Add an option, -y, which displays the 64 bit FSMID for a file or directory.
[dragonfly.git] / sys / kern / vfs_subr.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
39 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40 * $DragonFly: src/sys/kern/vfs_subr.c,v 1.63 2005/08/27 20:23:05 joerg Exp $
41 */
42
43/*
44 * External virtual filesystem routines
45 */
46#include "opt_ddb.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/buf.h>
51#include <sys/conf.h>
52#include <sys/dirent.h>
53#include <sys/domain.h>
54#include <sys/eventhandler.h>
55#include <sys/fcntl.h>
56#include <sys/kernel.h>
57#include <sys/kthread.h>
58#include <sys/malloc.h>
59#include <sys/mbuf.h>
60#include <sys/mount.h>
61#include <sys/proc.h>
62#include <sys/reboot.h>
63#include <sys/socket.h>
64#include <sys/stat.h>
65#include <sys/sysctl.h>
66#include <sys/syslog.h>
67#include <sys/unistd.h>
68#include <sys/vmmeter.h>
69#include <sys/vnode.h>
70
71#include <machine/limits.h>
72
73#include <vm/vm.h>
74#include <vm/vm_object.h>
75#include <vm/vm_extern.h>
76#include <vm/vm_kern.h>
77#include <vm/pmap.h>
78#include <vm/vm_map.h>
79#include <vm/vm_page.h>
80#include <vm/vm_pager.h>
81#include <vm/vnode_pager.h>
82#include <vm/vm_zone.h>
83
84#include <sys/buf2.h>
85#include <sys/thread2.h>
86
87static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
88
89int numvnodes;
90SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
91int vfs_fastdev = 1;
92SYSCTL_INT(_vfs, OID_AUTO, fastdev, CTLFLAG_RW, &vfs_fastdev, 0, "");
93
94enum vtype iftovt_tab[16] = {
95 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
96 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
97};
98int vttoif_tab[9] = {
99 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
100 S_IFSOCK, S_IFIFO, S_IFMT,
101};
102
103static int reassignbufcalls;
104SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW,
105 &reassignbufcalls, 0, "");
106static int reassignbufloops;
107SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW,
108 &reassignbufloops, 0, "");
109static int reassignbufsortgood;
110SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW,
111 &reassignbufsortgood, 0, "");
112static int reassignbufsortbad;
113SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW,
114 &reassignbufsortbad, 0, "");
115static int reassignbufmethod = 1;
116SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW,
117 &reassignbufmethod, 0, "");
118
119int nfs_mount_type = -1;
120static struct lwkt_token spechash_token;
121struct nfs_public nfs_pub; /* publicly exported FS */
122
123int desiredvnodes;
124SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
125 &desiredvnodes, 0, "Maximum number of vnodes");
126
127static void vfs_free_addrlist (struct netexport *nep);
128static int vfs_free_netcred (struct radix_node *rn, void *w);
129static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
130 struct export_args *argp);
131
132extern int dev_ref_debug;
133extern struct vnodeopv_entry_desc spec_vnodeop_entries[];
134
135/*
136 * Red black tree functions
137 */
138static int rb_buf_compare(struct buf *b1, struct buf *b2);
139RB_GENERATE(buf_rb_tree, buf, b_rbnode, rb_buf_compare);
140
141static int
142rb_buf_compare(struct buf *b1, struct buf *b2)
143{
144 if (b1->b_lblkno < b2->b_lblkno)
145 return(-1);
146 if (b1->b_lblkno > b2->b_lblkno)
147 return(1);
148 return(0);
149}
150
151/*
152 * Return 0 if the vnode is already on the free list or cannot be placed
153 * on the free list. Return 1 if the vnode can be placed on the free list.
154 */
155static __inline int
156vshouldfree(struct vnode *vp, int usecount)
157{
158 if (vp->v_flag & VFREE)
159 return (0); /* already free */
160 if (vp->v_holdcnt != 0 || vp->v_usecount != usecount)
161 return (0); /* other holderse */
162 if (vp->v_object &&
163 (vp->v_object->ref_count || vp->v_object->resident_page_count)) {
164 return (0);
165 }
166 return (1);
167}
168
169/*
170 * Initialize the vnode management data structures.
171 *
172 * Called from vfsinit()
173 */
174void
175vfs_subr_init(void)
176{
177 /*
178 * Desired vnodes is a result of the physical page count
179 * and the size of kernel's heap. It scales in proportion
180 * to the amount of available physical memory. This can
181 * cause trouble on 64-bit and large memory platforms.
182 */
183 /* desiredvnodes = maxproc + vmstats.v_page_count / 4; */
184 desiredvnodes =
185 min(maxproc + vmstats.v_page_count /4,
186 2 * (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) /
187 (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
188
189 lwkt_token_init(&spechash_token);
190}
191
192/*
193 * Knob to control the precision of file timestamps:
194 *
195 * 0 = seconds only; nanoseconds zeroed.
196 * 1 = seconds and nanoseconds, accurate within 1/HZ.
197 * 2 = seconds and nanoseconds, truncated to microseconds.
198 * >=3 = seconds and nanoseconds, maximum precision.
199 */
200enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
201
202static int timestamp_precision = TSP_SEC;
203SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
204 &timestamp_precision, 0, "");
205
206/*
207 * Get a current timestamp.
208 */
209void
210vfs_timestamp(struct timespec *tsp)
211{
212 struct timeval tv;
213
214 switch (timestamp_precision) {
215 case TSP_SEC:
216 tsp->tv_sec = time_second;
217 tsp->tv_nsec = 0;
218 break;
219 case TSP_HZ:
220 getnanotime(tsp);
221 break;
222 case TSP_USEC:
223 microtime(&tv);
224 TIMEVAL_TO_TIMESPEC(&tv, tsp);
225 break;
226 case TSP_NSEC:
227 default:
228 nanotime(tsp);
229 break;
230 }
231}
232
233/*
234 * Set vnode attributes to VNOVAL
235 */
236void
237vattr_null(struct vattr *vap)
238{
239 vap->va_type = VNON;
240 vap->va_size = VNOVAL;
241 vap->va_bytes = VNOVAL;
242 vap->va_mode = VNOVAL;
243 vap->va_nlink = VNOVAL;
244 vap->va_uid = VNOVAL;
245 vap->va_gid = VNOVAL;
246 vap->va_fsid = VNOVAL;
247 vap->va_fileid = VNOVAL;
248 vap->va_blocksize = VNOVAL;
249 vap->va_rdev = VNOVAL;
250 vap->va_atime.tv_sec = VNOVAL;
251 vap->va_atime.tv_nsec = VNOVAL;
252 vap->va_mtime.tv_sec = VNOVAL;
253 vap->va_mtime.tv_nsec = VNOVAL;
254 vap->va_ctime.tv_sec = VNOVAL;
255 vap->va_ctime.tv_nsec = VNOVAL;
256 vap->va_flags = VNOVAL;
257 vap->va_gen = VNOVAL;
258 vap->va_vaflags = 0;
259}
260
261/*
262 * Update outstanding I/O count and do wakeup if requested.
