Remove unused BSDI I4B interface
[dragonfly.git] / sys / dev / netif / an / if_an.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1997, 1998, 1999
3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: src/sys/dev/an/if_an.c,v 1.2.2.13 2003/02/11 03:32:48 ambrisko Exp $
33 * $DragonFly: src/sys/dev/netif/an/if_an.c,v 1.9 2004/01/06 01:40:46 dillon Exp $
34 *
35 * $FreeBSD: src/sys/dev/an/if_an.c,v 1.2.2.13 2003/02/11 03:32:48 ambrisko Exp $
36 */
37
38/*
39 * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD.
40 *
41 * Written by Bill Paul <wpaul@ctr.columbia.edu>
42 * Electrical Engineering Department
43 * Columbia University, New York City
44 */
45
46/*
47 * The Aironet 4500/4800 series cards come in PCMCIA, ISA and PCI form.
48 * This driver supports all three device types (PCI devices are supported
49 * through an extra PCI shim: /sys/dev/an/if_an_pci.c). ISA devices can be
50 * supported either using hard-coded IO port/IRQ settings or via Plug
51 * and Play. The 4500 series devices support 1Mbps and 2Mbps data rates.
52 * The 4800 devices support 1, 2, 5.5 and 11Mbps rates.
53 *
54 * Like the WaveLAN/IEEE cards, the Aironet NICs are all essentially
55 * PCMCIA devices. The ISA and PCI cards are a combination of a PCMCIA
56 * device and a PCMCIA to ISA or PCMCIA to PCI adapter card. There are
57 * a couple of important differences though:
58 *
59 * - Lucent ISA card looks to the host like a PCMCIA controller with
60 * a PCMCIA WaveLAN card inserted. This means that even desktop
61 * machines need to be configured with PCMCIA support in order to
62 * use WaveLAN/IEEE ISA cards. The Aironet cards on the other hand
63 * actually look like normal ISA and PCI devices to the host, so
64 * no PCMCIA controller support is needed
65 *
66 * The latter point results in a small gotcha. The Aironet PCMCIA
67 * cards can be configured for one of two operating modes depending
68 * on how the Vpp1 and Vpp2 programming voltages are set when the
69 * card is activated. In order to put the card in proper PCMCIA
70 * operation (where the CIS table is visible and the interface is
71 * programmed for PCMCIA operation), both Vpp1 and Vpp2 have to be
72 * set to 5 volts. FreeBSD by default doesn't set the Vpp voltages,
73 * which leaves the card in ISA/PCI mode, which prevents it from
74 * being activated as an PCMCIA device.
75 *
76 * Note that some PCMCIA controller software packages for Windows NT
77 * fail to set the voltages as well.
78 *
79 * The Aironet devices can operate in both station mode and access point
80 * mode. Typically, when programmed for station mode, the card can be set
81 * to automatically perform encapsulation/decapsulation of Ethernet II
82 * and 802.3 frames within 802.11 frames so that the host doesn't have
83 * to do it itself. This driver doesn't program the card that way: the
84 * driver handles all of the encapsulation/decapsulation itself.
85 */
86
87#include "opt_inet.h"
88
89#ifdef INET
90#define ANCACHE /* enable signal strength cache */
91#endif
92
93#include <sys/param.h>
94#include <sys/systm.h>
95#include <sys/sockio.h>
96#include <sys/mbuf.h>
97#include <sys/proc.h>
98#include <sys/kernel.h>
99#include <sys/proc.h>
100#include <sys/ucred.h>
101#include <sys/socket.h>
102#ifdef ANCACHE
103#include <sys/syslog.h>
104#endif
105#include <sys/sysctl.h>
106#include <machine/clock.h> /* for DELAY */
107
108#include <sys/module.h>
109#include <sys/sysctl.h>
110#include <sys/bus.h>
111#include <machine/bus.h>
112#include <sys/rman.h>
113#include <machine/resource.h>
114#include <sys/malloc.h>
115
116#include <net/if.h>
117#include <net/if_arp.h>
118#include <net/ethernet.h>
119#include <net/if_dl.h>
120#include <net/if_types.h>
121#include <net/if_ieee80211.h>
122#include <net/if_media.h>
123
124#ifdef INET
125#include <netinet/in.h>
126#include <netinet/in_systm.h>
127#include <netinet/in_var.h>
128#include <netinet/ip.h>
129#endif
130
131#include <net/bpf.h>
132
133#include <machine/md_var.h>
134
135#include "if_aironet_ieee.h"
136#include "if_anreg.h"
137
138/* These are global because we need them in sys/pci/if_an_p.c. */
139static void an_reset (struct an_softc *);
140static int an_init_mpi350_desc (struct an_softc *);
141static int an_ioctl (struct ifnet *, u_long, caddr_t);
142static void an_init (void *);
143static int an_init_tx_ring (struct an_softc *);
144static void an_start (struct ifnet *);
145static void an_watchdog (struct ifnet *);
146static void an_rxeof (struct an_softc *);
147static void an_txeof (struct an_softc *, int);
148
149static void an_promisc (struct an_softc *, int);
150static int an_cmd (struct an_softc *, int, int);
151static int an_cmd_struct (struct an_softc *, struct an_command *,
152 struct an_reply *);
153static int an_read_record (struct an_softc *, struct an_ltv_gen *);
154static int an_write_record (struct an_softc *, struct an_ltv_gen *);
155static int an_read_data (struct an_softc *, int,
156 int, caddr_t, int);
157static int an_write_data (struct an_softc *, int,
158 int, caddr_t, int);
159static int an_seek (struct an_softc *, int, int, int);
160static int an_alloc_nicmem (struct an_softc *, int, int *);
161static int an_dma_malloc (struct an_softc *, bus_size_t,
162 struct an_dma_alloc *, int);
163static void an_dma_free (struct an_softc *,
164 struct an_dma_alloc *);
165static void an_dma_malloc_cb (void *, bus_dma_segment_t *, int, int);
166static void an_stats_update (void *);
167static void an_setdef (struct an_softc *, struct an_req *);
168#ifdef ANCACHE
169static void an_cache_store (struct an_softc *, struct ether_header *,
170 struct mbuf *, u_int8_t, u_int8_t);
171#endif
172
173/* function definitions for use with the Cisco's Linux configuration
174 utilities
175*/
176
177static int readrids (struct ifnet*, struct aironet_ioctl*);
178static int writerids (struct ifnet*, struct aironet_ioctl*);
179static int flashcard (struct ifnet*, struct aironet_ioctl*);
180
181static int cmdreset (struct ifnet *);
182static int setflashmode (struct ifnet *);
183static int flashgchar (struct ifnet *,int,int);
184static int flashpchar (struct ifnet *,int,int);
185static int flashputbuf (struct ifnet *);
186static int flashrestart (struct ifnet *);
187static int WaitBusy (struct ifnet *, int);
188static int unstickbusy (struct ifnet *);
189
190static void an_dump_record (struct an_softc *,struct an_ltv_gen *,
191 char *);
192
193static int an_media_change (struct ifnet *);
194static void an_media_status (struct ifnet *, struct ifmediareq *);
195
196static int an_dump = 0;
197static int an_cache_mode = 0;
198
199#define DBM 0
200#define PERCENT 1
201#define RAW 2
202
203static char an_conf[256];
204static char an_conf_cache[256];
205
206DECLARE_DUMMY_MODULE(if_an);
207
208/* sysctl vars */
209
210SYSCTL_NODE(_hw, OID_AUTO, an, CTLFLAG_RD, 0, "Wireless driver parameters");
211
212static int
213sysctl_an_dump(SYSCTL_HANDLER_ARGS)
214{
215 int error, r, last;
216 char *s = an_conf;
217
218 last = an_dump;
219
220 switch (an_dump) {
221 case 0:
222 strcpy(an_conf, "off");
223 break;
224 case 1:
225 strcpy(an_conf, "type");
226 break;
227 case 2:
228 strcpy(an_conf, "dump");
229 break;
230 default:
231 snprintf(an_conf, 5, "%x", an_dump);
232 break;
233 }
234
235 error = sysctl_handle_string(oidp, an_conf, sizeof(an_conf), req);
236
237 if (strncmp(an_conf,"off", 3) == 0) {
238 an_dump = 0;
239 }
240 if (strncmp(an_conf,"dump", 4) == 0) {
241 an_dump = 1;
242 }
243 if (strncmp(an_conf,"type", 4) == 0) {
244 an_dump = 2;
245 }
246 if (*s == 'f') {
247 r = 0;
248 for (;;s++) {
249 if ((*s >= '0') && (*s <= '9')) {
250 r = r * 16 + (*s - '0');
251 } else if ((*s >= 'a') && (*s <= 'f')) {
252 r = r * 16 + (*s - 'a' + 10);
253 } else {
254 break;
255 }
256 }
257 an_dump = r;
258 }
259 if (an_dump != last)
260 printf("Sysctl changed for Aironet driver\n");
261
262 return error;
263}
264
265SYSCTL_PROC(_hw_an, OID_AUTO, an_dump, CTLTYPE_STRING | CTLFLAG_RW,
266 0, sizeof(an_conf), sysctl_an_dump, "A", "");
267
268static int
269sysctl_an_cache_mode(SYSCTL_HANDLER_ARGS)
270{
271 int error, last;
272
273 last = an_cache_mode;
274
275 switch (an_cache_mode) {
276 case 1:
277 strcpy(an_conf_cache, "per");
278 break;
279 case 2:
280 strcpy(an_conf_cache, "raw");
281 break;
282 default:
283 strcpy(an_conf_cache, "dbm");
284 break;
285 }
286
287 error = sysctl_handle_string(oidp, an_conf_cache,
288 sizeof(an_conf_cache), req);
289
290 if (strncmp(an_conf_cache,"dbm", 3) == 0) {
291 an_cache_mode = 0;
292 }
293 if (strncmp(an_conf_cache,"per", 3) == 0) {
294 an_cache_mode = 1;
295 }
296 if (strncmp(an_conf_cache,"raw", 3) == 0) {
297 an_cache_mode = 2;
298 }
299
300 return error;
301}
302
303SYSCTL_PROC(_hw_an, OID_AUTO, an_cache_mode, CTLTYPE_STRING | CTLFLAG_RW,
304 0, sizeof(an_conf_cache), sysctl_an_cache_mode, "A", "");
305
306/*
307 * We probe for an Aironet 4500/4800 card by attempting to
308 * read the default SSID list. On reset, the first entry in
309 * the SSID list will contain the name "tsunami." If we don't
310 * find this, then there's no card present.
311 */
312int
313an_probe(dev)
314 device_t dev;
315{
316 struct an_softc *sc = device_get_softc(dev);
317 struct an_ltv_ssidlist ssid;
318 int error;
319
320 bzero((char *)&ssid, sizeof(ssid));
321
322 error = an_alloc_port(dev, 0, AN_IOSIZ);
323 if (error != 0)
324 return (0);
325
326 /* can't do autoprobing */
327 if (rman_get_start(sc->port_res) == -1)
328 return(0);
329
330 /*
331 * We need to fake up a softc structure long enough
332 * to be able to issue commands and call some of the
333 * other routines.
334 */
335 sc->an_bhandle = rman_get_bushandle(sc->port_res);
336 sc->an_btag = rman_get_bustag(sc->port_res);
337 sc->an_unit = device_get_unit(dev);
338
339 ssid.an_len = sizeof(ssid);
340 ssid.an_type = AN_RID_SSIDLIST;
341
342 /* Make sure interrupts are disabled. */
343 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
344 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), 0xFFFF);
345
346 an_reset(sc);
347 /* No need for an_init_mpi350_desc since it will be done in attach */
348
349 if (an_cmd(sc, AN_CMD_READCFG, 0))
350 return(0);
351
352 if (an_read_record(sc, (struct an_ltv_gen *)&ssid))
353 return(0);
354
355 /* See if the ssid matches what we expect ... but doesn't have to */
356 if (strcmp(ssid.an_ssid1, AN_DEF_SSID))
357 return(0);
358
359 return(AN_IOSIZ);
360}
361
362/*
363 * Allocate a port resource with the given resource id.
364 */
365int
366an_alloc_port(dev, rid, size)
367 device_t dev;
368 int rid;
369 int size;
370{
371 struct an_softc *sc = device_get_softc(dev);
372 struct resource *res;
373
374 res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
375 0ul, ~0ul, size, RF_ACTIVE);
376 if (res) {
377 sc->port_rid = rid;
378 sc->port_res = res;
379 return (0);
380 } else {
381 return (ENOENT);
382 }
383}
384
385/*
386 * Allocate a memory resource with the given resource id.
387 */
388int an_alloc_memory(device_t dev, int rid, int size)
389{
390 struct an_softc *sc = device_get_softc(dev);
391 struct resource *res;
392
393 res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
394 0ul, ~0ul, size, RF_ACTIVE);
395 if (res) {
396 sc->mem_rid = rid;
397 sc->mem_res = res;
398 sc->mem_used = size;
399 return (0);
400 } else {
401 return (ENOENT);
402 }
403}
404
405/*
406 * Allocate a auxilary memory resource with the given resource id.
407 */
408int an_alloc_aux_memory(device_t dev, int rid, int size)
409{
410 struct an_softc *sc = device_get_softc(dev);
411 struct resource *res;
412
413 res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
414 0ul, ~0ul, size, RF_ACTIVE);
415 if (res) {
416 sc->mem_aux_rid = rid;
417 sc->mem_aux_res = res;
418 sc->mem_aux_used = size;
419 return (0);
420 } else {
421 return (ENOENT);
422 }
423}
424
425/*
426 * Allocate an irq resource with the given resource id.
