 0;
335 spin_unlock(&semap->spin);
336 wakeup(semap);
337 } else {
338 spin_unlock(&semap->spin);
339 }
340 }
341}
342
343/*
344 * Worklist queue management.
345 * These routines require that the lock be held.
346 */
347static void worklist_insert(struct workhead *, struct worklist *);
348static void worklist_remove(struct worklist *);
349static void workitem_free(struct worklist *, int);
350
351#define WORKLIST_INSERT_BP(bp, item) do { \
352 (bp)->b_ops = &softdep_bioops; \
353 worklist_insert(&(bp)->b_dep, item); \
354} while (0)
355
356#define WORKLIST_INSERT(head, item) worklist_insert(head, item)
357#define WORKLIST_REMOVE(item) worklist_remove(item)
358#define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
359
360static void
361worklist_insert(struct workhead *head, struct worklist *item)
362{
363 KKASSERT(lock_held(&lk) > 0);
364
365 if (item->wk_state & ONWORKLIST) {
366 panic("worklist_insert: already on list");
367 }
368 item->wk_state |= ONWORKLIST;
369 LIST_INSERT_HEAD(head, item, wk_list);
370}
371
372static void
373worklist_remove(struct worklist *item)
374{
375
376 KKASSERT(lock_held(&lk));
377 if ((item->wk_state & ONWORKLIST) == 0)
378 panic("worklist_remove: not on list");
379
380 item->wk_state &= ~ONWORKLIST;
381 LIST_REMOVE(item, wk_list);
382}
383
384static void
385workitem_free(struct worklist *item, int type)
386{
387
388 if (item->wk_state & ONWORKLIST)
389 panic("workitem_free: still on list");
390 if (item->wk_type != type)
391 panic("workitem_free: type mismatch");
392
393 kfree(item, DtoM(type));
394}
395
396/*
397 * Workitem queue management
398 */
399static struct workhead softdep_workitem_pending;
400static int num_on_worklist; /* number of worklist items to be processed */
401static int softdep_worklist_busy; /* 1 => trying to do unmount */
402static int softdep_worklist_req; /* serialized waiters */
403static int max_softdeps; /* maximum number of structs before slowdown */
404static int tickdelay = 2; /* number of ticks to pause during slowdown */
405static int *stat_countp; /* statistic to count in proc_waiting timeout */
406static int proc_waiting; /* tracks whether we have a timeout posted */
407static struct thread *filesys_syncer; /* proc of filesystem syncer process */
408static int req_clear_inodedeps; /* syncer process flush some inodedeps */
409#define FLUSH_INODES 1
410static int req_clear_remove; /* syncer process flush some freeblks */
411#define FLUSH_REMOVE 2
412/*
413 * runtime statistics
414 */
415static int stat_worklist_push; /* number of worklist cleanups */
416static int stat_blk_limit_push; /* number of times block limit neared */
417static int stat_ino_limit_push; /* number of times inode limit neared */
418static int stat_blk_limit_hit; /* number of times block slowdown imposed */
419static int stat_ino_limit_hit; /* number of times inode slowdown imposed */
420static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */
421static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */
422static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */
423static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
424static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */
425#ifdef DEBUG
426#include <vm/vm.h>
427#include <sys/sysctl.h>
428SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0,
429 "Maximum soft dependencies before slowdown occurs");
430SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0,
431 "Ticks to delay before allocating during slowdown");
432SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,
433 "Number of worklist cleanups");
434SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,
435 "Number of times block limit neared");
436SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,
437 "Number of times inode limit neared");
438SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0,
439 "Number of times block slowdown imposed");
440SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0,
441 "Number of times inode slowdown imposed ");
442SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0,
443 "Number of synchronous slowdowns imposed");
444SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0,
445 "Bufs redirtied as indir ptrs not written");
446SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0,
447 "Bufs redirtied as inode bitmap not written");
448SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0,
449 "Bufs redirtied as direct ptrs not written");
450SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0,
451 "Bufs redirtied as dir entry cannot write");
452#endif /* DEBUG */
453
454/*
455 * Add an item to the end of the work queue.
456 * This routine requires that the lock be held.
457 * This is the only routine that adds items to the list.
458 * The following routine is the only one that removes items
459 * and does so in order from first to last.
460 */
461static void
462add_to_worklist(struct worklist *wk)
463{
464 static struct worklist *worklist_tail;
465
466 if (wk->wk_state & ONWORKLIST) {
467 panic("add_to_worklist: already on list");
468 }
469 wk->wk_state |= ONWORKLIST;
470 if (LIST_FIRST(&softdep_workitem_pending) == NULL)
471 LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
472 else
473 LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
474 worklist_tail = wk;
475 num_on_worklist += 1;
476}
477
478/*
479 * Process that runs once per second to handle items in the background queue.
480 *
481 * Note that we ensure that everything is done in the order in which they
482 * appear in the queue. The code below depends on this property to ensure
483 * that blocks of a file are freed before the inode itself is freed. This
484 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
485 * until all the old ones have been purged from the dependency lists.
486 *
487 * bioops callback - hold io_token
488 */
489static int
490softdep_process_worklist(struct mount *matchmnt)
491{
492 thread_t td = curthread;
493 int matchcnt, loopcount;
494 long starttime;
495
496 ACQUIRE_LOCK(&lk);
497
498 /*
499 * Record the process identifier of our caller so that we can give
500 * this process preferential treatment in request_cleanup below.
501 */
502 filesys_syncer = td;
503 matchcnt = 0;
504
505 /*
506 * There is no danger of having multiple processes run this
507 * code, but we have to single-thread it when softdep_flushfiles()
508 * is in operation to get an accurate count of the number of items
509 * related to its mount point that are in the list.
510 */
511 if (matchmnt == NULL) {
512 if (softdep_worklist_busy < 0) {
513 matchcnt = -1;
514 goto done;
515 }
516 softdep_worklist_busy += 1;
517 }
518
519 /*
520 * If requested, try removing inode or removal dependencies.
521 */
522 if (req_clear_inodedeps) {
523 clear_inodedeps(td);
524 req_clear_inodedeps -= 1;
525 wakeup_one(&proc_waiting);
526 }
527 if (req_clear_remove) {
528 clear_remove(td);
529 req_clear_remove -= 1;
530 wakeup_one(&proc_waiting);
531 }
532 loopcount = 1;
533 starttime = time_second;
534 while (num_on_worklist > 0) {
535 matchcnt += process_worklist_item(matchmnt, 0);
536
537 /*
538 * If a umount operation wants to run the worklist
539 * accurately, abort.
540 */
541 if (softdep_worklist_req && matchmnt == NULL) {
542 matchcnt = -1;
543 break;
544 }
545
546 /*
547 * If requested, try removing inode or removal dependencies.
548 */
549 if (req_clear_inodedeps) {
550 clear_inodedeps(td);
551 req_clear_inodedeps -= 1;
552 wakeup_one(&proc_waiting);
553 }
554 if (req_clear_remove) {
555 clear_remove(td);
556 req_clear_remove -= 1;
557 wakeup_one(&proc_waiting);
558 }
559 /*
560 * We do not generally want to stop for buffer space, but if
561 * we are really being a buffer hog, we will stop and wait.
562 */
563 if (loopcount++ % 128 == 0) {
564 FREE_LOCK(&lk);
565 bwillinode(1);
566 ACQUIRE_LOCK(&lk);
567 }
568
569 /*
570 * Never allow processing to run for more than one
571 * second. Otherwise the other syncer tasks may get
572 * excessively backlogged.
573 */
574 if (starttime != time_second && matchmnt == NULL) {
575 matchcnt = -1;
576 break;
577 }
578 }
579 if (matchmnt == NULL) {
580 --softdep_worklist_busy;
581 if (softdep_worklist_req && softdep_worklist_busy == 0)
582 wakeup(&softdep_worklist_req);
583 }
584done:
585 FREE_LOCK(&lk);
586 return (matchcnt);
587}
588
589/*
590 * Process one item on the worklist.
591 */
592static int
593process_worklist_item(struct mount *matchmnt, int flags)
594{
595 struct worklist *wk;
596 struct dirrem *dirrem;
597 struct fs *matchfs;
598 struct vnode *vp;
599 int matchcnt = 0;
600
601 matchfs = NULL;
602 if (matchmnt != NULL)
603 matchfs = VFSTOUFS(matchmnt)->um_fs;
604
605 /*
606 * Normally we just process each item on the worklist in order.
607 * However, if we are in a situation where we cannot lock any
608 * inodes, we have to skip over any dirrem requests whose
609 * vnodes are resident and locked.
610 */
611 LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) {
612 if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
613 break;
614 dirrem = WK_DIRREM(wk);
615 vp = ufs_ihashlookup(VFSTOUFS(dirrem->dm_mnt)->um_dev,
616 dirrem->dm_oldinum);
617 if (vp == NULL || !vn_islocked(vp))
618 break;
619 }
620 if (wk == NULL) {
621 return (0);
622 }
623 WORKLIST_REMOVE(wk);
624 num_on_worklist -= 1;
625 FREE_LOCK(&lk);
626 switch (wk->wk_type) {
627 case D_DIRREM:
628 /* removal of a directory entry */
629 if (WK_DIRREM(wk)->dm_mnt == matchmnt)
630 matchcnt += 1;
631 handle_workitem_remove(WK_DIRREM(wk));
632 break;
633
634 case D_FREEBLKS:
635 /* releasing blocks and/or fragments from a file */
636 if (WK_FREEBLKS(wk)->fb_fs == matchfs)
637 matchcnt += 1;
638 handle_workitem_freeblocks(WK_FREEBLKS(wk));
639 break;
640
641 case D_FREEFRAG:
642 /* releasing a fragment when replaced as a file grows */
643 if (WK_FREEFRAG(wk)->ff_fs == matchfs)
644 matchcnt += 1;
645 handle_workitem_freefrag(WK_FREEFRAG(wk));
646 break;
647
648 case D_FREEFILE:
649 /* releasing an inode when its link count drops to 0 */
650 if (WK_FREEFILE(wk)->fx_fs == matchfs)
651 matchcnt += 1;
652 handle_workitem_freefile(WK_FREEFILE(wk));
653 break;
654
655 default:
656 panic("%s_process_worklist: Unknown type %s",
657 "softdep", TYPENAME(wk->wk_type));
658 /* NOTREACHED */
659 }
660 ACQUIRE_LOCK(&lk);
661 return (matchcnt);
662}
663
664/*
665 * Move dependencies from one buffer to another.
666 *
667 * bioops callback - hold io_token
668 */
669static void
670softdep_move_dependencies(struct buf *oldbp, struct buf *newbp)
671{
672 struct worklist *wk, *wktail;
673
674 if (LIST_FIRST(&newbp->b_dep) != NULL)
675 panic("softdep_move_dependencies: need merge code");
676 wktail = NULL;
677 ACQUIRE_LOCK(&lk);
678 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
679 LIST_REMOVE(wk, wk_list);
680 if (wktail == NULL)
681 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
682 else
683 LIST_INSERT_AFTER(wktail, wk, wk_list);
684 wktail = wk;
685 newbp->b_ops = &softdep_bioops;
686 }
687 FREE_LOCK(&lk);
688}
689
690/*
691 * Purge the work list of all items associated with a particular mount point.
692 */
693int
694softdep_flushfiles(struct mount *oldmnt, int flags)
695{
696 struct vnode *devvp;
697 int error, loopcnt;
698
699 /*
700 * Await our turn to clear out the queue, then serialize access.
701 */
702 ACQUIRE_LOCK(&lk);
703 while (softdep_worklist_busy != 0) {
704 softdep_worklist_req += 1;
705 lksleep(&softdep_worklist_req, &lk, 0, "softflush", 0);
706 softdep_worklist_req -= 1;
707 }
708 softdep_worklist_busy = -1;
709 FREE_LOCK(&lk);
710
711 if ((error = ffs_flushfiles(oldmnt, flags)) != 0) {
712 softdep_worklist_busy = 0;
713 if (softdep_worklist_req)
714 wakeup(&softdep_worklist_req);
715 return (error);
716 }
717 /*
718 * Alternately flush the block device associated with the mount
719 * point and process any dependencies that the flushing
720 * creates. In theory, this loop can happen at most twice,
721 * but we give it a few extra just to be sure.
722 */
723 devvp = VFSTOUFS(oldmnt)->um_devvp;
724 for (loopcnt = 10; loopcnt > 0; ) {
725 if (softdep_process_worklist(oldmnt) == 0) {
726 loopcnt--;
727 /*
728 * Do another flush in case any vnodes were brought in
729 * as part of the cleanup operations.
730 */
731 if ((error = ffs_flushfiles(oldmnt, flags)) != 0)
732 break;
733 /*
734 * If we still found nothing to do, we are really done.
735 */
736 if (softdep_process_worklist(oldmnt) == 0)
737 break;
738 }
739 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
740 error = VOP_FSYNC(devvp, MNT_WAIT, 0);
741 vn_unlock(devvp);
742 if (error)
743 break;
744 }
745 ACQUIRE_LOCK(&lk);
746 softdep_worklist_busy = 0;
747 if (softdep_worklist_req)
748 wakeup(&softdep_worklist_req);
749 FREE_LOCK(&lk);
750
751 /*
752 * If we are unmounting then it is an error to fail. If we
753 * are simply trying to downgrade to read-only, then filesystem
754 * activity can keep us busy forever, so we just fail with EBUSY.
755 */
756 if (loopcnt == 0) {
757 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
758 panic("softdep_flushfiles: looping");
759 error = EBUSY;
760 }
761 return (error);
762}
763
764/*
765 * Structure hashing.
766 *
767 * There are three types of structures that can be looked up:
768 * 1) pagedep structures identified by mount point, inode number,
769 * and logical block.
770 * 2) inodedep structures identified by mount point and inode number.
771 * 3) newblk structures identified by mount point and
772 * physical block number.
773 *
774 * The "pagedep" and "inodedep" dependency structures are hashed
775 * separately from the file blocks and inodes to which they correspond.
776 * This separation helps when the in-memory copy of an inode or
777 * file block must be replaced. It also obviates the need to access
778 * an inode or file page when simply updating (or de-allocating)
779 * dependency structures. Lookup of newblk structures is needed to
780 * find newly allocated blocks when trying to associate them with
781 * their allocdirect or allocindir structure.
782 *
783 * The lookup routines optionally create and hash a new instance when
784 * an existing entry is not found.
785 */
786#define DEPALLOC 0x0001 /* allocate structure if lookup fails */
787#define NODELAY 0x0002 /* cannot do background work */
788
789/*
790 * Structures and routines associated with pagedep caching.
791 */
792LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
793u_long pagedep_hash; /* size of hash table - 1 */
794#define PAGEDEP_HASH(mp, inum, lbn) \
795 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
796 pagedep_hash])
797static struct sema pagedep_in_progress;
798
799/*
800 * Helper routine for pagedep_lookup()
801 */
802static __inline
803struct pagedep *
804pagedep_find(struct pagedep_hashhead *pagedephd, ino_t ino, ufs_lbn_t lbn,
805 struct mount *mp)
806{
807 struct pagedep *pagedep;
808
809 LIST_FOREACH(pagedep, pagedephd, pd_hash) {
810 if (ino == pagedep->pd_ino &&
811 lbn == pagedep->pd_lbn &&
812 mp == pagedep->pd_mnt) {
813 return (pagedep);
814 }
815 }
816 return(NULL);
817}
818
819/*
820 * Look up a pagedep. Return 1 if found, 0 if not found.
821 * If not found, allocate if DEPALLOC flag is passed.
822 * Found or allocated entry is returned in pagedeppp.
823 * This routine must be called with splbio interrupts blocked.
824 */
825static int
826pagedep_lookup(struct inode *ip, ufs_lbn_t lbn, int flags,
827 struct pagedep **pagedeppp)
828{
829 struct pagedep *pagedep;
830 struct pagedep_hashhead *pagedephd;
831 struct mount *mp;
832 int i;
833
834 KKASSERT(lock_held(&lk) > 0);
835
836 mp = ITOV(ip)->v_mount;
837 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
838top:
839 *pagedeppp = pagedep_find(pagedephd, ip->i_number, lbn, mp);
840 if (*pagedeppp)
841 return(1);
842 if ((flags & DEPALLOC) == 0)
843 return (0);
844 if (sema_get(&pagedep_in_progress, &lk) == 0)
845 goto top;
846
847 FREE_LOCK(&lk);
848 pagedep = kmalloc(sizeof(struct pagedep), M_PAGEDEP,
849 M_SOFTDEP_FLAGS | M_ZERO);
850 ACQUIRE_LOCK(&lk);
851 if (pagedep_find(pagedephd, ip->i_number, lbn, mp)) {
852 kprintf("pagedep_lookup: blocking race avoided\n");
853 sema_release(&pagedep_in_progress, &lk);
854 kfree(pagedep, M_PAGEDEP);
855 goto top;
856 }
857
858 pagedep->pd_list.wk_type = D_PAGEDEP;
859 pagedep->pd_mnt = mp;
860 pagedep->pd_ino = ip->i_number;
861 pagedep->pd_lbn = lbn;
862 LIST_INIT(&pagedep->pd_dirremhd);
863 LIST_INIT(&pagedep->pd_pendinghd);
864 for (i = 0; i < DAHASHSZ; i++)
865 LIST_INIT(&pagedep->pd_diraddhd[i]);
866 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
867 sema_release(&pagedep_in_progress, &lk);
868 *pagedeppp = pagedep;
869 return (0);
870}
871
872/*
873 * Structures and routines associated with inodedep caching.
874 */
875LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
876static u_long inodedep_hash; /* size of hash table - 1 */
877static long num_inodedep; /* number of inodedep allocated */
878#define INODEDEP_HASH(fs, inum) \
879 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
880static struct sema inodedep_in_progress;
881
882/*
883 * Helper routine for inodedep_lookup()
884 */
885static __inline
886struct inodedep *
887inodedep_find(struct inodedep_hashhead *inodedephd, struct fs *fs, ino_t inum)
888{
889 struct inodedep *inodedep;
890
891 LIST_FOREACH(inodedep, inodedephd, id_hash) {
892 if (inum == inodedep->id_ino && fs == inodedep->id_fs)
893 return(inodedep);
894 }
895 return (NULL);
896}
897
898/*
899 * Look up a inodedep. Return 1 if found, 0 if not found.
900 * If not found, allocate if DEPALLOC flag is passed.
901 * Found or allocated entry is returned in inodedeppp.
902 * This routine must be called with splbio interrupts blocked.
903 */
904static int
905inodedep_lookup(struct fs *fs, ino_t inum, int flags,
906 struct inodedep **inodedeppp)
907{
908 struct inodedep *inodedep;
909 struct inodedep_hashhead *inodedephd;
910 int firsttry;
911
912 KKASSERT(lock_held(&lk) > 0);
913
914 firsttry = 1;
915 inodedephd = INODEDEP_HASH(fs, inum);
916top:
917 *inodedeppp = inodedep_find(inodedephd, fs, inum);
918 if (*inodedeppp)
919 return (1);
920 if ((flags & DEPALLOC) == 0)
921 return (0);
922 /*
923 * If we are over our limit, try to improve the situation.
924 */
925 if (num_inodedep > max_softdeps && firsttry &&
926 speedup_syncer() == 0 && (flags & NODELAY) == 0 &&
927 request_cleanup(FLUSH_INODES, 1)) {
928 firsttry = 0;
929 goto top;
930 }
931 if (sema_get(&inodedep_in_progress, &lk) == 0)
932 goto top;
933
934 FREE_LOCK(&lk);
935 inodedep = kmalloc(sizeof(struct inodedep), M_INODEDEP,
936 M_SOFTDEP_FLAGS | M_ZERO);
937 ACQUIRE_LOCK(&lk);
938 if (inodedep_find(inodedephd, fs, inum)) {
939 kprintf("inodedep_lookup: blocking race avoided\n");
940 sema_release(&inodedep_in_progress, &lk);
941 kfree(inodedep, M_INODEDEP);
942 goto top;
943 }
944 inodedep->id_list.wk_type = D_INODEDEP;
945 inodedep->id_fs = fs;
946 inodedep->id_ino = inum;
947 inodedep->id_state = ALLCOMPLETE;
948 inodedep->id_nlinkdelta = 0;
949 inodedep->id_savedino = NULL;
950 inodedep->id_savedsize = -1;
951 inodedep->id_buf = NULL;
952 LIST_INIT(&inodedep->id_pendinghd);
953 LIST_INIT(&inodedep->id_inowait);
954 LIST_INIT(&inodedep->id_bufwait);
955 TAILQ_INIT(&inodedep->id_inoupdt);
956 TAILQ_INIT(&inodedep->id_newinoupdt);
957 num_inodedep += 1;
958 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
959 sema_release(&inodedep_in_progress, &lk);
960 *inodedeppp = inodedep;
961 return (0);
962}
963
964/*
965 * Structures and routines associated with newblk caching.