263 */
264void
265vwakeup(struct buf *bp)
266{
267 struct vnode *vp;
268
269 if ((vp = bp->b_vp)) {
270 vp->v_numoutput--;
271 if (vp->v_numoutput < 0)
272 panic("vwakeup: neg numoutput");
273 if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
274 vp->v_flag &= ~VBWAIT;
275 wakeup((caddr_t) &vp->v_numoutput);
276 }
277 }
278}
279
280/*
281 * Flush out and invalidate all buffers associated with a vnode.
282 *
283 * vp must be locked.
284 */
285static int vinvalbuf_bp(struct buf *bp, void *data);
286
287struct vinvalbuf_bp_info {
288 struct vnode *vp;
289 int slptimeo;
290 int slpflag;
291 int flags;
292};
293
294int
295vinvalbuf(struct vnode *vp, int flags, struct thread *td,
296 int slpflag, int slptimeo)
297{
298 struct vinvalbuf_bp_info info;
299 int error;
300 vm_object_t object;
301
302 /*
303 * If we are being asked to save, call fsync to ensure that the inode
304 * is updated.
305 */
306 if (flags & V_SAVE) {
307 crit_enter();
308 while (vp->v_numoutput) {
309 vp->v_flag |= VBWAIT;
310 error = tsleep((caddr_t)&vp->v_numoutput,
311 slpflag, "vinvlbuf", slptimeo);
312 if (error) {
313 crit_exit();
314 return (error);
315 }
316 }
317 if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
318 crit_exit();
319 if ((error = VOP_FSYNC(vp, MNT_WAIT, td)) != 0)
320 return (error);
321 crit_enter();
322 if (vp->v_numoutput > 0 ||
323 !RB_EMPTY(&vp->v_rbdirty_tree))
324 panic("vinvalbuf: dirty bufs");
325 }
326 crit_exit();
327 }
328 crit_enter();
329 info.slptimeo = slptimeo;
330 info.slpflag = slpflag;
331 info.flags = flags;
332 info.vp = vp;
333
334 /*
335 * Flush the buffer cache until nothing is left.
336 */
337 while (!RB_EMPTY(&vp->v_rbclean_tree) ||
338 !RB_EMPTY(&vp->v_rbdirty_tree)) {
339 error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree, NULL,
340 vinvalbuf_bp, &info);
341 if (error == 0) {
342 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
343 vinvalbuf_bp, &info);
344 }
345 }
346
347 /*
348 * Wait for I/O to complete. XXX needs cleaning up. The vnode can
349 * have write I/O in-progress but if there is a VM object then the
350 * VM object can also have read-I/O in-progress.
351 */
352 do {
353 while (vp->v_numoutput > 0) {
354 vp->v_flag |= VBWAIT;
355 tsleep(&vp->v_numoutput, 0, "vnvlbv", 0);
356 }
357 if (VOP_GETVOBJECT(vp, &object) == 0) {
358 while (object->paging_in_progress)
359 vm_object_pip_sleep(object, "vnvlbx");
360 }
361 } while (vp->v_numoutput > 0);
362
363 crit_exit();
364
365 /*
366 * Destroy the copy in the VM cache, too.
367 */
368 if (VOP_GETVOBJECT(vp, &object) == 0) {
369 vm_object_page_remove(object, 0, 0,
370 (flags & V_SAVE) ? TRUE : FALSE);
371 }
372
373 if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
374 panic("vinvalbuf: flush failed");
375 return (0);
376}
377
378static int
379vinvalbuf_bp(struct buf *bp, void *data)
380{
381 struct vinvalbuf_bp_info *info = data;
382 int error;
383
384 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
385 error = BUF_TIMELOCK(bp,
386 LK_EXCLUSIVE | LK_SLEEPFAIL,
387 "vinvalbuf", info->slpflag, info->slptimeo);
388 if (error == 0) {
389 BUF_UNLOCK(bp);
390 error = ENOLCK;
391 }
392 if (error == ENOLCK)
393 return(0);
394 return (-error);
395 }
396 /*
397 * XXX Since there are no node locks for NFS, I
398 * believe there is a slight chance that a delayed
399 * write will occur while sleeping just above, so
400 * check for it. Note that vfs_bio_awrite expects
401 * buffers to reside on a queue, while VOP_BWRITE and
402 * brelse do not.
403 */
404 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
405 (info->flags & V_SAVE)) {
406 if (bp->b_vp == info->vp) {
407 if (bp->b_flags & B_CLUSTEROK) {
408 BUF_UNLOCK(bp);
409 vfs_bio_awrite(bp);
410 } else {
411 bremfree(bp);
412 bp->b_flags |= B_ASYNC;
413 VOP_BWRITE(bp->b_vp, bp);
414 }
415 } else {
416 bremfree(bp);
417 VOP_BWRITE(bp->b_vp, bp);
418 }
419 } else {
420 bremfree(bp);
421 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
422 bp->b_flags &= ~B_ASYNC;
423 brelse(bp);
424 }
425 return(0);
426}
427
428/*
429 * Truncate a file's buffer and pages to a specified length. This
430 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
431 * sync activity.
432 *
433 * The vnode must be locked.
434 */
435static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
436static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
437static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
438static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
439
440int
441vtruncbuf(struct vnode *vp, struct thread *td, off_t length, int blksize)
442{
443 daddr_t trunclbn;
444 int count;
445
446 /*
447 * Round up to the *next* lbn, then destroy the buffers in question.
448 * Since we are only removing some of the buffers we must rely on the
449 * scan count to determine whether a loop is necessary.
450 */
451 trunclbn = (length + blksize - 1) / blksize;
452
453 crit_enter();
454 do {
455 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
456 vtruncbuf_bp_trunc_cmp,
457 vtruncbuf_bp_trunc, &trunclbn);
458 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
459 vtruncbuf_bp_trunc_cmp,
460 vtruncbuf_bp_trunc, &trunclbn);
461 } while(count);
462
463 /*
464 * For safety, fsync any remaining metadata if the file is not being
465 * truncated to 0. Since the metadata does not represent the entire
466 * dirty list we have to rely on the hit count to ensure that we get
467 * all of it.
468 */
469 if (length > 0) {
470 do {
471 count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
472 vtruncbuf_bp_metasync_cmp,
473 vtruncbuf_bp_metasync, vp);
474 } while (count);
475 }
476
477 /*
478 * Wait for any in-progress I/O to complete before returning (why?)
479 */
480 while (vp->v_numoutput > 0) {
481 vp->v_flag |= VBWAIT;
482 tsleep(&vp->v_numoutput, 0, "vbtrunc", 0);
483 }
484
485 crit_exit();
486
487 vnode_pager_setsize(vp, length);
488
489 return (0);
490}
491
492/*
493 * The callback buffer is beyond the new file EOF and must be destroyed.
494 * Note that the compare function must conform to the RB_SCAN's requirements.