427 */
428int
429an_alloc_irq(dev, rid, flags)
430 device_t dev;
431 int rid;
432 int flags;
433{
434 struct an_softc *sc = device_get_softc(dev);
435 struct resource *res;
436
437 res = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
438 0ul, ~0ul, 1, (RF_ACTIVE | flags));
439 if (res) {
440 sc->irq_rid = rid;
441 sc->irq_res = res;
442 return (0);
443 } else {
444 return (ENOENT);
445 }
446}
447
448static void
449an_dma_malloc_cb(arg, segs, nseg, error)
450 void *arg;
451 bus_dma_segment_t *segs;
452 int nseg;
453 int error;
454{
455 bus_addr_t *paddr = (bus_addr_t*) arg;
456 *paddr = segs->ds_addr;
457}
458
459/*
460 * Alloc DMA memory and set the pointer to it
461 */
462static int
463an_dma_malloc(sc, size, dma, mapflags)
464 struct an_softc *sc;
465 bus_size_t size;
466 struct an_dma_alloc *dma;
467 int mapflags;
468{
469 int r;
470
471 r = bus_dmamap_create(sc->an_dtag, BUS_DMA_NOWAIT, &dma->an_dma_map);
472 if (r != 0)
473 goto fail_0;
474
475 r = bus_dmamem_alloc(sc->an_dtag, (void**) &dma->an_dma_vaddr,
476 BUS_DMA_NOWAIT, &dma->an_dma_map);
477 if (r != 0)
478 goto fail_1;
479
480 r = bus_dmamap_load(sc->an_dtag, dma->an_dma_map, dma->an_dma_vaddr,
481 size,
482 an_dma_malloc_cb,
483 &dma->an_dma_paddr,
484 mapflags | BUS_DMA_NOWAIT);
485 if (r != 0)
486 goto fail_2;
487
488 dma->an_dma_size = size;
489 return (0);
490
491fail_2:
492 bus_dmamap_unload(sc->an_dtag, dma->an_dma_map);
493fail_1:
494 bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map);
495fail_0:
496 bus_dmamap_destroy(sc->an_dtag, dma->an_dma_map);
497 dma->an_dma_map = NULL;
498 return (r);
499}
500
501static void
502an_dma_free(sc, dma)
503 struct an_softc *sc;
504 struct an_dma_alloc *dma;
505{
506 bus_dmamap_unload(sc->an_dtag, dma->an_dma_map);
507 bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map);
508 bus_dmamap_destroy(sc->an_dtag, dma->an_dma_map);
509}
510
511/*
512 * Release all resources
513 */
514void
515an_release_resources(dev)
516 device_t dev;
517{
518 struct an_softc *sc = device_get_softc(dev);
519 int i;
520
521 if (sc->port_res) {
522 bus_release_resource(dev, SYS_RES_IOPORT,
523 sc->port_rid, sc->port_res);
524 sc->port_res = 0;
525 }
526 if (sc->mem_res) {
527 bus_release_resource(dev, SYS_RES_MEMORY,
528 sc->mem_rid, sc->mem_res);
529 sc->mem_res = 0;
530 }
531 if (sc->mem_aux_res) {
532 bus_release_resource(dev, SYS_RES_MEMORY,
533 sc->mem_aux_rid, sc->mem_aux_res);
534 sc->mem_aux_res = 0;
535 }
536 if (sc->irq_res) {
537 bus_release_resource(dev, SYS_RES_IRQ,
538 sc->irq_rid, sc->irq_res);
539 sc->irq_res = 0;
540 }
541 if (sc->an_rid_buffer.an_dma_paddr) {
542 an_dma_free(sc, &sc->an_rid_buffer);
543 }
544 for (i = 0; i < AN_MAX_RX_DESC; i++)
545 if (sc->an_rx_buffer[i].an_dma_paddr) {
546 an_dma_free(sc, &sc->an_rx_buffer[i]);
547 }
548 for (i = 0; i < AN_MAX_TX_DESC; i++)
549 if (sc->an_tx_buffer[i].an_dma_paddr) {
550 an_dma_free(sc, &sc->an_tx_buffer[i]);
551 }
552 if (sc->an_dtag) {
553 bus_dma_tag_destroy(sc->an_dtag);
554 }
555
556}
557
558int
559an_init_mpi350_desc(sc)
560 struct an_softc *sc;
561{
562 struct an_command cmd_struct;
563 struct an_reply reply;
564 struct an_card_rid_desc an_rid_desc;
565 struct an_card_rx_desc an_rx_desc;
566 struct an_card_tx_desc an_tx_desc;
567 int i, desc;
568
569 if(!sc->an_rid_buffer.an_dma_paddr)
570 an_dma_malloc(sc, AN_RID_BUFFER_SIZE,
571 &sc->an_rid_buffer, 0);
572 for (i = 0; i < AN_MAX_RX_DESC; i++)
573 if(!sc->an_rx_buffer[i].an_dma_paddr)
574 an_dma_malloc(sc, AN_RX_BUFFER_SIZE,
575 &sc->an_rx_buffer[i], 0);
576 for (i = 0; i < AN_MAX_TX_DESC; i++)
577 if(!sc->an_tx_buffer[i].an_dma_paddr)
578 an_dma_malloc(sc, AN_TX_BUFFER_SIZE,
579 &sc->an_tx_buffer[i], 0);
580
581 /*
582 * Allocate RX descriptor
583 */
584 bzero(&reply,sizeof(reply));
585 cmd_struct.an_cmd = AN_CMD_ALLOC_DESC;
586 cmd_struct.an_parm0 = AN_DESCRIPTOR_RX;
587 cmd_struct.an_parm1 = AN_RX_DESC_OFFSET;
588 cmd_struct.an_parm2 = AN_MAX_RX_DESC;
589 if (an_cmd_struct(sc, &cmd_struct, &reply)) {
590 printf("an%d: failed to allocate RX descriptor\n",
591 sc->an_unit);
592 return(EIO);
593 }
594
595 for (desc = 0; desc < AN_MAX_RX_DESC; desc++) {
596 bzero(&an_rx_desc, sizeof(an_rx_desc));
597 an_rx_desc.an_valid = 1;
598 an_rx_desc.an_len = AN_RX_BUFFER_SIZE;
599 an_rx_desc.an_done = 0;
600 an_rx_desc.an_phys = sc->an_rx_buffer[desc].an_dma_paddr;
601
602 for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
603 CSR_MEM_AUX_WRITE_4(sc, AN_RX_DESC_OFFSET
604 + (desc * sizeof(an_rx_desc))
605 + (i * 4),
606 ((u_int32_t*)&an_rx_desc)[i]);
607 }
608
609 /*
610 * Allocate TX descriptor
611 */
612
613 bzero(&reply,sizeof(reply));
614 cmd_struct.an_cmd = AN_CMD_ALLOC_DESC;
615 cmd_struct.an_parm0 = AN_DESCRIPTOR_TX;
616 cmd_struct.an_parm1 = AN_TX_DESC_OFFSET;
617 cmd_struct.an_parm2 = AN_MAX_TX_DESC;
618 if (an_cmd_struct(sc, &cmd_struct, &reply)) {
619 printf("an%d: failed to allocate TX descriptor\n",
620 sc->an_unit);
621 return(EIO);
622 }
623
624 for (desc = 0; desc < AN_MAX_TX_DESC; desc++) {
625 bzero(&an_tx_desc, sizeof(an_tx_desc));
626 an_tx_desc.an_offset = 0;
627 an_tx_desc.an_eoc = 0;
628 an_tx_desc.an_valid = 0;
629 an_tx_desc.an_len = 0;
630 an_tx_desc.an_phys = sc->an_tx_buffer[desc].an_dma_paddr;
631
632 for (i = 0; i < sizeof(an_tx_desc) / 4; i++)
633 CSR_MEM_AUX_WRITE_4(sc, AN_TX_DESC_OFFSET
634 + (desc * sizeof(an_tx_desc))
635 + (i * 4),
636 ((u_int32_t*)&an_tx_desc)[i]);
637 }
638
639 /*
640 * Allocate RID descriptor
641 */
642
643 bzero(&reply,sizeof(reply));
644 cmd_struct.an_cmd = AN_CMD_ALLOC_DESC;
645 cmd_struct.an_parm0 = AN_DESCRIPTOR_HOSTRW;
646 cmd_struct.an_parm1 = AN_HOST_DESC_OFFSET;
647 cmd_struct.an_parm2 = 1;
648 if (an_cmd_struct(sc, &cmd_struct, &reply)) {
649 printf("an%d: failed to allocate host descriptor\n",
650 sc->an_unit);
651 return(EIO);
652 }
653
654 bzero(&an_rid_desc, sizeof(an_rid_desc));
655 an_rid_desc.an_valid = 1;
656 an_rid_desc.an_len = AN_RID_BUFFER_SIZE;
657 an_rid_desc.an_rid = 0;
658 an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
659
660 for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
661 CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
662 ((u_int32_t*)&an_rid_desc)[i]);
663
664 return(0);
665}
666
667int
668an_attach(sc, unit, flags)
669 struct an_softc *sc;
670 int unit;
671 int flags;
672{
673 struct ifnet *ifp = &sc->arpcom.ac_if;
674 int error;
675
676 sc->an_gone = 0;
677 sc->an_associated = 0;
678 sc->an_monitor = 0;
679 sc->an_was_monitor = 0;
680 sc->an_flash_buffer = NULL;
681
682 /* Reset the NIC. */
683 an_reset(sc);
684 if (sc->mpi350) {
685 error = an_init_mpi350_desc(sc);
686 if (error)
687 return(error);
688 }
689
690 /* Load factory config */
691 if (an_cmd(sc, AN_CMD_READCFG, 0)) {
692 printf("an%d: failed to load config data\n", sc->an_unit);
693 return(EIO);
694 }
695
696 /* Read the current configuration */
697 sc->an_config.an_type = AN_RID_GENCONFIG;
698 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
699 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
700 printf("an%d: read record failed\n", sc->an_unit);
701 return(EIO);
702 }
703
704 /* Read the card capabilities */
705 sc->an_caps.an_type = AN_RID_CAPABILITIES;
706 sc->an_caps.an_len = sizeof(struct an_ltv_caps);
707 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_caps)) {
708 printf("an%d: read record failed\n", sc->an_unit);
709 return(EIO);
710 }
711
712 /* Read ssid list */
713 sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
714 sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist);
715 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
716 printf("an%d: read record failed\n", sc->an_unit);
717 return(EIO);
718 }
719
720 /* Read AP list */
721 sc->an_aplist.an_type = AN_RID_APLIST;
722 sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
723 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
724 printf("an%d: read record failed\n", sc->an_unit);
725 return(EIO);
726 }
727
728#ifdef ANCACHE
729 /* Read the RSSI <-> dBm map */
730 sc->an_have_rssimap = 0;
731 if (sc->an_caps.an_softcaps & 8) {
732 sc->an_rssimap.an_type = AN_RID_RSSI_MAP;
733 sc->an_rssimap.an_len = sizeof(struct an_ltv_rssi_map);
734 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_rssimap)) {
735 printf("an%d: unable to get RSSI <-> dBM map\n", sc->an_unit);
736 } else {
737 printf("an%d: got RSSI <-> dBM map\n", sc->an_unit);
738 sc->an_have_rssimap = 1;
739 }
740 } else {
741 printf("an%d: no RSSI <-> dBM map\n", sc->an_unit);
742 }
743#endif
744
745 bcopy((char *)&sc->an_caps.an_oemaddr,
746 (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
747
748 printf("an%d: Ethernet address: %6D\n", sc->an_unit,
749 sc->arpcom.ac_enaddr, ":");
750
751 ifp->if_softc = sc;
752 if_initname(ifp, "an", unit);
753 ifp->if_mtu = ETHERMTU;
754 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
755 ifp->if_ioctl = an_ioctl;
756 ifp->if_output = ether_output;
757 ifp->if_start = an_start;
758 ifp->if_watchdog = an_watchdog;
759 ifp->if_init = an_init;
760 ifp->if_baudrate = 10000000;
761 ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
762
763 bzero(sc->an_config.an_nodename, sizeof(sc->an_config.an_nodename));
764 bcopy(AN_DEFAULT_NODENAME, sc->an_config.an_nodename,
765 sizeof(AN_DEFAULT_NODENAME) - 1);
766
767 bzero(sc->an_ssidlist.an_ssid1, sizeof(sc->an_ssidlist.an_ssid1));
768 bcopy(AN_DEFAULT_NETNAME, sc->an_ssidlist.an_ssid1,
769 sizeof(AN_DEFAULT_NETNAME) - 1);
770 sc->an_ssidlist.an_ssid1_len = strlen(AN_DEFAULT_NETNAME);
771
772 sc->an_config.an_opmode =
773 AN_OPMODE_INFRASTRUCTURE_STATION;
774
775 sc->an_tx_rate = 0;
776 bzero((char *)&sc->an_stats, sizeof(sc->an_stats));
777
778 ifmedia_init(&sc->an_ifmedia, 0, an_media_change, an_media_status);
779#define ADD(m, c) ifmedia_add(&sc->an_ifmedia, (m), (c), NULL)
780 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
781 IFM_IEEE80211_ADHOC, 0), 0);
782 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
783 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
784 IFM_IEEE80211_ADHOC, 0), 0);
785 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
786 if (sc->an_caps.an_rates[2] == AN_RATE_5_5MBPS) {
787 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
788 IFM_IEEE80211_ADHOC, 0), 0);
789 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
790 }
791 if (sc->an_caps.an_rates[3] == AN_RATE_11MBPS) {
792 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
793 IFM_IEEE80211_ADHOC, 0), 0);
794 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
795 }
796 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
797 IFM_IEEE80211_ADHOC, 0), 0);
798 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
799#undef ADD
800 ifmedia_set(&sc->an_ifmedia, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
801 0, 0));
802
803 /*
804 * Call MI attach routine.