966 */
967LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
968u_long newblk_hash; /* size of hash table - 1 */
969#define NEWBLK_HASH(fs, inum) \
970 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
971static struct sema newblk_in_progress;
972
973/*
974 * Helper routine for newblk_lookup()
975 */
976static __inline
977struct newblk *
978newblk_find(struct newblk_hashhead *newblkhd, struct fs *fs,
979 ufs_daddr_t newblkno)
980{
981 struct newblk *newblk;
982
983 LIST_FOREACH(newblk, newblkhd, nb_hash) {
984 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
985 return (newblk);
986 }
987 return(NULL);
988}
989
990/*
991 * Look up a newblk. Return 1 if found, 0 if not found.
992 * If not found, allocate if DEPALLOC flag is passed.
993 * Found or allocated entry is returned in newblkpp.
994 */
995static int
996newblk_lookup(struct fs *fs, ufs_daddr_t newblkno, int flags,
997 struct newblk **newblkpp)
998{
999 struct newblk *newblk;
1000 struct newblk_hashhead *newblkhd;
1001
1002 newblkhd = NEWBLK_HASH(fs, newblkno);
1003top:
1004 *newblkpp = newblk_find(newblkhd, fs, newblkno);
1005 if (*newblkpp)
1006 return(1);
1007 if ((flags & DEPALLOC) == 0)
1008 return (0);
1009 if (sema_get(&newblk_in_progress, NULL) == 0)
1010 goto top;
1011
1012 newblk = kmalloc(sizeof(struct newblk), M_NEWBLK,
1013 M_SOFTDEP_FLAGS | M_ZERO);
1014
1015 if (newblk_find(newblkhd, fs, newblkno)) {
1016 kprintf("newblk_lookup: blocking race avoided\n");
1017 sema_release(&pagedep_in_progress, NULL);
1018 kfree(newblk, M_NEWBLK);
1019 goto top;
1020 }
1021 newblk->nb_state = 0;
1022 newblk->nb_fs = fs;
1023 newblk->nb_newblkno = newblkno;
1024 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1025 sema_release(&newblk_in_progress, NULL);
1026 *newblkpp = newblk;
1027 return (0);
1028}
1029
1030/*
1031 * Executed during filesystem system initialization before
1032 * mounting any filesystems.
1033 */
1034void
1035softdep_initialize(void)
1036{
1037 LIST_INIT(&mkdirlisthd);
1038 LIST_INIT(&softdep_workitem_pending);
1039 max_softdeps = min(desiredvnodes * 8,
1040 M_INODEDEP->ks_limit / (2 * sizeof(struct inodedep)));
1041 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
1042 &pagedep_hash);
1043 lockinit(&lk, "ffs_softdep", 0, LK_CANRECURSE);
1044 sema_init(&pagedep_in_progress, "pagedep", 0);
1045 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1046 sema_init(&inodedep_in_progress, "inodedep", 0);
1047 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
1048 sema_init(&newblk_in_progress, "newblk", 0);
1049 add_bio_ops(&softdep_bioops);
1050}
1051
1052/*
1053 * Called at mount time to notify the dependency code that a
1054 * filesystem wishes to use it.
1055 */
1056int
1057softdep_mount(struct vnode *devvp, struct mount *mp, struct fs *fs)
1058{
1059 struct csum cstotal;
1060 struct cg *cgp;
1061 struct buf *bp;
1062 int error, cyl;
1063
1064 mp->mnt_flag &= ~MNT_ASYNC;
1065 mp->mnt_flag |= MNT_SOFTDEP;
1066 mp->mnt_bioops = &softdep_bioops;
1067 /*
1068 * When doing soft updates, the counters in the
1069 * superblock may have gotten out of sync, so we have
1070 * to scan the cylinder groups and recalculate them.
1071 */
1072 if (fs->fs_clean != 0)
1073 return (0);
1074 bzero(&cstotal, sizeof cstotal);
1075 for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1076 if ((error = bread(devvp, fsbtodoff(fs, cgtod(fs, cyl)),
1077 fs->fs_cgsize, &bp)) != 0) {
1078 brelse(bp);
1079 return (error);
1080 }
1081 cgp = (struct cg *)bp->b_data;
1082 cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1083 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1084 cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1085 cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1086 fs->fs_cs(fs, cyl) = cgp->cg_cs;
1087 brelse(bp);
1088 }
1089#ifdef DEBUG
1090 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1091 kprintf("ffs_mountfs: superblock updated for soft updates\n");
1092#endif
1093 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1094 return (0);
1095}
1096
1097/*
1098 * Protecting the freemaps (or bitmaps).
1099 *
1100 * To eliminate the need to execute fsck before mounting a filesystem
1101 * after a power failure, one must (conservatively) guarantee that the
1102 * on-disk copy of the bitmaps never indicate that a live inode or block is
1103 * free. So, when a block or inode is allocated, the bitmap should be
1104 * updated (on disk) before any new pointers. When a block or inode is
1105 * freed, the bitmap should not be updated until all pointers have been
1106 * reset. The latter dependency is handled by the delayed de-allocation
1107 * approach described below for block and inode de-allocation. The former
1108 * dependency is handled by calling the following procedure when a block or
1109 * inode is allocated. When an inode is allocated an "inodedep" is created
1110 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1111 * Each "inodedep" is also inserted into the hash indexing structure so
1112 * that any additional link additions can be made dependent on the inode
1113 * allocation.
1114 *
1115 * The ufs filesystem maintains a number of free block counts (e.g., per
1116 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1117 * in addition to the bitmaps. These counts are used to improve efficiency
1118 * during allocation and therefore must be consistent with the bitmaps.
1119 * There is no convenient way to guarantee post-crash consistency of these
1120 * counts with simple update ordering, for two main reasons: (1) The counts
1121 * and bitmaps for a single cylinder group block are not in the same disk
1122 * sector. If a disk write is interrupted (e.g., by power failure), one may
1123 * be written and the other not. (2) Some of the counts are located in the
1124 * superblock rather than the cylinder group block. So, we focus our soft
1125 * updates implementation on protecting the bitmaps. When mounting a
1126 * filesystem, we recompute the auxiliary counts from the bitmaps.
1127 */
1128
1129/*
1130 * Called just after updating the cylinder group block to allocate an inode.
1131 *
1132 * Parameters:
1133 * bp: buffer for cylgroup block with inode map
1134 * ip: inode related to allocation
1135 * newinum: new inode number being allocated
1136 */
1137void
1138softdep_setup_inomapdep(struct buf *bp, struct inode *ip, ino_t newinum)
1139{
1140 struct inodedep *inodedep;
1141 struct bmsafemap *bmsafemap;
1142
1143 /*
1144 * Create a dependency for the newly allocated inode.
1145 * Panic if it already exists as something is seriously wrong.
1146 * Otherwise add it to the dependency list for the buffer holding
1147 * the cylinder group map from which it was allocated.
1148 */
1149 ACQUIRE_LOCK(&lk);
1150 if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) {
1151 panic("softdep_setup_inomapdep: found inode");
1152 }
1153 inodedep->id_buf = bp;
1154 inodedep->id_state &= ~DEPCOMPLETE;
1155 bmsafemap = bmsafemap_lookup(bp);
1156 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1157 FREE_LOCK(&lk);
1158}
1159
1160/*
1161 * Called just after updating the cylinder group block to
1162 * allocate block or fragment.
1163 *
1164 * Parameters:
1165 * bp: buffer for cylgroup block with block map
1166 * fs: filesystem doing allocation
1167 * newblkno: number of newly allocated block
1168 */
1169void
1170softdep_setup_blkmapdep(struct buf *bp, struct fs *fs,
1171 ufs_daddr_t newblkno)
1172{
1173 struct newblk *newblk;
1174 struct bmsafemap *bmsafemap;
1175
1176 /*
1177 * Create a dependency for the newly allocated block.
1178 * Add it to the dependency list for the buffer holding
1179 * the cylinder group map from which it was allocated.
1180 */
1181 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1182 panic("softdep_setup_blkmapdep: found block");
1183 ACQUIRE_LOCK(&lk);
1184 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
1185 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1186 FREE_LOCK(&lk);
1187}
1188
1189/*
1190 * Find the bmsafemap associated with a cylinder group buffer.
1191 * If none exists, create one. The buffer must be locked when
1192 * this routine is called and this routine must be called with
1193 * splbio interrupts blocked.
1194 */
1195static struct bmsafemap *
1196bmsafemap_lookup(struct buf *bp)
1197{
1198 struct bmsafemap *bmsafemap;
1199 struct worklist *wk;
1200
1201 KKASSERT(lock_held(&lk) > 0);
1202
1203 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1204 if (wk->wk_type == D_BMSAFEMAP)
1205 return (WK_BMSAFEMAP(wk));
1206 }
1207 FREE_LOCK(&lk);
1208 bmsafemap = kmalloc(sizeof(struct bmsafemap), M_BMSAFEMAP,
1209 M_SOFTDEP_FLAGS);
1210 bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
1211 bmsafemap->sm_list.wk_state = 0;
1212 bmsafemap->sm_buf = bp;
1213 LIST_INIT(&bmsafemap->sm_allocdirecthd);
1214 LIST_INIT(&bmsafemap->sm_allocindirhd);
1215 LIST_INIT(&bmsafemap->sm_inodedephd);
1216 LIST_INIT(&bmsafemap->sm_newblkhd);
1217 ACQUIRE_LOCK(&lk);
1218 WORKLIST_INSERT_BP(bp, &bmsafemap->sm_list);
1219 return (bmsafemap);
1220}
1221
1222/*
1223 * Direct block allocation dependencies.
1224 *
1225 * When a new block is allocated, the corresponding disk locations must be
1226 * initialized (with zeros or new data) before the on-disk inode points to
1227 * them. Also, the freemap from which the block was allocated must be
1228 * updated (on disk) before the inode's pointer. These two dependencies are
1229 * independent of each other and are needed for all file blocks and indirect
1230 * blocks that are pointed to directly by the inode. Just before the
1231 * "in-core" version of the inode is updated with a newly allocated block
1232 * number, a procedure (below) is called to setup allocation dependency
1233 * structures. These structures are removed when the corresponding
1234 * dependencies are satisfied or when the block allocation becomes obsolete
1235 * (i.e., the file is deleted, the block is de-allocated, or the block is a
1236 * fragment that gets upgraded). All of these cases are handled in
1237 * procedures described later.
1238 *
1239 * When a file extension causes a fragment to be upgraded, either to a larger
1240 * fragment or to a full block, the on-disk location may change (if the
1241 * previous fragment could not simply be extended). In this case, the old
1242 * fragment must be de-allocated, but not until after the inode's pointer has
1243 * been updated. In most cases, this is handled by later procedures, which
1244 * will construct a "freefrag" structure to be added to the workitem queue
1245 * when the inode update is complete (or obsolete). The main exception to
1246 * this is when an allocation occurs while a pending allocation dependency
1247 * (for the same block pointer) remains. This case is handled in the main
1248 * allocation dependency setup procedure by immediately freeing the
1249 * unreferenced fragments.
1250 *
1251 * Parameters:
1252 * ip: inode to which block is being added
1253 * lbn: block pointer within inode
1254 * newblkno: disk block number being added
1255 * oldblkno: previous block number, 0 unless frag
1256 * newsize: size of new block
1257 * oldsize: size of new block
1258 * bp: bp for allocated block
1259 */
1260void
1261softdep_setup_allocdirect(struct inode *ip, ufs_lbn_t lbn, ufs_daddr_t newblkno,
1262 ufs_daddr_t oldblkno, long newsize, long oldsize,
1263 struct buf *bp)
1264{
1265 struct allocdirect *adp, *oldadp;
1266 struct allocdirectlst *adphead;
1267 struct bmsafemap *bmsafemap;
1268 struct inodedep *inodedep;
1269 struct pagedep *pagedep;
1270 struct newblk *newblk;
1271
1272 adp = kmalloc(sizeof(struct allocdirect), M_ALLOCDIRECT,
1273 M_SOFTDEP_FLAGS | M_ZERO);
1274 adp->ad_list.wk_type = D_ALLOCDIRECT;
1275 adp->ad_lbn = lbn;
1276 adp->ad_newblkno = newblkno;
1277 adp->ad_oldblkno = oldblkno;
1278 adp->ad_newsize = newsize;
1279 adp->ad_oldsize = oldsize;
1280 adp->ad_state = ATTACHED;
1281 if (newblkno == oldblkno)
1282 adp->ad_freefrag = NULL;
1283 else
1284 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1285
1286 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1287 panic("softdep_setup_allocdirect: lost block");
1288
1289 ACQUIRE_LOCK(&lk);
1290 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1291 adp->ad_inodedep = inodedep;
1292
1293 if (newblk->nb_state == DEPCOMPLETE) {
1294 adp->ad_state |= DEPCOMPLETE;
1295 adp->ad_buf = NULL;
1296 } else {
1297 bmsafemap = newblk->nb_bmsafemap;
1298 adp->ad_buf = bmsafemap->sm_buf;
1299 LIST_REMOVE(newblk, nb_deps);
1300 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1301 }
1302 LIST_REMOVE(newblk, nb_hash);
1303 kfree(newblk, M_NEWBLK);
1304
1305 WORKLIST_INSERT_BP(bp, &adp->ad_list);
1306 if (lbn >= NDADDR) {
1307 /* allocating an indirect block */
1308 if (oldblkno != 0) {
1309 panic("softdep_setup_allocdirect: non-zero indir");
1310 }
1311 } else {
1312 /*
1313 * Allocating a direct block.
1314 *
1315 * If we are allocating a directory block, then we must
1316 * allocate an associated pagedep to track additions and
1317 * deletions.
1318 */
1319 if ((ip->i_mode & IFMT) == IFDIR &&
1320 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) {
1321 WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
1322 }
1323 }
1324 /*
1325 * The list of allocdirects must be kept in sorted and ascending
1326 * order so that the rollback routines can quickly determine the
1327 * first uncommitted block (the size of the file stored on disk
1328 * ends at the end of the lowest committed fragment, or if there
1329 * are no fragments, at the end of the highest committed block).
1330 * Since files generally grow, the typical case is that the new
1331 * block is to be added at the end of the list. We speed this
1332 * special case by checking against the last allocdirect in the
1333 * list before laboriously traversing the list looking for the
1334 * insertion point.
1335 */
1336 adphead = &inodedep->id_newinoupdt;
1337 oldadp = TAILQ_LAST(adphead, allocdirectlst);
1338 if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1339 /* insert at end of list */
1340 TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1341 if (oldadp != NULL && oldadp->ad_lbn == lbn)
1342 allocdirect_merge(adphead, adp, oldadp);
1343 FREE_LOCK(&lk);
1344 return;
1345 }
1346 TAILQ_FOREACH(oldadp, adphead, ad_next) {
1347 if (oldadp->ad_lbn >= lbn)
1348 break;
1349 }
1350 if (oldadp == NULL) {
1351 panic("softdep_setup_allocdirect: lost entry");
1352 }
1353 /* insert in middle of list */
1354 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1355 if (oldadp->ad_lbn == lbn)
1356 allocdirect_merge(adphead, adp, oldadp);
1357 FREE_LOCK(&lk);
1358}
1359
1360/*
1361 * Replace an old allocdirect dependency with a newer one.
1362 * This routine must be called with splbio interrupts blocked.
1363 *
1364 * Parameters:
1365 * adphead: head of list holding allocdirects
1366 * newadp: allocdirect being added
1367 * oldadp: existing allocdirect being checked
1368 */
1369static void
1370allocdirect_merge(struct allocdirectlst *adphead,
1371 struct allocdirect *newadp,
1372 struct allocdirect *oldadp)
1373{
1374 struct freefrag *freefrag;
1375
1376 KKASSERT(lock_held(&lk) > 0);
1377
1378 if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1379 newadp->ad_oldsize != oldadp->ad_newsize ||
1380 newadp->ad_lbn >= NDADDR) {
1381 panic("allocdirect_check: old %d != new %d || lbn %ld >= %d",
1382 newadp->ad_oldblkno, oldadp->ad_newblkno, newadp->ad_lbn,
1383 NDADDR);
1384 }
1385 newadp->ad_oldblkno = oldadp->ad_oldblkno;
1386 newadp->ad_oldsize = oldadp->ad_oldsize;
1387 /*
1388 * If the old dependency had a fragment to free or had never
1389 * previously had a block allocated, then the new dependency
1390 * can immediately post its freefrag and adopt the old freefrag.
1391 * This action is done by swapping the freefrag dependencies.
1392 * The new dependency gains the old one's freefrag, and the
1393 * old one gets the new one and then immediately puts it on
1394 * the worklist when it is freed by free_allocdirect. It is
1395 * not possible to do this swap when the old dependency had a
1396 * non-zero size but no previous fragment to free. This condition
1397 * arises when the new block is an extension of the old block.
1398 * Here, the first part of the fragment allocated to the new
1399 * dependency is part of the block currently claimed on disk by
1400 * the old dependency, so cannot legitimately be freed until the
1401 * conditions for the new dependency are fulfilled.
1402 */
1403 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1404 freefrag = newadp->ad_freefrag;
1405 newadp->ad_freefrag = oldadp->ad_freefrag;
1406 oldadp->ad_freefrag = freefrag;
1407 }
1408 free_allocdirect(adphead, oldadp, 0);
1409}
1410
1411/*
1412 * Allocate a new freefrag structure if needed.
1413 */
1414static struct freefrag *
1415newfreefrag(struct inode *ip, ufs_daddr_t blkno, long size)
1416{
1417 struct freefrag *freefrag;
1418 struct fs *fs;
1419
1420 if (blkno == 0)
1421 return (NULL);
1422 fs = ip->i_fs;
1423 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1424 panic("newfreefrag: frag size");
1425 freefrag = kmalloc(sizeof(struct freefrag), M_FREEFRAG,
1426 M_SOFTDEP_FLAGS);
1427 freefrag->ff_list.wk_type = D_FREEFRAG;
1428 freefrag->ff_state = ip->i_uid & ~ONWORKLIST; /* XXX - used below */
1429 freefrag->ff_inum = ip->i_number;
1430 freefrag->ff_fs = fs;
1431 freefrag->ff_devvp = ip->i_devvp;
1432 freefrag->ff_blkno = blkno;
1433 freefrag->ff_fragsize = size;
1434 return (freefrag);
1435}
1436
1437/*
1438 * This workitem de-allocates fragments that were replaced during
1439 * file block allocation.
1440 */
1441static void
1442handle_workitem_freefrag(struct freefrag *freefrag)
1443{
1444 struct inode tip;
1445
1446 tip.i_fs = freefrag->ff_fs;
1447 tip.i_devvp = freefrag->ff_devvp;
1448 tip.i_dev = freefrag->ff_devvp->v_rdev;
1449 tip.i_number = freefrag->ff_inum;
1450 tip.i_uid = freefrag->ff_state & ~ONWORKLIST; /* XXX - set above */
1451 ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize);
1452 kfree(freefrag, M_FREEFRAG);
1453}
1454
1455/*
1456 * Indirect block allocation dependencies.
1457 *
1458 * The same dependencies that exist for a direct block also exist when
1459 * a new block is allocated and pointed to by an entry in a block of
1460 * indirect pointers. The undo/redo states described above are also
1461 * used here. Because an indirect block contains many pointers that
1462 * may have dependencies, a second copy of the entire in-memory indirect
1463 * block is kept. The buffer cache copy is always completely up-to-date.
1464 * The second copy, which is used only as a source for disk writes,
1465 * contains only the safe pointers (i.e., those that have no remaining
1466 * update dependencies). The second copy is freed when all pointers
1467 * are safe. The cache is not allowed to replace indirect blocks with
1468 * pending update dependencies. If a buffer containing an indirect
1469 * block with dependencies is written, these routines will mark it
1470 * dirty again. It can only be successfully written once all the
1471 * dependencies are removed. The ffs_fsync routine in conjunction with
1472 * softdep_sync_metadata work together to get all the dependencies
1473 * removed so that a file can be successfully written to disk. Three
1474 * procedures are used when setting up indirect block pointer
1475 * dependencies. The division is necessary because of the organization
1476 * of the "balloc" routine and because of the distinction between file
1477 * pages and file metadata blocks.
1478 */
1479
1480/*
1481 * Allocate a new allocindir structure.
1482 *
1483 * Parameters:
1484 * ip: inode for file being extended
1485 * ptrno: offset of pointer in indirect block
1486 * newblkno: disk block number being added
1487 * oldblkno: previous block number, 0 if none
1488 */
1489static struct allocindir *
1490newallocindir(struct inode *ip, int ptrno, ufs_daddr_t newblkno,
1491 ufs_daddr_t oldblkno)
1492{
1493 struct allocindir *aip;
1494
1495 aip = kmalloc(sizeof(struct allocindir), M_ALLOCINDIR,
1496 M_SOFTDEP_FLAGS | M_ZERO);
1497 aip->ai_list.wk_type = D_ALLOCINDIR;
1498 aip->ai_state = ATTACHED;
1499 aip->ai_offset = ptrno;
1500 aip->ai_newblkno = newblkno;
1501 aip->ai_oldblkno = oldblkno;
1502 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1503 return (aip);
1504}
1505
1506/*
1507 * Called just before setting an indirect block pointer
1508 * to a newly allocated file page.