495 */
496static
497int
498vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
499{
500 if (bp->b_lblkno >= *(daddr_t *)data)
501 return(0);
502 return(-1);
503}
504
505static
506int
507vtruncbuf_bp_trunc(struct buf *bp, void *data)
508{
509 /*
510 * Do not try to use a buffer we cannot immediately lock, but sleep
511 * anyway to prevent a livelock. The code will loop until all buffers
512 * can be acted upon.
513 */
514 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
515 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
516 BUF_UNLOCK(bp);
517 } else {
518 bremfree(bp);
519 bp->b_flags |= (B_INVAL | B_RELBUF);
520 bp->b_flags &= ~B_ASYNC;
521 brelse(bp);
522 }
523 return(1);
524}
525
526/*
527 * Fsync all meta-data after truncating a file to be non-zero. Only metadata
528 * blocks (with a negative lblkno) are scanned.
529 * Note that the compare function must conform to the RB_SCAN's requirements.
530 */
531static int
532vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data)
533{
534 if (bp->b_lblkno < 0)
535 return(0);
536 return(1);
537}
538
539static int
540vtruncbuf_bp_metasync(struct buf *bp, void *data)
541{
542 struct vnode *vp = data;
543
544 if (bp->b_flags & B_DELWRI) {
545 /*
546 * Do not try to use a buffer we cannot immediately lock,
547 * but sleep anyway to prevent a livelock. The code will
548 * loop until all buffers can be acted upon.
549 */
550 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
551 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
552 BUF_UNLOCK(bp);
553 } else {
554 bremfree(bp);
555 if (bp->b_vp == vp) {
556 bp->b_flags |= B_ASYNC;
557 } else {
558 bp->b_flags &= ~B_ASYNC;
559 }
560 VOP_BWRITE(bp->b_vp, bp);
561 }
562 return(1);
563 } else {
564 return(0);
565 }
566}
567
568/*
569 * vfsync - implements a multipass fsync on a file which understands
570 * dependancies and meta-data. The passed vnode must be locked. The
571 * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
572 *
573 * When fsyncing data asynchronously just do one consolidated pass starting
574 * with the most negative block number. This may not get all the data due
575 * to dependancies.
576 *
577 * When fsyncing data synchronously do a data pass, then a metadata pass,
578 * then do additional data+metadata passes to try to get all the data out.
579 */
580static int vfsync_wait_output(struct vnode *vp,
581 int (*waitoutput)(struct vnode *, struct thread *));
582static int vfsync_data_only_cmp(struct buf *bp, void *data);
583static int vfsync_meta_only_cmp(struct buf *bp, void *data);
584static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
585static int vfsync_bp(struct buf *bp, void *data);
586
587struct vfsync_info {
588 struct vnode *vp;
589 int synchronous;
590 int syncdeps;
591 int lazycount;
592 int lazylimit;
593 daddr_t lbn;
594 int (*checkdef)(struct buf *);
595};
596
597int
598vfsync(struct vnode *vp, int waitfor, int passes, daddr_t lbn,
599 int (*checkdef)(struct buf *),
600 int (*waitoutput)(struct vnode *, struct thread *))
601{
602 struct vfsync_info info;
603 int error;
604
605 bzero(&info, sizeof(info));
606 info.vp = vp;
607 info.lbn = lbn;
608 if ((info.checkdef = checkdef) == NULL)
609 info.syncdeps = 1;
610
611 crit_enter();
612
613 switch(waitfor) {
614 case MNT_LAZY:
615 /*
616 * Lazy (filesystem syncer typ) Asynchronous plus limit the
617 * number of data (not meta) pages we try to flush to 1MB.
618 * A non-zero return means that lazy limit was reached.
619 */
620 info.lazylimit = 1024 * 1024;
621 info.syncdeps = 1;
622 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
623 vfsync_lazy_range_cmp, vfsync_bp, &info);
624 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
625 vfsync_meta_only_cmp, vfsync_bp, &info);
626 if (error == 0)
627 vp->v_lazyw = 0;
628 else if (!RB_EMPTY(&vp->v_rbdirty_tree))
629 vn_syncer_add_to_worklist(vp, 1);
630 error = 0;
631 break;
632 case MNT_NOWAIT:
633 /*
634 * Asynchronous. Do a data-only pass and a meta-only pass.
635 */
636 info.syncdeps = 1;
637 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
638 vfsync_bp, &info);
639 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
640 vfsync_bp, &info);
641 error = 0;
642 break;
643 default:
644 /*
645 * Synchronous. Do a data-only pass, then a meta-data+data
646 * pass, then additional integrated passes to try to get
647 * all the dependancies flushed.
648 */
649 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
650 vfsync_bp, &info);
651 error = vfsync_wait_output(vp, waitoutput);
652 if (error == 0) {
653 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
654 vfsync_bp, &info);
655 error = vfsync_wait_output(vp, waitoutput);
656 }
657 while (error == 0 && passes > 0 &&
658 !RB_EMPTY(&vp->v_rbdirty_tree)) {
659 if (--passes == 0) {
660 info.synchronous = 1;
661 info.syncdeps = 1;
662 }
663 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
664 vfsync_bp, &info);
665 if (error < 0)
666 error = -error;
667 info.syncdeps = 1;
668 if (error == 0)
669 error = vfsync_wait_output(vp, waitoutput);
670 }
671 break;
672 }
673 crit_exit();
674 return(error);
675}
676
677static int
678vfsync_wait_output(struct vnode *vp, int (*waitoutput)(struct vnode *, struct thread *))
679{
680 int error = 0;
681
682 while (vp->v_numoutput) {
683 vp->v_flag |= VBWAIT;
684 tsleep(&vp->v_numoutput, 0, "fsfsn", 0);
685 }
686 if (waitoutput)
687 error = waitoutput(vp, curthread);
688 return(error);
689}
690
691static int
692vfsync_data_only_cmp(struct buf *bp, void *data)
693{
694 if (bp->b_lblkno < 0)
695 return(-1);
696 return(0);
697}
698
699static int
700vfsync_meta_only_cmp(struct buf *bp, void *data)
701{
702 if (bp->b_lblkno < 0)
703 return(0);
704 return(1);
705}
706
707static int
708vfsync_lazy_range_cmp(struct buf *bp, void *data)
709{
710 struct vfsync_info *info = data;
711 if (bp->b_lblkno < info->vp->v_lazyw)
712 return(-1);
713 return(0);
714}
715
716static int
717vfsync_bp(struct buf *bp, void *data)
718{
719 struct vfsync_info *info = data;
720 struct vnode *vp = info->vp;
721 int error;
722
723 /*
724 * if syncdeps is not set we do not try to write buffers which have
725 * dependancies.
726 */
727 if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp))
728 return(0);
729
730 /*
731 * Ignore buffers that we cannot immediately lock. XXX
732 */
733 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
734 return(0);
735 if ((bp->b_flags & B_DELWRI) == 0)
736 panic("vfsync_bp: buffer not dirty");
737 if (vp != bp->b_vp)
738 panic("vfsync_bp: buffer vp mismatch");
739
740 /*
741 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
742 * has been written but an additional handshake with the device
743 * is required before we can dispose of the buffer. We have no idea
744 * how to do this so we have to skip these buffers.