805 */
806 ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
807 callout_handle_init(&sc->an_stat_ch);
808
809 return(0);
810}
811
812static void
813an_rxeof(sc)
814 struct an_softc *sc;
815{
816 struct ifnet *ifp;
817 struct ether_header *eh;
818 struct ieee80211_frame *ih;
819 struct an_rxframe rx_frame;
820 struct an_rxframe_802_3 rx_frame_802_3;
821 struct mbuf *m;
822 int len, id, error = 0, i, count = 0;
823 int ieee80211_header_len;
824 u_char *bpf_buf;
825 u_short fc1;
826 struct an_card_rx_desc an_rx_desc;
827 u_int8_t *buf;
828
829 ifp = &sc->arpcom.ac_if;
830
831 if (!sc->mpi350) {
832 id = CSR_READ_2(sc, AN_RX_FID);
833
834 if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
835 /* read raw 802.11 packet */
836 bpf_buf = sc->buf_802_11;
837
838 /* read header */
839 if (an_read_data(sc, id, 0x0, (caddr_t)&rx_frame,
840 sizeof(rx_frame))) {
841 ifp->if_ierrors++;
842 return;
843 }
844
845 /*
846 * skip beacon by default since this increases the
847 * system load a lot
848 */
849
850 if (!(sc->an_monitor & AN_MONITOR_INCLUDE_BEACON) &&
851 (rx_frame.an_frame_ctl &
852 IEEE80211_FC0_SUBTYPE_BEACON)) {
853 return;
854 }
855
856 if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
857 len = rx_frame.an_rx_payload_len
858 + sizeof(rx_frame);
859 /* Check for insane frame length */
860 if (len > sizeof(sc->buf_802_11)) {
861 printf("an%d: oversized packet "
862 "received (%d, %d)\n",
863 sc->an_unit, len, MCLBYTES);
864 ifp->if_ierrors++;
865 return;
866 }
867
868 bcopy((char *)&rx_frame,
869 bpf_buf, sizeof(rx_frame));
870
871 error = an_read_data(sc, id, sizeof(rx_frame),
872 (caddr_t)bpf_buf+sizeof(rx_frame),
873 rx_frame.an_rx_payload_len);
874 } else {
875 fc1=rx_frame.an_frame_ctl >> 8;
876 ieee80211_header_len =
877 sizeof(struct ieee80211_frame);
878 if ((fc1 & IEEE80211_FC1_DIR_TODS) &&
879 (fc1 & IEEE80211_FC1_DIR_FROMDS)) {
880 ieee80211_header_len += ETHER_ADDR_LEN;
881 }
882
883 len = rx_frame.an_rx_payload_len
884 + ieee80211_header_len;
885 /* Check for insane frame length */
886 if (len > sizeof(sc->buf_802_11)) {
887 printf("an%d: oversized packet "
888 "received (%d, %d)\n",
889 sc->an_unit, len, MCLBYTES);
890 ifp->if_ierrors++;
891 return;
892 }
893
894 ih = (struct ieee80211_frame *)bpf_buf;
895
896 bcopy((char *)&rx_frame.an_frame_ctl,
897 (char *)ih, ieee80211_header_len);
898
899 error = an_read_data(sc, id, sizeof(rx_frame) +
900 rx_frame.an_gaplen,
901 (caddr_t)ih +ieee80211_header_len,
902 rx_frame.an_rx_payload_len);
903 }
904 /* dump raw 802.11 packet to bpf and skip ip stack */
905 if (ifp->if_bpf != NULL) {
906 bpf_tap(ifp, bpf_buf, len);
907 }
908 } else {
909 MGETHDR(m, M_NOWAIT, MT_DATA);
910 if (m == NULL) {
911 ifp->if_ierrors++;
912 return;
913 }
914 MCLGET(m, M_NOWAIT);
915 if (!(m->m_flags & M_EXT)) {
916 m_freem(m);
917 ifp->if_ierrors++;
918 return;
919 }
920 m->m_pkthdr.rcvif = ifp;
921 /* Read Ethernet encapsulated packet */
922
923#ifdef ANCACHE
924 /* Read NIC frame header */
925 if (an_read_data(sc, id, 0, (caddr_t)&rx_frame,
926 sizeof(rx_frame))) {
927 ifp->if_ierrors++;
928 return;
929 }
930#endif
931 /* Read in the 802_3 frame header */
932 if (an_read_data(sc, id, 0x34,
933 (caddr_t)&rx_frame_802_3,
934 sizeof(rx_frame_802_3))) {
935 ifp->if_ierrors++;
936 return;
937 }
938 if (rx_frame_802_3.an_rx_802_3_status != 0) {
939 ifp->if_ierrors++;
940 return;
941 }
942 /* Check for insane frame length */
943 len = rx_frame_802_3.an_rx_802_3_payload_len;
944 if (len > sizeof(sc->buf_802_11)) {
945 printf("an%d: oversized packet "
946 "received (%d, %d)\n",
947 sc->an_unit, len, MCLBYTES);
948 ifp->if_ierrors++;
949 return;
950 }
951 m->m_pkthdr.len = m->m_len =
952 rx_frame_802_3.an_rx_802_3_payload_len + 12;
953
954 eh = mtod(m, struct ether_header *);
955
956 bcopy((char *)&rx_frame_802_3.an_rx_dst_addr,
957 (char *)&eh->ether_dhost, ETHER_ADDR_LEN);
958 bcopy((char *)&rx_frame_802_3.an_rx_src_addr,
959 (char *)&eh->ether_shost, ETHER_ADDR_LEN);
960
961 /* in mbuf header type is just before payload */
962 error = an_read_data(sc, id, 0x44,
963 (caddr_t)&(eh->ether_type),
964 rx_frame_802_3.an_rx_802_3_payload_len);
965
966 if (error) {
967 m_freem(m);
968 ifp->if_ierrors++;
969 return;
970 }
971 ifp->if_ipackets++;
972
973 /* Receive packet. */
974 m_adj(m, sizeof(struct ether_header));
975#ifdef ANCACHE
976 an_cache_store(sc, eh, m,
977 rx_frame.an_rx_signal_strength,
978 rx_frame.an_rsvd0);
979#endif
980 ether_input(ifp, eh, m);
981 }
982
983 } else { /* MPI-350 */
984 for (count = 0; count < AN_MAX_RX_DESC; count++){
985 for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
986 ((u_int32_t*)&an_rx_desc)[i]
987 = CSR_MEM_AUX_READ_4(sc,
988 AN_RX_DESC_OFFSET
989 + (count * sizeof(an_rx_desc))
990 + (i * 4));
991
992 if (an_rx_desc.an_done && !an_rx_desc.an_valid) {
993 buf = sc->an_rx_buffer[count].an_dma_vaddr;
994
995 MGETHDR(m, M_NOWAIT, MT_DATA);
996 if (m == NULL) {
997 ifp->if_ierrors++;
998 return;
999 }
1000 MCLGET(m, M_NOWAIT);
1001 if (!(m->m_flags & M_EXT)) {
1002 m_freem(m);
1003 ifp->if_ierrors++;
1004 return;
1005 }
1006 m->m_pkthdr.rcvif = ifp;
1007 /* Read Ethernet encapsulated packet */
1008
1009 /*
1010 * No ANCACHE support since we just get back
1011 * an Ethernet packet no 802.11 info
1012 */
1013#if 0
1014#ifdef ANCACHE
1015 /* Read NIC frame header */
1016 bcopy(buf, (caddr_t)&rx_frame,
1017 sizeof(rx_frame));
1018#endif
1019#endif
1020 /* Check for insane frame length */
1021 len = an_rx_desc.an_len + 12;
1022 if (len > MCLBYTES) {
1023 printf("an%d: oversized packet "
1024 "received (%d, %d)\n",
1025 sc->an_unit, len, MCLBYTES);
1026 ifp->if_ierrors++;
1027 return;
1028 }
1029
1030 m->m_pkthdr.len = m->m_len =
1031 an_rx_desc.an_len + 12;
1032
1033 eh = mtod(m, struct ether_header *);
1034
1035 bcopy(buf, (char *)eh,
1036 m->m_pkthdr.len);
1037
1038 ifp->if_ipackets++;
1039
1040 /* Receive packet. */
1041 m_adj(m, sizeof(struct ether_header));
1042#if 0
1043#ifdef ANCACHE
1044 an_cache_store(sc, eh, m,
1045 rx_frame.an_rx_signal_strength,
1046 rx_frame.an_rsvd0);
1047#endif
1048#endif
1049 ether_input(ifp, eh, m);
1050
1051 an_rx_desc.an_valid = 1;
1052 an_rx_desc.an_len = AN_RX_BUFFER_SIZE;
1053 an_rx_desc.an_done = 0;
1054 an_rx_desc.an_phys =
1055 sc->an_rx_buffer[count].an_dma_paddr;
1056
1057 for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
1058 CSR_MEM_AUX_WRITE_4(sc,
1059 AN_RX_DESC_OFFSET
1060 + (count * sizeof(an_rx_desc))
1061 + (i * 4),
1062 ((u_int32_t*)&an_rx_desc)[i]);
1063
1064 } else {
1065 printf("an%d: Didn't get valid RX packet "
1066 "%x %x %d\n",
1067 sc->an_unit,
1068 an_rx_desc.an_done,
1069 an_rx_desc.an_valid, an_rx_desc.an_len);
1070 }
1071 }
1072 }
1073}
1074
1075static void
1076an_txeof(sc, status)
1077 struct an_softc *sc;
1078 int status;
1079{
1080 struct ifnet *ifp;
1081 int id, i;
1082
1083 ifp = &sc->arpcom.ac_if;
1084
1085 ifp->if_timer = 0;
1086 ifp->if_flags &= ~IFF_OACTIVE;
1087
1088 if (!sc->mpi350) {
1089 id = CSR_READ_2(sc, AN_TX_CMP_FID);
1090
1091 if (status & AN_EV_TX_EXC) {
1092 ifp->if_oerrors++;
1093 } else
1094 ifp->if_opackets++;
1095
1096 for (i = 0; i < AN_TX_RING_CNT; i++) {
1097 if (id == sc->an_rdata.an_tx_ring[i]) {
1098 sc->an_rdata.an_tx_ring[i] = 0;
1099 break;
1100 }
1101 }
1102
1103 AN_INC(sc->an_rdata.an_tx_cons, AN_TX_RING_CNT);
1104 } else { /* MPI 350 */
1105 AN_INC(sc->an_rdata.an_tx_cons, AN_MAX_TX_DESC);
1106 if (sc->an_rdata.an_tx_prod ==
1107 sc->an_rdata.an_tx_cons)
1108 sc->an_rdata.an_tx_empty = 1;
1109 }
1110
1111 return;
1112}
1113
1114/*
1115 * We abuse the stats updater to check the current NIC status. This
1116 * is important because we don't want to allow transmissions until
1117 * the NIC has synchronized to the current cell (either as the master
1118 * in an ad-hoc group, or as a station connected to an access point).
1119 */
1120static void
1121an_stats_update(xsc)
1122 void *xsc;
1123{
1124 struct an_softc *sc;
1125 struct ifnet *ifp;
1126 int s;
1127
1128 s = splimp();
1129
1130 sc = xsc;
1131 ifp = &sc->arpcom.ac_if;
1132
1133 sc->an_status.an_type = AN_RID_STATUS;
1134 sc->an_status.an_len = sizeof(struct an_ltv_status);
1135 an_read_record(sc, (struct an_ltv_gen *)&sc->an_status);
1136
1137 if (sc->an_status.an_opmode & AN_STATUS_OPMODE_IN_SYNC)
1138 sc->an_associated = 1;
1139 else
1140 sc->an_associated = 0;
1141
1142 /* Don't do this while we're transmitting */
1143 if (ifp->if_flags & IFF_OACTIVE) {
1144 sc->an_stat_ch = timeout(an_stats_update, sc, hz);
1145 splx(s);
1146 return;
1147 }
1148
1149 sc->an_stats.an_len = sizeof(struct an_ltv_stats);
1150 sc->an_stats.an_type = AN_RID_32BITS_CUM;
1151 an_read_record(sc, (struct an_ltv_gen *)&sc->an_stats.an_len);
1152
1153 sc->an_stat_ch = timeout(an_stats_update, sc, hz);
1154 splx(s);
1155
1156 return;
1157}
1158
1159void
1160an_intr(xsc)
1161 void *xsc;
1162{
1163 struct an_softc *sc;
1164 struct ifnet *ifp;
1165 u_int16_t status;
1166
1167 sc = (struct an_softc*)xsc;
1168
1169 if (sc->an_gone)
1170 return;
1171
1172 ifp = &sc->arpcom.ac_if;
1173
1174 /* Disable interrupts. */
1175 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
1176
1177 status = CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350));
1178 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), ~AN_INTRS);
1179
1180 if (status & AN_EV_AWAKE) {
1181 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_AWAKE);
1182 }
1183
1184 if (status & AN_EV_LINKSTAT) {
1185 if (CSR_READ_2(sc, AN_LINKSTAT(sc->mpi350))
1186 == AN_LINKSTAT_ASSOCIATED)
1187 sc->an_associated = 1;
1188 else
1189 sc->an_associated = 0;
1190 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_LINKSTAT);
1191 }
1192
1193 if (status & AN_EV_RX) {
1194 an_rxeof(sc);
1195 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_RX);
1196 }
1197
1198 if (status & AN_EV_TX) {
1199 an_txeof(sc, status);
1200 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX);
1201 }
1202
1203 if (status & AN_EV_TX_EXC) {
1204 an_txeof(sc, status);
1205 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX_EXC);
1206 }
1207
1208 if (status & AN_EV_ALLOC)
1209 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
1210
1211 /* Re-enable interrupts. */
1212 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS);
1213
1214 if ((ifp->if_flags & IFF_UP) && (ifp->if_snd.ifq_head != NULL))
1215 an_start(ifp);
1216
1217 return;
1218}
1219
1220static int
1221an_cmd_struct(sc, cmd, reply)
1222 struct an_softc *sc;
1223 struct an_command *cmd;
1224 struct an_reply *reply;
1225{
1226 int i;
1227
1228 for (i = 0; i != AN_TIMEOUT; i++) {
1229 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) {
1230 DELAY(1000);
1231 } else
1232 break;
1233 }
1234 if( i == AN_TIMEOUT) {
1235 printf("BUSY\n");
1236 return(ETIMEDOUT);
1237 }
1238
1239 CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), cmd->an_parm0);
1240 CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), cmd->an_parm1);
1241 CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), cmd->an_parm2);
1242 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd->an_cmd);
1243
1244 for (i = 0; i < AN_TIMEOUT; i++) {
1245 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD)
1246 break;
1247 DELAY(1000);
1248 }
1249
1250 reply->an_resp0 = CSR_READ_2(sc, AN_RESP0(sc->mpi350));
1251 reply->an_resp1 = CSR_READ_2(sc, AN_RESP1(sc->mpi350));
1252 reply->an_resp2 = CSR_READ_2(sc, AN_RESP2(sc->mpi350));
1253 reply->an_status = CSR_READ_2(sc, AN_STATUS(sc->mpi350));
1254
1255 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY)
1256 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CLR_STUCK_BUSY);
1257
1258 /* Ack the command */
1259 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD);
1260
1261 if (i == AN_TIMEOUT)
1262 return(ETIMEDOUT);
1263
1264 return(0);
1265}
1266
1267static int
1268an_cmd(sc, cmd, val)
1269 struct an_softc *sc;
1270 int cmd;
1271 int val;
1272{
1273 int i, s = 0;
1274
1275 CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), val);
1276 CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), 0);
1277 CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), 0);
1278 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd);
1279
1280 for (i = 0; i < AN_TIMEOUT; i++) {
1281 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD)
1282 break;
1283 else {
1284 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) == cmd)
1285 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd);
1286 }
1287 }
1288
1289 for (i = 0; i < AN_TIMEOUT; i++) {
1290 CSR_READ_2(sc, AN_RESP0(sc->mpi350));
1291 CSR_READ_2(sc, AN_RESP1(sc->mpi350));
1292 CSR_READ_2(sc, AN_RESP2(sc->mpi350));
1293 s = CSR_READ_2(sc, AN_STATUS(sc->mpi350));
1294 if ((s & AN_STAT_CMD_CODE) == (cmd & AN_STAT_CMD_CODE))
1295 break;
1296 }
1297
1298 /* Ack the command */
1299 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD);
1300
1301 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY)
1302 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CLR_STUCK_BUSY);
1303
1304 if (i == AN_TIMEOUT)
1305 return(ETIMEDOUT);
1306
1307 return(0);
1308}
1309
1310/*
1311 * This reset sequence may look a little strange, but this is the
1312 * most reliable method I've found to really kick the NIC in the
1313 * head and force it to reboot correctly.
1314 */
1315static void
1316an_reset(sc)
1317 struct an_softc *sc;
1318{
1319 if (sc->an_gone)
1320 return;
1321
1322 an_cmd(sc, AN_CMD_ENABLE, 0);
1323 an_cmd(sc, AN_CMD_FW_RESTART, 0);
1324 an_cmd(sc, AN_CMD_NOOP2, 0);
1325
1326 if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT)
1327 printf("an%d: reset failed\n", sc->an_unit);
1328
1329 an_cmd(sc, AN_CMD_DISABLE, 0);
1330
1331 return;
1332}
1333
1334/*
1335 * Read an LTV record from the NIC.
1336 */
1337static int
1338an_read_record(sc, ltv)
1339 struct an_softc *sc;
1340 struct an_ltv_gen *ltv;
1341{
1342 struct an_ltv_gen *an_ltv;
1343 struct an_card_rid_desc an_rid_desc;
1344 struct an_command cmd;
1345 struct an_reply reply;
1346 u_int16_t *ptr;
1347 u_int8_t *ptr2;
1348 int i, len;
1349
1350 if (ltv->an_len < 4 || ltv->an_type == 0)
1351 return(EINVAL);
1352
1353 if (!sc->mpi350){
1354 /* Tell the NIC to enter record read mode. */
1355 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type)) {
1356 printf("an%d: RID access failed\n", sc->an_unit);
1357 return(EIO);
1358 }
1359
1360 /* Seek to the record. */
1361 if (an_seek(sc, ltv->an_type, 0, AN_BAP1)) {
1362 printf("an%d: seek to record failed\n", sc->an_unit);
1363 return(EIO);
1364 }
1365
1366 /*
1367 * Read the length and record type and make sure they
1368 * match what we expect (this verifies that we have enough
1369 * room to hold all of the returned data).
1370 * Length includes type but not length.