1509 *
1510 * Parameters:
1511 * ip: inode for file being extended
1512 * lbn: allocated block number within file
1513 * bp: buffer with indirect blk referencing page
1514 * ptrno: offset of pointer in indirect block
1515 * newblkno: disk block number being added
1516 * oldblkno: previous block number, 0 if none
1517 * nbp: buffer holding allocated page
1518 */
1519void
1520softdep_setup_allocindir_page(struct inode *ip, ufs_lbn_t lbn,
1521 struct buf *bp, int ptrno,
1522 ufs_daddr_t newblkno, ufs_daddr_t oldblkno,
1523 struct buf *nbp)
1524{
1525 struct allocindir *aip;
1526 struct pagedep *pagedep;
1527
1528 aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1529 ACQUIRE_LOCK(&lk);
1530 /*
1531 * If we are allocating a directory page, then we must
1532 * allocate an associated pagedep to track additions and
1533 * deletions.
1534 */
1535 if ((ip->i_mode & IFMT) == IFDIR &&
1536 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1537 WORKLIST_INSERT_BP(nbp, &pagedep->pd_list);
1538 WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1539 FREE_LOCK(&lk);
1540 setup_allocindir_phase2(bp, ip, aip);
1541}
1542
1543/*
1544 * Called just before setting an indirect block pointer to a
1545 * newly allocated indirect block.
1546 * Parameters:
1547 * nbp: newly allocated indirect block
1548 * ip: inode for file being extended
1549 * bp: indirect block referencing allocated block
1550 * ptrno: offset of pointer in indirect block
1551 * newblkno: disk block number being added
1552 */
1553void
1554softdep_setup_allocindir_meta(struct buf *nbp, struct inode *ip,
1555 struct buf *bp, int ptrno,
1556 ufs_daddr_t newblkno)
1557{
1558 struct allocindir *aip;
1559
1560 aip = newallocindir(ip, ptrno, newblkno, 0);
1561 ACQUIRE_LOCK(&lk);
1562 WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1563 FREE_LOCK(&lk);
1564 setup_allocindir_phase2(bp, ip, aip);
1565}
1566
1567/*
1568 * Called to finish the allocation of the "aip" allocated
1569 * by one of the two routines above.
1570 *
1571 * Parameters:
1572 * bp: in-memory copy of the indirect block
1573 * ip: inode for file being extended
1574 * aip: allocindir allocated by the above routines
1575 */
1576static void
1577setup_allocindir_phase2(struct buf *bp, struct inode *ip,
1578 struct allocindir *aip)
1579{
1580 struct worklist *wk;
1581 struct indirdep *indirdep, *newindirdep;
1582 struct bmsafemap *bmsafemap;
1583 struct allocindir *oldaip;
1584 struct freefrag *freefrag;
1585 struct newblk *newblk;
1586
1587 if (bp->b_loffset >= 0)
1588 panic("setup_allocindir_phase2: not indir blk");
1589 for (indirdep = NULL, newindirdep = NULL; ; ) {
1590 ACQUIRE_LOCK(&lk);
1591 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1592 if (wk->wk_type != D_INDIRDEP)
1593 continue;
1594 indirdep = WK_INDIRDEP(wk);
1595 break;
1596 }
1597 if (indirdep == NULL && newindirdep) {
1598 indirdep = newindirdep;
1599 WORKLIST_INSERT_BP(bp, &indirdep->ir_list);
1600 newindirdep = NULL;
1601 }
1602 FREE_LOCK(&lk);
1603 if (indirdep) {
1604 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
1605 &newblk) == 0)
1606 panic("setup_allocindir: lost block");
1607 ACQUIRE_LOCK(&lk);
1608 if (newblk->nb_state == DEPCOMPLETE) {
1609 aip->ai_state |= DEPCOMPLETE;
1610 aip->ai_buf = NULL;
1611 } else {
1612 bmsafemap = newblk->nb_bmsafemap;
1613 aip->ai_buf = bmsafemap->sm_buf;
1614 LIST_REMOVE(newblk, nb_deps);
1615 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
1616 aip, ai_deps);
1617 }
1618 LIST_REMOVE(newblk, nb_hash);
1619 kfree(newblk, M_NEWBLK);
1620 aip->ai_indirdep = indirdep;
1621 /*
1622 * Check to see if there is an existing dependency
1623 * for this block. If there is, merge the old
1624 * dependency into the new one.
1625 */
1626 if (aip->ai_oldblkno == 0)
1627 oldaip = NULL;
1628 else
1629
1630 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
1631 if (oldaip->ai_offset == aip->ai_offset)
1632 break;
1633 if (oldaip != NULL) {
1634 if (oldaip->ai_newblkno != aip->ai_oldblkno) {
1635 panic("setup_allocindir_phase2: blkno");
1636 }
1637 aip->ai_oldblkno = oldaip->ai_oldblkno;
1638 freefrag = oldaip->ai_freefrag;
1639 oldaip->ai_freefrag = aip->ai_freefrag;
1640 aip->ai_freefrag = freefrag;
1641 free_allocindir(oldaip, NULL);
1642 }
1643 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
1644 ((ufs_daddr_t *)indirdep->ir_savebp->b_data)
1645 [aip->ai_offset] = aip->ai_oldblkno;
1646 FREE_LOCK(&lk);
1647 }
1648 if (newindirdep) {
1649 /*
1650 * Avoid any possibility of data corruption by
1651 * ensuring that our old version is thrown away.
1652 */
1653 newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
1654 brelse(newindirdep->ir_savebp);
1655 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
1656 }
1657 if (indirdep)
1658 break;
1659 newindirdep = kmalloc(sizeof(struct indirdep), M_INDIRDEP,
1660 M_SOFTDEP_FLAGS);
1661 newindirdep->ir_list.wk_type = D_INDIRDEP;
1662 newindirdep->ir_state = ATTACHED;
1663 LIST_INIT(&newindirdep->ir_deplisthd);
1664 LIST_INIT(&newindirdep->ir_donehd);
1665 if (bp->b_bio2.bio_offset == NOOFFSET) {
1666 VOP_BMAP(bp->b_vp, bp->b_bio1.bio_offset,
1667 &bp->b_bio2.bio_offset, NULL, NULL,
1668 BUF_CMD_WRITE);
1669 }
1670 KKASSERT(bp->b_bio2.bio_offset != NOOFFSET);
1671 newindirdep->ir_savebp = getblk(ip->i_devvp,
1672 bp->b_bio2.bio_offset,
1673 bp->b_bcount, 0, 0);
1674 BUF_KERNPROC(newindirdep->ir_savebp);
1675 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
1676 }
1677}
1678
1679/*
1680 * Block de-allocation dependencies.
1681 *
1682 * When blocks are de-allocated, the on-disk pointers must be nullified before
1683 * the blocks are made available for use by other files. (The true
1684 * requirement is that old pointers must be nullified before new on-disk
1685 * pointers are set. We chose this slightly more stringent requirement to
1686 * reduce complexity.) Our implementation handles this dependency by updating
1687 * the inode (or indirect block) appropriately but delaying the actual block
1688 * de-allocation (i.e., freemap and free space count manipulation) until
1689 * after the updated versions reach stable storage. After the disk is
1690 * updated, the blocks can be safely de-allocated whenever it is convenient.
1691 * This implementation handles only the common case of reducing a file's
1692 * length to zero. Other cases are handled by the conventional synchronous
1693 * write approach.
1694 *
1695 * The ffs implementation with which we worked double-checks
1696 * the state of the block pointers and file size as it reduces
1697 * a file's length. Some of this code is replicated here in our
1698 * soft updates implementation. The freeblks->fb_chkcnt field is
1699 * used to transfer a part of this information to the procedure
1700 * that eventually de-allocates the blocks.
1701 *
1702 * This routine should be called from the routine that shortens
1703 * a file's length, before the inode's size or block pointers
1704 * are modified. It will save the block pointer information for
1705 * later release and zero the inode so that the calling routine
1706 * can release it.
1707 */
1708struct softdep_setup_freeblocks_info {
1709 struct fs *fs;
1710 struct inode *ip;
1711};
1712
1713static int softdep_setup_freeblocks_bp(struct buf *bp, void *data);
1714
1715/*
1716 * Parameters:
1717 * ip: The inode whose length is to be reduced
1718 * length: The new length for the file
1719 */
1720void
1721softdep_setup_freeblocks(struct inode *ip, off_t length)
1722{
1723 struct softdep_setup_freeblocks_info info;
1724 struct freeblks *freeblks;
1725 struct inodedep *inodedep;
1726 struct allocdirect *adp;
1727 struct vnode *vp;
1728 struct buf *bp;
1729 struct fs *fs;
1730 int i, error, delay;
1731 int count;
1732
1733 fs = ip->i_fs;
1734 if (length != 0)
1735 panic("softde_setup_freeblocks: non-zero length");
1736 freeblks = kmalloc(sizeof(struct freeblks), M_FREEBLKS,
1737 M_SOFTDEP_FLAGS | M_ZERO);
1738 freeblks->fb_list.wk_type = D_FREEBLKS;
1739 freeblks->fb_state = ATTACHED;
1740 freeblks->fb_uid = ip->i_uid;
1741 freeblks->fb_previousinum = ip->i_number;
1742 freeblks->fb_devvp = ip->i_devvp;
1743 freeblks->fb_fs = fs;
1744 freeblks->fb_oldsize = ip->i_size;
1745 freeblks->fb_newsize = length;
1746 freeblks->fb_chkcnt = ip->i_blocks;
1747 for (i = 0; i < NDADDR; i++) {
1748 freeblks->fb_dblks[i] = ip->i_db[i];
1749 ip->i_db[i] = 0;
1750 }
1751 for (i = 0; i < NIADDR; i++) {
1752 freeblks->fb_iblks[i] = ip->i_ib[i];
1753 ip->i_ib[i] = 0;
1754 }
1755 ip->i_blocks = 0;
1756 ip->i_size = 0;
1757 /*
1758 * Push the zero'ed inode to to its disk buffer so that we are free
1759 * to delete its dependencies below. Once the dependencies are gone
1760 * the buffer can be safely released.
1761 */
1762 if ((error = bread(ip->i_devvp,
1763 fsbtodoff(fs, ino_to_fsba(fs, ip->i_number)),
1764 (int)fs->fs_bsize, &bp)) != 0)
1765 softdep_error("softdep_setup_freeblocks", error);
1766 *((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) =
1767 ip->i_din;
1768 /*
1769 * Find and eliminate any inode dependencies.
1770 */
1771 ACQUIRE_LOCK(&lk);
1772 (void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
1773 if ((inodedep->id_state & IOSTARTED) != 0) {
1774 panic("softdep_setup_freeblocks: inode busy");
1775 }
1776 /*
1777 * Add the freeblks structure to the list of operations that
1778 * must await the zero'ed inode being written to disk. If we
1779 * still have a bitmap dependency (delay == 0), then the inode
1780 * has never been written to disk, so we can process the
1781 * freeblks below once we have deleted the dependencies.
1782 */
1783 delay = (inodedep->id_state & DEPCOMPLETE);
1784 if (delay)
1785 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
1786 /*
1787 * Because the file length has been truncated to zero, any
1788 * pending block allocation dependency structures associated
1789 * with this inode are obsolete and can simply be de-allocated.
1790 * We must first merge the two dependency lists to get rid of
1791 * any duplicate freefrag structures, then purge the merged list.
1792 */
1793 merge_inode_lists(inodedep);
1794 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
1795 free_allocdirect(&inodedep->id_inoupdt, adp, 1);
1796 FREE_LOCK(&lk);
1797 bdwrite(bp);
1798 /*
1799 * We must wait for any I/O in progress to finish so that
1800 * all potential buffers on the dirty list will be visible.
1801 * Once they are all there, walk the list and get rid of
1802 * any dependencies.
1803 */
1804 vp = ITOV(ip);
1805 ACQUIRE_LOCK(&lk);
1806 drain_output(vp, 1);
1807
1808 info.fs = fs;
1809 info.ip = ip;
1810 lwkt_gettoken(&vp->v_token);
1811 do {
1812 count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
1813 softdep_setup_freeblocks_bp, &info);
1814 } while (count != 0);
1815 lwkt_reltoken(&vp->v_token);
1816
1817 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0)
1818 (void)free_inodedep(inodedep);
1819
1820 if (delay) {
1821 freeblks->fb_state |= DEPCOMPLETE;
1822 /*
1823 * If the inode with zeroed block pointers is now on disk
1824 * we can start freeing blocks. Add freeblks to the worklist
1825 * instead of calling handle_workitem_freeblocks directly as
1826 * it is more likely that additional IO is needed to complete
1827 * the request here than in the !delay case.
1828 */
1829 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
1830 add_to_worklist(&freeblks->fb_list);
1831 }
1832
1833 FREE_LOCK(&lk);
1834 /*
1835 * If the inode has never been written to disk (delay == 0),
1836 * then we can process the freeblks now that we have deleted
1837 * the dependencies.
1838 */
1839 if (!delay)
1840 handle_workitem_freeblocks(freeblks);
1841}
1842
1843static int
1844softdep_setup_freeblocks_bp(struct buf *bp, void *data)
1845{
1846 struct softdep_setup_freeblocks_info *info = data;
1847 struct inodedep *inodedep;
1848
1849 if (getdirtybuf(&bp, MNT_WAIT) == 0) {
1850 kprintf("softdep_setup_freeblocks_bp(1): caught bp %p going away\n", bp);
1851 return(-1);
1852 }
1853 if (bp->b_vp != ITOV(info->ip) || (bp->b_flags & B_DELWRI) == 0) {
1854 kprintf("softdep_setup_freeblocks_bp(2): caught bp %p going away\n", bp);
1855 BUF_UNLOCK(bp);
1856 return(-1);
1857 }
1858 (void) inodedep_lookup(info->fs, info->ip->i_number, 0, &inodedep);
1859 deallocate_dependencies(bp, inodedep);
1860 bp->b_flags |= B_INVAL | B_NOCACHE;
1861 FREE_LOCK(&lk);
1862 brelse(bp);
1863 ACQUIRE_LOCK(&lk);
1864 return(1);
1865}
1866
1867/*
1868 * Reclaim any dependency structures from a buffer that is about to
1869 * be reallocated to a new vnode. The buffer must be locked, thus,
1870 * no I/O completion operations can occur while we are manipulating
1871 * its associated dependencies. The mutex is held so that other I/O's
1872 * associated with related dependencies do not occur.
1873 */
1874static void
1875deallocate_dependencies(struct buf *bp, struct inodedep *inodedep)
1876{
1877 struct worklist *wk;
1878 struct indirdep *indirdep;
1879 struct allocindir *aip;
1880 struct pagedep *pagedep;
1881 struct dirrem *dirrem;
1882 struct diradd *dap;
1883 int i;
1884
1885 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
1886 switch (wk->wk_type) {
1887
1888 case D_INDIRDEP:
1889 indirdep = WK_INDIRDEP(wk);
1890 /*
1891 * None of the indirect pointers will ever be visible,
1892 * so they can simply be tossed. GOINGAWAY ensures
1893 * that allocated pointers will be saved in the buffer
1894 * cache until they are freed. Note that they will
1895 * only be able to be found by their physical address
1896 * since the inode mapping the logical address will
1897 * be gone. The save buffer used for the safe copy
1898 * was allocated in setup_allocindir_phase2 using
1899 * the physical address so it could be used for this
1900 * purpose. Hence we swap the safe copy with the real
1901 * copy, allowing the safe copy to be freed and holding
1902 * on to the real copy for later use in indir_trunc.
1903 *
1904 * NOTE: ir_savebp is relative to the block device
1905 * so b_bio1 contains the device block number.
1906 */
1907 if (indirdep->ir_state & GOINGAWAY) {
1908 panic("deallocate_dependencies: already gone");
1909 }
1910 indirdep->ir_state |= GOINGAWAY;
1911 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
1912 free_allocindir(aip, inodedep);
1913 if (bp->b_bio1.bio_offset >= 0 ||
1914 bp->b_bio2.bio_offset != indirdep->ir_savebp->b_bio1.bio_offset) {
1915 panic("deallocate_dependencies: not indir");
1916 }
1917 bcopy(bp->b_data, indirdep->ir_savebp->b_data,
1918 bp->b_bcount);
1919 WORKLIST_REMOVE(wk);
1920 WORKLIST_INSERT_BP(indirdep->ir_savebp, wk);
1921 continue;
1922
1923 case D_PAGEDEP:
1924 pagedep = WK_PAGEDEP(wk);
1925 /*
1926 * None of the directory additions will ever be
1927 * visible, so they can simply be tossed.
1928 */
1929 for (i = 0; i < DAHASHSZ; i++)
1930 while ((dap =
1931 LIST_FIRST(&pagedep->pd_diraddhd[i])))
1932 free_diradd(dap);
1933 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
1934 free_diradd(dap);
1935 /*
1936 * Copy any directory remove dependencies to the list
1937 * to be processed after the zero'ed inode is written.
1938 * If the inode has already been written, then they
1939 * can be dumped directly onto the work list.
1940 */
1941 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
1942 LIST_REMOVE(dirrem, dm_next);
1943 dirrem->dm_dirinum = pagedep->pd_ino;
1944 if (inodedep == NULL ||
1945 (inodedep->id_state & ALLCOMPLETE) ==
1946 ALLCOMPLETE)
1947 add_to_worklist(&dirrem->dm_list);
1948 else
1949 WORKLIST_INSERT(&inodedep->id_bufwait,
1950 &dirrem->dm_list);
1951 }
1952 WORKLIST_REMOVE(&pagedep->pd_list);
1953 LIST_REMOVE(pagedep, pd_hash);
1954 WORKITEM_FREE(pagedep, D_PAGEDEP);
1955 continue;
1956
1957 case D_ALLOCINDIR:
1958 free_allocindir(WK_ALLOCINDIR(wk), inodedep);
1959 continue;
1960
1961 case D_ALLOCDIRECT:
1962 case D_INODEDEP:
1963 panic("deallocate_dependencies: Unexpected type %s",
1964 TYPENAME(wk->wk_type));
1965 /* NOTREACHED */
1966
1967 default:
1968 panic("deallocate_dependencies: Unknown type %s",
1969 TYPENAME(wk->wk_type));
1970 /* NOTREACHED */
1971 }
1972 }
1973}
1974
1975/*
1976 * Free an allocdirect. Generate a new freefrag work request if appropriate.
1977 * This routine must be called with splbio interrupts blocked.
1978 */
1979static void
1980free_allocdirect(struct allocdirectlst *adphead,
1981 struct allocdirect *adp, int delay)
1982{
1983 KKASSERT(lock_held(&lk) > 0);
1984
1985 if ((adp->ad_state & DEPCOMPLETE) == 0)
1986 LIST_REMOVE(adp, ad_deps);
1987 TAILQ_REMOVE(adphead, adp, ad_next);
1988 if ((adp->ad_state & COMPLETE) == 0)
1989 WORKLIST_REMOVE(&adp->ad_list);
1990 if (adp->ad_freefrag != NULL) {
1991 if (delay)
1992 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
1993 &adp->ad_freefrag->ff_list);
1994 else
1995 add_to_worklist(&adp->ad_freefrag->ff_list);
1996 }
1997 WORKITEM_FREE(adp, D_ALLOCDIRECT);
1998}
1999
2000/*
2001 * Prepare an inode to be freed. The actual free operation is not
2002 * done until the zero'ed inode has been written to disk.
2003 */
2004void
2005softdep_freefile(struct vnode *pvp, ino_t ino, int mode)
2006{
2007 struct inode *ip = VTOI(pvp);
2008 struct inodedep *inodedep;
2009 struct freefile *freefile;
2010
2011 /*
2012 * This sets up the inode de-allocation dependency.
2013 */
2014 freefile = kmalloc(sizeof(struct freefile), M_FREEFILE,
2015 M_SOFTDEP_FLAGS);
2016 freefile->fx_list.wk_type = D_FREEFILE;
2017 freefile->fx_list.wk_state = 0;
2018 freefile->fx_mode = mode;
2019 freefile->fx_oldinum = ino;
2020 freefile->fx_devvp = ip->i_devvp;
2021 freefile->fx_fs = ip->i_fs;
2022
2023 /*
2024 * If the inodedep does not exist, then the zero'ed inode has
2025 * been written to disk. If the allocated inode has never been
2026 * written to disk, then the on-disk inode is zero'ed. In either
2027 * case we can free the file immediately.
2028 */
2029 ACQUIRE_LOCK(&lk);
2030 if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 ||
2031 check_inode_unwritten(inodedep)) {
2032 FREE_LOCK(&lk);
2033 handle_workitem_freefile(freefile);
2034 return;
2035 }
2036 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2037 FREE_LOCK(&lk);
2038}
2039
2040/*
2041 * Check to see if an inode has never been written to disk. If
2042 * so free the inodedep and return success, otherwise return failure.
2043 * This routine must be called with splbio interrupts blocked.