745 */
746 if (bp->b_flags & B_NEEDCOMMIT) {
747 BUF_UNLOCK(bp);
748 return(0);
749 }
750
751 /*
752 * (LEGACY FROM UFS, REMOVE WHEN POSSIBLE) - invalidate any dirty
753 * buffers beyond the file EOF.
754 */
755 if (info->lbn != (daddr_t)-1 && vp->v_type == VREG &&
756 bp->b_lblkno >= info->lbn) {
757 bremfree(bp);
758 bp->b_flags |= B_INVAL | B_NOCACHE;
759 crit_exit();
760 brelse(bp);
761 crit_enter();
762 }
763
764 if (info->synchronous) {
765 /*
766 * Synchronous flushing. An error may be returned.
767 */
768 bremfree(bp);
769 crit_exit();
770 error = bwrite(bp);
771 crit_enter();
772 } else {
773 /*
774 * Asynchronous flushing. A negative return value simply
775 * stops the scan and is not considered an error. We use
776 * this to support limited MNT_LAZY flushes.
777 */
778 vp->v_lazyw = bp->b_lblkno;
779 if ((vp->v_flag & VOBJBUF) && (bp->b_flags & B_CLUSTEROK)) {
780 BUF_UNLOCK(bp);
781 info->lazycount += vfs_bio_awrite(bp);
782 } else {
783 info->lazycount += bp->b_bufsize;
784 bremfree(bp);
785 crit_exit();
786 bawrite(bp);
787 crit_enter();
788 }
789 if (info->lazylimit && info->lazycount >= info->lazylimit)
790 error = 1;
791 else
792 error = 0;
793 }
794 return(-error);
795}
796
797/*
798 * Associate a buffer with a vnode.
799 */
800void
801bgetvp(struct vnode *vp, struct buf *bp)
802{
803 KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
804
805 vhold(vp);
806 bp->b_vp = vp;
807 bp->b_dev = vn_todev(vp);
808 /*
809 * Insert onto list for new vnode.
810 */
811 crit_enter();
812 bp->b_xflags |= BX_VNCLEAN;
813 bp->b_xflags &= ~BX_VNDIRTY;
814 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
815 panic("reassignbuf: dup lblk vp %p bp %p", vp, bp);
816 crit_exit();
817}
818
819/*
820 * Disassociate a buffer from a vnode.
821 */
822void
823brelvp(struct buf *bp)
824{
825 struct vnode *vp;
826
827 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
828
829 /*
830 * Delete from old vnode list, if on one.
831 */
832 vp = bp->b_vp;
833 crit_enter();
834 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
835 if (bp->b_xflags & BX_VNDIRTY)
836 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
837 else
838 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
839 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
840 }
841 if ((vp->v_flag & VONWORKLST) && RB_EMPTY(&vp->v_rbdirty_tree)) {
842 vp->v_flag &= ~VONWORKLST;
843 LIST_REMOVE(vp, v_synclist);
844 }
845 crit_exit();
846 bp->b_vp = NULL;
847 vdrop(vp);
848}
849
850/*
851 * Associate a p-buffer with a vnode.
852 *
853 * Also sets B_PAGING flag to indicate that vnode is not fully associated
854 * with the buffer. i.e. the bp has not been linked into the vnode or
855 * ref-counted.
856 */
857void
858pbgetvp(struct vnode *vp, struct buf *bp)
859{
860 KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
861
862 bp->b_vp = vp;
863 bp->b_flags |= B_PAGING;
864 bp->b_dev = vn_todev(vp);
865}
866
867/*
868 * Disassociate a p-buffer from a vnode.
869 */
870void
871pbrelvp(struct buf *bp)
872{
873 KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
874
875 bp->b_vp = NULL;
876 bp->b_flags &= ~B_PAGING;
877}
878
879void
880pbreassignbuf(struct buf *bp, struct vnode *newvp)
881{
882 if ((bp->b_flags & B_PAGING) == 0) {
883 panic(
884 "pbreassignbuf() on non phys bp %p",
885 bp
886 );
887 }
888 bp->b_vp = newvp;
889}
890
891/*
892 * Reassign a buffer from one vnode to another.
893 * Used to assign file specific control information
894 * (indirect blocks) to the vnode to which they belong.
895 */
896void
897reassignbuf(struct buf *bp, struct vnode *newvp)
898{
899 int delay;
900
901 if (newvp == NULL) {
902 printf("reassignbuf: NULL");
903 return;
904 }
905 ++reassignbufcalls;
906
907 /*
908 * B_PAGING flagged buffers cannot be reassigned because their vp
909 * is not fully linked in.
910 */
911 if (bp->b_flags & B_PAGING)
912 panic("cannot reassign paging buffer");
913
914 crit_enter();
915 /*
916 * Delete from old vnode list, if on one.
917 */
918 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
919 if (bp->b_xflags & BX_VNDIRTY)
920 buf_rb_tree_RB_REMOVE(&bp->b_vp->v_rbdirty_tree, bp);
921 else
922 buf_rb_tree_RB_REMOVE(&bp->b_vp->v_rbclean_tree, bp);
923 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
924 if (bp->b_vp != newvp) {
925 vdrop(bp->b_vp);
926 bp->b_vp = NULL; /* for clarification */
927 }
928 }
929 /*
930 * If dirty, put on list of dirty buffers; otherwise insert onto list
931 * of clean buffers.
932 */
933 if (bp->b_flags & B_DELWRI) {
934 if ((newvp->v_flag & VONWORKLST) == 0) {
935 switch (newvp->v_type) {
936 case VDIR:
937 delay = dirdelay;
938 break;
939 case VCHR:
940 case VBLK:
941 if (newvp->v_rdev &&
942 newvp->v_rdev->si_mountpoint != NULL) {
943 delay = metadelay;
944 break;
945 }
946 /* fall through */
947 default:
948 delay = filedelay;
949 }
950 vn_syncer_add_to_worklist(newvp, delay);
951 }
952 bp->b_xflags |= BX_VNDIRTY;
953 if (buf_rb_tree_RB_INSERT(&newvp->v_rbdirty_tree, bp))
954 panic("reassignbuf: dup lblk vp %p bp %p", newvp, bp);
955 } else {
956 bp->b_xflags |= BX_VNCLEAN;
957 if (buf_rb_tree_RB_INSERT(&newvp->v_rbclean_tree, bp))
958 panic("reassignbuf: dup lblk vp %p bp %p", newvp, bp);
959 if ((newvp->v_flag & VONWORKLST) &&
960 RB_EMPTY(&newvp->v_rbdirty_tree)) {
961 newvp->v_flag &= ~VONWORKLST;
962 LIST_REMOVE(newvp, v_synclist);
963 }
964 }
965 if (bp->b_vp != newvp) {
966 bp->b_vp = newvp;
967 vhold(bp->b_vp);
968 }
969 crit_exit();
970}
971
972/*
973 * Create a vnode for a block device.
974 * Used for mounting the root file system.