1371 */
1372 len = CSR_READ_2(sc, AN_DATA1);
1373 if (len > (ltv->an_len - 2)) {
1374 printf("an%d: record length mismatch -- expected %d, "
1375 "got %d for Rid %x\n", sc->an_unit,
1376 ltv->an_len - 2, len, ltv->an_type);
1377 len = ltv->an_len - 2;
1378 } else {
1379 ltv->an_len = len + 2;
1380 }
1381
1382 /* Now read the data. */
1383 len -= 2; /* skip the type */
1384 ptr = &ltv->an_val;
1385 for (i = len; i > 1; i -= 2)
1386 *ptr++ = CSR_READ_2(sc, AN_DATA1);
1387 if (i) {
1388 ptr2 = (u_int8_t *)ptr;
1389 *ptr2 = CSR_READ_1(sc, AN_DATA1);
1390 }
1391 } else { /* MPI-350 */
1392 an_rid_desc.an_valid = 1;
1393 an_rid_desc.an_len = AN_RID_BUFFER_SIZE;
1394 an_rid_desc.an_rid = 0;
1395 an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
1396 bzero(sc->an_rid_buffer.an_dma_vaddr, AN_RID_BUFFER_SIZE);
1397
1398 bzero(&cmd, sizeof(cmd));
1399 bzero(&reply, sizeof(reply));
1400 cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_READ;
1401 cmd.an_parm0 = ltv->an_type;
1402
1403 for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
1404 CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
1405 ((u_int32_t*)&an_rid_desc)[i]);
1406
1407 if (an_cmd_struct(sc, &cmd, &reply)
1408 || reply.an_status & AN_CMD_QUAL_MASK) {
1409 printf("an%d: failed to read RID %x %x %x %x %x, %d\n",
1410 sc->an_unit, ltv->an_type,
1411 reply.an_status,
1412 reply.an_resp0,
1413 reply.an_resp1,
1414 reply.an_resp2,
1415 i);
1416 return(EIO);
1417 }
1418
1419 an_ltv = (struct an_ltv_gen *)sc->an_rid_buffer.an_dma_vaddr;
1420 if (an_ltv->an_len + 2 < an_rid_desc.an_len) {
1421 an_rid_desc.an_len = an_ltv->an_len;
1422 }
1423
1424 if (an_rid_desc.an_len > 2)
1425 bcopy(&an_ltv->an_type,
1426 &ltv->an_val,
1427 an_rid_desc.an_len - 2);
1428 ltv->an_len = an_rid_desc.an_len + 2;
1429 }
1430
1431 if (an_dump)
1432 an_dump_record(sc, ltv, "Read");
1433
1434 return(0);
1435}
1436
1437/*
1438 * Same as read, except we inject data instead of reading it.
1439 */
1440static int
1441an_write_record(sc, ltv)
1442 struct an_softc *sc;
1443 struct an_ltv_gen *ltv;
1444{
1445 struct an_card_rid_desc an_rid_desc;
1446 struct an_command cmd;
1447 struct an_reply reply;
1448 char *buf;
1449 u_int16_t *ptr;
1450 u_int8_t *ptr2;
1451 int i, len;
1452
1453 if (an_dump)
1454 an_dump_record(sc, ltv, "Write");
1455
1456 if (!sc->mpi350){
1457 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type))
1458 return(EIO);
1459
1460 if (an_seek(sc, ltv->an_type, 0, AN_BAP1))
1461 return(EIO);
1462
1463 /*
1464 * Length includes type but not length.
1465 */
1466 len = ltv->an_len - 2;
1467 CSR_WRITE_2(sc, AN_DATA1, len);
1468
1469 len -= 2; /* skip the type */
1470 ptr = &ltv->an_val;
1471 for (i = len; i > 1; i -= 2)
1472 CSR_WRITE_2(sc, AN_DATA1, *ptr++);
1473 if (i) {
1474 ptr2 = (u_int8_t *)ptr;
1475 CSR_WRITE_1(sc, AN_DATA0, *ptr2);
1476 }
1477
1478 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_WRITE, ltv->an_type))
1479 return(EIO);
1480 } else {
1481 /* MPI-350 */
1482
1483 for (i = 0; i != AN_TIMEOUT; i++) {
1484 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350))
1485 & AN_CMD_BUSY) {
1486 DELAY(10);
1487 } else
1488 break;
1489 }
1490 if (i == AN_TIMEOUT) {
1491 printf("BUSY\n");
1492 }
1493
1494 an_rid_desc.an_valid = 1;
1495 an_rid_desc.an_len = ltv->an_len - 2;
1496 an_rid_desc.an_rid = ltv->an_type;
1497 an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
1498
1499 bcopy(&ltv->an_type, sc->an_rid_buffer.an_dma_vaddr,
1500 an_rid_desc.an_len);
1501
1502 bzero(&cmd,sizeof(cmd));
1503 bzero(&reply,sizeof(reply));
1504 cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_WRITE;
1505 cmd.an_parm0 = ltv->an_type;
1506
1507 for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
1508 CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
1509 ((u_int32_t*)&an_rid_desc)[i]);
1510
1511 if ((i = an_cmd_struct(sc, &cmd, &reply))) {
1512 printf("an%d: failed to write RID 1 %x %x %x %x %x, %d\n",
1513 sc->an_unit, ltv->an_type,
1514 reply.an_status,
1515 reply.an_resp0,
1516 reply.an_resp1,
1517 reply.an_resp2,
1518 i);
1519 return(EIO);
1520 }
1521
1522 ptr = (u_int16_t *)buf;
1523
1524 if (reply.an_status & AN_CMD_QUAL_MASK) {
1525 printf("an%d: failed to write RID 2 %x %x %x %x %x, %d\n",
1526 sc->an_unit, ltv->an_type,
1527 reply.an_status,
1528 reply.an_resp0,
1529 reply.an_resp1,
1530 reply.an_resp2,
1531 i);
1532 return(EIO);
1533 }
1534 }
1535
1536 return(0);
1537}
1538
1539static void
1540an_dump_record(sc, ltv, string)
1541 struct an_softc *sc;
1542 struct an_ltv_gen *ltv;
1543 char *string;
1544{
1545 u_int8_t *ptr2;
1546 int len;
1547 int i;
1548 int count = 0;
1549 char buf[17], temp;
1550
1551 len = ltv->an_len - 4;
1552 printf("an%d: RID %4x, Length %4d, Mode %s\n",
1553 sc->an_unit, ltv->an_type, ltv->an_len - 4, string);
1554
1555 if (an_dump == 1 || (an_dump == ltv->an_type)) {
1556 printf("an%d:\t", sc->an_unit);
1557 bzero(buf,sizeof(buf));
1558
1559 ptr2 = (u_int8_t *)&ltv->an_val;
1560 for (i = len; i > 0; i--) {
1561 printf("%02x ", *ptr2);
1562
1563 temp = *ptr2++;
1564 if (temp >= ' ' && temp <= '~')
1565 buf[count] = temp;
1566 else if (temp >= 'A' && temp <= 'Z')
1567 buf[count] = temp;
1568 else
1569 buf[count] = '.';
1570 if (++count == 16) {
1571 count = 0;
1572 printf("%s\n",buf);
1573 printf("an%d:\t", sc->an_unit);
1574 bzero(buf,sizeof(buf));
1575 }
1576 }
1577 for (; count != 16; count++) {
1578 printf(" ");
1579 }
1580 printf(" %s\n",buf);
1581 }
1582}
1583
1584static int
1585an_seek(sc, id, off, chan)
1586 struct an_softc *sc;
1587 int id, off, chan;
1588{
1589 int i;
1590 int selreg, offreg;
1591
1592 switch (chan) {
1593 case AN_BAP0:
1594 selreg = AN_SEL0;
1595 offreg = AN_OFF0;
1596 break;
1597 case AN_BAP1:
1598 selreg = AN_SEL1;
1599 offreg = AN_OFF1;
1600 break;
1601 default:
1602 printf("an%d: invalid data path: %x\n", sc->an_unit, chan);
1603 return(EIO);
1604 }
1605
1606 CSR_WRITE_2(sc, selreg, id);
1607 CSR_WRITE_2(sc, offreg, off);
1608
1609 for (i = 0; i < AN_TIMEOUT; i++) {
1610 if (!(CSR_READ_2(sc, offreg) & (AN_OFF_BUSY|AN_OFF_ERR)))
1611 break;
1612 }
1613
1614 if (i == AN_TIMEOUT)
1615 return(ETIMEDOUT);
1616
1617 return(0);
1618}
1619
1620static int
1621an_read_data(sc, id, off, buf, len)
1622 struct an_softc *sc;
1623 int id, off;
1624 caddr_t buf;
1625 int len;
1626{
1627 int i;
1628 u_int16_t *ptr;
1629 u_int8_t *ptr2;
1630
1631 if (off != -1) {
1632 if (an_seek(sc, id, off, AN_BAP1))
1633 return(EIO);
1634 }
1635
1636 ptr = (u_int16_t *)buf;
1637 for (i = len; i > 1; i -= 2)
1638 *ptr++ = CSR_READ_2(sc, AN_DATA1);
1639 if (i) {
1640 ptr2 = (u_int8_t *)ptr;
1641 *ptr2 = CSR_READ_1(sc, AN_DATA1);
1642 }
1643
1644 return(0);
1645}
1646
1647static int
1648an_write_data(sc, id, off, buf, len)
1649 struct an_softc *sc;
1650 int id, off;
1651 caddr_t buf;
1652 int len;
1653{
1654 int i;
1655 u_int16_t *ptr;
1656 u_int8_t *ptr2;
1657
1658 if (off != -1) {
1659 if (an_seek(sc, id, off, AN_BAP0))
1660 return(EIO);
1661 }
1662
1663 ptr = (u_int16_t *)buf;
1664 for (i = len; i > 1; i -= 2)
1665 CSR_WRITE_2(sc, AN_DATA0, *ptr++);
1666 if (i) {
1667 ptr2 = (u_int8_t *)ptr;
1668 CSR_WRITE_1(sc, AN_DATA0, *ptr2);
1669 }
1670
1671 return(0);
1672}
1673
1674/*
1675 * Allocate a region of memory inside the NIC and zero
1676 * it out.
1677 */
1678static int
1679an_alloc_nicmem(sc, len, id)
1680 struct an_softc *sc;
1681 int len;
1682 int *id;
1683{
1684 int i;
1685
1686 if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) {
1687 printf("an%d: failed to allocate %d bytes on NIC\n",
1688 sc->an_unit, len);
1689 return(ENOMEM);
1690 }
1691
1692 for (i = 0; i < AN_TIMEOUT; i++) {
1693 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_ALLOC)
1694 break;
1695 }
1696
1697 if (i == AN_TIMEOUT)
1698 return(ETIMEDOUT);
1699
1700 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
1701 *id = CSR_READ_2(sc, AN_ALLOC_FID);
1702
1703 if (an_seek(sc, *id, 0, AN_BAP0))
1704 return(EIO);
1705
1706 for (i = 0; i < len / 2; i++)
1707 CSR_WRITE_2(sc, AN_DATA0, 0);
1708
1709 return(0);
1710}
1711
1712static void
1713an_setdef(sc, areq)
1714 struct an_softc *sc;
1715 struct an_req *areq;
1716{
1717 struct sockaddr_dl *sdl;
1718 struct ifaddr *ifa;
1719 struct ifnet *ifp;
1720 struct an_ltv_genconfig *cfg;
1721 struct an_ltv_ssidlist *ssid;
1722 struct an_ltv_aplist *ap;
1723 struct an_ltv_gen *sp;
1724
1725 ifp = &sc->arpcom.ac_if;
1726
1727 switch (areq->an_type) {
1728 case AN_RID_GENCONFIG:
1729 cfg = (struct an_ltv_genconfig *)areq;
1730
1731 ifa = ifnet_addrs[ifp->if_index - 1];
1732 sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1733 bcopy((char *)&cfg->an_macaddr, (char *)&sc->arpcom.ac_enaddr,
1734 ETHER_ADDR_LEN);
1735 bcopy((char *)&cfg->an_macaddr, LLADDR(sdl), ETHER_ADDR_LEN);
1736
1737 bcopy((char *)cfg, (char *)&sc->an_config,
1738 sizeof(struct an_ltv_genconfig));
1739 break;
1740 case AN_RID_SSIDLIST:
1741 ssid = (struct an_ltv_ssidlist *)areq;
1742 bcopy((char *)ssid, (char *)&sc->an_ssidlist,
1743 sizeof(struct an_ltv_ssidlist));
1744 break;
1745 case AN_RID_APLIST:
1746 ap = (struct an_ltv_aplist *)areq;
1747 bcopy((char *)ap, (char *)&sc->an_aplist,
1748 sizeof(struct an_ltv_aplist));
1749 break;
1750 case AN_RID_TX_SPEED:
1751 sp = (struct an_ltv_gen *)areq;
1752 sc->an_tx_rate = sp->an_val;
1753
1754 /* Read the current configuration */
1755 sc->an_config.an_type = AN_RID_GENCONFIG;
1756 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
1757 an_read_record(sc, (struct an_ltv_gen *)&sc->an_config);
1758 cfg = &sc->an_config;
1759
1760 /* clear other rates and set the only one we want */
1761 bzero(cfg->an_rates, sizeof(cfg->an_rates));
1762 cfg->an_rates[0] = sc->an_tx_rate;
1763
1764 /* Save the new rate */
1765 sc->an_config.an_type = AN_RID_GENCONFIG;
1766 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
1767 break;
1768 case AN_RID_WEP_TEMP:
1769 /* Cache the temp keys */
1770 bcopy(areq,
1771 &sc->an_temp_keys[((struct an_ltv_key *)areq)->kindex],
1772 sizeof(struct an_ltv_key));
1773 case AN_RID_WEP_PERM:
1774 case AN_RID_LEAPUSERNAME:
1775 case AN_RID_LEAPPASSWORD:
1776 /* Disable the MAC. */
1777 an_cmd(sc, AN_CMD_DISABLE, 0);
1778
1779 /* Write the key */
1780 an_write_record(sc, (struct an_ltv_gen *)areq);
1781
1782 /* Turn the MAC back on. */
1783 an_cmd(sc, AN_CMD_ENABLE, 0);
1784
1785 break;
1786 case AN_RID_MONITOR_MODE:
1787 cfg = (struct an_ltv_genconfig *)areq;
1788 bpfdetach(ifp);
1789 if (ng_ether_detach_p != NULL)
1790 (*ng_ether_detach_p) (ifp);
1791 sc->an_monitor = cfg->an_len;
1792
1793 if (sc->an_monitor & AN_MONITOR) {
1794 if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
1795 bpfattach(ifp, DLT_AIRONET_HEADER,
1796 sizeof(struct ether_header));
1797 } else {
1798 bpfattach(ifp, DLT_IEEE802_11,
1799 sizeof(struct ether_header));
1800 }
1801 } else {
1802 bpfattach(ifp, DLT_EN10MB,
1803 sizeof(struct ether_header));
1804 if (ng_ether_attach_p != NULL)
1805 (*ng_ether_attach_p) (ifp);
1806 }
1807 break;
1808 default:
1809 printf("an%d: unknown RID: %x\n", sc->an_unit, areq->an_type);
1810 return;
1811 break;
1812 }
1813
1814
1815 /* Reinitialize the card. */
1816 if (ifp->if_flags)
1817 an_init(sc);
1818
1819 return;
1820}
1821
1822/*
1823 * Derived from Linux driver to enable promiscious mode.