2044 *
2045 * If we still have a bitmap dependency, then the inode has never
2046 * been written to disk. Drop the dependency as it is no longer
2047 * necessary since the inode is being deallocated. We set the
2048 * ALLCOMPLETE flags since the bitmap now properly shows that the
2049 * inode is not allocated. Even if the inode is actively being
2050 * written, it has been rolled back to its zero'ed state, so we
2051 * are ensured that a zero inode is what is on the disk. For short
2052 * lived files, this change will usually result in removing all the
2053 * dependencies from the inode so that it can be freed immediately.
2054 */
2055static int
2056check_inode_unwritten(struct inodedep *inodedep)
2057{
2058
2059 if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2060 LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2061 LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2062 LIST_FIRST(&inodedep->id_inowait) != NULL ||
2063 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2064 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2065 inodedep->id_nlinkdelta != 0)
2066 return (0);
2067
2068 /*
2069 * Another process might be in initiate_write_inodeblock
2070 * trying to allocate memory without holding "Softdep Lock".
2071 */
2072 if ((inodedep->id_state & IOSTARTED) != 0 &&
2073 inodedep->id_savedino == NULL)
2074 return(0);
2075
2076 inodedep->id_state |= ALLCOMPLETE;
2077 LIST_REMOVE(inodedep, id_deps);
2078 inodedep->id_buf = NULL;
2079 if (inodedep->id_state & ONWORKLIST)
2080 WORKLIST_REMOVE(&inodedep->id_list);
2081 if (inodedep->id_savedino != NULL) {
2082 kfree(inodedep->id_savedino, M_INODEDEP);
2083 inodedep->id_savedino = NULL;
2084 }
2085 if (free_inodedep(inodedep) == 0) {
2086 panic("check_inode_unwritten: busy inode");
2087 }
2088 return (1);
2089}
2090
2091/*
2092 * Try to free an inodedep structure. Return 1 if it could be freed.
2093 */
2094static int
2095free_inodedep(struct inodedep *inodedep)
2096{
2097
2098 if ((inodedep->id_state & ONWORKLIST) != 0 ||
2099 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2100 LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2101 LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2102 LIST_FIRST(&inodedep->id_inowait) != NULL ||
2103 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2104 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2105 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino != NULL)
2106 return (0);
2107 LIST_REMOVE(inodedep, id_hash);
2108 WORKITEM_FREE(inodedep, D_INODEDEP);
2109 num_inodedep -= 1;
2110 return (1);
2111}
2112
2113/*
2114 * This workitem routine performs the block de-allocation.
2115 * The workitem is added to the pending list after the updated
2116 * inode block has been written to disk. As mentioned above,
2117 * checks regarding the number of blocks de-allocated (compared
2118 * to the number of blocks allocated for the file) are also
2119 * performed in this function.
2120 */
2121static void
2122handle_workitem_freeblocks(struct freeblks *freeblks)
2123{
2124 struct inode tip;
2125 ufs_daddr_t bn;
2126 struct fs *fs;
2127 int i, level, bsize;
2128 long nblocks, blocksreleased = 0;
2129 int error, allerror = 0;
2130 ufs_lbn_t baselbns[NIADDR], tmpval;
2131
2132 tip.i_number = freeblks->fb_previousinum;
2133 tip.i_devvp = freeblks->fb_devvp;
2134 tip.i_dev = freeblks->fb_devvp->v_rdev;
2135 tip.i_fs = freeblks->fb_fs;
2136 tip.i_size = freeblks->fb_oldsize;
2137 tip.i_uid = freeblks->fb_uid;
2138 fs = freeblks->fb_fs;
2139 tmpval = 1;
2140 baselbns[0] = NDADDR;
2141 for (i = 1; i < NIADDR; i++) {
2142 tmpval *= NINDIR(fs);
2143 baselbns[i] = baselbns[i - 1] + tmpval;
2144 }
2145 nblocks = btodb(fs->fs_bsize);
2146 blocksreleased = 0;
2147 /*
2148 * Indirect blocks first.
2149 */
2150 for (level = (NIADDR - 1); level >= 0; level--) {
2151 if ((bn = freeblks->fb_iblks[level]) == 0)
2152 continue;
2153 if ((error = indir_trunc(&tip, fsbtodoff(fs, bn), level,
2154 baselbns[level], &blocksreleased)) == 0)
2155 allerror = error;
2156 ffs_blkfree(&tip, bn, fs->fs_bsize);
2157 blocksreleased += nblocks;
2158 }
2159 /*
2160 * All direct blocks or frags.
2161 */
2162 for (i = (NDADDR - 1); i >= 0; i--) {
2163 if ((bn = freeblks->fb_dblks[i]) == 0)
2164 continue;
2165 bsize = blksize(fs, &tip, i);
2166 ffs_blkfree(&tip, bn, bsize);
2167 blocksreleased += btodb(bsize);
2168 }
2169
2170#ifdef DIAGNOSTIC
2171 if (freeblks->fb_chkcnt != blocksreleased)
2172 kprintf("handle_workitem_freeblocks: block count\n");
2173 if (allerror)
2174 softdep_error("handle_workitem_freeblks", allerror);
2175#endif /* DIAGNOSTIC */
2176 WORKITEM_FREE(freeblks, D_FREEBLKS);
2177}
2178
2179/*
2180 * Release blocks associated with the inode ip and stored in the indirect
2181 * block at doffset. If level is greater than SINGLE, the block is an
2182 * indirect block and recursive calls to indirtrunc must be used to
2183 * cleanse other indirect blocks.
2184 */
2185static int
2186indir_trunc(struct inode *ip, off_t doffset, int level, ufs_lbn_t lbn,
2187 long *countp)
2188{
2189 struct buf *bp;
2190 ufs_daddr_t *bap;
2191 ufs_daddr_t nb;
2192 struct fs *fs;
2193 struct worklist *wk;
2194 struct indirdep *indirdep;
2195 int i, lbnadd, nblocks;
2196 int error, allerror = 0;
2197
2198 fs = ip->i_fs;
2199 lbnadd = 1;
2200 for (i = level; i > 0; i--)
2201 lbnadd *= NINDIR(fs);
2202 /*
2203 * Get buffer of block pointers to be freed. This routine is not
2204 * called until the zero'ed inode has been written, so it is safe
2205 * to free blocks as they are encountered. Because the inode has
2206 * been zero'ed, calls to bmap on these blocks will fail. So, we
2207 * have to use the on-disk address and the block device for the
2208 * filesystem to look them up. If the file was deleted before its
2209 * indirect blocks were all written to disk, the routine that set
2210 * us up (deallocate_dependencies) will have arranged to leave
2211 * a complete copy of the indirect block in memory for our use.
2212 * Otherwise we have to read the blocks in from the disk.
2213 */
2214 ACQUIRE_LOCK(&lk);
2215 if ((bp = findblk(ip->i_devvp, doffset, FINDBLK_TEST)) != NULL &&
2216 (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2217 /*
2218 * bp must be ir_savebp, which is held locked for our use.
2219 */
2220 if (wk->wk_type != D_INDIRDEP ||
2221 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2222 (indirdep->ir_state & GOINGAWAY) == 0) {
2223 panic("indir_trunc: lost indirdep");
2224 }
2225 WORKLIST_REMOVE(wk);
2226 WORKITEM_FREE(indirdep, D_INDIRDEP);
2227 if (LIST_FIRST(&bp->b_dep) != NULL) {
2228 panic("indir_trunc: dangling dep");
2229 }
2230 FREE_LOCK(&lk);
2231 } else {
2232 FREE_LOCK(&lk);
2233 error = bread(ip->i_devvp, doffset, (int)fs->fs_bsize, &bp);
2234 if (error)
2235 return (error);
2236 }
2237 /*
2238 * Recursively free indirect blocks.
2239 */
2240 bap = (ufs_daddr_t *)bp->b_data;
2241 nblocks = btodb(fs->fs_bsize);
2242 for (i = NINDIR(fs) - 1; i >= 0; i--) {
2243 if ((nb = bap[i]) == 0)
2244 continue;
2245 if (level != 0) {
2246 if ((error = indir_trunc(ip, fsbtodoff(fs, nb),
2247 level - 1, lbn + (i * lbnadd), countp)) != 0)
2248 allerror = error;
2249 }
2250 ffs_blkfree(ip, nb, fs->fs_bsize);
2251 *countp += nblocks;
2252 }
2253 bp->b_flags |= B_INVAL | B_NOCACHE;
2254 brelse(bp);
2255 return (allerror);
2256}
2257
2258/*
2259 * Free an allocindir.
2260 * This routine must be called with splbio interrupts blocked.
2261 */
2262static void
2263free_allocindir(struct allocindir *aip, struct inodedep *inodedep)
2264{
2265 struct freefrag *freefrag;
2266
2267 KKASSERT(lock_held(&lk) > 0);
2268
2269 if ((aip->ai_state & DEPCOMPLETE) == 0)
2270 LIST_REMOVE(aip, ai_deps);
2271 if (aip->ai_state & ONWORKLIST)
2272 WORKLIST_REMOVE(&aip->ai_list);
2273 LIST_REMOVE(aip, ai_next);
2274 if ((freefrag = aip->ai_freefrag) != NULL) {
2275 if (inodedep == NULL)
2276 add_to_worklist(&freefrag->ff_list);
2277 else
2278 WORKLIST_INSERT(&inodedep->id_bufwait,
2279 &freefrag->ff_list);
2280 }
2281 WORKITEM_FREE(aip, D_ALLOCINDIR);
2282}
2283
2284/*
2285 * Directory entry addition dependencies.
2286 *
2287 * When adding a new directory entry, the inode (with its incremented link
2288 * count) must be written to disk before the directory entry's pointer to it.
2289 * Also, if the inode is newly allocated, the corresponding freemap must be
2290 * updated (on disk) before the directory entry's pointer. These requirements
2291 * are met via undo/redo on the directory entry's pointer, which consists
2292 * simply of the inode number.
2293 *
2294 * As directory entries are added and deleted, the free space within a
2295 * directory block can become fragmented. The ufs filesystem will compact
2296 * a fragmented directory block to make space for a new entry. When this
2297 * occurs, the offsets of previously added entries change. Any "diradd"
2298 * dependency structures corresponding to these entries must be updated with
2299 * the new offsets.
2300 */
2301
2302/*
2303 * This routine is called after the in-memory inode's link
2304 * count has been incremented, but before the directory entry's
2305 * pointer to the inode has been set.
2306 *
2307 * Parameters:
2308 * bp: buffer containing directory block
2309 * dp: inode for directory
2310 * diroffset: offset of new entry in directory
2311 * newinum: inode referenced by new directory entry
2312 * newdirbp: non-NULL => contents of new mkdir
2313 */
2314void
2315softdep_setup_directory_add(struct buf *bp, struct inode *dp, off_t diroffset,
2316 ino_t newinum, struct buf *newdirbp)
2317{
2318 int offset; /* offset of new entry within directory block */
2319 ufs_lbn_t lbn; /* block in directory containing new entry */
2320 struct fs *fs;
2321 struct diradd *dap;
2322 struct pagedep *pagedep;
2323 struct inodedep *inodedep;
2324 struct mkdir *mkdir1, *mkdir2;
2325
2326 /*
2327 * Whiteouts have no dependencies.
2328 */
2329 if (newinum == WINO) {
2330 if (newdirbp != NULL)
2331 bdwrite(newdirbp);
2332 return;
2333 }
2334
2335 fs = dp->i_fs;
2336 lbn = lblkno(fs, diroffset);
2337 offset = blkoff(fs, diroffset);
2338 dap = kmalloc(sizeof(struct diradd), M_DIRADD,
2339 M_SOFTDEP_FLAGS | M_ZERO);
2340 dap->da_list.wk_type = D_DIRADD;
2341 dap->da_offset = offset;
2342 dap->da_newinum = newinum;
2343 dap->da_state = ATTACHED;
2344 if (newdirbp == NULL) {
2345 dap->da_state |= DEPCOMPLETE;
2346 ACQUIRE_LOCK(&lk);
2347 } else {
2348 dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2349 mkdir1 = kmalloc(sizeof(struct mkdir), M_MKDIR,
2350 M_SOFTDEP_FLAGS);
2351 mkdir1->md_list.wk_type = D_MKDIR;
2352 mkdir1->md_state = MKDIR_BODY;
2353 mkdir1->md_diradd = dap;
2354 mkdir2 = kmalloc(sizeof(struct mkdir), M_MKDIR,
2355 M_SOFTDEP_FLAGS);
2356 mkdir2->md_list.wk_type = D_MKDIR;
2357 mkdir2->md_state = MKDIR_PARENT;
2358 mkdir2->md_diradd = dap;
2359 /*
2360 * Dependency on "." and ".." being written to disk.
2361 */
2362 mkdir1->md_buf = newdirbp;
2363 ACQUIRE_LOCK(&lk);
2364 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
2365 WORKLIST_INSERT_BP(newdirbp, &mkdir1->md_list);
2366 FREE_LOCK(&lk);
2367 bdwrite(newdirbp);
2368 /*
2369 * Dependency on link count increase for parent directory
2370 */
2371 ACQUIRE_LOCK(&lk);
2372 if (inodedep_lookup(dp->i_fs, dp->i_number, 0, &inodedep) == 0
2373 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2374 dap->da_state &= ~MKDIR_PARENT;
2375 WORKITEM_FREE(mkdir2, D_MKDIR);
2376 } else {
2377 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
2378 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
2379 }
2380 }
2381 /*
2382 * Link into parent directory pagedep to await its being written.
2383 */
2384 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2385 WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2386 dap->da_pagedep = pagedep;
2387 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
2388 da_pdlist);
2389 /*
2390 * Link into its inodedep. Put it on the id_bufwait list if the inode
2391 * is not yet written. If it is written, do the post-inode write
2392 * processing to put it on the id_pendinghd list.
2393 */
2394 (void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
2395 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
2396 diradd_inode_written(dap, inodedep);
2397 else
2398 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2399 FREE_LOCK(&lk);
2400}
2401
2402/*
2403 * This procedure is called to change the offset of a directory
2404 * entry when compacting a directory block which must be owned
2405 * exclusively by the caller. Note that the actual entry movement
2406 * must be done in this procedure to ensure that no I/O completions
2407 * occur while the move is in progress.
2408 *
2409 * Parameters:
2410 * dp: inode for directory
2411 * base: address of dp->i_offset
2412 * oldloc: address of old directory location
2413 * newloc: address of new directory location
2414 * entrysize: size of directory entry
2415 */
2416void
2417softdep_change_directoryentry_offset(struct inode *dp, caddr_t base,
2418 caddr_t oldloc, caddr_t newloc,
2419 int entrysize)
2420{
2421 int offset, oldoffset, newoffset;
2422 struct pagedep *pagedep;
2423 struct diradd *dap;
2424 ufs_lbn_t lbn;
2425
2426 ACQUIRE_LOCK(&lk);
2427 lbn = lblkno(dp->i_fs, dp->i_offset);
2428 offset = blkoff(dp->i_fs, dp->i_offset);
2429 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
2430 goto done;
2431 oldoffset = offset + (oldloc - base);
2432 newoffset = offset + (newloc - base);
2433
2434 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
2435 if (dap->da_offset != oldoffset)
2436 continue;
2437 dap->da_offset = newoffset;
2438 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
2439 break;
2440 LIST_REMOVE(dap, da_pdlist);
2441 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
2442 dap, da_pdlist);
2443 break;
2444 }
2445 if (dap == NULL) {
2446
2447 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
2448 if (dap->da_offset == oldoffset) {
2449 dap->da_offset = newoffset;
2450 break;
2451 }
2452 }
2453 }
2454done:
2455 bcopy(oldloc, newloc, entrysize);
2456 FREE_LOCK(&lk);
2457}
2458
2459/*
2460 * Free a diradd dependency structure. This routine must be called
2461 * with splbio interrupts blocked.
2462 */
2463static void
2464free_diradd(struct diradd *dap)
2465{
2466 struct dirrem *dirrem;
2467 struct pagedep *pagedep;
2468 struct inodedep *inodedep;
2469 struct mkdir *mkdir, *nextmd;
2470
2471 KKASSERT(lock_held(&lk) > 0);
2472
2473 WORKLIST_REMOVE(&dap->da_list);
2474 LIST_REMOVE(dap, da_pdlist);
2475 if ((dap->da_state & DIRCHG) == 0) {
2476 pagedep = dap->da_pagedep;
2477 } else {
2478 dirrem = dap->da_previous;
2479 pagedep = dirrem->dm_pagedep;
2480 dirrem->dm_dirinum = pagedep->pd_ino;
2481 add_to_worklist(&dirrem->dm_list);
2482 }
2483 if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
2484 0, &inodedep) != 0)
2485 (void) free_inodedep(inodedep);
2486 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2487 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
2488 nextmd = LIST_NEXT(mkdir, md_mkdirs);
2489 if (mkdir->md_diradd != dap)
2490 continue;
2491 dap->da_state &= ~mkdir->md_state;
2492 WORKLIST_REMOVE(&mkdir->md_list);
2493 LIST_REMOVE(mkdir, md_mkdirs);
2494 WORKITEM_FREE(mkdir, D_MKDIR);
2495 }
2496 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2497 panic("free_diradd: unfound ref");
2498 }
2499 }
2500 WORKITEM_FREE(dap, D_DIRADD);
2501}
2502
2503/*
2504 * Directory entry removal dependencies.
2505 *
2506 * When removing a directory entry, the entry's inode pointer must be
2507 * zero'ed on disk before the corresponding inode's link count is decremented
2508 * (possibly freeing the inode for re-use). This dependency is handled by
2509 * updating the directory entry but delaying the inode count reduction until
2510 * after the directory block has been written to disk. After this point, the
2511 * inode count can be decremented whenever it is convenient.
2512 */
2513
2514/*
2515 * This routine should be called immediately after removing
2516 * a directory entry. The inode's link count should not be
2517 * decremented by the calling procedure -- the soft updates
2518 * code will do this task when it is safe.
2519 *
2520 * Parameters:
2521 * bp: buffer containing directory block
2522 * dp: inode for the directory being modified
2523 * ip: inode for directory entry being removed
2524 * isrmdir: indicates if doing RMDIR
2525 */
2526void
2527softdep_setup_remove(struct buf *bp, struct inode *dp, struct inode *ip,
2528 int isrmdir)
2529{
2530 struct dirrem *dirrem, *prevdirrem;
2531
2532 /*
2533 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
2534 */
2535 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2536
2537 /*
2538 * If the COMPLETE flag is clear, then there were no active
2539 * entries and we want to roll back to a zeroed entry until
2540 * the new inode is committed to disk. If the COMPLETE flag is
2541 * set then we have deleted an entry that never made it to
2542 * disk. If the entry we deleted resulted from a name change,
2543 * then the old name still resides on disk. We cannot delete
2544 * its inode (returned to us in prevdirrem) until the zeroed
2545 * directory entry gets to disk. The new inode has never been
2546 * referenced on the disk, so can be deleted immediately.
2547 */
2548 if ((dirrem->dm_state & COMPLETE) == 0) {
2549 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
2550 dm_next);
2551 FREE_LOCK(&lk);
2552 } else {
2553 if (prevdirrem != NULL)
2554 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
2555 prevdirrem, dm_next);
2556 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
2557 FREE_LOCK(&lk);
2558 handle_workitem_remove(dirrem);
2559 }
2560}
2561
2562/*
2563 * Allocate a new dirrem if appropriate and return it along with
2564 * its associated pagedep. Called without a lock, returns with lock.
2565 */
2566static long num_dirrem; /* number of dirrem allocated */
2567
2568/*
2569 * Parameters:
2570 * bp: buffer containing directory block
2571 * dp: inode for the directory being modified
2572 * ip: inode for directory entry being removed
2573 * isrmdir: indicates if doing RMDIR
2574 * prevdirremp: previously referenced inode, if any
2575 */
2576static struct dirrem *
2577newdirrem(struct buf *bp, struct inode *dp, struct inode *ip,
2578 int isrmdir, struct dirrem **prevdirremp)
2579{
2580 int offset;
2581 ufs_lbn_t lbn;
2582 struct diradd *dap;
2583 struct dirrem *dirrem;
2584 struct pagedep *pagedep;
2585
2586 /*
2587 * Whiteouts have no deletion dependencies.
2588 */
2589 if (ip == NULL)
2590 panic("newdirrem: whiteout");
2591 /*
2592 * If we are over our limit, try to improve the situation.
2593 * Limiting the number of dirrem structures will also limit
2594 * the number of freefile and freeblks structures.
2595 */
2596 if (num_dirrem > max_softdeps / 2 && speedup_syncer() == 0)
2597 (void) request_cleanup(FLUSH_REMOVE, 0);
2598 num_dirrem += 1;
2599 dirrem = kmalloc(sizeof(struct dirrem), M_DIRREM,
2600 M_SOFTDEP_FLAGS | M_ZERO);
2601 dirrem->dm_list.wk_type = D_DIRREM;
2602 dirrem->dm_state = isrmdir ? RMDIR : 0;
2603 dirrem->dm_mnt = ITOV(ip)->v_mount;
2604 dirrem->dm_oldinum = ip->i_number;
2605 *prevdirremp = NULL;
2606
2607 ACQUIRE_LOCK(&lk);
2608 lbn = lblkno(dp->i_fs, dp->i_offset);
2609 offset = blkoff(dp->i_fs, dp->i_offset);
2610 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2611 WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2612 dirrem->dm_pagedep = pagedep;
2613 /*
2614 * Check for a diradd dependency for the same directory entry.