975 */
976int
977bdevvp(dev_t dev, struct vnode **vpp)
978{
979 struct vnode *vp;
980 struct vnode *nvp;
981 int error;
982
983 if (dev == NODEV) {
984 *vpp = NULLVP;
985 return (ENXIO);
986 }
987 error = getspecialvnode(VT_NON, NULL, &spec_vnode_vops, &nvp, 0, 0);
988 if (error) {
989 *vpp = NULLVP;
990 return (error);
991 }
992 vp = nvp;
993 vp->v_type = VCHR;
994 vp->v_udev = dev->si_udev;
995 vx_unlock(vp);
996 *vpp = vp;
997 return (0);
998}
999
1000int
1001v_associate_rdev(struct vnode *vp, dev_t dev)
1002{
1003 lwkt_tokref ilock;
1004
1005 if (dev == NULL || dev == NODEV)
1006 return(ENXIO);
1007 if (dev_is_good(dev) == 0)
1008 return(ENXIO);
1009 KKASSERT(vp->v_rdev == NULL);
1010 if (dev_ref_debug)
1011 printf("Z1");
1012 vp->v_rdev = reference_dev(dev);
1013 lwkt_gettoken(&ilock, &spechash_token);
1014 SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_specnext);
1015 lwkt_reltoken(&ilock);
1016 return(0);
1017}
1018
1019void
1020v_release_rdev(struct vnode *vp)
1021{
1022 lwkt_tokref ilock;
1023 dev_t dev;
1024
1025 if ((dev = vp->v_rdev) != NULL) {
1026 lwkt_gettoken(&ilock, &spechash_token);
1027 SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_specnext);
1028 if (dev_ref_debug && vp->v_opencount != 0) {
1029 printf("releasing rdev with non-0 "
1030 "v_opencount(%d) (revoked?)\n",
1031 vp->v_opencount);
1032 }
1033 vp->v_rdev = NULL;
1034 vp->v_opencount = 0;
1035 release_dev(dev);
1036 lwkt_reltoken(&ilock);
1037 }
1038}
1039
1040/*
1041 * Add a vnode to the alias list hung off the dev_t. We only associate
1042 * the device number with the vnode. The actual device is not associated
1043 * until the vnode is opened (usually in spec_open()), and will be
1044 * disassociated on last close.
1045 */
1046void
1047addaliasu(struct vnode *nvp, udev_t nvp_udev)
1048{
1049 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1050 panic("addaliasu on non-special vnode");
1051 nvp->v_udev = nvp_udev;
1052}
1053
1054/*
1055 * Disassociate a vnode from its underlying filesystem.
1056 *
1057 * The vnode must be VX locked and refd
1058 *
1059 * If there are v_usecount references to the vnode other then ours we have
1060 * to VOP_CLOSE the vnode before we can deactivate and reclaim it.
1061 */
1062void
1063vclean(struct vnode *vp, int flags, struct thread *td)
1064{
1065 int active;
1066
1067 /*
1068 * If the vnode has already been reclaimed we have nothing to do.
1069 */
1070 if (vp->v_flag & VRECLAIMED)
1071 return;
1072 vp->v_flag |= VRECLAIMED;
1073
1074 /*
1075 * Scrap the vfs cache
1076 */
1077 while (cache_inval_vp(vp, 0) != 0) {
1078 printf("Warning: vnode %p clean/cache_resolution race detected\n", vp);
1079 tsleep(vp, 0, "vclninv", 2);
1080 }
1081
1082 /*
1083 * Check to see if the vnode is in use. If so we have to reference it
1084 * before we clean it out so that its count cannot fall to zero and
1085 * generate a race against ourselves to recycle it.
1086 */
1087 active = (vp->v_usecount > 1);
1088
1089 /*
1090 * Clean out any buffers associated with the vnode and destroy its
1091 * object, if it has one.
1092 */
1093 vinvalbuf(vp, V_SAVE, td, 0, 0);
1094 VOP_DESTROYVOBJECT(vp);
1095
1096 /*
1097 * If purging an active vnode, it must be closed and
1098 * deactivated before being reclaimed. XXX
1099 *
1100 * Note that neither of these routines unlocks the vnode.
1101 */
1102 if (active) {
1103 if (flags & DOCLOSE)
1104 VOP_CLOSE(vp, FNONBLOCK, td);
1105 }
1106
1107 /*
1108 * If the vnode has not be deactivated, deactivated it.
1109 */
1110 if ((vp->v_flag & VINACTIVE) == 0) {
1111 vp->v_flag |= VINACTIVE;
1112 VOP_INACTIVE(vp, td);
1113 }
1114
1115 /*
1116 * Reclaim the vnode.
1117 */
1118 if (VOP_RECLAIM(vp, td))
1119 panic("vclean: cannot reclaim");
1120
1121 /*
1122 * Done with purge, notify sleepers of the grim news.
1123 */
1124 vp->v_ops = &dead_vnode_vops;
1125 vn_pollgone(vp);
1126 vp->v_tag = VT_NON;
1127}
1128
1129/*
1130 * Eliminate all activity associated with the requested vnode
1131 * and with all vnodes aliased to the requested vnode.
1132 *
1133 * The vnode must be referenced and vx_lock()'d
1134 *
1135 * revoke { struct vnode *a_vp, int a_flags }
1136 */
1137int
1138vop_stdrevoke(struct vop_revoke_args *ap)
1139{
1140 struct vnode *vp, *vq;
1141 lwkt_tokref ilock;
1142 dev_t dev;
1143
1144 KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1145
1146 vp = ap->a_vp;
1147
1148 /*
1149 * If the vnode is already dead don't try to revoke it
1150 */
1151 if (vp->v_flag & VRECLAIMED)
1152 return (0);
1153
1154 /*
1155 * If the vnode has a device association, scrap all vnodes associated
1156 * with the device. Don't let the device disappear on us while we
1157 * are scrapping the vnodes.
1158 *
1159 * The passed vp will probably show up in the list, do not VX lock
1160 * it twice!
1161 */
1162 if (vp->v_type != VCHR && vp->v_type != VBLK)
1163 return(0);
1164 if ((dev = vp->v_rdev) == NULL) {
1165 if ((dev = udev2dev(vp->v_udev, vp->v_type == VBLK)) == NODEV)
1166 return(0);
1167 }
1168 reference_dev(dev);
1169 lwkt_gettoken(&ilock, &spechash_token);
1170 while ((vq = SLIST_FIRST(&dev->si_hlist)) != NULL) {
1171 if (vp == vq || vx_get(vq) == 0) {
1172 if (vq == SLIST_FIRST(&dev->si_hlist))
1173 vgone(vq);
1174 if (vp != vq)
1175 vx_put(vq);
1176 }
1177 }
1178 lwkt_reltoken(&ilock);
1179 release_dev(dev);
1180 return (0);
1181}
1182
1183/*
1184 * Recycle an unused vnode to the front of the free list.
1185 *
1186 * Returns 1 if we were successfully able to recycle the vnode,
1187 * 0 otherwise.