1824 */
1825
1826static void
1827an_promisc(sc, promisc)
1828 struct an_softc *sc;
1829 int promisc;
1830{
1831 if (sc->an_was_monitor)
1832 an_reset(sc);
1833 if (sc->mpi350)
1834 an_init_mpi350_desc(sc);
1835 if (sc->an_monitor || sc->an_was_monitor)
1836 an_init(sc);
1837
1838 sc->an_was_monitor = sc->an_monitor;
1839 an_cmd(sc, AN_CMD_SET_MODE, promisc ? 0xffff : 0);
1840
1841 return;
1842}
1843
1844static int
1845an_ioctl(ifp, command, data)
1846 struct ifnet *ifp;
1847 u_long command;
1848 caddr_t data;
1849{
1850 int s, error = 0;
1851 int len;
1852 int i;
1853 struct an_softc *sc;
1854 struct ifreq *ifr;
1855 struct thread *td = curthread;
1856 struct ieee80211req *ireq;
1857 u_int8_t tmpstr[IEEE80211_NWID_LEN*2];
1858 u_int8_t *tmpptr;
1859 struct an_ltv_genconfig *config;
1860 struct an_ltv_key *key;
1861 struct an_ltv_status *status;
1862 struct an_ltv_ssidlist *ssids;
1863 int mode;
1864 struct aironet_ioctl l_ioctl;
1865
1866 sc = ifp->if_softc;
1867 s = splimp();
1868 ifr = (struct ifreq *)data;
1869 ireq = (struct ieee80211req *)data;
1870
1871 config = (struct an_ltv_genconfig *)&sc->areq;
1872 key = (struct an_ltv_key *)&sc->areq;
1873 status = (struct an_ltv_status *)&sc->areq;
1874 ssids = (struct an_ltv_ssidlist *)&sc->areq;
1875
1876 if (sc->an_gone) {
1877 error = ENODEV;
1878 goto out;
1879 }
1880
1881 switch (command) {
1882 case SIOCSIFADDR:
1883 case SIOCGIFADDR:
1884 case SIOCSIFMTU:
1885 error = ether_ioctl(ifp, command, data);
1886 break;
1887 case SIOCSIFFLAGS:
1888 if (ifp->if_flags & IFF_UP) {
1889 if (ifp->if_flags & IFF_RUNNING &&
1890 ifp->if_flags & IFF_PROMISC &&
1891 !(sc->an_if_flags & IFF_PROMISC)) {
1892 an_promisc(sc, 1);
1893 } else if (ifp->if_flags & IFF_RUNNING &&
1894 !(ifp->if_flags & IFF_PROMISC) &&
1895 sc->an_if_flags & IFF_PROMISC) {
1896 an_promisc(sc, 0);
1897 } else
1898 an_init(sc);
1899 } else {
1900 if (ifp->if_flags & IFF_RUNNING)
1901 an_stop(sc);
1902 }
1903 sc->an_if_flags = ifp->if_flags;
1904 error = 0;
1905 break;
1906 case SIOCSIFMEDIA:
1907 case SIOCGIFMEDIA:
1908 error = ifmedia_ioctl(ifp, ifr, &sc->an_ifmedia, command);
1909 break;
1910 case SIOCADDMULTI:
1911 case SIOCDELMULTI:
1912 /* The Aironet has no multicast filter. */
1913 error = 0;
1914 break;
1915 case SIOCGAIRONET:
1916 error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq));
1917 if (error != 0)
1918 break;
1919#ifdef ANCACHE
1920 if (sc->areq.an_type == AN_RID_ZERO_CACHE) {
1921 error = suser(td);
1922 if (error)
1923 break;
1924 sc->an_sigitems = sc->an_nextitem = 0;
1925 break;
1926 } else if (sc->areq.an_type == AN_RID_READ_CACHE) {
1927 char *pt = (char *)&sc->areq.an_val;
1928 bcopy((char *)&sc->an_sigitems, (char *)pt,
1929 sizeof(int));
1930 pt += sizeof(int);
1931 sc->areq.an_len = sizeof(int) / 2;
1932 bcopy((char *)&sc->an_sigcache, (char *)pt,
1933 sizeof(struct an_sigcache) * sc->an_sigitems);
1934 sc->areq.an_len += ((sizeof(struct an_sigcache) *
1935 sc->an_sigitems) / 2) + 1;
1936 } else
1937#endif
1938 if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) {
1939 error = EINVAL;
1940 break;
1941 }
1942 error = copyout(&sc->areq, ifr->ifr_data, sizeof(sc->areq));
1943 break;
1944 case SIOCSAIRONET:
1945 if ((error = suser(td)))
1946 goto out;
1947 error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq));
1948 if (error != 0)
1949 break;
1950 an_setdef(sc, &sc->areq);
1951 break;
1952 case SIOCGPRIVATE_0: /* used by Cisco client utility */
1953 if ((error = suser(td)))
1954 goto out;
1955 copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl));
1956 mode = l_ioctl.command;
1957
1958 if (mode >= AIROGCAP && mode <= AIROGSTATSD32) {
1959 error = readrids(ifp, &l_ioctl);
1960 } else if (mode >= AIROPCAP && mode <= AIROPLEAPUSR) {
1961 error = writerids(ifp, &l_ioctl);
1962 } else if (mode >= AIROFLSHRST && mode <= AIRORESTART) {
1963 error = flashcard(ifp, &l_ioctl);
1964 } else {
1965 error =-1;
1966 }
1967
1968 /* copy out the updated command info */
1969 copyout(&l_ioctl, ifr->ifr_data, sizeof(l_ioctl));
1970
1971 break;
1972 case SIOCGPRIVATE_1: /* used by Cisco client utility */
1973 if ((error = suser(td)))
1974 goto out;
1975 copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl));
1976 l_ioctl.command = 0;
1977 error = AIROMAGIC;
1978 copyout(&error, l_ioctl.data, sizeof(error));
1979 error = 0;
1980 break;
1981 case SIOCG80211:
1982 sc->areq.an_len = sizeof(sc->areq);
1983 /* was that a good idea DJA we are doing a short-cut */
1984 switch (ireq->i_type) {
1985 case IEEE80211_IOC_SSID:
1986 if (ireq->i_val == -1) {
1987 sc->areq.an_type = AN_RID_STATUS;
1988 if (an_read_record(sc,
1989 (struct an_ltv_gen *)&sc->areq)) {
1990 error = EINVAL;
1991 break;
1992 }
1993 len = status->an_ssidlen;
1994 tmpptr = status->an_ssid;
1995 } else if (ireq->i_val >= 0) {
1996 sc->areq.an_type = AN_RID_SSIDLIST;
1997 if (an_read_record(sc,
1998 (struct an_ltv_gen *)&sc->areq)) {
1999 error = EINVAL;
2000 break;
2001 }
2002 if (ireq->i_val == 0) {
2003 len = ssids->an_ssid1_len;
2004 tmpptr = ssids->an_ssid1;
2005 } else if (ireq->i_val == 1) {
2006 len = ssids->an_ssid2_len;
2007 tmpptr = ssids->an_ssid2;
2008 } else if (ireq->i_val == 2) {
2009 len = ssids->an_ssid3_len;
2010 tmpptr = ssids->an_ssid3;
2011 } else {
2012 error = EINVAL;
2013 break;
2014 }
2015 } else {
2016 error = EINVAL;
2017 break;
2018 }
2019 if (len > IEEE80211_NWID_LEN) {
2020 error = EINVAL;
2021 break;
2022 }
2023 ireq->i_len = len;
2024 bzero(tmpstr, IEEE80211_NWID_LEN);
2025 bcopy(tmpptr, tmpstr, len);
2026 error = copyout(tmpstr, ireq->i_data,
2027 IEEE80211_NWID_LEN);
2028 break;
2029 case IEEE80211_IOC_NUMSSIDS:
2030 ireq->i_val = 3;
2031 break;
2032 case IEEE80211_IOC_WEP:
2033 sc->areq.an_type = AN_RID_ACTUALCFG;
2034 if (an_read_record(sc,
2035 (struct an_ltv_gen *)&sc->areq)) {
2036 error = EINVAL;
2037 break;
2038 }
2039 if (config->an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE) {
2040 if (config->an_authtype &
2041 AN_AUTHTYPE_ALLOW_UNENCRYPTED)
2042 ireq->i_val = IEEE80211_WEP_MIXED;
2043 else
2044 ireq->i_val = IEEE80211_WEP_ON;
2045 } else {
2046 ireq->i_val = IEEE80211_WEP_OFF;
2047 }
2048 break;
2049 case IEEE80211_IOC_WEPKEY:
2050 /*
2051 * XXX: I'm not entierly convinced this is
2052 * correct, but it's what is implemented in
2053 * ancontrol so it will have to do until we get
2054 * access to actual Cisco code.
2055 */
2056 if (ireq->i_val < 0 || ireq->i_val > 8) {
2057 error = EINVAL;
2058 break;
2059 }
2060 len = 0;
2061 if (ireq->i_val < 5) {
2062 sc->areq.an_type = AN_RID_WEP_TEMP;
2063 for (i = 0; i < 5; i++) {
2064 if (an_read_record(sc,
2065 (struct an_ltv_gen *)&sc->areq)) {
2066 error = EINVAL;
2067 break;
2068 }
2069 if (key->kindex == 0xffff)
2070 break;
2071 if (key->kindex == ireq->i_val)
2072 len = key->klen;
2073 /* Required to get next entry */
2074 sc->areq.an_type = AN_RID_WEP_PERM;
2075 }
2076 if (error != 0)
2077 break;
2078 }
2079 /* We aren't allowed to read the value of the
2080 * key from the card so we just output zeros
2081 * like we would if we could read the card, but
2082 * denied the user access.
2083 */
2084 bzero(tmpstr, len);
2085 ireq->i_len = len;
2086 error = copyout(tmpstr, ireq->i_data, len);
2087 break;
2088 case IEEE80211_IOC_NUMWEPKEYS:
2089 ireq->i_val = 9; /* include home key */
2090 break;
2091 case IEEE80211_IOC_WEPTXKEY:
2092 /*
2093 * For some strange reason, you have to read all
2094 * keys before you can read the txkey.
2095 */
2096 sc->areq.an_type = AN_RID_WEP_TEMP;
2097 for (i = 0; i < 5; i++) {
2098 if (an_read_record(sc,
2099 (struct an_ltv_gen *) &sc->areq)) {
2100 error = EINVAL;
2101 break;
2102 }
2103 if (key->kindex == 0xffff)
2104 break;
2105 /* Required to get next entry */
2106 sc->areq.an_type = AN_RID_WEP_PERM;
2107 }
2108 if (error != 0)
2109 break;
2110
2111 sc->areq.an_type = AN_RID_WEP_PERM;
2112 key->kindex = 0xffff;
2113 if (an_read_record(sc,
2114 (struct an_ltv_gen *)&sc->areq)) {
2115 error = EINVAL;
2116 break;
2117 }
2118 ireq->i_val = key->mac[0];
2119 /*
2120 * Check for home mode. Map home mode into
2121 * 5th key since that is how it is stored on
2122 * the card
2123 */
2124 sc->areq.an_len = sizeof(struct an_ltv_genconfig);
2125 sc->areq.an_type = AN_RID_GENCONFIG;
2126 if (an_read_record(sc,
2127 (struct an_ltv_gen *)&sc->areq)) {
2128 error = EINVAL;
2129 break;
2130 }
2131 if (config->an_home_product & AN_HOME_NETWORK)
2132 ireq->i_val = 4;
2133 break;
2134 case IEEE80211_IOC_AUTHMODE:
2135 sc->areq.an_type = AN_RID_ACTUALCFG;
2136 if (an_read_record(sc,
2137 (struct an_ltv_gen *)&sc->areq)) {
2138 error = EINVAL;
2139 break;
2140 }
2141 if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2142 AN_AUTHTYPE_NONE) {
2143 ireq->i_val = IEEE80211_AUTH_NONE;
2144 } else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2145 AN_AUTHTYPE_OPEN) {
2146 ireq->i_val = IEEE80211_AUTH_OPEN;
2147 } else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2148 AN_AUTHTYPE_SHAREDKEY) {
2149 ireq->i_val = IEEE80211_AUTH_SHARED;
2150 } else
2151 error = EINVAL;
2152 break;
2153 case IEEE80211_IOC_STATIONNAME:
2154 sc->areq.an_type = AN_RID_ACTUALCFG;
2155 if (an_read_record(sc,
2156 (struct an_ltv_gen *)&sc->areq)) {
2157 error = EINVAL;
2158 break;
2159 }
2160 ireq->i_len = sizeof(config->an_nodename);
2161 tmpptr = config->an_nodename;
2162 bzero(tmpstr, IEEE80211_NWID_LEN);
2163 bcopy(tmpptr, tmpstr, ireq->i_len);
2164 error = copyout(tmpstr, ireq->i_data,
2165 IEEE80211_NWID_LEN);
2166 break;
2167 case IEEE80211_IOC_CHANNEL:
2168 sc->areq.an_type = AN_RID_STATUS;
2169 if (an_read_record(sc,
2170 (struct an_ltv_gen *)&sc->areq)) {
2171 error = EINVAL;
2172 break;
2173 }
2174 ireq->i_val = status->an_cur_channel;
2175 break;
2176 case IEEE80211_IOC_POWERSAVE:
2177 sc->areq.an_type = AN_RID_ACTUALCFG;
2178 if (an_read_record(sc,
2179 (struct an_ltv_gen *)&sc->areq)) {
2180 error = EINVAL;
2181 break;
2182 }
2183 if (config->an_psave_mode == AN_PSAVE_NONE) {
2184 ireq->i_val = IEEE80211_POWERSAVE_OFF;
2185 } else if (config->an_psave_mode == AN_PSAVE_CAM) {
2186 ireq->i_val = IEEE80211_POWERSAVE_CAM;
2187 } else if (config->an_psave_mode == AN_PSAVE_PSP) {
2188 ireq->i_val = IEEE80211_POWERSAVE_PSP;
2189 } else if (config->an_psave_mode == AN_PSAVE_PSP_CAM) {
2190 ireq->i_val = IEEE80211_POWERSAVE_PSP_CAM;
2191 } else
2192 error = EINVAL;
2193 break;
2194 case IEEE80211_IOC_POWERSAVESLEEP:
2195 sc->areq.an_type = AN_RID_ACTUALCFG;
2196 if (an_read_record(sc,
2197 (struct an_ltv_gen *)&sc->areq)) {
2198 error = EINVAL;
2199 break;
2200 }
2201 ireq->i_val = config->an_listen_interval;
2202 break;
2203 }
2204 break;
2205 case SIOCS80211:
2206 if ((error = suser(td)))
2207 goto out;
2208 sc->areq.an_len = sizeof(sc->areq);
2209 /*
2210 * We need a config structure for everything but the WEP
2211 * key management and SSIDs so we get it now so avoid
2212 * duplicating this code every time.