2615 * If present, then both dependencies become obsolete and can
2616 * be de-allocated. Check for an entry on both the pd_dirraddhd
2617 * list and the pd_pendinghd list.
2618 */
2619
2620 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
2621 if (dap->da_offset == offset)
2622 break;
2623 if (dap == NULL) {
2624
2625 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
2626 if (dap->da_offset == offset)
2627 break;
2628 if (dap == NULL)
2629 return (dirrem);
2630 }
2631 /*
2632 * Must be ATTACHED at this point.
2633 */
2634 if ((dap->da_state & ATTACHED) == 0) {
2635 panic("newdirrem: not ATTACHED");
2636 }
2637 if (dap->da_newinum != ip->i_number) {
2638 panic("newdirrem: inum %"PRId64" should be %"PRId64,
2639 ip->i_number, dap->da_newinum);
2640 }
2641 /*
2642 * If we are deleting a changed name that never made it to disk,
2643 * then return the dirrem describing the previous inode (which
2644 * represents the inode currently referenced from this entry on disk).
2645 */
2646 if ((dap->da_state & DIRCHG) != 0) {
2647 *prevdirremp = dap->da_previous;
2648 dap->da_state &= ~DIRCHG;
2649 dap->da_pagedep = pagedep;
2650 }
2651 /*
2652 * We are deleting an entry that never made it to disk.
2653 * Mark it COMPLETE so we can delete its inode immediately.
2654 */
2655 dirrem->dm_state |= COMPLETE;
2656 free_diradd(dap);
2657 return (dirrem);
2658}
2659
2660/*
2661 * Directory entry change dependencies.
2662 *
2663 * Changing an existing directory entry requires that an add operation
2664 * be completed first followed by a deletion. The semantics for the addition
2665 * are identical to the description of adding a new entry above except
2666 * that the rollback is to the old inode number rather than zero. Once
2667 * the addition dependency is completed, the removal is done as described
2668 * in the removal routine above.
2669 */
2670
2671/*
2672 * This routine should be called immediately after changing
2673 * a directory entry. The inode's link count should not be
2674 * decremented by the calling procedure -- the soft updates
2675 * code will perform this task when it is safe.
2676 *
2677 * Parameters:
2678 * bp: buffer containing directory block
2679 * dp: inode for the directory being modified
2680 * ip: inode for directory entry being removed
2681 * newinum: new inode number for changed entry
2682 * isrmdir: indicates if doing RMDIR
2683 */
2684void
2685softdep_setup_directory_change(struct buf *bp, struct inode *dp,
2686 struct inode *ip, ino_t newinum,
2687 int isrmdir)
2688{
2689 int offset;
2690 struct diradd *dap = NULL;
2691 struct dirrem *dirrem, *prevdirrem;
2692 struct pagedep *pagedep;
2693 struct inodedep *inodedep;
2694
2695 offset = blkoff(dp->i_fs, dp->i_offset);
2696
2697 /*
2698 * Whiteouts do not need diradd dependencies.
2699 */
2700 if (newinum != WINO) {
2701 dap = kmalloc(sizeof(struct diradd), M_DIRADD,
2702 M_SOFTDEP_FLAGS | M_ZERO);
2703 dap->da_list.wk_type = D_DIRADD;
2704 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
2705 dap->da_offset = offset;
2706 dap->da_newinum = newinum;
2707 }
2708
2709 /*
2710 * Allocate a new dirrem and ACQUIRE_LOCK.
2711 */
2712 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2713 pagedep = dirrem->dm_pagedep;
2714 /*
2715 * The possible values for isrmdir:
2716 * 0 - non-directory file rename
2717 * 1 - directory rename within same directory
2718 * inum - directory rename to new directory of given inode number
2719 * When renaming to a new directory, we are both deleting and
2720 * creating a new directory entry, so the link count on the new
2721 * directory should not change. Thus we do not need the followup
2722 * dirrem which is usually done in handle_workitem_remove. We set
2723 * the DIRCHG flag to tell handle_workitem_remove to skip the
2724 * followup dirrem.
2725 */
2726 if (isrmdir > 1)
2727 dirrem->dm_state |= DIRCHG;
2728
2729 /*
2730 * Whiteouts have no additional dependencies,
2731 * so just put the dirrem on the correct list.
2732 */
2733 if (newinum == WINO) {
2734 if ((dirrem->dm_state & COMPLETE) == 0) {
2735 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
2736 dm_next);
2737 } else {
2738 dirrem->dm_dirinum = pagedep->pd_ino;
2739 add_to_worklist(&dirrem->dm_list);
2740 }
2741 FREE_LOCK(&lk);
2742 return;
2743 }
2744
2745 /*
2746 * If the COMPLETE flag is clear, then there were no active
2747 * entries and we want to roll back to the previous inode until
2748 * the new inode is committed to disk. If the COMPLETE flag is
2749 * set, then we have deleted an entry that never made it to disk.
2750 * If the entry we deleted resulted from a name change, then the old
2751 * inode reference still resides on disk. Any rollback that we do
2752 * needs to be to that old inode (returned to us in prevdirrem). If
2753 * the entry we deleted resulted from a create, then there is
2754 * no entry on the disk, so we want to roll back to zero rather
2755 * than the uncommitted inode. In either of the COMPLETE cases we
2756 * want to immediately free the unwritten and unreferenced inode.
2757 */
2758 if ((dirrem->dm_state & COMPLETE) == 0) {
2759 dap->da_previous = dirrem;
2760 } else {
2761 if (prevdirrem != NULL) {
2762 dap->da_previous = prevdirrem;
2763 } else {
2764 dap->da_state &= ~DIRCHG;
2765 dap->da_pagedep = pagedep;
2766 }
2767 dirrem->dm_dirinum = pagedep->pd_ino;
2768 add_to_worklist(&dirrem->dm_list);
2769 }
2770 /*
2771 * Link into its inodedep. Put it on the id_bufwait list if the inode
2772 * is not yet written. If it is written, do the post-inode write
2773 * processing to put it on the id_pendinghd list.
2774 */
2775 if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
2776 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2777 dap->da_state |= COMPLETE;
2778 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
2779 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
2780 } else {
2781 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
2782 dap, da_pdlist);
2783 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2784 }
2785 FREE_LOCK(&lk);
2786}
2787
2788/*
2789 * Called whenever the link count on an inode is changed.
2790 * It creates an inode dependency so that the new reference(s)
2791 * to the inode cannot be committed to disk until the updated
2792 * inode has been written.
2793 *
2794 * Parameters:
2795 * ip: the inode with the increased link count
2796 */
2797void
2798softdep_change_linkcnt(struct inode *ip)
2799{
2800 struct inodedep *inodedep;
2801
2802 ACQUIRE_LOCK(&lk);
2803 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
2804 if (ip->i_nlink < ip->i_effnlink) {
2805 panic("softdep_change_linkcnt: bad delta");
2806 }
2807 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2808 FREE_LOCK(&lk);
2809}
2810
2811/*
2812 * This workitem decrements the inode's link count.
2813 * If the link count reaches zero, the file is removed.
2814 */
2815static void
2816handle_workitem_remove(struct dirrem *dirrem)
2817{
2818 struct inodedep *inodedep;
2819 struct vnode *vp;
2820 struct inode *ip;
2821 ino_t oldinum;
2822 int error;
2823
2824 error = VFS_VGET(dirrem->dm_mnt, NULL, dirrem->dm_oldinum, &vp);
2825 if (error) {
2826 softdep_error("handle_workitem_remove: vget", error);
2827 return;
2828 }
2829 ip = VTOI(vp);
2830 ACQUIRE_LOCK(&lk);
2831 if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){
2832 panic("handle_workitem_remove: lost inodedep");
2833 }
2834 /*
2835 * Normal file deletion.
2836 */
2837 if ((dirrem->dm_state & RMDIR) == 0) {
2838 ip->i_nlink--;
2839 ip->i_flag |= IN_CHANGE;
2840 if (ip->i_nlink < ip->i_effnlink) {
2841 panic("handle_workitem_remove: bad file delta");
2842 }
2843 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2844 FREE_LOCK(&lk);
2845 vput(vp);
2846 num_dirrem -= 1;
2847 WORKITEM_FREE(dirrem, D_DIRREM);
2848 return;
2849 }
2850 /*
2851 * Directory deletion. Decrement reference count for both the
2852 * just deleted parent directory entry and the reference for ".".
2853 * Next truncate the directory to length zero. When the
2854 * truncation completes, arrange to have the reference count on
2855 * the parent decremented to account for the loss of "..".
2856 */
2857 ip->i_nlink -= 2;
2858 ip->i_flag |= IN_CHANGE;
2859 if (ip->i_nlink < ip->i_effnlink) {
2860 panic("handle_workitem_remove: bad dir delta");
2861 }
2862 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2863 FREE_LOCK(&lk);
2864 if ((error = ffs_truncate(vp, (off_t)0, 0, proc0.p_ucred)) != 0)
2865 softdep_error("handle_workitem_remove: truncate", error);
2866 /*
2867 * Rename a directory to a new parent. Since, we are both deleting
2868 * and creating a new directory entry, the link count on the new
2869 * directory should not change. Thus we skip the followup dirrem.
2870 */
2871 if (dirrem->dm_state & DIRCHG) {
2872 vput(vp);
2873 num_dirrem -= 1;
2874 WORKITEM_FREE(dirrem, D_DIRREM);
2875 return;
2876 }
2877 /*
2878 * If the inodedep does not exist, then the zero'ed inode has
2879 * been written to disk. If the allocated inode has never been
2880 * written to disk, then the on-disk inode is zero'ed. In either
2881 * case we can remove the file immediately.
2882 */
2883 ACQUIRE_LOCK(&lk);
2884 dirrem->dm_state = 0;
2885 oldinum = dirrem->dm_oldinum;
2886 dirrem->dm_oldinum = dirrem->dm_dirinum;
2887 if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 ||
2888 check_inode_unwritten(inodedep)) {
2889 FREE_LOCK(&lk);
2890 vput(vp);
2891 handle_workitem_remove(dirrem);
2892 return;
2893 }
2894 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
2895 FREE_LOCK(&lk);
2896 ip->i_flag |= IN_CHANGE;
2897 ffs_update(vp, 0);
2898 vput(vp);
2899}
2900
2901/*
2902 * Inode de-allocation dependencies.
2903 *
2904 * When an inode's link count is reduced to zero, it can be de-allocated. We
2905 * found it convenient to postpone de-allocation until after the inode is
2906 * written to disk with its new link count (zero). At this point, all of the
2907 * on-disk inode's block pointers are nullified and, with careful dependency
2908 * list ordering, all dependencies related to the inode will be satisfied and
2909 * the corresponding dependency structures de-allocated. So, if/when the
2910 * inode is reused, there will be no mixing of old dependencies with new
2911 * ones. This artificial dependency is set up by the block de-allocation
2912 * procedure above (softdep_setup_freeblocks) and completed by the
2913 * following procedure.
2914 */
2915static void
2916handle_workitem_freefile(struct freefile *freefile)
2917{
2918 struct vnode vp;
2919 struct inode tip;
2920 struct inodedep *idp;
2921 int error;
2922
2923#ifdef DEBUG
2924 ACQUIRE_LOCK(&lk);
2925 error = inodedep_lookup(freefile->fx_fs, freefile->fx_oldinum, 0, &idp);
2926 FREE_LOCK(&lk);
2927 if (error)
2928 panic("handle_workitem_freefile: inodedep survived");
2929#endif
2930 tip.i_devvp = freefile->fx_devvp;
2931 tip.i_dev = freefile->fx_devvp->v_rdev;
2932 tip.i_fs = freefile->fx_fs;
2933 vp.v_data = &tip;
2934 if ((error = ffs_freefile(&vp, freefile->fx_oldinum, freefile->fx_mode)) != 0)
2935 softdep_error("handle_workitem_freefile", error);
2936 WORKITEM_FREE(freefile, D_FREEFILE);
2937}
2938
2939/*
2940 * Helper function which unlinks marker element from work list and returns
2941 * the next element on the list.
2942 */
2943static __inline struct worklist *
2944markernext(struct worklist *marker)
2945{
2946 struct worklist *next;
2947
2948 next = LIST_NEXT(marker, wk_list);
2949 LIST_REMOVE(marker, wk_list);
2950 return next;
2951}
2952
2953/*
2954 * checkread, checkwrite
2955 *
2956 * bioops callback - hold io_token
2957 */
2958static int
2959softdep_checkread(struct buf *bp)
2960{
2961 /* nothing to do, mp lock not needed */
2962 return(0);
2963}
2964
2965/*
2966 * bioops callback - hold io_token
2967 */
2968static int
2969softdep_checkwrite(struct buf *bp)
2970{
2971 /* nothing to do, mp lock not needed */
2972 return(0);
2973}
2974
2975/*
2976 * Disk writes.
2977 *
2978 * The dependency structures constructed above are most actively used when file
2979 * system blocks are written to disk. No constraints are placed on when a
2980 * block can be written, but unsatisfied update dependencies are made safe by
2981 * modifying (or replacing) the source memory for the duration of the disk
2982 * write. When the disk write completes, the memory block is again brought
2983 * up-to-date.
2984 *
2985 * In-core inode structure reclamation.
2986 *
2987 * Because there are a finite number of "in-core" inode structures, they are
2988 * reused regularly. By transferring all inode-related dependencies to the
2989 * in-memory inode block and indexing them separately (via "inodedep"s), we
2990 * can allow "in-core" inode structures to be reused at any time and avoid
2991 * any increase in contention.
2992 *
2993 * Called just before entering the device driver to initiate a new disk I/O.
2994 * The buffer must be locked, thus, no I/O completion operations can occur
2995 * while we are manipulating its associated dependencies.
2996 *
2997 * bioops callback - hold io_token
2998 *
2999 * Parameters:
3000 * bp: structure describing disk write to occur
3001 */
3002static void
3003softdep_disk_io_initiation(struct buf *bp)
3004{
3005 struct worklist *wk;
3006 struct worklist marker;
3007 struct indirdep *indirdep;
3008
3009 /*
3010 * We only care about write operations. There should never
3011 * be dependencies for reads.
3012 */
3013 if (bp->b_cmd == BUF_CMD_READ)
3014 panic("softdep_disk_io_initiation: read");
3015
3016 ACQUIRE_LOCK(&lk);
3017 marker.wk_type = D_LAST + 1; /* Not a normal workitem */
3018
3019 /*
3020 * Do any necessary pre-I/O processing.
3021 */
3022 for (wk = LIST_FIRST(&bp->b_dep); wk; wk = markernext(&marker)) {
3023 LIST_INSERT_AFTER(wk, &marker, wk_list);
3024
3025 switch (wk->wk_type) {
3026 case D_PAGEDEP:
3027 initiate_write_filepage(WK_PAGEDEP(wk), bp);
3028 continue;
3029
3030 case D_INODEDEP:
3031 initiate_write_inodeblock(WK_INODEDEP(wk), bp);
3032 continue;
3033
3034 case D_INDIRDEP:
3035 indirdep = WK_INDIRDEP(wk);
3036 if (indirdep->ir_state & GOINGAWAY)
3037 panic("disk_io_initiation: indirdep gone");
3038 /*
3039 * If there are no remaining dependencies, this
3040 * will be writing the real pointers, so the
3041 * dependency can be freed.
3042 */
3043 if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
3044 indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
3045 brelse(indirdep->ir_savebp);
3046 /* inline expand WORKLIST_REMOVE(wk); */
3047 wk->wk_state &= ~ONWORKLIST;
3048 LIST_REMOVE(wk, wk_list);
3049 WORKITEM_FREE(indirdep, D_INDIRDEP);
3050 continue;
3051 }
3052 /*
3053 * Replace up-to-date version with safe version.
3054 */
3055 indirdep->ir_saveddata = kmalloc(bp->b_bcount,
3056 M_INDIRDEP,
3057 M_SOFTDEP_FLAGS);
3058 ACQUIRE_LOCK(&lk);
3059 indirdep->ir_state &= ~ATTACHED;
3060 indirdep->ir_state |= UNDONE;
3061 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3062 bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3063 bp->b_bcount);
3064 FREE_LOCK(&lk);
3065 continue;
3066
3067 case D_MKDIR:
3068 case D_BMSAFEMAP:
3069 case D_ALLOCDIRECT:
3070 case D_ALLOCINDIR:
3071 continue;
3072
3073 default:
3074 panic("handle_disk_io_initiation: Unexpected type %s",
3075 TYPENAME(wk->wk_type));
3076 /* NOTREACHED */
3077 }
3078 }
3079 FREE_LOCK(&lk);
3080}
3081
3082/*
3083 * Called from within the procedure above to deal with unsatisfied
3084 * allocation dependencies in a directory. The buffer must be locked,
3085 * thus, no I/O completion operations can occur while we are
3086 * manipulating its associated dependencies.
3087 */
3088static void
3089initiate_write_filepage(struct pagedep *pagedep, struct buf *bp)
3090{
3091 struct diradd *dap;
3092 struct direct *ep;
3093 int i;
3094
3095 if (pagedep->pd_state & IOSTARTED) {
3096 /*
3097 * This can only happen if there is a driver that does not
3098 * understand chaining. Here biodone will reissue the call
3099 * to strategy for the incomplete buffers.
3100 */
3101 kprintf("initiate_write_filepage: already started\n");
3102 return;
3103 }
3104 pagedep->pd_state |= IOSTARTED;
3105 ACQUIRE_LOCK(&lk);
3106 for (i = 0; i < DAHASHSZ; i++) {
3107 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3108 ep = (struct direct *)
3109 ((char *)bp->b_data + dap->da_offset);
3110 if (ep->d_ino != dap->da_newinum) {
3111 panic("%s: dir inum %d != new %"PRId64,
3112 "initiate_write_filepage",
3113 ep->d_ino, dap->da_newinum);
3114 }
3115 if (dap->da_state & DIRCHG)
3116 ep->d_ino = dap->da_previous->dm_oldinum;
3117 else
3118 ep->d_ino = 0;
3119 dap->da_state &= ~ATTACHED;
3120 dap->da_state |= UNDONE;
3121 }
3122 }
3123 FREE_LOCK(&lk);
3124}
3125
3126/*
3127 * Called from within the procedure above to deal with unsatisfied
3128 * allocation dependencies in an inodeblock. The buffer must be
3129 * locked, thus, no I/O completion operations can occur while we
3130 * are manipulating its associated dependencies.
3131 *
3132 * Parameters:
3133 * bp: The inode block
3134 */
3135static void
3136initiate_write_inodeblock(struct inodedep *inodedep, struct buf *bp)
3137{
3138 struct allocdirect *adp, *lastadp;
3139 struct ufs1_dinode *dp;
3140 struct ufs1_dinode *sip;
3141 struct fs *fs;
3142 ufs_lbn_t prevlbn = 0;
3143 int i, deplist;
3144
3145 if (inodedep->id_state & IOSTARTED)
3146 panic("initiate_write_inodeblock: already started");
3147 inodedep->id_state |= IOSTARTED;
3148 fs = inodedep->id_fs;
3149 dp = (struct ufs1_dinode *)bp->b_data +
3150 ino_to_fsbo(fs, inodedep->id_ino);
3151 /*
3152 * If the bitmap is not yet written, then the allocated
3153 * inode cannot be written to disk.
3154 */
3155 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3156 if (inodedep->id_savedino != NULL)
3157 panic("initiate_write_inodeblock: already doing I/O");
3158 sip = kmalloc(sizeof(struct ufs1_dinode), M_INODEDEP,
3159 M_SOFTDEP_FLAGS);
3160 inodedep->id_savedino = sip;
3161 *inodedep->id_savedino = *dp;
3162 bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
3163 dp->di_gen = inodedep->id_savedino->di_gen;
3164 return;
3165 }
3166 /*
3167 * If no dependencies, then there is nothing to roll back.
3168 */
3169 inodedep->id_savedsize = dp->di_size;
3170 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3171 return;
3172 /*
3173 * Set the dependencies to busy.
3174 */
3175 ACQUIRE_LOCK(&lk);
3176 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3177 adp = TAILQ_NEXT(adp, ad_next)) {
3178#ifdef DIAGNOSTIC
3179 if (deplist != 0 && prevlbn >= adp->ad_lbn) {
3180 panic("softdep_write_inodeblock: lbn order");
3181 }
3182 prevlbn = adp->ad_lbn;
3183 if (adp->ad_lbn < NDADDR &&
3184 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) {
3185 panic("%s: direct pointer #%ld mismatch %d != %d",
3186 "softdep_write_inodeblock", adp->ad_lbn,
3187 dp->di_db[adp->ad_lbn], adp->ad_newblkno);
3188 }
3189 if (adp->ad_lbn >= NDADDR &&
3190 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) {
3191 panic("%s: indirect pointer #%ld mismatch %d != %d",
3192 "softdep_write_inodeblock", adp->ad_lbn - NDADDR,
3193 dp->di_ib[adp->ad_lbn - NDADDR], adp->ad_newblkno);
3194 }
3195 deplist |= 1 << adp->ad_lbn;
3196 if ((adp->ad_state & ATTACHED) == 0) {
3197 panic("softdep_write_inodeblock: Unknown state 0x%x",
3198 adp->ad_state);
3199 }
3200#endif /* DIAGNOSTIC */
3201 adp->ad_state &= ~ATTACHED;
3202 adp->ad_state |= UNDONE;
3203 }
3204 /*
3205 * The on-disk inode cannot claim to be any larger than the last
3206 * fragment that has been written. Otherwise, the on-disk inode
3207 * might have fragments that were not the last block in the file
3208 * which would corrupt the filesystem.