1188 */
1189int
1190vrecycle(struct vnode *vp, struct thread *td)
1191{
1192 if (vp->v_usecount == 1) {
1193 vgone(vp);
1194 return (1);
1195 }
1196 return (0);
1197}
1198
1199/*
1200 * Eliminate all activity associated with a vnode in preparation for reuse.
1201 *
1202 * The vnode must be VX locked and refd and will remain VX locked and refd
1203 * on return. This routine may be called with the vnode in any state, as
1204 * long as it is VX locked. The vnode will be cleaned out and marked
1205 * VRECLAIMED but will not actually be reused until all existing refs and
1206 * holds go away.
1207 *
1208 * NOTE: This routine may be called on a vnode which has not yet been
1209 * already been deactivated (VOP_INACTIVE), or on a vnode which has
1210 * already been reclaimed.
1211 *
1212 * This routine is not responsible for placing us back on the freelist.
1213 * Instead, it happens automatically when the caller releases the VX lock
1214 * (assuming there aren't any other references).
1215 */
1216void
1217vgone(struct vnode *vp)
1218{
1219 /*
1220 * assert that the VX lock is held. This is an absolute requirement
1221 * now for vgone() to be called.
1222 */
1223 KKASSERT(vp->v_lock.lk_exclusivecount == 1);
1224
1225 /*
1226 * Clean out the filesystem specific data and set the VRECLAIMED
1227 * bit. Also deactivate the vnode if necessary.
1228 */
1229 vclean(vp, DOCLOSE, curthread);
1230
1231 /*
1232 * Delete from old mount point vnode list, if on one.
1233 */
1234 if (vp->v_mount != NULL)
1235 insmntque(vp, NULL);
1236
1237 /*
1238 * If special device, remove it from special device alias list
1239 * if it is on one. This should normally only occur if a vnode is
1240 * being revoked as the device should otherwise have been released
1241 * naturally.
1242 */
1243 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1244 v_release_rdev(vp);
1245 }
1246
1247 /*
1248 * Set us to VBAD
1249 */
1250 vp->v_type = VBAD;
1251}
1252
1253/*
1254 * Lookup a vnode by device number.
1255 */
1256int
1257vfinddev(dev_t dev, enum vtype type, struct vnode **vpp)
1258{
1259 lwkt_tokref ilock;
1260 struct vnode *vp;
1261
1262 lwkt_gettoken(&ilock, &spechash_token);
1263 SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1264 if (type == vp->v_type) {
1265 *vpp = vp;
1266 lwkt_reltoken(&ilock);
1267 return (1);
1268 }
1269 }
1270 lwkt_reltoken(&ilock);
1271 return (0);
1272}
1273
1274/*
1275 * Calculate the total number of references to a special device. This
1276 * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1277 * an overloaded field. Since udev2dev can now return NODEV, we have
1278 * to check for a NULL v_rdev.
1279 */
1280int
1281count_dev(dev_t dev)
1282{
1283 lwkt_tokref ilock;
1284 struct vnode *vp;
1285 int count = 0;
1286
1287 if (SLIST_FIRST(&dev->si_hlist)) {
1288 lwkt_gettoken(&ilock, &spechash_token);
1289 SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1290 count += vp->v_usecount;
1291 }
1292 lwkt_reltoken(&ilock);
1293 }
1294 return(count);
1295}
1296
1297int
1298count_udev(udev_t udev)
1299{
1300 dev_t dev;
1301
1302 if ((dev = udev2dev(udev, 0)) == NODEV)
1303 return(0);
1304 return(count_dev(dev));
1305}
1306
1307int
1308vcount(struct vnode *vp)
1309{
1310 if (vp->v_rdev == NULL)
1311 return(0);
1312 return(count_dev(vp->v_rdev));
1313}
1314
1315/*
1316 * Print out a description of a vnode.
1317 */
1318static char *typename[] =
1319{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1320
1321void
1322vprint(char *label, struct vnode *vp)
1323{
1324 char buf[96];
1325
1326 if (label != NULL)
1327 printf("%s: %p: ", label, (void *)vp);
1328 else
1329 printf("%p: ", (void *)vp);
1330 printf("type %s, usecount %d, writecount %d, refcount %d,",
1331 typename[vp->v_type], vp->v_usecount, vp->v_writecount,
1332 vp->v_holdcnt);
1333 buf[0] = '\0';
1334 if (vp->v_flag & VROOT)
1335 strcat(buf, "|VROOT");
1336 if (vp->v_flag & VTEXT)
1337 strcat(buf, "|VTEXT");
1338 if (vp->v_flag & VSYSTEM)
1339 strcat(buf, "|VSYSTEM");
1340 if (vp->v_flag & VBWAIT)
1341 strcat(buf, "|VBWAIT");
1342 if (vp->v_flag & VFREE)
1343 strcat(buf, "|VFREE");
1344 if (vp->v_flag & VOBJBUF)
1345 strcat(buf, "|VOBJBUF");
1346 if (buf[0] != '\0')
1347 printf(" flags (%s)", &buf[1]);
1348 if (vp->v_data == NULL) {
1349 printf("\n");
1350 } else {
1351 printf("\n\t");
1352 VOP_PRINT(vp);
1353 }
1354}
1355
1356#ifdef DDB
1357#include <ddb/ddb.h>
1358
1359static int db_show_locked_vnodes(struct mount *mp, void *data);
1360
1361/*
1362 * List all of the locked vnodes in the system.
1363 * Called when debugging the kernel.
1364 */
1365DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1366{
1367 printf("Locked vnodes\n");
1368 mountlist_scan(db_show_locked_vnodes, NULL,
1369 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1370}
1371
1372static int
1373db_show_locked_vnodes(struct mount *mp, void *data __unused)
1374{
1375 struct vnode *vp;
1376
1377 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1378 if (VOP_ISLOCKED(vp, NULL))
1379 vprint((char *)0, vp);
1380 }
1381 return(0);
1382}
1383#endif
1384
1385/*
1386 * Top level filesystem related information gathering.