2213 */
2214 if (ireq->i_type != IEEE80211_IOC_SSID &&
2215 ireq->i_type != IEEE80211_IOC_WEPKEY &&
2216 ireq->i_type != IEEE80211_IOC_WEPTXKEY) {
2217 sc->areq.an_type = AN_RID_GENCONFIG;
2218 if (an_read_record(sc,
2219 (struct an_ltv_gen *)&sc->areq)) {
2220 error = EINVAL;
2221 break;
2222 }
2223 }
2224 switch (ireq->i_type) {
2225 case IEEE80211_IOC_SSID:
2226 sc->areq.an_type = AN_RID_SSIDLIST;
2227 if (an_read_record(sc,
2228 (struct an_ltv_gen *)&sc->areq)) {
2229 error = EINVAL;
2230 break;
2231 }
2232 if (ireq->i_len > IEEE80211_NWID_LEN) {
2233 error = EINVAL;
2234 break;
2235 }
2236 switch (ireq->i_val) {
2237 case 0:
2238 error = copyin(ireq->i_data,
2239 ssids->an_ssid1, ireq->i_len);
2240 ssids->an_ssid1_len = ireq->i_len;
2241 break;
2242 case 1:
2243 error = copyin(ireq->i_data,
2244 ssids->an_ssid2, ireq->i_len);
2245 ssids->an_ssid2_len = ireq->i_len;
2246 break;
2247 case 2:
2248 error = copyin(ireq->i_data,
2249 ssids->an_ssid3, ireq->i_len);
2250 ssids->an_ssid3_len = ireq->i_len;
2251 break;
2252 default:
2253 error = EINVAL;
2254 break;
2255 }
2256 break;
2257 case IEEE80211_IOC_WEP:
2258 switch (ireq->i_val) {
2259 case IEEE80211_WEP_OFF:
2260 config->an_authtype &=
2261 ~(AN_AUTHTYPE_PRIVACY_IN_USE |
2262 AN_AUTHTYPE_ALLOW_UNENCRYPTED);
2263 break;
2264 case IEEE80211_WEP_ON:
2265 config->an_authtype |=
2266 AN_AUTHTYPE_PRIVACY_IN_USE;
2267 config->an_authtype &=
2268 ~AN_AUTHTYPE_ALLOW_UNENCRYPTED;
2269 break;
2270 case IEEE80211_WEP_MIXED:
2271 config->an_authtype |=
2272 AN_AUTHTYPE_PRIVACY_IN_USE |
2273 AN_AUTHTYPE_ALLOW_UNENCRYPTED;
2274 break;
2275 default:
2276 error = EINVAL;
2277 break;
2278 }
2279 break;
2280 case IEEE80211_IOC_WEPKEY:
2281 if (ireq->i_val < 0 || ireq->i_val > 8 ||
2282 ireq->i_len > 13) {
2283 error = EINVAL;
2284 break;
2285 }
2286 error = copyin(ireq->i_data, tmpstr, 13);
2287 if (error != 0)
2288 break;
2289 /*
2290 * Map the 9th key into the home mode
2291 * since that is how it is stored on
2292 * the card
2293 */
2294 bzero(&sc->areq, sizeof(struct an_ltv_key));
2295 sc->areq.an_len = sizeof(struct an_ltv_key);
2296 key->mac[0] = 1; /* The others are 0. */
2297 if (ireq->i_val < 4) {
2298 sc->areq.an_type = AN_RID_WEP_TEMP;
2299 key->kindex = ireq->i_val;
2300 } else {
2301 sc->areq.an_type = AN_RID_WEP_PERM;
2302 key->kindex = ireq->i_val - 4;
2303 }
2304 key->klen = ireq->i_len;
2305 bcopy(tmpstr, key->key, key->klen);
2306 break;
2307 case IEEE80211_IOC_WEPTXKEY:
2308 if (ireq->i_val < 0 || ireq->i_val > 4) {
2309 error = EINVAL;
2310 break;
2311 }
2312
2313 /*
2314 * Map the 5th key into the home mode
2315 * since that is how it is stored on
2316 * the card
2317 */
2318 sc->areq.an_len = sizeof(struct an_ltv_genconfig);
2319 sc->areq.an_type = AN_RID_ACTUALCFG;
2320 if (an_read_record(sc,
2321 (struct an_ltv_gen *)&sc->areq)) {
2322 error = EINVAL;
2323 break;
2324 }
2325 if (ireq->i_val == 4) {
2326 config->an_home_product |= AN_HOME_NETWORK;
2327 ireq->i_val = 0;
2328 } else {
2329 config->an_home_product &= ~AN_HOME_NETWORK;
2330 }
2331
2332 sc->an_config.an_home_product
2333 = config->an_home_product;
2334
2335 /* update configuration */
2336 an_init(sc);
2337
2338 bzero(&sc->areq, sizeof(struct an_ltv_key));
2339 sc->areq.an_len = sizeof(struct an_ltv_key);
2340 sc->areq.an_type = AN_RID_WEP_PERM;
2341 key->kindex = 0xffff;
2342 key->mac[0] = ireq->i_val;
2343 break;
2344 case IEEE80211_IOC_AUTHMODE:
2345 switch (ireq->i_val) {
2346 case IEEE80211_AUTH_NONE:
2347 config->an_authtype = AN_AUTHTYPE_NONE |
2348 (config->an_authtype & ~AN_AUTHTYPE_MASK);
2349 break;
2350 case IEEE80211_AUTH_OPEN:
2351 config->an_authtype = AN_AUTHTYPE_OPEN |
2352 (config->an_authtype & ~AN_AUTHTYPE_MASK);
2353 break;
2354 case IEEE80211_AUTH_SHARED:
2355 config->an_authtype = AN_AUTHTYPE_SHAREDKEY |
2356 (config->an_authtype & ~AN_AUTHTYPE_MASK);
2357 break;
2358 default:
2359 error = EINVAL;
2360 }
2361 break;
2362 case IEEE80211_IOC_STATIONNAME:
2363 if (ireq->i_len > 16) {
2364 error = EINVAL;
2365 break;
2366 }
2367 bzero(config->an_nodename, 16);
2368 error = copyin(ireq->i_data,
2369 config->an_nodename, ireq->i_len);
2370 break;
2371 case IEEE80211_IOC_CHANNEL:
2372 /*
2373 * The actual range is 1-14, but if you set it
2374 * to 0 you get the default so we let that work
2375 * too.
2376 */
2377 if (ireq->i_val < 0 || ireq->i_val >14) {
2378 error = EINVAL;
2379 break;
2380 }
2381 config->an_ds_channel = ireq->i_val;
2382 break;
2383 case IEEE80211_IOC_POWERSAVE:
2384 switch (ireq->i_val) {
2385 case IEEE80211_POWERSAVE_OFF:
2386 config->an_psave_mode = AN_PSAVE_NONE;
2387 break;
2388 case IEEE80211_POWERSAVE_CAM:
2389 config->an_psave_mode = AN_PSAVE_CAM;
2390 break;
2391 case IEEE80211_POWERSAVE_PSP:
2392 config->an_psave_mode = AN_PSAVE_PSP;
2393 break;
2394 case IEEE80211_POWERSAVE_PSP_CAM:
2395 config->an_psave_mode = AN_PSAVE_PSP_CAM;
2396 break;
2397 default:
2398 error = EINVAL;
2399 break;
2400 }
2401 break;
2402 case IEEE80211_IOC_POWERSAVESLEEP:
2403 config->an_listen_interval = ireq->i_val;
2404 break;
2405 }
2406
2407 if (!error)
2408 an_setdef(sc, &sc->areq);
2409 break;
2410 default:
2411 error = EINVAL;
2412 break;
2413 }
2414out:
2415 splx(s);
2416
2417 return(error != 0);
2418}
2419
2420static int
2421an_init_tx_ring(sc)
2422 struct an_softc *sc;
2423{
2424 int i;
2425 int id;
2426
2427 if (sc->an_gone)
2428 return (0);
2429
2430 if (!sc->mpi350) {
2431 for (i = 0; i < AN_TX_RING_CNT; i++) {
2432 if (an_alloc_nicmem(sc, 1518 +
2433 0x44, &id))
2434 return(ENOMEM);
2435 sc->an_rdata.an_tx_fids[i] = id;
2436 sc->an_rdata.an_tx_ring[i] = 0;
2437 }
2438 }
2439
2440 sc->an_rdata.an_tx_prod = 0;
2441 sc->an_rdata.an_tx_cons = 0;
2442 sc->an_rdata.an_tx_empty = 1;
2443
2444 return(0);
2445}
2446
2447static void
2448an_init(xsc)
2449 void *xsc;
2450{
2451 struct an_softc *sc = xsc;
2452 struct ifnet *ifp = &sc->arpcom.ac_if;
2453 int s;
2454
2455 s = splimp();
2456
2457 if (sc->an_gone) {
2458 splx(s);
2459 return;
2460 }
2461
2462 if (ifp->if_flags & IFF_RUNNING)
2463 an_stop(sc);
2464
2465 sc->an_associated = 0;
2466
2467 /* Allocate the TX buffers */
2468 if (an_init_tx_ring(sc)) {
2469 an_reset(sc);
2470 if (sc->mpi350)
2471 an_init_mpi350_desc(sc);
2472 if (an_init_tx_ring(sc)) {
2473 printf("an%d: tx buffer allocation "
2474 "failed\n", sc->an_unit);
2475 splx(s);
2476 return;
2477 }
2478 }
2479
2480 /* Set our MAC address. */
2481 bcopy((char *)&sc->arpcom.ac_enaddr,
2482 (char *)&sc->an_config.an_macaddr, ETHER_ADDR_LEN);
2483
2484 if (ifp->if_flags & IFF_BROADCAST)
2485 sc->an_config.an_rxmode = AN_RXMODE_BC_ADDR;
2486 else
2487 sc->an_config.an_rxmode = AN_RXMODE_ADDR;
2488
2489 if (ifp->if_flags & IFF_MULTICAST)
2490 sc->an_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
2491
2492 if (ifp->if_flags & IFF_PROMISC) {
2493 if (sc->an_monitor & AN_MONITOR) {
2494 if (sc->an_monitor & AN_MONITOR_ANY_BSS) {
2495 sc->an_config.an_rxmode |=
2496 AN_RXMODE_80211_MONITOR_ANYBSS |
2497 AN_RXMODE_NO_8023_HEADER;
2498 } else {
2499 sc->an_config.an_rxmode |=
2500 AN_RXMODE_80211_MONITOR_CURBSS |
2501 AN_RXMODE_NO_8023_HEADER;
2502 }
2503 }
2504 }
2505
2506 if (sc->an_have_rssimap)
2507 sc->an_config.an_rxmode |= AN_RXMODE_NORMALIZED_RSSI;
2508
2509 /* Set the ssid list */
2510 sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
2511 sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist);
2512 if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
2513 printf("an%d: failed to set ssid list\n", sc->an_unit);
2514 splx(s);
2515 return;
2516 }
2517
2518 /* Set the AP list */
2519 sc->an_aplist.an_type = AN_RID_APLIST;
2520 sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
2521 if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
2522 printf("an%d: failed to set AP list\n", sc->an_unit);
2523 splx(s);
2524 return;
2525 }
2526
2527 /* Set the configuration in the NIC */
2528 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
2529 sc->an_config.an_type = AN_RID_GENCONFIG;
2530 if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
2531 printf("an%d: failed to set configuration\n", sc->an_unit);
2532 splx(s);
2533 return;
2534 }
2535
2536 /* Enable the MAC */
2537 if (an_cmd(sc, AN_CMD_ENABLE, 0)) {
2538 printf("an%d: failed to enable MAC\n", sc->an_unit);
2539 splx(s);
2540 return;
2541 }
2542
2543 if (ifp->if_flags & IFF_PROMISC)
2544 an_cmd(sc, AN_CMD_SET_MODE, 0xffff);
2545
2546 /* enable interrupts */
2547 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS);
2548
2549 ifp->if_flags |= IFF_RUNNING;
2550 ifp->if_flags &= ~IFF_OACTIVE;
2551
2552 sc->an_stat_ch = timeout(an_stats_update, sc, hz);
2553 splx(s);
2554
2555 return;
2556}
2557
2558static void
2559an_start(ifp)
2560 struct ifnet *ifp;
2561{
2562 struct an_softc *sc;
2563 struct mbuf *m0 = NULL;
2564 struct an_txframe_802_3 tx_frame_802_3;
2565 struct ether_header *eh;
2566 int id, idx, i;
2567 unsigned char txcontrol;
2568 struct an_card_tx_desc an_tx_desc;
2569 u_int8_t *ptr;
2570 u_int8_t *buf;
2571
2572 sc = ifp->if_softc;
2573
2574 if (sc->an_gone)
2575 return;
2576
2577 if (ifp->if_flags & IFF_OACTIVE)
2578 return;
2579
2580 if (!sc->an_associated)
2581 return;
2582
2583 /* We can't send in monitor mode so toss any attempts. */
2584 if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
2585 for (;;) {
2586 IF_DEQUEUE(&ifp->if_snd, m0);
2587 if (m0 == NULL)
2588 break;
2589 m_freem(m0);
2590 }
2591 return;
2592 }
2593
2594 idx = sc->an_rdata.an_tx_prod;
2595
2596 if (!sc->mpi350) {
2597 bzero((char *)&tx_frame_802_3, sizeof(tx_frame_802_3));
2598
2599 while (sc->an_rdata.an_tx_ring[idx] == 0) {
2600 IF_DEQUEUE(&ifp->if_snd, m0);
2601 if (m0 == NULL)
2602 break;
2603
2604 id = sc->an_rdata.an_tx_fids[idx];
2605 eh = mtod(m0, struct ether_header *);
2606
2607 bcopy((char *)&eh->ether_dhost,
2608 (char *)&tx_frame_802_3.an_tx_dst_addr,
2609 ETHER_ADDR_LEN);
2610 bcopy((char *)&eh->ether_shost,
2611 (char *)&tx_frame_802_3.an_tx_src_addr,
2612 ETHER_ADDR_LEN);
2613
2614 /* minus src/dest mac & type */
2615 tx_frame_802_3.an_tx_802_3_payload_len =
2616 m0->m_pkthdr.len - 12;
2617
2618 m_copydata(m0, sizeof(struct ether_header) - 2 ,
2619 tx_frame_802_3.an_tx_802_3_payload_len,
2620 (caddr_t)&sc->an_txbuf);
2621
2622 txcontrol = AN_TXCTL_8023;
2623 /* write the txcontrol only */
2624 an_write_data(sc, id, 0x08, (caddr_t)&txcontrol,
2625 sizeof(txcontrol));
2626
2627 /* 802_3 header */
2628 an_write_data(sc, id, 0x34, (caddr_t)&tx_frame_802_3,
2629 sizeof(struct an_txframe_802_3));
2630
2631 /* in mbuf header type is just before payload */
2632 an_write_data(sc, id, 0x44, (caddr_t)&sc->an_txbuf,
2633 tx_frame_802_3.an_tx_802_3_payload_len);
2634
2635 /*
2636 * If there's a BPF listner, bounce a copy of
2637 * this frame to him.
2638 */
2639 if (ifp->if_bpf)
2640 bpf_mtap(ifp, m0);
2641
2642 m_freem(m0);
2643 m0 = NULL;
2644
2645 sc->an_rdata.an_tx_ring[idx] = id;
2646 if (an_cmd(sc, AN_CMD_TX, id))
2647 printf("an%d: xmit failed\n", sc->an_unit);
2648
2649 AN_INC(idx, AN_TX_RING_CNT);
2650 }
2651 } else { /* MPI-350 */
2652 while (sc->an_rdata.an_tx_empty ||
2653 idx != sc->an_rdata.an_tx_cons) {
2654 IF_DEQUEUE(&ifp->if_snd, m0);
2655 if (m0 == NULL) {
2656 break;
2657 }
2658 buf = sc->an_tx_buffer[idx].an_dma_vaddr;
2659
2660 eh = mtod(m0, struct ether_header *);
2661
2662 /* DJA optimize this to limit bcopy */
2663 bcopy((char *)&eh->ether_dhost,
2664 (char *)&tx_frame_802_3.an_tx_dst_addr,
2665 ETHER_ADDR_LEN);
2666 bcopy((char *)&eh->ether_shost,
2667 (char *)&tx_frame_802_3.an_tx_src_addr,
2668 ETHER_ADDR_LEN);
2669
2670 /* minus src/dest mac & type */
2671 tx_frame_802_3.an_tx_802_3_payload_len =
2672 m0->m_pkthdr.len - 12;
2673
2674 m_copydata(m0, sizeof(struct ether_header) - 2 ,
2675 tx_frame_802_3.an_tx_802_3_payload_len,
2676 (caddr_t)&sc->an_txbuf);
2677
2678 txcontrol = AN_TXCTL_8023;
2679 /* write the txcontrol only */
2680 bcopy((caddr_t)&txcontrol, &buf[0x08],
2681 sizeof(txcontrol));
2682
2683 /* 802_3 header */
2684 bcopy((caddr_t)&tx_frame_802_3, &buf[0x34],
2685 sizeof(struct an_txframe_802_3));
2686
2687 /* in mbuf header type is just before payload */
2688 bcopy((caddr_t)&sc->an_txbuf, &buf[0x44],
2689 tx_frame_802_3.an_tx_802_3_payload_len);
2690
2691
2692 bzero(&an_tx_desc, sizeof(an_tx_desc));
2693 an_tx_desc.an_offset = 0;
2694 an_tx_desc.an_eoc = 1;
2695 an_tx_desc.an_valid = 1;
2696 an_tx_desc.an_len = 0x44 +
2697 tx_frame_802_3.an_tx_802_3_payload_len;
2698 an_tx_desc.an_phys = sc->an_tx_buffer[idx].an_dma_paddr;
2699 ptr = (u_int8_t*)&an_tx_desc;
2700 for (i = 0; i < sizeof(an_tx_desc); i++) {
2701 CSR_MEM_AUX_WRITE_1(sc, AN_TX_DESC_OFFSET + i,
2702 ptr[i]);
2703 }
2704
2705 /*
2706 * If there's a BPF listner, bounce a copy of
2707 * this frame to him.