3209 */
3210 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3211 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3212 if (adp->ad_lbn >= NDADDR)
3213 break;
3214 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3215 /* keep going until hitting a rollback to a frag */
3216 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3217 continue;
3218 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3219 for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3220#ifdef DIAGNOSTIC
3221 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) {
3222 panic("softdep_write_inodeblock: lost dep1");
3223 }
3224#endif /* DIAGNOSTIC */
3225 dp->di_db[i] = 0;
3226 }
3227 for (i = 0; i < NIADDR; i++) {
3228#ifdef DIAGNOSTIC
3229 if (dp->di_ib[i] != 0 &&
3230 (deplist & ((1 << NDADDR) << i)) == 0) {
3231 panic("softdep_write_inodeblock: lost dep2");
3232 }
3233#endif /* DIAGNOSTIC */
3234 dp->di_ib[i] = 0;
3235 }
3236 FREE_LOCK(&lk);
3237 return;
3238 }
3239 /*
3240 * If we have zero'ed out the last allocated block of the file,
3241 * roll back the size to the last currently allocated block.
3242 * We know that this last allocated block is a full-sized as
3243 * we already checked for fragments in the loop above.
3244 */
3245 if (lastadp != NULL &&
3246 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3247 for (i = lastadp->ad_lbn; i >= 0; i--)
3248 if (dp->di_db[i] != 0)
3249 break;
3250 dp->di_size = (i + 1) * fs->fs_bsize;
3251 }
3252 /*
3253 * The only dependencies are for indirect blocks.
3254 *
3255 * The file size for indirect block additions is not guaranteed.
3256 * Such a guarantee would be non-trivial to achieve. The conventional
3257 * synchronous write implementation also does not make this guarantee.
3258 * Fsck should catch and fix discrepancies. Arguably, the file size
3259 * can be over-estimated without destroying integrity when the file
3260 * moves into the indirect blocks (i.e., is large). If we want to
3261 * postpone fsck, we are stuck with this argument.
3262 */
3263 for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3264 dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3265 FREE_LOCK(&lk);
3266}
3267
3268/*
3269 * This routine is called during the completion interrupt
3270 * service routine for a disk write (from the procedure called
3271 * by the device driver to inform the filesystem caches of
3272 * a request completion). It should be called early in this
3273 * procedure, before the block is made available to other
3274 * processes or other routines are called.
3275 *
3276 * bioops callback - hold io_token
3277 *
3278 * Parameters:
3279 * bp: describes the completed disk write
3280 */
3281static void
3282softdep_disk_write_complete(struct buf *bp)
3283{
3284 struct worklist *wk;
3285 struct workhead reattach;
3286 struct newblk *newblk;
3287 struct allocindir *aip;
3288 struct allocdirect *adp;
3289 struct indirdep *indirdep;
3290 struct inodedep *inodedep;
3291 struct bmsafemap *bmsafemap;
3292
3293 ACQUIRE_LOCK(&lk);
3294
3295 LIST_INIT(&reattach);
3296 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
3297 WORKLIST_REMOVE(wk);
3298 switch (wk->wk_type) {
3299
3300 case D_PAGEDEP:
3301 if (handle_written_filepage(WK_PAGEDEP(wk), bp))
3302 WORKLIST_INSERT(&reattach, wk);
3303 continue;
3304
3305 case D_INODEDEP:
3306 if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
3307 WORKLIST_INSERT(&reattach, wk);
3308 continue;
3309
3310 case D_BMSAFEMAP:
3311 bmsafemap = WK_BMSAFEMAP(wk);
3312 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
3313 newblk->nb_state |= DEPCOMPLETE;
3314 newblk->nb_bmsafemap = NULL;
3315 LIST_REMOVE(newblk, nb_deps);
3316 }
3317 while ((adp =
3318 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
3319 adp->ad_state |= DEPCOMPLETE;
3320 adp->ad_buf = NULL;
3321 LIST_REMOVE(adp, ad_deps);
3322 handle_allocdirect_partdone(adp);
3323 }
3324 while ((aip =
3325 LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
3326 aip->ai_state |= DEPCOMPLETE;
3327 aip->ai_buf = NULL;
3328 LIST_REMOVE(aip, ai_deps);
3329 handle_allocindir_partdone(aip);
3330 }
3331 while ((inodedep =
3332 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
3333 inodedep->id_state |= DEPCOMPLETE;
3334 LIST_REMOVE(inodedep, id_deps);
3335 inodedep->id_buf = NULL;
3336 }
3337 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
3338 continue;
3339
3340 case D_MKDIR:
3341 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
3342 continue;
3343
3344 case D_ALLOCDIRECT:
3345 adp = WK_ALLOCDIRECT(wk);
3346 adp->ad_state |= COMPLETE;
3347 handle_allocdirect_partdone(adp);
3348 continue;
3349
3350 case D_ALLOCINDIR:
3351 aip = WK_ALLOCINDIR(wk);
3352 aip->ai_state |= COMPLETE;
3353 handle_allocindir_partdone(aip);
3354 continue;
3355
3356 case D_INDIRDEP:
3357 indirdep = WK_INDIRDEP(wk);
3358 if (indirdep->ir_state & GOINGAWAY) {
3359 panic("disk_write_complete: indirdep gone");
3360 }
3361 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
3362 kfree(indirdep->ir_saveddata, M_INDIRDEP);
3363 indirdep->ir_saveddata = 0;
3364 indirdep->ir_state &= ~UNDONE;
3365 indirdep->ir_state |= ATTACHED;
3366 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
3367 handle_allocindir_partdone(aip);
3368 if (aip == LIST_FIRST(&indirdep->ir_donehd)) {
3369 panic("disk_write_complete: not gone");
3370 }
3371 }
3372 WORKLIST_INSERT(&reattach, wk);
3373 if ((bp->b_flags & B_DELWRI) == 0)
3374 stat_indir_blk_ptrs++;
3375 bdirty(bp);
3376 continue;
3377
3378 default:
3379 panic("handle_disk_write_complete: Unknown type %s",
3380 TYPENAME(wk->wk_type));
3381 /* NOTREACHED */
3382 }
3383 }
3384 /*
3385 * Reattach any requests that must be redone.
3386 */
3387 while ((wk = LIST_FIRST(&reattach)) != NULL) {
3388 WORKLIST_REMOVE(wk);
3389 WORKLIST_INSERT_BP(bp, wk);
3390 }
3391
3392 FREE_LOCK(&lk);
3393}
3394
3395/*
3396 * Called from within softdep_disk_write_complete above. Note that
3397 * this routine is always called from interrupt level with further
3398 * splbio interrupts blocked.
3399 *
3400 * Parameters:
3401 * adp: the completed allocdirect
3402 */
3403static void
3404handle_allocdirect_partdone(struct allocdirect *adp)
3405{
3406 struct allocdirect *listadp;
3407 struct inodedep *inodedep;
3408 long bsize;
3409
3410 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3411 return;
3412 if (adp->ad_buf != NULL)
3413 panic("handle_allocdirect_partdone: dangling dep");
3414
3415 /*
3416 * The on-disk inode cannot claim to be any larger than the last
3417 * fragment that has been written. Otherwise, the on-disk inode
3418 * might have fragments that were not the last block in the file
3419 * which would corrupt the filesystem. Thus, we cannot free any
3420 * allocdirects after one whose ad_oldblkno claims a fragment as
3421 * these blocks must be rolled back to zero before writing the inode.
3422 * We check the currently active set of allocdirects in id_inoupdt.
3423 */
3424 inodedep = adp->ad_inodedep;
3425 bsize = inodedep->id_fs->fs_bsize;
3426 TAILQ_FOREACH(listadp, &inodedep->id_inoupdt, ad_next) {
3427 /* found our block */
3428 if (listadp == adp)
3429 break;
3430 /* continue if ad_oldlbn is not a fragment */
3431 if (listadp->ad_oldsize == 0 ||
3432 listadp->ad_oldsize == bsize)
3433 continue;
3434 /* hit a fragment */
3435 return;
3436 }
3437 /*
3438 * If we have reached the end of the current list without
3439 * finding the just finished dependency, then it must be
3440 * on the future dependency list. Future dependencies cannot
3441 * be freed until they are moved to the current list.
3442 */
3443 if (listadp == NULL) {
3444#ifdef DEBUG
3445 TAILQ_FOREACH(listadp, &inodedep->id_newinoupdt, ad_next)
3446 /* found our block */
3447 if (listadp == adp)
3448 break;
3449 if (listadp == NULL)
3450 panic("handle_allocdirect_partdone: lost dep");
3451#endif /* DEBUG */
3452 return;
3453 }
3454 /*
3455 * If we have found the just finished dependency, then free
3456 * it along with anything that follows it that is complete.
3457 */
3458 for (; adp; adp = listadp) {
3459 listadp = TAILQ_NEXT(adp, ad_next);
3460 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3461 return;
3462 free_allocdirect(&inodedep->id_inoupdt, adp, 1);
3463 }
3464}
3465
3466/*
3467 * Called from within softdep_disk_write_complete above. Note that
3468 * this routine is always called from interrupt level with further
3469 * splbio interrupts blocked.
3470 *
3471 * Parameters:
3472 * aip: the completed allocindir
3473 */
3474static void
3475handle_allocindir_partdone(struct allocindir *aip)
3476{
3477 struct indirdep *indirdep;
3478
3479 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
3480 return;
3481 if (aip->ai_buf != NULL)
3482 panic("handle_allocindir_partdone: dangling dependency");
3483
3484 indirdep = aip->ai_indirdep;
3485 if (indirdep->ir_state & UNDONE) {
3486 LIST_REMOVE(aip, ai_next);
3487 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
3488 return;
3489 }
3490 ((ufs_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
3491 aip->ai_newblkno;
3492 LIST_REMOVE(aip, ai_next);
3493 if (aip->ai_freefrag != NULL)
3494 add_to_worklist(&aip->ai_freefrag->ff_list);
3495 WORKITEM_FREE(aip, D_ALLOCINDIR);
3496}
3497
3498/*
3499 * Called from within softdep_disk_write_complete above to restore
3500 * in-memory inode block contents to their most up-to-date state. Note
3501 * that this routine is always called from interrupt level with further
3502 * splbio interrupts blocked.
3503 *
3504 * Parameters:
3505 * bp: buffer containing the inode block
3506 */
3507static int
3508handle_written_inodeblock(struct inodedep *inodedep, struct buf *bp)
3509{
3510 struct worklist *wk, *filefree;
3511 struct allocdirect *adp, *nextadp;
3512 struct ufs1_dinode *dp;
3513 int hadchanges;
3514
3515 if ((inodedep->id_state & IOSTARTED) == 0)
3516 panic("handle_written_inodeblock: not started");
3517
3518 inodedep->id_state &= ~IOSTARTED;
3519 dp = (struct ufs1_dinode *)bp->b_data +
3520 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
3521 /*
3522 * If we had to rollback the inode allocation because of
3523 * bitmaps being incomplete, then simply restore it.
3524 * Keep the block dirty so that it will not be reclaimed until
3525 * all associated dependencies have been cleared and the
3526 * corresponding updates written to disk.
3527 */
3528 if (inodedep->id_savedino != NULL) {
3529 *dp = *inodedep->id_savedino;
3530 kfree(inodedep->id_savedino, M_INODEDEP);
3531 inodedep->id_savedino = NULL;
3532 if ((bp->b_flags & B_DELWRI) == 0)
3533 stat_inode_bitmap++;
3534 bdirty(bp);
3535 return (1);
3536 }
3537 inodedep->id_state |= COMPLETE;
3538 /*
3539 * Roll forward anything that had to be rolled back before
3540 * the inode could be updated.
3541 */
3542 hadchanges = 0;
3543 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
3544 nextadp = TAILQ_NEXT(adp, ad_next);
3545 if (adp->ad_state & ATTACHED)
3546 panic("handle_written_inodeblock: new entry");
3547
3548 if (adp->ad_lbn < NDADDR) {
3549 if (dp->di_db[adp->ad_lbn] != adp->ad_oldblkno) {
3550 panic("%s: %s #%ld mismatch %d != %d",
3551 "handle_written_inodeblock",
3552 "direct pointer", adp->ad_lbn,
3553 dp->di_db[adp->ad_lbn], adp->ad_oldblkno);
3554 }
3555 dp->di_db[adp->ad_lbn] = adp->ad_newblkno;
3556 } else {
3557 if (dp->di_ib[adp->ad_lbn - NDADDR] != 0) {
3558 panic("%s: %s #%ld allocated as %d",
3559 "handle_written_inodeblock",
3560 "indirect pointer", adp->ad_lbn - NDADDR,
3561 dp->di_ib[adp->ad_lbn - NDADDR]);
3562 }
3563 dp->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno;
3564 }
3565 adp->ad_state &= ~UNDONE;
3566 adp->ad_state |= ATTACHED;
3567 hadchanges = 1;
3568 }
3569 if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
3570 stat_direct_blk_ptrs++;
3571 /*
3572 * Reset the file size to its most up-to-date value.
3573 */
3574 if (inodedep->id_savedsize == -1) {
3575 panic("handle_written_inodeblock: bad size");
3576 }
3577 if (dp->di_size != inodedep->id_savedsize) {
3578 dp->di_size = inodedep->id_savedsize;
3579 hadchanges = 1;
3580 }
3581 inodedep->id_savedsize = -1;
3582 /*
3583 * If there were any rollbacks in the inode block, then it must be
3584 * marked dirty so that its will eventually get written back in
3585 * its correct form.
3586 */
3587 if (hadchanges)
3588 bdirty(bp);
3589 /*
3590 * Process any allocdirects that completed during the update.
3591 */
3592 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
3593 handle_allocdirect_partdone(adp);
3594 /*
3595 * Process deallocations that were held pending until the
3596 * inode had been written to disk. Freeing of the inode
3597 * is delayed until after all blocks have been freed to
3598 * avoid creation of new <vfsid, inum, lbn> triples
3599 * before the old ones have been deleted.
3600 */
3601 filefree = NULL;
3602 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
3603 WORKLIST_REMOVE(wk);
3604 switch (wk->wk_type) {
3605
3606 case D_FREEFILE:
3607 /*
3608 * We defer adding filefree to the worklist until
3609 * all other additions have been made to ensure
3610 * that it will be done after all the old blocks
3611 * have been freed.
3612 */
3613 if (filefree != NULL) {
3614 panic("handle_written_inodeblock: filefree");
3615 }
3616 filefree = wk;
3617 continue;
3618
3619 case D_MKDIR:
3620 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
3621 continue;
3622
3623 case D_DIRADD:
3624 diradd_inode_written(WK_DIRADD(wk), inodedep);
3625 continue;
3626
3627 case D_FREEBLKS:
3628 wk->wk_state |= COMPLETE;
3629 if ((wk->wk_state & ALLCOMPLETE) != ALLCOMPLETE)
3630 continue;
3631 /* -- fall through -- */
3632 case D_FREEFRAG:
3633 case D_DIRREM:
3634 add_to_worklist(wk);
3635 continue;
3636
3637 default:
3638 panic("handle_written_inodeblock: Unknown type %s",
3639 TYPENAME(wk->wk_type));
3640 /* NOTREACHED */
3641 }
3642 }
3643 if (filefree != NULL) {
3644 if (free_inodedep(inodedep) == 0) {
3645 panic("handle_written_inodeblock: live inodedep");
3646 }
3647 add_to_worklist(filefree);
3648 return (0);
3649 }
3650
3651 /*
3652 * If no outstanding dependencies, free it.
3653 */
3654 if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == 0)
3655 return (0);
3656 return (hadchanges);
3657}
3658
3659/*
3660 * Process a diradd entry after its dependent inode has been written.
3661 * This routine must be called with splbio interrupts blocked.
3662 */
3663static void
3664diradd_inode_written(struct diradd *dap, struct inodedep *inodedep)
3665{
3666 struct pagedep *pagedep;
3667
3668 dap->da_state |= COMPLETE;
3669 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3670 if (dap->da_state & DIRCHG)
3671 pagedep = dap->da_previous->dm_pagedep;
3672 else
3673 pagedep = dap->da_pagedep;
3674 LIST_REMOVE(dap, da_pdlist);
3675 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3676 }
3677 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3678}
3679
3680/*
3681 * Handle the completion of a mkdir dependency.
3682 */
3683static void
3684handle_written_mkdir(struct mkdir *mkdir, int type)
3685{
3686 struct diradd *dap;
3687 struct pagedep *pagedep;
3688
3689 if (mkdir->md_state != type) {
3690 panic("handle_written_mkdir: bad type");
3691 }
3692 dap = mkdir->md_diradd;
3693 dap->da_state &= ~type;
3694 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
3695 dap->da_state |= DEPCOMPLETE;
3696 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3697 if (dap->da_state & DIRCHG)
3698 pagedep = dap->da_previous->dm_pagedep;
3699 else
3700 pagedep = dap->da_pagedep;
3701 LIST_REMOVE(dap, da_pdlist);
3702 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3703 }
3704 LIST_REMOVE(mkdir, md_mkdirs);
3705 WORKITEM_FREE(mkdir, D_MKDIR);
3706}
3707
3708/*
3709 * Called from within softdep_disk_write_complete above.
3710 * A write operation was just completed. Removed inodes can
3711 * now be freed and associated block pointers may be committed.
3712 * Note that this routine is always called from interrupt level
3713 * with further splbio interrupts blocked.
3714 *
3715 * Parameters:
3716 * bp: buffer containing the written page
3717 */
3718static int
3719handle_written_filepage(struct pagedep *pagedep, struct buf *bp)
3720{
3721 struct dirrem *dirrem;
3722 struct diradd *dap, *nextdap;
3723 struct direct *ep;
3724 int i, chgs;
3725
3726 if ((pagedep->pd_state & IOSTARTED) == 0) {
3727 panic("handle_written_filepage: not started");
3728 }
3729 pagedep->pd_state &= ~IOSTARTED;
3730 /*
3731 * Process any directory removals that have been committed.
3732 */
3733 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
3734 LIST_REMOVE(dirrem, dm_next);
3735 dirrem->dm_dirinum = pagedep->pd_ino;
3736 add_to_worklist(&dirrem->dm_list);
3737 }
3738 /*
3739 * Free any directory additions that have been committed.
3740 */
3741 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
3742 free_diradd(dap);
3743 /*
3744 * Uncommitted directory entries must be restored.
3745 */
3746 for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
3747 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
3748 dap = nextdap) {
3749 nextdap = LIST_NEXT(dap, da_pdlist);
3750 if (dap->da_state & ATTACHED) {
3751 panic("handle_written_filepage: attached");
3752 }
3753 ep = (struct direct *)
3754 ((char *)bp->b_data + dap->da_offset);
3755 ep->d_ino = dap->da_newinum;
3756 dap->da_state &= ~UNDONE;
3757 dap->da_state |= ATTACHED;
3758 chgs = 1;
3759 /*
3760 * If the inode referenced by the directory has
3761 * been written out, then the dependency can be
3762 * moved to the pending list.
3763 */
3764 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3765 LIST_REMOVE(dap, da_pdlist);
3766 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
3767 da_pdlist);
3768 }
3769 }
3770 }
3771 /*
3772 * If there were any rollbacks in the directory, then it must be
3773 * marked dirty so that its will eventually get written back in
3774 * its correct form.
3775 */
3776 if (chgs) {
3777 if ((bp->b_flags & B_DELWRI) == 0)
3778 stat_dir_entry++;
3779 bdirty(bp);
3780 }
3781 /*
3782 * If no dependencies remain, the pagedep will be freed.
3783 * Otherwise it will remain to update the page before it
3784 * is written back to disk.
3785 */
3786 if (LIST_FIRST(&pagedep->pd_pendinghd) == 0) {
3787 for (i = 0; i < DAHASHSZ; i++)
3788 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
3789 break;
3790 if (i == DAHASHSZ) {
3791 LIST_REMOVE(pagedep, pd_hash);
3792 WORKITEM_FREE(pagedep, D_PAGEDEP);
3793 return (0);
3794 }
3795 }
3796 return (1);
3797}
3798
3799/*
3800 * Writing back in-core inode structures.
3801 *
3802 * The filesystem only accesses an inode's contents when it occupies an
3803 * "in-core" inode structure. These "in-core" structures are separate from
3804 * the page frames used to cache inode blocks. Only the latter are
3805 * transferred to/from the disk. So, when the updated contents of the
3806 * "in-core" inode structure are copied to the corresponding in-memory inode
3807 * block, the dependencies are also transferred. The following procedure is
3808 * called when copying a dirty "in-core" inode to a cached inode block.