1387 */
1388static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1389
1390static int
1391vfs_sysctl(SYSCTL_HANDLER_ARGS)
1392{
1393 int *name = (int *)arg1 - 1; /* XXX */
1394 u_int namelen = arg2 + 1; /* XXX */
1395 struct vfsconf *vfsp;
1396
1397#if 1 || defined(COMPAT_PRELITE2)
1398 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1399 if (namelen == 1)
1400 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1401#endif
1402
1403#ifdef notyet
1404 /* all sysctl names at this level are at least name and field */
1405 if (namelen < 2)
1406 return (ENOTDIR); /* overloaded */
1407 if (name[0] != VFS_GENERIC) {
1408 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1409 if (vfsp->vfc_typenum == name[0])
1410 break;
1411 if (vfsp == NULL)
1412 return (EOPNOTSUPP);
1413 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1414 oldp, oldlenp, newp, newlen, p));
1415 }
1416#endif
1417 switch (name[1]) {
1418 case VFS_MAXTYPENUM:
1419 if (namelen != 2)
1420 return (ENOTDIR);
1421 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
1422 case VFS_CONF:
1423 if (namelen != 3)
1424 return (ENOTDIR); /* overloaded */
1425 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1426 if (vfsp->vfc_typenum == name[2])
1427 break;
1428 if (vfsp == NULL)
1429 return (EOPNOTSUPP);
1430 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1431 }
1432 return (EOPNOTSUPP);
1433}
1434
1435SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1436 "Generic filesystem");
1437
1438#if 1 || defined(COMPAT_PRELITE2)
1439
1440static int
1441sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1442{
1443 int error;
1444 struct vfsconf *vfsp;
1445 struct ovfsconf ovfs;
1446
1447 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
1448 bzero(&ovfs, sizeof(ovfs));
1449 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
1450 strcpy(ovfs.vfc_name, vfsp->vfc_name);
1451 ovfs.vfc_index = vfsp->vfc_typenum;
1452 ovfs.vfc_refcount = vfsp->vfc_refcount;
1453 ovfs.vfc_flags = vfsp->vfc_flags;
1454 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1455 if (error)
1456 return error;
1457 }
1458 return 0;
1459}
1460
1461#endif /* 1 || COMPAT_PRELITE2 */
1462
1463/*
1464 * Check to see if a filesystem is mounted on a block device.
1465 */
1466int
1467vfs_mountedon(struct vnode *vp)
1468{
1469 dev_t dev;
1470
1471 if ((dev = vp->v_rdev) == NULL)
1472 dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
1473 if (dev != NODEV && dev->si_mountpoint)
1474 return (EBUSY);
1475 return (0);
1476}
1477
1478/*
1479 * Unmount all filesystems. The list is traversed in reverse order
1480 * of mounting to avoid dependencies.
1481 */
1482
1483static int vfs_umountall_callback(struct mount *mp, void *data);
1484
1485void
1486vfs_unmountall(void)
1487{
1488 struct thread *td = curthread;
1489 int count;
1490
1491 if (td->td_proc == NULL)
1492 td = initproc->p_thread; /* XXX XXX use proc0 instead? */
1493
1494 do {
1495 count = mountlist_scan(vfs_umountall_callback,
1496 &td, MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1497 } while (count);
1498}
1499
1500static
1501int
1502vfs_umountall_callback(struct mount *mp, void *data)
1503{
1504 struct thread *td = *(struct thread **)data;
1505 int error;
1506
1507 error = dounmount(mp, MNT_FORCE, td);
1508 if (error) {
1509 mountlist_remove(mp);
1510 printf("unmount of filesystem mounted from %s failed (",
1511 mp->mnt_stat.f_mntfromname);
1512 if (error == EBUSY)
1513 printf("BUSY)\n");
1514 else
1515 printf("%d)\n", error);
1516 }
1517 return(1);
1518}
1519
1520/*
1521 * Build hash lists of net addresses and hang them off the mount point.
1522 * Called by ufs_mount() to set up the lists of export addresses.
1523 */
1524static int
1525vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1526 struct export_args *argp)
1527{
1528 struct netcred *np;
1529 struct radix_node_head *rnh;
1530 int i;
1531 struct radix_node *rn;
1532 struct sockaddr *saddr, *smask = 0;
1533 struct domain *dom;
1534 int error;
1535
1536 if (argp->ex_addrlen == 0) {
1537 if (mp->mnt_flag & MNT_DEFEXPORTED)
1538 return (EPERM);
1539 np = &nep->ne_defexported;
1540 np->netc_exflags = argp->ex_flags;
1541 np->netc_anon = argp->ex_anon;
1542 np->netc_anon.cr_ref = 1;
1543 mp->mnt_flag |= MNT_DEFEXPORTED;
1544 return (0);
1545 }
1546
1547 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
1548 return (EINVAL);
1549 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
1550 return (EINVAL);
1551
1552 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
1553 np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
1554 bzero((caddr_t) np, i);
1555 saddr = (struct sockaddr *) (np + 1);
1556 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
1557 goto out;
1558 if (saddr->sa_len > argp->ex_addrlen)
1559 saddr->sa_len = argp->ex_addrlen;
1560 if (argp->ex_masklen) {
1561 smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
1562 error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
1563 if (error)
1564 goto out;
1565 if (smask->sa_len > argp->ex_masklen)
1566 smask->sa_len = argp->ex_masklen;
1567 }
1568 i = saddr->sa_family;
1569 if ((rnh = nep->ne_rtable[i]) == 0) {
1570 /*
1571 * Seems silly to initialize every AF when most are not used,
1572 * do so on demand here
1573 */
1574 SLIST_FOREACH(dom, &domains, dom_next)
1575 if (dom->dom_family == i && dom->dom_rtattach) {
1576 dom->dom_rtattach((void **) &nep->ne_rtable[i],
1577 dom->dom_rtoffset);
1578 break;
1579 }
1580 if ((rnh = nep->ne_rtable[i]) == 0) {
1581 error = ENOBUFS;
1582 goto out;
1583 }
1584 }
1585 rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh,
1586 np->netc_rnodes);
1587 if (rn == 0 || np != (struct netcred *) rn) { /* already exists */
1588 error = EPERM;
1589 goto out;
1590 }
1591 np->netc_exflags = argp->ex_flags;
1592 np->netc_anon = argp->ex_anon;
1593 np->netc_anon.cr_ref = 1;
1594 return (0);
1595out:
1596 free(np, M_NETADDR);
1597 return (error);
1598}
1599
1600/* ARGSUSED */
1601static int
1602vfs_free_netcred(struct radix_node *rn, void *w)
1603{
1604 struct radix_node_head *rnh = (struct radix_node_head *) w;
1605
1606 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
1607 free((caddr_t) rn, M_NETADDR);
1608 return (0);
1609}
1610
1611/*
1612 * Free the net address hash lists that are hanging off the mount points.
1613 */
1614static void
1615vfs_free_addrlist(struct netexport *nep)
1616{
1617 int i;
1618 struct radix_node_head *rnh;
1619
1620 for (i = 0; i <= AF_MAX; i++)
1621 if ((rnh = nep->ne_rtable[i])) {
1622 (*rnh->rnh_walktree) (rnh, vfs_free_netcred,
1623 (caddr_t) rnh);
1624 free((caddr_t) rnh, M_RTABLE);
1625 nep->ne_rtable[i] = 0;
1626 }
1627}
1628
1629int
1630vfs_export(struct mount *mp, struct netexport *nep, struct export_args *argp)
1631{
1632 int error;
1633
1634 if (argp->ex_flags & MNT_DELEXPORT) {
1635 if (mp->mnt_flag & MNT_EXPUBLIC) {
1636 vfs_setpublicfs(NULL, NULL, NULL);
1637 mp->mnt_flag &= ~MNT_EXPUBLIC;
1638 }
1639 vfs_free_addrlist(nep);
1640 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
1641 }
1642 if (argp->ex_flags & MNT_EXPORTED) {
1643 if (argp->ex_flags & MNT_EXPUBLIC) {
1644 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
1645 return (error);
1646 mp->mnt_flag |= MNT_EXPUBLIC;
1647 }
1648 if ((error = vfs_hang_addrlist(mp, nep, argp)))
1649 return (error);
1650 mp->mnt_flag |= MNT_EXPORTED;
1651 }
1652 return (0);
1653}
1654
1655
1656/*
1657 * Set the publicly exported filesystem (WebNFS). Currently, only
1658 * one public filesystem is possible in the spec (RFC 2054 and 2055)
1659 */
1660int
1661vfs_setpublicfs(struct mount *mp, struct netexport *nep,
1662 struct export_args *argp)
1663{
1664 int error;
1665 struct vnode *rvp;
1666 char *cp;
1667
1668 /*
1669 * mp == NULL -> invalidate the current info, the FS is
1670 * no longer exported. May be called from either vfs_export
1671 * or unmount, so check if it hasn't already been done.