2708 */
2709 if (ifp->if_bpf)
2710 bpf_mtap(ifp, m0);
2711
2712 m_freem(m0);
2713 m0 = NULL;
2714
2715 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
2716
2717 AN_INC(idx, AN_MAX_TX_DESC);
2718 sc->an_rdata.an_tx_empty = 0;
2719 }
2720 }
2721
2722 if (m0 != NULL)
2723 ifp->if_flags |= IFF_OACTIVE;
2724
2725 sc->an_rdata.an_tx_prod = idx;
2726
2727 /*
2728 * Set a timeout in case the chip goes out to lunch.
2729 */
2730 ifp->if_timer = 5;
2731
2732 return;
2733}
2734
2735void
2736an_stop(sc)
2737 struct an_softc *sc;
2738{
2739 struct ifnet *ifp;
2740 int i;
2741 int s;
2742
2743 s = splimp();
2744
2745 if (sc->an_gone) {
2746 splx(s);
2747 return;
2748 }
2749
2750 ifp = &sc->arpcom.ac_if;
2751
2752 an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0);
2753 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
2754 an_cmd(sc, AN_CMD_DISABLE, 0);
2755
2756 for (i = 0; i < AN_TX_RING_CNT; i++)
2757 an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->an_rdata.an_tx_fids[i]);
2758
2759 untimeout(an_stats_update, sc, sc->an_stat_ch);
2760
2761 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2762
2763 if (sc->an_flash_buffer) {
2764 free(sc->an_flash_buffer, M_DEVBUF);
2765 sc->an_flash_buffer = NULL;
2766 }
2767
2768 splx(s);
2769
2770 return;
2771}
2772
2773static void
2774an_watchdog(ifp)
2775 struct ifnet *ifp;
2776{
2777 struct an_softc *sc;
2778 int s;
2779
2780 sc = ifp->if_softc;
2781 s = splimp();
2782
2783 if (sc->an_gone) {
2784 splx(s);
2785 return;
2786 }
2787
2788 printf("an%d: device timeout\n", sc->an_unit);
2789
2790 an_reset(sc);
2791 if (sc->mpi350)
2792 an_init_mpi350_desc(sc);
2793 an_init(sc);
2794
2795 ifp->if_oerrors++;
2796 splx(s);
2797
2798 return;
2799}
2800
2801void
2802an_shutdown(dev)
2803 device_t dev;
2804{
2805 struct an_softc *sc;
2806
2807 sc = device_get_softc(dev);
2808 an_stop(sc);
2809
2810 return;
2811}
2812
2813void
2814an_resume(dev)
2815 device_t dev;
2816{
2817 struct an_softc *sc;
2818 struct ifnet *ifp;
2819 int i;
2820
2821 sc = device_get_softc(dev);
2822 ifp = &sc->arpcom.ac_if;
2823
2824 an_reset(sc);
2825 if (sc->mpi350)
2826 an_init_mpi350_desc(sc);
2827 an_init(sc);
2828
2829 /* Recovery temporary keys */
2830 for (i = 0; i < 4; i++) {
2831 sc->areq.an_type = AN_RID_WEP_TEMP;
2832 sc->areq.an_len = sizeof(struct an_ltv_key);
2833 bcopy(&sc->an_temp_keys[i],
2834 &sc->areq, sizeof(struct an_ltv_key));
2835 an_setdef(sc, &sc->areq);
2836 }
2837
2838 if (ifp->if_flags & IFF_UP)
2839 an_start(ifp);
2840
2841 return;
2842}
2843
2844#ifdef ANCACHE
2845/* Aironet signal strength cache code.
2846 * store signal/noise/quality on per MAC src basis in
2847 * a small fixed cache. The cache wraps if > MAX slots
2848 * used. The cache may be zeroed out to start over.
2849 * Two simple filters exist to reduce computation:
2850 * 1. ip only (literally 0x800, ETHERTYPE_IP) which may be used
2851 * to ignore some packets. It defaults to ip only.
2852 * it could be used to focus on broadcast, non-IP 802.11 beacons.
2853 * 2. multicast/broadcast only. This may be used to
2854 * ignore unicast packets and only cache signal strength
2855 * for multicast/broadcast packets (beacons); e.g., Mobile-IP
2856 * beacons and not unicast traffic.
2857 *
2858 * The cache stores (MAC src(index), IP src (major clue), signal,
2859 * quality, noise)
2860 *
2861 * No apologies for storing IP src here. It's easy and saves much
2862 * trouble elsewhere. The cache is assumed to be INET dependent,
2863 * although it need not be.
2864 *
2865 * Note: the Aironet only has a single byte of signal strength value
2866 * in the rx frame header, and it's not scaled to anything sensible.
2867 * This is kind of lame, but it's all we've got.
2868 */
2869
2870#ifdef documentation
2871
2872int an_sigitems; /* number of cached entries */
2873struct an_sigcache an_sigcache[MAXANCACHE]; /* array of cache entries */
2874int an_nextitem; /* index/# of entries */
2875
2876
2877#endif
2878
2879/* control variables for cache filtering. Basic idea is
2880 * to reduce cost (e.g., to only Mobile-IP agent beacons
2881 * which are broadcast or multicast). Still you might
2882 * want to measure signal strength anth unicast ping packets
2883 * on a pt. to pt. ant. setup.
2884 */
2885/* set true if you want to limit cache items to broadcast/mcast
2886 * only packets (not unicast). Useful for mobile-ip beacons which
2887 * are broadcast/multicast at network layer. Default is all packets
2888 * so ping/unicast anll work say anth pt. to pt. antennae setup.
2889 */
2890static int an_cache_mcastonly = 0;
2891SYSCTL_INT(_hw_an, OID_AUTO, an_cache_mcastonly, CTLFLAG_RW,
2892 &an_cache_mcastonly, 0, "");
2893
2894/* set true if you want to limit cache items to IP packets only
2895*/
2896static int an_cache_iponly = 1;
2897SYSCTL_INT(_hw_an, OID_AUTO, an_cache_iponly, CTLFLAG_RW,
2898 &an_cache_iponly, 0, "");
2899
2900/*
2901 * an_cache_store, per rx packet store signal
2902 * strength in MAC (src) indexed cache.
2903 */
2904static void
2905an_cache_store (sc, eh, m, rx_rssi, rx_quality)
2906 struct an_softc *sc;
2907 struct ether_header *eh;
2908 struct mbuf *m;
2909 u_int8_t rx_rssi;
2910 u_int8_t rx_quality;
2911{
2912 struct ip *ip = 0;
2913 int i;
2914 static int cache_slot = 0; /* use this cache entry */
2915 static int wrapindex = 0; /* next "free" cache entry */
2916 int type_ipv4 = 0;
2917
2918 /* filters:
2919 * 1. ip only
2920 * 2. configurable filter to throw out unicast packets,
2921 * keep multicast only.
2922 */
2923
2924 if ((ntohs(eh->ether_type) == ETHERTYPE_IP)) {
2925 type_ipv4 = 1;
2926 }
2927
2928 /* filter for ip packets only
2929 */
2930 if ( an_cache_iponly && !type_ipv4) {
2931 return;
2932 }
2933
2934 /* filter for broadcast/multicast only
2935 */
2936 if (an_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) {
2937 return;
2938 }
2939
2940#ifdef SIGDEBUG
2941 printf("an: q value %x (MSB=0x%x, LSB=0x%x) \n",
2942 rx_rssi & 0xffff, rx_rssi >> 8, rx_rssi & 0xff);
2943#endif
2944
2945 /* find the ip header. we want to store the ip_src
2946 * address.
2947 */
2948 if (type_ipv4) {
2949 ip = mtod(m, struct ip *);
2950 }
2951
2952 /* do a linear search for a matching MAC address
2953 * in the cache table
2954 * . MAC address is 6 bytes,
2955 * . var w_nextitem holds total number of entries already cached
2956 */
2957 for (i = 0; i < sc->an_nextitem; i++) {
2958 if (! bcmp(eh->ether_shost , sc->an_sigcache[i].macsrc, 6 )) {
2959 /* Match!,
2960 * so we already have this entry,
2961 * update the data
2962 */
2963 break;
2964 }
2965 }
2966
2967 /* did we find a matching mac address?
2968 * if yes, then overwrite a previously existing cache entry
2969 */
2970 if (i < sc->an_nextitem ) {
2971 cache_slot = i;
2972 }
2973 /* else, have a new address entry,so
2974 * add this new entry,
2975 * if table full, then we need to replace LRU entry
2976 */
2977 else {
2978
2979 /* check for space in cache table
2980 * note: an_nextitem also holds number of entries
2981 * added in the cache table
2982 */
2983 if ( sc->an_nextitem < MAXANCACHE ) {
2984 cache_slot = sc->an_nextitem;
2985 sc->an_nextitem++;
2986 sc->an_sigitems = sc->an_nextitem;
2987 }
2988 /* no space found, so simply wrap anth wrap index
2989 * and "zap" the next entry
2990 */
2991 else {
2992 if (wrapindex == MAXANCACHE) {
2993 wrapindex = 0;
2994 }
2995 cache_slot = wrapindex++;
2996 }
2997 }
2998
2999 /* invariant: cache_slot now points at some slot
3000 * in cache.
3001 */
3002 if (cache_slot < 0 || cache_slot >= MAXANCACHE) {
3003 log(LOG_ERR, "an_cache_store, bad index: %d of "
3004 "[0..%d], gross cache error\n",
3005 cache_slot, MAXANCACHE);
3006 return;
3007 }
3008
3009 /* store items in cache
3010 * .ip source address
3011 * .mac src
3012 * .signal, etc.
3013 */
3014 if (type_ipv4) {
3015 sc->an_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr;
3016 }
3017 bcopy( eh->ether_shost, sc->an_sigcache[cache_slot].macsrc, 6);
3018
3019
3020 switch (an_cache_mode) {
3021 case DBM:
3022 if (sc->an_have_rssimap) {
3023 sc->an_sigcache[cache_slot].signal =
3024 - sc->an_rssimap.an_entries[rx_rssi].an_rss_dbm;
3025 sc->an_sigcache[cache_slot].quality =
3026 - sc->an_rssimap.an_entries[rx_quality].an_rss_dbm;
3027 } else {
3028 sc->an_sigcache[cache_slot].signal = rx_rssi - 100;
3029 sc->an_sigcache[cache_slot].quality = rx_quality - 100;
3030 }
3031 break;
3032 case PERCENT:
3033 if (sc->an_have_rssimap) {
3034 sc->an_sigcache[cache_slot].signal =
3035 sc->an_rssimap.an_entries[rx_rssi].an_rss_pct;
3036 sc->an_sigcache[cache_slot].quality =
3037 sc->an_rssimap.an_entries[rx_quality].an_rss_pct;
3038 } else {
3039 if (rx_rssi > 100)
3040 rx_rssi = 100;
3041 if (rx_quality > 100)
3042 rx_quality = 100;
3043 sc->an_sigcache[cache_slot].signal = rx_rssi;
3044 sc->an_sigcache[cache_slot].quality = rx_quality;
3045 }
3046 break;
3047 case RAW:
3048 sc->an_sigcache[cache_slot].signal = rx_rssi;
3049 sc->an_sigcache[cache_slot].quality = rx_quality;
3050 break;
3051 }
3052
3053 sc->an_sigcache[cache_slot].noise = 0;
3054
3055 return;
3056}
3057#endif
3058
3059static int
3060an_media_change(ifp)
3061 struct ifnet *ifp;
3062{
3063 struct an_softc *sc = ifp->if_softc;
3064 struct an_ltv_genconfig *cfg;
3065 int otype = sc->an_config.an_opmode;
3066 int orate = sc->an_tx_rate;
3067
3068 if ((sc->an_ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
3069 sc->an_config.an_opmode = AN_OPMODE_IBSS_ADHOC;
3070 else
3071 sc->an_config.an_opmode = AN_OPMODE_INFRASTRUCTURE_STATION;
3072
3073 switch (IFM_SUBTYPE(sc->an_ifmedia.ifm_cur->ifm_media)) {
3074 case IFM_IEEE80211_DS1:
3075 sc->an_tx_rate = AN_RATE_1MBPS;
3076 break;
3077 case IFM_IEEE80211_DS2:
3078 sc->an_tx_rate = AN_RATE_2MBPS;
3079 break;
3080 case IFM_IEEE80211_DS5:
3081 sc->an_tx_rate = AN_RATE_5_5MBPS;
3082 break;
3083 case IFM_IEEE80211_DS11:
3084 sc->an_tx_rate = AN_RATE_11MBPS;
3085 break;
3086 case IFM_AUTO:
3087 sc->an_tx_rate = 0;
3088 break;
3089 }
3090
3091 if (orate != sc->an_tx_rate) {
3092 /* Read the current configuration */
3093 sc->an_config.an_type = AN_RID_GENCONFIG;
3094 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
3095 an_read_record(sc, (struct an_ltv_gen *)&sc->an_config);
3096 cfg = &sc->an_config;
3097
3098 /* clear other rates and set the only one we want */
3099 bzero(cfg->an_rates, sizeof(cfg->an_rates));
3100 cfg->an_rates[0] = sc->an_tx_rate;
3101
3102 /* Save the new rate */
3103 sc->an_config.an_type = AN_RID_GENCONFIG;
3104 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
3105 }
3106
3107 if (otype != sc->an_config.an_opmode ||
3108 orate != sc->an_tx_rate)
3109 an_init(sc);
3110
3111 return(0);
3112}
3113
3114static void
3115an_media_status(ifp, imr)
3116 struct ifnet *ifp;
3117 struct ifmediareq *imr;
3118{
3119 struct an_ltv_status status;
3120 struct an_softc *sc = ifp->if_softc;
3121
3122 status.an_len = sizeof(status);
3123 status.an_type = AN_RID_STATUS;
3124 if (an_read_record(sc, (struct an_ltv_gen *)&status)) {
3125 /* If the status read fails, just lie. */
3126 imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
3127 imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
3128 }
3129
3130 if (sc->an_tx_rate == 0) {
3131 imr->ifm_active = IFM_IEEE80211|IFM_AUTO;
3132 if (sc->an_config.an_opmode == AN_OPMODE_IBSS_ADHOC)
3133 imr->ifm_active |= IFM_IEEE80211_ADHOC;
3134 switch (status.an_current_tx_rate) {
3135 case AN_RATE_1MBPS:
3136 imr->ifm_active |= IFM_IEEE80211_DS1;
3137 break;
3138 case AN_RATE_2MBPS:
3139 imr->ifm_active |= IFM_IEEE80211_DS2;
3140 break;
3141 case AN_RATE_5_5MBPS:
3142 imr->ifm_active |= IFM_IEEE80211_DS5;
3143 break;
3144 case AN_RATE_11MBPS:
3145 imr->ifm_active |= IFM_IEEE80211_DS11;
3146 break;
3147 }
3148 } else {
3149 imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
3150 }
3151
3152 imr->ifm_status = IFM_AVALID;
3153 if (status.an_opmode & AN_STATUS_OPMODE_ASSOCIATED)
3154 imr->ifm_status |= IFM_ACTIVE;
3155}
3156
3157/********************** Cisco utility support routines *************/
3158
3159/*
3160 * ReadRids & WriteRids derived from Cisco driver additions to Ben Reed's
3161 * Linux driver
3162 */
3163
3164static int
3165readrids(ifp, l_ioctl)
3166 struct ifnet *ifp;
3167 struct aironet_ioctl *l_ioctl;
3168{
3169 unsigned short rid;
3170 struct an_softc *sc;
3171
3172 switch (l_ioctl->command) {
3173 case AIROGCAP:
3174 rid = AN_RID_CAPABILITIES;
3175 break;
3176 case AIROGCFG:
3177 rid = AN_RID_GENCONFIG;
3178 break;
3179 case AIROGSLIST:
3180 rid = AN_RID_SSIDLIST;
3181 break;
3182 case AIROGVLIST:
3183 rid = AN_RID_APLIST;
3184 break;
3185 case AIROGDRVNAM:
3186 rid = AN_RID_DRVNAME;
3187 break;
3188 case AIROGEHTENC:
3189 rid = AN_RID_ENCAPPROTO;
3190 break;
3191 case AIROGWEPKTMP:
3192 rid = AN_RID_WEP_TEMP;
3193 break;
3194 case AIROGWEPKNV:
3195 rid = AN_RID_WEP_PERM;
3196 break;
3197 case AIROGSTAT:
3198 rid = AN_RID_STATUS;
3199 break;
3200 case AIROGSTATSD32:
3201 rid = AN_RID_32BITS_DELTA;
3202 break;
3203 case AIROGSTATSC32:
3204 rid = AN_RID_32BITS_CUM;
3205 break;
3206 default:
3207 rid = 999;
3208 break;
3209 }
3210
3211 if (rid == 999) /* Is bad command */
3212 return -EINVAL;
3213
3214 sc = ifp->if_softc;
3215 sc->areq.an_len = AN_MAX_DATALEN;
3216 sc->areq.an_type = rid;
3217
3218 an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
3219
3220 l_ioctl->len = sc->areq.an_len - 4; /* just data */
3221
3222 /* the data contains the length at first */
3223 if (copyout(&(sc->areq.an_len), l_ioctl->data,
3224 sizeof(sc->areq.an_len))) {
3225 return -EFAULT;
3226 }
3227 /* Just copy the data back */
3228 if (copyout(&(sc->areq.an_val), l_ioctl->data + 2,
3229 l_ioctl->len)) {
3230 return -EFAULT;
3231 }
3232 return 0;
3233}
3234
3235static int
3236writerids(ifp, l_ioctl)
3237 struct ifnet *ifp;
3238 struct aironet_ioctl *l_ioctl;
3239{
3240 struct an_softc *sc;
3241 int rid, command;
3242
3243 sc = ifp->if_softc;
3244 rid = 0;
3245 command = l_ioctl->command;
3246
3247 switch (command) {
3248 case AIROPSIDS:
3249 rid = AN_RID_SSIDLIST;
3250 break;
3251 case AIROPCAP:
3252 rid = AN_RID_CAPABILITIES;
3253 break;
3254 case AIROPAPLIST:
3255 rid = AN_RID_APLIST;
3256 break;
3257 case AIROPCFG:
3258 rid = AN_RID_GENCONFIG;
3259 break;
3260 case AIROPMACON:
3261 an_cmd(sc, AN_CMD_ENABLE, 0);
3262 return 0;
3263 break;
3264 case AIROPMACOFF:
3265 an_cmd(sc, AN_CMD_DISABLE, 0);
3266 return 0;
3267 break;
3268 case AIROPSTCLR:
3269 /*
3270 * This command merely clears the counts does not actually
3271 * store any data only reads rid. But as it changes the cards
3272 * state, I put it in the writerid routines.