3809 */
3810
3811/*
3812 * Called when an inode is loaded from disk. If the effective link count
3813 * differed from the actual link count when it was last flushed, then we
3814 * need to ensure that the correct effective link count is put back.
3815 *
3816 * Parameters:
3817 * ip: the "in_core" copy of the inode
3818 */
3819void
3820softdep_load_inodeblock(struct inode *ip)
3821{
3822 struct inodedep *inodedep;
3823
3824 /*
3825 * Check for alternate nlink count.
3826 */
3827 ip->i_effnlink = ip->i_nlink;
3828 ACQUIRE_LOCK(&lk);
3829 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3830 FREE_LOCK(&lk);
3831 return;
3832 }
3833 ip->i_effnlink -= inodedep->id_nlinkdelta;
3834 FREE_LOCK(&lk);
3835}
3836
3837/*
3838 * This routine is called just before the "in-core" inode
3839 * information is to be copied to the in-memory inode block.
3840 * Recall that an inode block contains several inodes. If
3841 * the force flag is set, then the dependencies will be
3842 * cleared so that the update can always be made. Note that
3843 * the buffer is locked when this routine is called, so we
3844 * will never be in the middle of writing the inode block
3845 * to disk.
3846 *
3847 * Parameters:
3848 * ip: the "in_core" copy of the inode
3849 * bp: the buffer containing the inode block
3850 * waitfor: nonzero => update must be allowed
3851 */
3852void
3853softdep_update_inodeblock(struct inode *ip, struct buf *bp,
3854 int waitfor)
3855{
3856 struct inodedep *inodedep;
3857 struct worklist *wk;
3858 struct buf *ibp;
3859 int error, gotit;
3860
3861 /*
3862 * If the effective link count is not equal to the actual link
3863 * count, then we must track the difference in an inodedep while
3864 * the inode is (potentially) tossed out of the cache. Otherwise,
3865 * if there is no existing inodedep, then there are no dependencies
3866 * to track.
3867 */
3868 ACQUIRE_LOCK(&lk);
3869 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3870 FREE_LOCK(&lk);
3871 if (ip->i_effnlink != ip->i_nlink)
3872 panic("softdep_update_inodeblock: bad link count");
3873 return;
3874 }
3875 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) {
3876 panic("softdep_update_inodeblock: bad delta");
3877 }
3878 /*
3879 * Changes have been initiated. Anything depending on these
3880 * changes cannot occur until this inode has been written.
3881 */
3882 inodedep->id_state &= ~COMPLETE;
3883 if ((inodedep->id_state & ONWORKLIST) == 0)
3884 WORKLIST_INSERT_BP(bp, &inodedep->id_list);
3885 /*
3886 * Any new dependencies associated with the incore inode must
3887 * now be moved to the list associated with the buffer holding
3888 * the in-memory copy of the inode. Once merged process any
3889 * allocdirects that are completed by the merger.
3890 */
3891 merge_inode_lists(inodedep);
3892 if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
3893 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
3894 /*
3895 * Now that the inode has been pushed into the buffer, the
3896 * operations dependent on the inode being written to disk
3897 * can be moved to the id_bufwait so that they will be
3898 * processed when the buffer I/O completes.
3899 */
3900 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
3901 WORKLIST_REMOVE(wk);
3902 WORKLIST_INSERT(&inodedep->id_bufwait, wk);
3903 }
3904 /*
3905 * Newly allocated inodes cannot be written until the bitmap
3906 * that allocates them have been written (indicated by
3907 * DEPCOMPLETE being set in id_state). If we are doing a
3908 * forced sync (e.g., an fsync on a file), we force the bitmap
3909 * to be written so that the update can be done.
3910 */
3911 if (waitfor == 0) {
3912 FREE_LOCK(&lk);
3913 return;
3914 }
3915retry:
3916 if ((inodedep->id_state & DEPCOMPLETE) != 0) {
3917 FREE_LOCK(&lk);
3918 return;
3919 }
3920 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
3921 if (gotit == 0) {
3922 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) != 0)
3923 goto retry;
3924 FREE_LOCK(&lk);
3925 return;
3926 }
3927 ibp = inodedep->id_buf;
3928 FREE_LOCK(&lk);
3929 if ((error = bwrite(ibp)) != 0)
3930 softdep_error("softdep_update_inodeblock: bwrite", error);
3931}
3932
3933/*
3934 * Merge the new inode dependency list (id_newinoupdt) into the old
3935 * inode dependency list (id_inoupdt). This routine must be called
3936 * with splbio interrupts blocked.
3937 */
3938static void
3939merge_inode_lists(struct inodedep *inodedep)
3940{
3941 struct allocdirect *listadp, *newadp;
3942
3943 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
3944 for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) {
3945 if (listadp->ad_lbn < newadp->ad_lbn) {
3946 listadp = TAILQ_NEXT(listadp, ad_next);
3947 continue;
3948 }
3949 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
3950 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
3951 if (listadp->ad_lbn == newadp->ad_lbn) {
3952 allocdirect_merge(&inodedep->id_inoupdt, newadp,
3953 listadp);
3954 listadp = newadp;
3955 }
3956 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
3957 }
3958 while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) {
3959 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
3960 TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next);
3961 }
3962}
3963
3964/*
3965 * If we are doing an fsync, then we must ensure that any directory
3966 * entries for the inode have been written after the inode gets to disk.
3967 *
3968 * bioops callback - hold io_token
3969 *
3970 * Parameters:
3971 * vp: the "in_core" copy of the inode
3972 */
3973static int
3974softdep_fsync(struct vnode *vp)
3975{
3976 struct inodedep *inodedep;
3977 struct pagedep *pagedep;
3978 struct worklist *wk;
3979 struct diradd *dap;
3980 struct mount *mnt;
3981 struct vnode *pvp;
3982 struct inode *ip;
3983 struct buf *bp;
3984 struct fs *fs;
3985 int error, flushparent;
3986 ino_t parentino;
3987 ufs_lbn_t lbn;
3988
3989 /*
3990 * Move check from original kernel code, possibly not needed any
3991 * more with the per-mount bioops.
3992 */
3993 if ((vp->v_mount->mnt_flag & MNT_SOFTDEP) == 0)
3994 return (0);
3995
3996 ip = VTOI(vp);
3997 fs = ip->i_fs;
3998 ACQUIRE_LOCK(&lk);
3999 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) {
4000 FREE_LOCK(&lk);
4001 return (0);
4002 }
4003 if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
4004 LIST_FIRST(&inodedep->id_bufwait) != NULL ||
4005 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
4006 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) {
4007 panic("softdep_fsync: pending ops");
4008 }
4009 for (error = 0, flushparent = 0; ; ) {
4010 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
4011 break;
4012 if (wk->wk_type != D_DIRADD) {
4013 panic("softdep_fsync: Unexpected type %s",
4014 TYPENAME(wk->wk_type));
4015 }
4016 dap = WK_DIRADD(wk);
4017 /*
4018 * Flush our parent if this directory entry
4019 * has a MKDIR_PARENT dependency.
4020 */
4021 if (dap->da_state & DIRCHG)
4022 pagedep = dap->da_previous->dm_pagedep;
4023 else
4024 pagedep = dap->da_pagedep;
4025 mnt = pagedep->pd_mnt;
4026 parentino = pagedep->pd_ino;
4027 lbn = pagedep->pd_lbn;
4028 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) {
4029 panic("softdep_fsync: dirty");
4030 }
4031 flushparent = dap->da_state & MKDIR_PARENT;
4032 /*
4033 * If we are being fsync'ed as part of vgone'ing this vnode,
4034 * then we will not be able to release and recover the
4035 * vnode below, so we just have to give up on writing its
4036 * directory entry out. It will eventually be written, just
4037 * not now, but then the user was not asking to have it
4038 * written, so we are not breaking any promises.
4039 */
4040 if (vp->v_flag & VRECLAIMED)
4041 break;
4042 /*
4043 * We prevent deadlock by always fetching inodes from the
4044 * root, moving down the directory tree. Thus, when fetching
4045 * our parent directory, we must unlock ourselves before
4046 * requesting the lock on our parent. See the comment in
4047 * ufs_lookup for details on possible races.
4048 */
4049 FREE_LOCK(&lk);
4050 vn_unlock(vp);
4051 error = VFS_VGET(mnt, NULL, parentino, &pvp);
4052 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4053 if (error != 0) {
4054 return (error);
4055 }
4056 if (flushparent) {
4057 if ((error = ffs_update(pvp, 1)) != 0) {
4058 vput(pvp);
4059 return (error);
4060 }
4061 }
4062 /*
4063 * Flush directory page containing the inode's name.
4064 */
4065 error = bread(pvp, lblktodoff(fs, lbn), blksize(fs, VTOI(pvp), lbn), &bp);
4066 if (error == 0)
4067 error = bwrite(bp);
4068 vput(pvp);
4069 if (error != 0) {
4070 return (error);
4071 }
4072 ACQUIRE_LOCK(&lk);
4073 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
4074 break;
4075 }
4076 FREE_LOCK(&lk);
4077 return (0);
4078}
4079
4080/*
4081 * Flush all the dirty bitmaps associated with the block device
4082 * before flushing the rest of the dirty blocks so as to reduce
4083 * the number of dependencies that will have to be rolled back.
4084 */
4085static int softdep_fsync_mountdev_bp(struct buf *bp, void *data);
4086
4087void
4088softdep_fsync_mountdev(struct vnode *vp)
4089{
4090 if (!vn_isdisk(vp, NULL))
4091 panic("softdep_fsync_mountdev: vnode not a disk");
4092 ACQUIRE_LOCK(&lk);
4093 lwkt_gettoken(&vp->v_token);
4094 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4095 softdep_fsync_mountdev_bp, vp);
4096 lwkt_reltoken(&vp->v_token);
4097 drain_output(vp, 1);
4098 FREE_LOCK(&lk);
4099}
4100
4101static int
4102softdep_fsync_mountdev_bp(struct buf *bp, void *data)
4103{
4104 struct worklist *wk;
4105 struct vnode *vp = data;
4106
4107 /*
4108 * If it is already scheduled, skip to the next buffer.
4109 */
4110 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
4111 return(0);
4112 if (bp->b_vp != vp || (bp->b_flags & B_DELWRI) == 0) {
4113 BUF_UNLOCK(bp);
4114 kprintf("softdep_fsync_mountdev_bp: warning, buffer %p ripped out from under vnode %p\n", bp, vp);
4115 return(0);
4116 }
4117 /*
4118 * We are only interested in bitmaps with outstanding
4119 * dependencies.
4120 */
4121 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
4122 wk->wk_type != D_BMSAFEMAP) {
4123 BUF_UNLOCK(bp);
4124 return(0);
4125 }
4126 bremfree(bp);
4127 FREE_LOCK(&lk);
4128 (void) bawrite(bp);
4129 ACQUIRE_LOCK(&lk);
4130 return(0);
4131}
4132
4133/*
4134 * This routine is called when we are trying to synchronously flush a
4135 * file. This routine must eliminate any filesystem metadata dependencies
4136 * so that the syncing routine can succeed by pushing the dirty blocks
4137 * associated with the file. If any I/O errors occur, they are returned.
4138 */
4139struct softdep_sync_metadata_info {
4140 struct vnode *vp;
4141 int waitfor;
4142};
4143
4144static int softdep_sync_metadata_bp(struct buf *bp, void *data);
4145
4146int
4147softdep_sync_metadata(struct vnode *vp, struct thread *td)
4148{
4149 struct softdep_sync_metadata_info info;
4150 int error, waitfor;
4151
4152 /*
4153 * Check whether this vnode is involved in a filesystem
4154 * that is doing soft dependency processing.
4155 */
4156 if (!vn_isdisk(vp, NULL)) {
4157 if (!DOINGSOFTDEP(vp))
4158 return (0);
4159 } else
4160 if (vp->v_rdev->si_mountpoint == NULL ||
4161 (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0)
4162 return (0);
4163 /*
4164 * Ensure that any direct block dependencies have been cleared.
4165 */
4166 ACQUIRE_LOCK(&lk);
4167 if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) {
4168 FREE_LOCK(&lk);
4169 return (error);
4170 }
4171 /*
4172 * For most files, the only metadata dependencies are the
4173 * cylinder group maps that allocate their inode or blocks.
4174 * The block allocation dependencies can be found by traversing
4175 * the dependency lists for any buffers that remain on their
4176 * dirty buffer list. The inode allocation dependency will
4177 * be resolved when the inode is updated with MNT_WAIT.
4178 * This work is done in two passes. The first pass grabs most
4179 * of the buffers and begins asynchronously writing them. The
4180 * only way to wait for these asynchronous writes is to sleep
4181 * on the filesystem vnode which may stay busy for a long time
4182 * if the filesystem is active. So, instead, we make a second
4183 * pass over the dependencies blocking on each write. In the
4184 * usual case we will be blocking against a write that we
4185 * initiated, so when it is done the dependency will have been
4186 * resolved. Thus the second pass is expected to end quickly.
4187 */
4188 waitfor = MNT_NOWAIT;
4189top:
4190 /*
4191 * We must wait for any I/O in progress to finish so that
4192 * all potential buffers on the dirty list will be visible.
4193 */
4194 drain_output(vp, 1);
4195
4196 info.vp = vp;
4197 info.waitfor = waitfor;
4198 lwkt_gettoken(&vp->v_token);
4199 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4200 softdep_sync_metadata_bp, &info);
4201 lwkt_reltoken(&vp->v_token);
4202 if (error < 0) {
4203 FREE_LOCK(&lk);
4204 return(-error); /* error code */
4205 }
4206
4207 /*
4208 * The brief unlock is to allow any pent up dependency
4209 * processing to be done. Then proceed with the second pass.
4210 */
4211 if (waitfor & MNT_NOWAIT) {
4212 waitfor = MNT_WAIT;
4213 FREE_LOCK(&lk);
4214 ACQUIRE_LOCK(&lk);
4215 goto top;
4216 }
4217
4218 /*
4219 * If we have managed to get rid of all the dirty buffers,
4220 * then we are done. For certain directories and block
4221 * devices, we may need to do further work.
4222 *
4223 * We must wait for any I/O in progress to finish so that
4224 * all potential buffers on the dirty list will be visible.
4225 */
4226 drain_output(vp, 1);
4227 if (RB_EMPTY(&vp->v_rbdirty_tree)) {
4228 FREE_LOCK(&lk);
4229 return (0);
4230 }
4231
4232 FREE_LOCK(&lk);
4233 /*
4234 * If we are trying to sync a block device, some of its buffers may
4235 * contain metadata that cannot be written until the contents of some
4236 * partially written files have been written to disk. The only easy
4237 * way to accomplish this is to sync the entire filesystem (luckily
4238 * this happens rarely).
4239 */
4240 if (vn_isdisk(vp, NULL) &&
4241 vp->v_rdev &&
4242 vp->v_rdev->si_mountpoint && !vn_islocked(vp) &&
4243 (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT)) != 0)
4244 return (error);
4245 return (0);
4246}
4247
4248static int
4249softdep_sync_metadata_bp(struct buf *bp, void *data)
4250{
4251 struct softdep_sync_metadata_info *info = data;
4252 struct pagedep *pagedep;
4253 struct allocdirect *adp;
4254 struct allocindir *aip;
4255 struct worklist *wk;
4256 struct buf *nbp;
4257 int error;
4258 int i;
4259
4260 if (getdirtybuf(&bp, MNT_WAIT) == 0) {
4261 kprintf("softdep_sync_metadata_bp(1): caught buf %p going away\n", bp);
4262 return (1);
4263 }
4264 if (bp->b_vp != info->vp || (bp->b_flags & B_DELWRI) == 0) {
4265 kprintf("softdep_sync_metadata_bp(2): caught buf %p going away vp %p\n", bp, info->vp);
4266 BUF_UNLOCK(bp);
4267 return(1);
4268 }
4269
4270 /*
4271 * As we hold the buffer locked, none of its dependencies
4272 * will disappear.
4273 */
4274 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4275 switch (wk->wk_type) {
4276
4277 case D_ALLOCDIRECT:
4278 adp = WK_ALLOCDIRECT(wk);
4279 if (adp->ad_state & DEPCOMPLETE)
4280 break;
4281 nbp = adp->ad_buf;
4282 if (getdirtybuf(&nbp, info->waitfor) == 0)
4283 break;
4284 FREE_LOCK(&lk);
4285 if (info->waitfor & MNT_NOWAIT) {
4286 bawrite(nbp);
4287 } else if ((error = bwrite(nbp)) != 0) {
4288 bawrite(bp);
4289 ACQUIRE_LOCK(&lk);
4290 return (-error);
4291 }
4292 ACQUIRE_LOCK(&lk);
4293 break;
4294
4295 case D_ALLOCINDIR:
4296 aip = WK_ALLOCINDIR(wk);
4297 if (aip->ai_state & DEPCOMPLETE)
4298 break;
4299 nbp = aip->ai_buf;
4300 if (getdirtybuf(&nbp, info->waitfor) == 0)
4301 break;
4302 FREE_LOCK(&lk);
4303 if (info->waitfor & MNT_NOWAIT) {
4304 bawrite(nbp);
4305 } else if ((error = bwrite(nbp)) != 0) {
4306 bawrite(bp);
4307 ACQUIRE_LOCK(&lk);
4308 return (-error);
4309 }
4310 ACQUIRE_LOCK(&lk);
4311 break;
4312
4313 case D_INDIRDEP:
4314 restart:
4315
4316 LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
4317 if (aip->ai_state & DEPCOMPLETE)
4318 continue;
4319 nbp = aip->ai_buf;
4320 if (getdirtybuf(&nbp, MNT_WAIT) == 0)
4321 goto restart;
4322 FREE_LOCK(&lk);
4323 if ((error = bwrite(nbp)) != 0) {
4324 bawrite(bp);
4325 ACQUIRE_LOCK(&lk);
4326 return (-error);
4327 }
4328 ACQUIRE_LOCK(&lk);
4329 goto restart;
4330 }
4331 break;
4332
4333 case D_INODEDEP:
4334 if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
4335 WK_INODEDEP(wk)->id_ino)) != 0) {
4336 FREE_LOCK(&lk);
4337 bawrite(bp);
4338 ACQUIRE_LOCK(&lk);
4339 return (-error);
4340 }
4341 break;
4342
4343 case D_PAGEDEP:
4344 /*
4345 * We are trying to sync a directory that may
4346 * have dependencies on both its own metadata
4347 * and/or dependencies on the inodes of any
4348 * recently allocated files. We walk its diradd
4349 * lists pushing out the associated inode.
4350 */
4351 pagedep = WK_PAGEDEP(wk);
4352 for (i = 0; i < DAHASHSZ; i++) {
4353 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
4354 continue;
4355 if ((error =
4356 flush_pagedep_deps(info->vp,
4357 pagedep->pd_mnt,
4358 &pagedep->pd_diraddhd[i]))) {
4359 FREE_LOCK(&lk);
4360 bawrite(bp);
4361 ACQUIRE_LOCK(&lk);
4362 return (-error);
4363 }
4364 }
4365 break;
4366
4367 case D_MKDIR:
4368 /*
4369 * This case should never happen if the vnode has
4370 * been properly sync'ed. However, if this function
4371 * is used at a place where the vnode has not yet
4372 * been sync'ed, this dependency can show up. So,
4373 * rather than panic, just flush it.
4374 */
4375 nbp = WK_MKDIR(wk)->md_buf;
4376 if (getdirtybuf(&nbp, info->waitfor) == 0)
4377 break;
4378 FREE_LOCK(&lk);
4379 if (info->waitfor & MNT_NOWAIT) {
4380 bawrite(nbp);
4381 } else if ((error = bwrite(nbp)) != 0) {
4382 bawrite(bp);
4383 ACQUIRE_LOCK(&lk);
4384 return (-error);
4385 }
4386 ACQUIRE_LOCK(&lk);
4387 break;
4388
4389 case D_BMSAFEMAP:
4390 /*
4391 * This case should never happen if the vnode has
4392 * been properly sync'ed. However, if this function
4393 * is used at a place where the vnode has not yet
4394 * been sync'ed, this dependency can show up. So,
4395 * rather than panic, just flush it.
4396 *
4397 * nbp can wind up == bp if a device node for the
4398 * same filesystem is being fsynced at the same time,
4399 * leading to a panic if we don't catch the case.
4400 */
4401 nbp = WK_BMSAFEMAP(wk)->sm_buf;
4402 if (nbp == bp)
4403 break;
4404 if (getdirtybuf(&nbp, info->waitfor) == 0)
4405 break;
4406 FREE_LOCK(&lk);
4407 if (info->waitfor & MNT_NOWAIT) {
4408 bawrite(nbp);
4409 } else if ((error = bwrite(nbp)) != 0) {
4410 bawrite(bp);
4411 ACQUIRE_LOCK(&lk);
4412 return (-error);
4413 }
4414 ACQUIRE_LOCK(&lk);
4415 break;
4416
4417 default:
4418 panic("softdep_sync_metadata: Unknown type %s",
4419 TYPENAME(wk->wk_type));
4420 /* NOTREACHED */
4421 }
4422 }
4423 FREE_LOCK(&lk);
4424 bawrite(bp);
4425 ACQUIRE_LOCK(&lk);
4426 return(0);
4427}
4428
4429/*
4430 * Flush the dependencies associated with an inodedep.