3273 */
3274
3275 rid = AN_RID_32BITS_DELTACLR;
3276 sc = ifp->if_softc;
3277 sc->areq.an_len = AN_MAX_DATALEN;
3278 sc->areq.an_type = rid;
3279
3280 an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
3281 l_ioctl->len = sc->areq.an_len - 4; /* just data */
3282
3283 /* the data contains the length at first */
3284 if (copyout(&(sc->areq.an_len), l_ioctl->data,
3285 sizeof(sc->areq.an_len))) {
3286 return -EFAULT;
3287 }
3288 /* Just copy the data */
3289 if (copyout(&(sc->areq.an_val), l_ioctl->data + 2,
3290 l_ioctl->len)) {
3291 return -EFAULT;
3292 }
3293 return 0;
3294 break;
3295 case AIROPWEPKEY:
3296 rid = AN_RID_WEP_TEMP;
3297 break;
3298 case AIROPWEPKEYNV:
3299 rid = AN_RID_WEP_PERM;
3300 break;
3301 case AIROPLEAPUSR:
3302 rid = AN_RID_LEAPUSERNAME;
3303 break;
3304 case AIROPLEAPPWD:
3305 rid = AN_RID_LEAPPASSWORD;
3306 break;
3307 default:
3308 return -EOPNOTSUPP;
3309 }
3310
3311 if (rid) {
3312 if (l_ioctl->len > sizeof(sc->areq.an_val) + 4)
3313 return -EINVAL;
3314 sc->areq.an_len = l_ioctl->len + 4; /* add type & length */
3315 sc->areq.an_type = rid;
3316
3317 /* Just copy the data back */
3318 copyin((l_ioctl->data) + 2, &sc->areq.an_val,
3319 l_ioctl->len);
3320
3321 an_cmd(sc, AN_CMD_DISABLE, 0);
3322 an_write_record(sc, (struct an_ltv_gen *)&sc->areq);
3323 an_cmd(sc, AN_CMD_ENABLE, 0);
3324 return 0;
3325 }
3326 return -EOPNOTSUPP;
3327}
3328
3329/*
3330 * General Flash utilities derived from Cisco driver additions to Ben Reed's
3331 * Linux driver
3332 */
3333
3334#define FLASH_DELAY(x) tsleep(ifp, 0, "flash", ((x) / hz) + 1);
3335#define FLASH_COMMAND 0x7e7e
3336#define FLASH_SIZE 32 * 1024
3337
3338static int
3339unstickbusy(ifp)
3340 struct ifnet *ifp;
3341{
3342 struct an_softc *sc = ifp->if_softc;
3343
3344 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) {
3345 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350),
3346 AN_EV_CLR_STUCK_BUSY);
3347 return 1;
3348 }
3349 return 0;
3350}
3351
3352/*
3353 * Wait for busy completion from card wait for delay uSec's Return true for
3354 * success meaning command reg is clear
3355 */
3356
3357static int
3358WaitBusy(ifp, uSec)
3359 struct ifnet *ifp;
3360 int uSec;
3361{
3362 int statword = 0xffff;
3363 int delay = 0;
3364 struct an_softc *sc = ifp->if_softc;
3365
3366 while ((statword & AN_CMD_BUSY) && delay <= (1000 * 100)) {
3367 FLASH_DELAY(10);
3368 delay += 10;
3369 statword = CSR_READ_2(sc, AN_COMMAND(sc->mpi350));
3370
3371 if ((AN_CMD_BUSY & statword) && (delay % 200)) {
3372 unstickbusy(ifp);
3373 }
3374 }
3375
3376 return 0 == (AN_CMD_BUSY & statword);
3377}
3378
3379/*
3380 * STEP 1) Disable MAC and do soft reset on card.
3381 */
3382
3383static int
3384cmdreset(ifp)
3385 struct ifnet *ifp;
3386{
3387 int status;
3388 struct an_softc *sc = ifp->if_softc;
3389
3390 an_stop(sc);
3391
3392 an_cmd(sc, AN_CMD_DISABLE, 0);
3393
3394 if (!(status = WaitBusy(ifp, AN_TIMEOUT))) {
3395 printf("an%d: Waitbusy hang b4 RESET =%d\n",
3396 sc->an_unit, status);
3397 return -EBUSY;
3398 }
3399 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), AN_CMD_FW_RESTART);
3400
3401 FLASH_DELAY(1000); /* WAS 600 12/7/00 */
3402
3403
3404 if (!(status = WaitBusy(ifp, 100))) {
3405 printf("an%d: Waitbusy hang AFTER RESET =%d\n",
3406 sc->an_unit, status);
3407 return -EBUSY;
3408 }
3409 return 0;
3410}
3411
3412/*
3413 * STEP 2) Put the card in legendary flash mode
3414 */
3415
3416static int
3417setflashmode(ifp)
3418 struct ifnet *ifp;
3419{
3420 int status;
3421 struct an_softc *sc = ifp->if_softc;
3422
3423 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND);
3424 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), FLASH_COMMAND);
3425 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND);
3426 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), FLASH_COMMAND);
3427
3428 /*
3429 * mdelay(500); // 500ms delay
3430 */
3431
3432 FLASH_DELAY(500);
3433
3434 if (!(status = WaitBusy(ifp, AN_TIMEOUT))) {
3435 printf("Waitbusy hang after setflash mode\n");
3436 return -EIO;
3437 }
3438 return 0;
3439}
3440
3441/*
3442 * Get a character from the card matching matchbyte Step 3)
3443 */
3444
3445static int
3446flashgchar(ifp, matchbyte, dwelltime)
3447 struct ifnet *ifp;
3448 int matchbyte;
3449 int dwelltime;
3450{
3451 int rchar;
3452 unsigned char rbyte = 0;
3453 int success = -1;
3454 struct an_softc *sc = ifp->if_softc;
3455
3456
3457 do {
3458 rchar = CSR_READ_2(sc, AN_SW1(sc->mpi350));
3459
3460 if (dwelltime && !(0x8000 & rchar)) {
3461 dwelltime -= 10;
3462 FLASH_DELAY(10);
3463 continue;
3464 }
3465 rbyte = 0xff & rchar;
3466
3467 if ((rbyte == matchbyte) && (0x8000 & rchar)) {
3468 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3469 success = 1;
3470 break;
3471 }
3472 if (rbyte == 0x81 || rbyte == 0x82 || rbyte == 0x83 || rbyte == 0x1a || 0xffff == rchar)
3473 break;
3474 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3475
3476 } while (dwelltime > 0);
3477 return success;
3478}
3479
3480/*
3481 * Put character to SWS0 wait for dwelltime x 50us for echo .
3482 */
3483
3484static int
3485flashpchar(ifp, byte, dwelltime)
3486 struct ifnet *ifp;
3487 int byte;
3488 int dwelltime;
3489{
3490 int echo;
3491 int pollbusy, waittime;
3492 struct an_softc *sc = ifp->if_softc;
3493
3494 byte |= 0x8000;
3495
3496 if (dwelltime == 0)
3497 dwelltime = 200;
3498
3499 waittime = dwelltime;
3500
3501 /*
3502 * Wait for busy bit d15 to go false indicating buffer empty
3503 */
3504 do {
3505 pollbusy = CSR_READ_2(sc, AN_SW0(sc->mpi350));
3506
3507 if (pollbusy & 0x8000) {
3508 FLASH_DELAY(50);
3509 waittime -= 50;
3510 continue;
3511 } else
3512 break;
3513 }
3514 while (waittime >= 0);
3515
3516 /* timeout for busy clear wait */
3517
3518 if (waittime <= 0) {
3519 printf("an%d: flash putchar busywait timeout! \n",
3520 sc->an_unit);
3521 return -1;
3522 }
3523 /*
3524 * Port is clear now write byte and wait for it to echo back
3525 */
3526 do {
3527 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), byte);
3528 FLASH_DELAY(50);
3529 dwelltime -= 50;
3530 echo = CSR_READ_2(sc, AN_SW1(sc->mpi350));
3531 } while (dwelltime >= 0 && echo != byte);
3532
3533
3534 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3535
3536 return echo == byte;
3537}
3538
3539/*
3540 * Transfer 32k of firmware data from user buffer to our buffer and send to
3541 * the card
3542 */
3543
3544static int
3545flashputbuf(ifp)
3546 struct ifnet *ifp;
3547{
3548 unsigned short *bufp;
3549 int nwords;
3550 struct an_softc *sc = ifp->if_softc;
3551
3552 /* Write stuff */
3553
3554 bufp = sc->an_flash_buffer;
3555
3556 if (!sc->mpi350) {
3557 CSR_WRITE_2(sc, AN_AUX_PAGE, 0x100);
3558 CSR_WRITE_2(sc, AN_AUX_OFFSET, 0);
3559
3560 for (nwords = 0; nwords != FLASH_SIZE / 2; nwords++) {
3561 CSR_WRITE_2(sc, AN_AUX_DATA, bufp[nwords] & 0xffff);
3562 }
3563 } else {
3564 for (nwords = 0; nwords != FLASH_SIZE / 4; nwords++) {
3565 CSR_MEM_AUX_WRITE_4(sc, 0x8000,
3566 ((u_int32_t *)bufp)[nwords] & 0xffff);
3567 }
3568 }
3569
3570 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), 0x8000);
3571
3572 return 0;
3573}
3574
3575/*
3576 * After flashing restart the card.
3577 */
3578
3579static int
3580flashrestart(ifp)
3581 struct ifnet *ifp;
3582{
3583 int status = 0;
3584 struct an_softc *sc = ifp->if_softc;
3585
3586 FLASH_DELAY(1024); /* Added 12/7/00 */
3587
3588 an_init(sc);
3589
3590 FLASH_DELAY(1024); /* Added 12/7/00 */
3591 return status;
3592}
3593
3594/*
3595 * Entry point for flash ioclt.
3596 */
3597
3598static int
3599flashcard(ifp, l_ioctl)
3600 struct ifnet *ifp;
3601 struct aironet_ioctl *l_ioctl;
3602{
3603 int z = 0, status;
3604 struct an_softc *sc;
3605
3606 sc = ifp->if_softc;
3607 if (sc->mpi350) {
3608 printf("an%d: flashing not supported on MPI 350 yet\n",
3609 sc->an_unit);
3610 return(-1);
3611 }
3612 status = l_ioctl->command;
3613
3614 switch (l_ioctl->command) {
3615 case AIROFLSHRST:
3616 return cmdreset(ifp);
3617 break;
3618 case AIROFLSHSTFL:
3619 if (sc->an_flash_buffer) {
3620 free(sc->an_flash_buffer, M_DEVBUF);
3621 sc->an_flash_buffer = NULL;
3622 }
3623 sc->an_flash_buffer = malloc(FLASH_SIZE, M_DEVBUF, 0);
3624 if (sc->an_flash_buffer)
3625 return setflashmode(ifp);
3626 else
3627 return ENOBUFS;
3628 break;
3629 case AIROFLSHGCHR: /* Get char from aux */
3630 copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
3631 z = *(int *)&sc->areq;
3632 if ((status = flashgchar(ifp, z, 8000)) == 1)
3633 return 0;
3634 else
3635 return -1;
3636 break;
3637 case AIROFLSHPCHR: /* Send char to card. */
3638 copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
3639 z = *(int *)&sc->areq;
3640 if ((status = flashpchar(ifp, z, 8000)) == -1)
3641 return -EIO;
3642 else
3643 return 0;
3644 break;
3645 case AIROFLPUTBUF: /* Send 32k to card */
3646 if (l_ioctl->len > FLASH_SIZE) {
3647 printf("an%d: Buffer to big, %x %x\n", sc->an_unit,
3648 l_ioctl->len, FLASH_SIZE);
3649 return -EINVAL;
3650 }
3651 copyin(l_ioctl->data, sc->an_flash_buffer, l_ioctl->len);
3652
3653 if ((status = flashputbuf(ifp)) != 0)
3654 return -EIO;
3655 else
3656 return 0;
3657 break;
3658 case AIRORESTART:
3659 if ((status = flashrestart(ifp)) != 0) {
3660 printf("an%d: FLASHRESTART returned %d\n",
3661 sc->an_unit, status);
3662 return -EIO;
3663 } else
3664 return 0;
3665
3666 break;
3667 default:
3668 return -EINVAL;
3669 }
3670
3671 return -EINVAL;
3672}