4431 * Called with splbio blocked.
4432 */
4433static int
4434flush_inodedep_deps(struct fs *fs, ino_t ino)
4435{
4436 struct inodedep *inodedep;
4437 struct allocdirect *adp;
4438 int error, waitfor;
4439 struct buf *bp;
4440
4441 /*
4442 * This work is done in two passes. The first pass grabs most
4443 * of the buffers and begins asynchronously writing them. The
4444 * only way to wait for these asynchronous writes is to sleep
4445 * on the filesystem vnode which may stay busy for a long time
4446 * if the filesystem is active. So, instead, we make a second
4447 * pass over the dependencies blocking on each write. In the
4448 * usual case we will be blocking against a write that we
4449 * initiated, so when it is done the dependency will have been
4450 * resolved. Thus the second pass is expected to end quickly.
4451 * We give a brief window at the top of the loop to allow
4452 * any pending I/O to complete.
4453 */
4454 for (waitfor = MNT_NOWAIT; ; ) {
4455 FREE_LOCK(&lk);
4456 ACQUIRE_LOCK(&lk);
4457 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4458 return (0);
4459 TAILQ_FOREACH(adp, &inodedep->id_inoupdt, ad_next) {
4460 if (adp->ad_state & DEPCOMPLETE)
4461 continue;
4462 bp = adp->ad_buf;
4463 if (getdirtybuf(&bp, waitfor) == 0) {
4464 if (waitfor & MNT_NOWAIT)
4465 continue;
4466 break;
4467 }
4468 FREE_LOCK(&lk);
4469 if (waitfor & MNT_NOWAIT) {
4470 bawrite(bp);
4471 } else if ((error = bwrite(bp)) != 0) {
4472 ACQUIRE_LOCK(&lk);
4473 return (error);
4474 }
4475 ACQUIRE_LOCK(&lk);
4476 break;
4477 }
4478 if (adp != NULL)
4479 continue;
4480 TAILQ_FOREACH(adp, &inodedep->id_newinoupdt, ad_next) {
4481 if (adp->ad_state & DEPCOMPLETE)
4482 continue;
4483 bp = adp->ad_buf;
4484 if (getdirtybuf(&bp, waitfor) == 0) {
4485 if (waitfor & MNT_NOWAIT)
4486 continue;
4487 break;
4488 }
4489 FREE_LOCK(&lk);
4490 if (waitfor & MNT_NOWAIT) {
4491 bawrite(bp);
4492 } else if ((error = bwrite(bp)) != 0) {
4493 ACQUIRE_LOCK(&lk);
4494 return (error);
4495 }
4496 ACQUIRE_LOCK(&lk);
4497 break;
4498 }
4499 if (adp != NULL)
4500 continue;
4501 /*
4502 * If pass2, we are done, otherwise do pass 2.
4503 */
4504 if (waitfor == MNT_WAIT)
4505 break;
4506 waitfor = MNT_WAIT;
4507 }
4508 /*
4509 * Try freeing inodedep in case all dependencies have been removed.
4510 */
4511 if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
4512 (void) free_inodedep(inodedep);
4513 return (0);
4514}
4515
4516/*
4517 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
4518 * Called with splbio blocked.
4519 */
4520static int
4521flush_pagedep_deps(struct vnode *pvp, struct mount *mp,
4522 struct diraddhd *diraddhdp)
4523{
4524 struct inodedep *inodedep;
4525 struct ufsmount *ump;
4526 struct diradd *dap;
4527 struct vnode *vp;
4528 int gotit, error = 0;
4529 struct buf *bp;
4530 ino_t inum;
4531
4532 ump = VFSTOUFS(mp);
4533 while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
4534 /*
4535 * Flush ourselves if this directory entry
4536 * has a MKDIR_PARENT dependency.
4537 */
4538 if (dap->da_state & MKDIR_PARENT) {
4539 FREE_LOCK(&lk);
4540 if ((error = ffs_update(pvp, 1)) != 0)
4541 break;
4542 ACQUIRE_LOCK(&lk);
4543 /*
4544 * If that cleared dependencies, go on to next.
4545 */
4546 if (dap != LIST_FIRST(diraddhdp))
4547 continue;
4548 if (dap->da_state & MKDIR_PARENT) {
4549 panic("flush_pagedep_deps: MKDIR_PARENT");
4550 }
4551 }
4552 /*
4553 * A newly allocated directory must have its "." and
4554 * ".." entries written out before its name can be
4555 * committed in its parent. We do not want or need
4556 * the full semantics of a synchronous VOP_FSYNC as
4557 * that may end up here again, once for each directory
4558 * level in the filesystem. Instead, we push the blocks
4559 * and wait for them to clear. We have to fsync twice
4560 * because the first call may choose to defer blocks
4561 * that still have dependencies, but deferral will
4562 * happen at most once.
4563 */
4564 inum = dap->da_newinum;
4565 if (dap->da_state & MKDIR_BODY) {
4566 FREE_LOCK(&lk);
4567 if ((error = VFS_VGET(mp, NULL, inum, &vp)) != 0)
4568 break;
4569 if ((error=VOP_FSYNC(vp, MNT_NOWAIT, 0)) ||
4570 (error=VOP_FSYNC(vp, MNT_NOWAIT, 0))) {
4571 vput(vp);
4572 break;
4573 }
4574 drain_output(vp, 0);
4575 vput(vp);
4576 ACQUIRE_LOCK(&lk);
4577 /*
4578 * If that cleared dependencies, go on to next.
4579 */
4580 if (dap != LIST_FIRST(diraddhdp))
4581 continue;
4582 if (dap->da_state & MKDIR_BODY) {
4583 panic("flush_pagedep_deps: MKDIR_BODY");
4584 }
4585 }
4586 /*
4587 * Flush the inode on which the directory entry depends.
4588 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
4589 * the only remaining dependency is that the updated inode
4590 * count must get pushed to disk. The inode has already
4591 * been pushed into its inode buffer (via VOP_UPDATE) at
4592 * the time of the reference count change. So we need only
4593 * locate that buffer, ensure that there will be no rollback
4594 * caused by a bitmap dependency, then write the inode buffer.
4595 */
4596 if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) {
4597 panic("flush_pagedep_deps: lost inode");
4598 }
4599 /*
4600 * If the inode still has bitmap dependencies,
4601 * push them to disk.
4602 */
4603 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4604 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4605 FREE_LOCK(&lk);
4606 if (gotit && (error = bwrite(inodedep->id_buf)) != 0)
4607 break;
4608 ACQUIRE_LOCK(&lk);
4609 if (dap != LIST_FIRST(diraddhdp))
4610 continue;
4611 }
4612 /*
4613 * If the inode is still sitting in a buffer waiting
4614 * to be written, push it to disk.
4615 */
4616 FREE_LOCK(&lk);
4617 if ((error = bread(ump->um_devvp,
4618 fsbtodoff(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
4619 (int)ump->um_fs->fs_bsize, &bp)) != 0)
4620 break;
4621 if ((error = bwrite(bp)) != 0)
4622 break;
4623 ACQUIRE_LOCK(&lk);
4624 /*
4625 * If we have failed to get rid of all the dependencies
4626 * then something is seriously wrong.
4627 */
4628 if (dap == LIST_FIRST(diraddhdp)) {
4629 panic("flush_pagedep_deps: flush failed");
4630 }
4631 }
4632 if (error)
4633 ACQUIRE_LOCK(&lk);
4634 return (error);
4635}
4636
4637/*
4638 * A large burst of file addition or deletion activity can drive the
4639 * memory load excessively high. First attempt to slow things down
4640 * using the techniques below. If that fails, this routine requests
4641 * the offending operations to fall back to running synchronously
4642 * until the memory load returns to a reasonable level.
4643 */
4644int
4645softdep_slowdown(struct vnode *vp)
4646{
4647 int max_softdeps_hard;
4648
4649 max_softdeps_hard = max_softdeps * 11 / 10;
4650 if (num_dirrem < max_softdeps_hard / 2 &&
4651 num_inodedep < max_softdeps_hard)
4652 return (0);
4653 stat_sync_limit_hit += 1;
4654 return (1);
4655}
4656
4657/*
4658 * If memory utilization has gotten too high, deliberately slow things
4659 * down and speed up the I/O processing.
4660 */
4661static int
4662request_cleanup(int resource, int islocked)
4663{
4664 struct thread *td = curthread; /* XXX */
4665
4666 /*
4667 * We never hold up the filesystem syncer process.
4668 */
4669 if (td == filesys_syncer)
4670 return (0);
4671 /*
4672 * First check to see if the work list has gotten backlogged.
4673 * If it has, co-opt this process to help clean up two entries.
4674 * Because this process may hold inodes locked, we cannot
4675 * handle any remove requests that might block on a locked
4676 * inode as that could lead to deadlock.
4677 */
4678 if (num_on_worklist > max_softdeps / 10) {
4679 process_worklist_item(NULL, LK_NOWAIT);
4680 process_worklist_item(NULL, LK_NOWAIT);
4681 stat_worklist_push += 2;
4682 return(1);
4683 }
4684
4685 /*
4686 * If we are resource constrained on inode dependencies, try
4687 * flushing some dirty inodes. Otherwise, we are constrained
4688 * by file deletions, so try accelerating flushes of directories
4689 * with removal dependencies. We would like to do the cleanup
4690 * here, but we probably hold an inode locked at this point and
4691 * that might deadlock against one that we try to clean. So,
4692 * the best that we can do is request the syncer daemon to do
4693 * the cleanup for us.
4694 */
4695 switch (resource) {
4696
4697 case FLUSH_INODES:
4698 stat_ino_limit_push += 1;
4699 req_clear_inodedeps += 1;
4700 stat_countp = &stat_ino_limit_hit;
4701 break;
4702
4703 case FLUSH_REMOVE:
4704 stat_blk_limit_push += 1;
4705 req_clear_remove += 1;
4706 stat_countp = &stat_blk_limit_hit;
4707 break;
4708
4709 default:
4710 panic("request_cleanup: unknown type");
4711 }
4712 /*
4713 * Hopefully the syncer daemon will catch up and awaken us.
4714 * We wait at most tickdelay before proceeding in any case.
4715 */
4716 if (islocked == 0)
4717 ACQUIRE_LOCK(&lk);
4718 lksleep(&proc_waiting, &lk, 0, "softupdate",
4719 tickdelay > 2 ? tickdelay : 2);
4720 if (islocked == 0)
4721 FREE_LOCK(&lk);
4722 return (1);
4723}
4724
4725/*
4726 * Flush out a directory with at least one removal dependency in an effort to
4727 * reduce the number of dirrem, freefile, and freeblks dependency structures.
4728 */
4729static void
4730clear_remove(struct thread *td)
4731{
4732 struct pagedep_hashhead *pagedephd;
4733 struct pagedep *pagedep;
4734 static int next = 0;
4735 struct mount *mp;
4736 struct vnode *vp;
4737 int error, cnt;
4738 ino_t ino;
4739
4740 ACQUIRE_LOCK(&lk);
4741 for (cnt = 0; cnt < pagedep_hash; cnt++) {
4742 pagedephd = &pagedep_hashtbl[next++];
4743 if (next >= pagedep_hash)
4744 next = 0;
4745 LIST_FOREACH(pagedep, pagedephd, pd_hash) {
4746 if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
4747 continue;
4748 mp = pagedep->pd_mnt;
4749 ino = pagedep->pd_ino;
4750 FREE_LOCK(&lk);
4751 if ((error = VFS_VGET(mp, NULL, ino, &vp)) != 0) {
4752 softdep_error("clear_remove: vget", error);
4753 return;
4754 }
4755 if ((error = VOP_FSYNC(vp, MNT_NOWAIT, 0)))
4756 softdep_error("clear_remove: fsync", error);
4757 drain_output(vp, 0);
4758 vput(vp);
4759 return;
4760 }
4761 }
4762 FREE_LOCK(&lk);
4763}
4764
4765/*
4766 * Clear out a block of dirty inodes in an effort to reduce
4767 * the number of inodedep dependency structures.
4768 */
4769struct clear_inodedeps_info {
4770 struct fs *fs;
4771 struct mount *mp;
4772};
4773
4774static int
4775clear_inodedeps_mountlist_callback(struct mount *mp, void *data)
4776{
4777 struct clear_inodedeps_info *info = data;
4778
4779 if ((mp->mnt_flag & MNT_SOFTDEP) && info->fs == VFSTOUFS(mp)->um_fs) {
4780 info->mp = mp;
4781 return(-1);
4782 }
4783 return(0);
4784}
4785
4786static void
4787clear_inodedeps(struct thread *td)
4788{
4789 struct clear_inodedeps_info info;
4790 struct inodedep_hashhead *inodedephd;
4791 struct inodedep *inodedep;
4792 static int next = 0;
4793 struct vnode *vp;
4794 struct fs *fs;
4795 int error, cnt;
4796 ino_t firstino, lastino, ino;
4797
4798 ACQUIRE_LOCK(&lk);
4799 /*
4800 * Pick a random inode dependency to be cleared.
4801 * We will then gather up all the inodes in its block
4802 * that have dependencies and flush them out.
4803 */
4804 for (cnt = 0; cnt < inodedep_hash; cnt++) {
4805 inodedephd = &inodedep_hashtbl[next++];
4806 if (next >= inodedep_hash)
4807 next = 0;
4808 if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
4809 break;
4810 }
4811 if (inodedep == NULL) {
4812 FREE_LOCK(&lk);
4813 return;
4814 }
4815 /*
4816 * Ugly code to find mount point given pointer to superblock.
4817 */
4818 fs = inodedep->id_fs;
4819 info.mp = NULL;
4820 info.fs = fs;
4821 mountlist_scan(clear_inodedeps_mountlist_callback,
4822 &info, MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
4823 /*
4824 * Find the last inode in the block with dependencies.
4825 */
4826 firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
4827 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
4828 if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
4829 break;
4830 /*
4831 * Asynchronously push all but the last inode with dependencies.
4832 * Synchronously push the last inode with dependencies to ensure
4833 * that the inode block gets written to free up the inodedeps.
4834 */
4835 for (ino = firstino; ino <= lastino; ino++) {
4836 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4837 continue;
4838 FREE_LOCK(&lk);
4839 if ((error = VFS_VGET(info.mp, NULL, ino, &vp)) != 0) {
4840 softdep_error("clear_inodedeps: vget", error);
4841 return;
4842 }
4843 if (ino == lastino) {
4844 if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)))
4845 softdep_error("clear_inodedeps: fsync1", error);
4846 } else {
4847 if ((error = VOP_FSYNC(vp, MNT_NOWAIT, 0)))
4848 softdep_error("clear_inodedeps: fsync2", error);
4849 drain_output(vp, 0);
4850 }
4851 vput(vp);
4852 ACQUIRE_LOCK(&lk);
4853 }
4854 FREE_LOCK(&lk);
4855}
4856
4857/*
4858 * Function to determine if the buffer has outstanding dependencies
4859 * that will cause a roll-back if the buffer is written. If wantcount
4860 * is set, return number of dependencies, otherwise just yes or no.
4861 *
4862 * bioops callback - hold io_token
4863 */
4864static int
4865softdep_count_dependencies(struct buf *bp, int wantcount)
4866{
4867 struct worklist *wk;
4868 struct inodedep *inodedep;
4869 struct indirdep *indirdep;
4870 struct allocindir *aip;
4871 struct pagedep *pagedep;
4872 struct diradd *dap;
4873 int i, retval;
4874
4875 retval = 0;
4876 ACQUIRE_LOCK(&lk);
4877
4878 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4879 switch (wk->wk_type) {
4880
4881 case D_INODEDEP:
4882 inodedep = WK_INODEDEP(wk);
4883 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4884 /* bitmap allocation dependency */
4885 retval += 1;
4886 if (!wantcount)
4887 goto out;
4888 }
4889 if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
4890 /* direct block pointer dependency */
4891 retval += 1;
4892 if (!wantcount)
4893 goto out;
4894 }
4895 continue;
4896
4897 case D_INDIRDEP:
4898 indirdep = WK_INDIRDEP(wk);
4899
4900 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
4901 /* indirect block pointer dependency */
4902 retval += 1;
4903 if (!wantcount)
4904 goto out;
4905 }
4906 continue;
4907
4908 case D_PAGEDEP:
4909 pagedep = WK_PAGEDEP(wk);
4910 for (i = 0; i < DAHASHSZ; i++) {
4911
4912 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
4913 /* directory entry dependency */
4914 retval += 1;
4915 if (!wantcount)
4916 goto out;
4917 }
4918 }
4919 continue;
4920
4921 case D_BMSAFEMAP:
4922 case D_ALLOCDIRECT:
4923 case D_ALLOCINDIR:
4924 case D_MKDIR:
4925 /* never a dependency on these blocks */
4926 continue;
4927
4928 default:
4929 panic("softdep_check_for_rollback: Unexpected type %s",
4930 TYPENAME(wk->wk_type));
4931 /* NOTREACHED */
4932 }
4933 }
4934out:
4935 FREE_LOCK(&lk);
4936
4937 return retval;
4938}
4939
4940/*
4941 * Acquire exclusive access to a buffer. Requires softdep lock
4942 * to be held on entry. If waitfor is MNT_WAIT, may release/reacquire
4943 * softdep lock.
4944 *
4945 * Returns 1 if the buffer was locked, 0 if it was not locked or
4946 * if we had to block.
4947 *
4948 * NOTE! In order to return 1 we must acquire the buffer lock prior
4949 * to any release of &lk. Once we release &lk it's all over.
4950 * We may still have to block on the (type-stable) bp in that
4951 * case, but we must then unlock it and return 0.
4952 */
4953static int
4954getdirtybuf(struct buf **bpp, int waitfor)
4955{
4956 struct buf *bp;
4957 int error;
4958
4959 /*
4960 * If the contents of *bpp is NULL the caller presumably lost a race.
4961 */
4962 bp = *bpp;
4963 if (bp == NULL)
4964 return (0);
4965
4966 /*
4967 * Try to obtain the buffer lock without deadlocking on &lk.
4968 */
4969 KKASSERT(lock_held(&lk) > 0);
4970 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
4971 if (error == 0) {
4972 /*
4973 * If the buffer is no longer dirty the OS already wrote it
4974 * out, return failure.
4975 */
4976 if ((bp->b_flags & B_DELWRI) == 0) {
4977 BUF_UNLOCK(bp);
4978 return (0);
4979 }
4980
4981 /*
4982 * Finish nominal buffer locking sequence return success.
4983 */
4984 bremfree(bp);
4985 return (1);
4986 }
4987
4988 /*
4989 * Failure case.
4990 *
4991 * If we are not being asked to wait, return 0 immediately.
4992 */
4993 if (waitfor != MNT_WAIT)
4994 return (0);
4995
4996 /*
4997 * Once we release the softdep lock we can never return success,
4998 * but we still have to block on the type-stable buf for the caller
4999 * to be able to retry without livelocking the system.
5000 *
5001 * The caller will normally retry in this case.
5002 */
5003 FREE_LOCK(&lk);
5004 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL);
5005 ACQUIRE_LOCK(&lk);
5006 if (error == 0)
5007 BUF_UNLOCK(bp);
5008 return (0);
5009}
5010
5011/*
5012 * Wait for pending output on a vnode to complete.
5013 * Must be called with vnode locked.
5014 */
5015static void
5016drain_output(struct vnode *vp, int islocked)
5017{
5018
5019 if (!islocked)
5020 ACQUIRE_LOCK(&lk);
5021 while (bio_track_active(&vp->v_track_write)) {
5022 FREE_LOCK(&lk);
5023 bio_track_wait(&vp->v_track_write, 0, 0);
5024 ACQUIRE_LOCK(&lk);
5025 }
5026 if (!islocked)
5027 FREE_LOCK(&lk);
5028}
5029
5030/*
5031 * Called whenever a buffer that is being invalidated or reallocated
5032 * contains dependencies. This should only happen if an I/O error has
5033 * occurred. The routine is called with the buffer locked.
5034 *
5035 * bioops callback - hold io_token
5036 */
5037static void
5038softdep_deallocate_dependencies(struct buf *bp)
5039{
5040 /* nothing to do, mp lock not needed */
5041 if ((bp->b_flags & B_ERROR) == 0)
5042 panic("softdep_deallocate_dependencies: dangling deps");
5043 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntfromname, bp->b_error);
5044 panic("softdep_deallocate_dependencies: unrecovered I/O error");
5045}
5046
5047/*
5048 * Function to handle asynchronous write errors in the filesystem.
5049 */
5050void
5051softdep_error(char *func, int error)
5052{
5053 /* XXX should do something better! */
5054 kprintf("%s: got error %d while accessing filesystem\n", func, error);
5055}