1672 */
1673 if (mp == NULL) {
1674 if (nfs_pub.np_valid) {
1675 nfs_pub.np_valid = 0;
1676 if (nfs_pub.np_index != NULL) {
1677 FREE(nfs_pub.np_index, M_TEMP);
1678 nfs_pub.np_index = NULL;
1679 }
1680 }
1681 return (0);
1682 }
1683
1684 /*
1685 * Only one allowed at a time.
1686 */
1687 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
1688 return (EBUSY);
1689
1690 /*
1691 * Get real filehandle for root of exported FS.
1692 */
1693 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
1694 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
1695
1696 if ((error = VFS_ROOT(mp, &rvp)))
1697 return (error);
1698
1699 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
1700 return (error);
1701
1702 vput(rvp);
1703
1704 /*
1705 * If an indexfile was specified, pull it in.
1706 */
1707 if (argp->ex_indexfile != NULL) {
1708 int namelen;
1709
1710 error = vn_get_namelen(rvp, &namelen);
1711 if (error)
1712 return (error);
1713 MALLOC(nfs_pub.np_index, char *, namelen, M_TEMP,
1714 M_WAITOK);
1715 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
1716 namelen, (size_t *)0);
1717 if (!error) {
1718 /*
1719 * Check for illegal filenames.
1720 */
1721 for (cp = nfs_pub.np_index; *cp; cp++) {
1722 if (*cp == '/') {
1723 error = EINVAL;
1724 break;
1725 }
1726 }
1727 }
1728 if (error) {
1729 FREE(nfs_pub.np_index, M_TEMP);
1730 return (error);
1731 }
1732 }
1733
1734 nfs_pub.np_mount = mp;
1735 nfs_pub.np_valid = 1;
1736 return (0);
1737}
1738
1739struct netcred *
1740vfs_export_lookup(struct mount *mp, struct netexport *nep,
1741 struct sockaddr *nam)
1742{
1743 struct netcred *np;
1744 struct radix_node_head *rnh;
1745 struct sockaddr *saddr;
1746
1747 np = NULL;
1748 if (mp->mnt_flag & MNT_EXPORTED) {
1749 /*
1750 * Lookup in the export list first.
1751 */
1752 if (nam != NULL) {
1753 saddr = nam;
1754 rnh = nep->ne_rtable[saddr->sa_family];
1755 if (rnh != NULL) {
1756 np = (struct netcred *)
1757 (*rnh->rnh_matchaddr)((char *)saddr,
1758 rnh);
1759 if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
1760 np = NULL;
1761 }
1762 }
1763 /*
1764 * If no address match, use the default if it exists.
1765 */
1766 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
1767 np = &nep->ne_defexported;
1768 }
1769 return (np);
1770}
1771
1772/*
1773 * perform msync on all vnodes under a mount point. The mount point must
1774 * be locked. This code is also responsible for lazy-freeing unreferenced
1775 * vnodes whos VM objects no longer contain pages.
1776 *
1777 * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
1778 */
1779static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
1780static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
1781
1782void
1783vfs_msync(struct mount *mp, int flags)
1784{
1785 vmntvnodescan(mp, VMSC_REFVP, vfs_msync_scan1, vfs_msync_scan2,
1786 (void *)flags);
1787}
1788
1789/*
1790 * scan1 is a fast pre-check. There could be hundreds of thousands of
1791 * vnodes, we cannot afford to do anything heavy weight until we have a
1792 * fairly good indication that there is work to do.
1793 */
1794static
1795int
1796vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
1797{
1798 int flags = (int)data;
1799
1800 if ((vp->v_flag & VRECLAIMED) == 0) {
1801 if (vshouldfree(vp, 0))
1802 return(0); /* call scan2 */
1803 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
1804 (vp->v_flag & VOBJDIRTY) &&
1805 (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
1806 return(0); /* call scan2 */
1807 }
1808 }
1809
1810 /*
1811 * do not call scan2, continue the loop
1812 */
1813 return(-1);
1814}
1815
1816static
1817int
1818vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
1819{
1820 vm_object_t obj;
1821 int flags = (int)data;
1822
1823 if (vp->v_flag & VRECLAIMED)
1824 return(0);
1825
1826 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
1827 (vp->v_flag & VOBJDIRTY) &&
1828 (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
1829 if (VOP_GETVOBJECT(vp, &obj) == 0) {
1830 vm_object_page_clean(obj, 0, 0,
1831 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
1832 }
1833 }
1834 return(0);
1835}
1836
1837/*
1838 * Create the VM object needed for VMIO and mmap support. This
1839 * is done for all VREG files in the system. Some filesystems might
1840 * afford the additional metadata buffering capability of the
1841 * VMIO code by making the device node be VMIO mode also.
1842 *
1843 * vp must be locked when vfs_object_create is called.
1844 */
1845int
1846vfs_object_create(struct vnode *vp, struct thread *td)
1847{
1848 return (VOP_CREATEVOBJECT(vp, td));
1849}
1850
1851/*
1852 * Record a process's interest in events which might happen to
1853 * a vnode. Because poll uses the historic select-style interface
1854 * internally, this routine serves as both the ``check for any
1855 * pending events'' and the ``record my interest in future events''
1856 * functions. (These are done together, while the lock is held,
1857 * to avoid race conditions.)
1858 */
1859int
1860vn_pollrecord(struct vnode *vp, struct thread *td, int events)
1861{
1862 lwkt_tokref ilock;
1863
1864 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1865 if (vp->v_pollinfo.vpi_revents & events) {
1866 /*
1867 * This leaves events we are not interested
1868 * in available for the other process which
1869 * which presumably had requested them
1870 * (otherwise they would never have been
1871 * recorded).
1872 */
1873 events &= vp->v_pollinfo.vpi_revents;
1874 vp->v_pollinfo.vpi_revents &= ~events;
1875
1876 lwkt_reltoken(&ilock);
1877 return events;
1878 }
1879 vp->v_pollinfo.vpi_events |= events;
1880 selrecord(td, &vp->v_pollinfo.vpi_selinfo);
1881 lwkt_reltoken(&ilock);
1882 return 0;
1883}
1884
1885/*
1886 * Note the occurrence of an event. If the VN_POLLEVENT macro is used,
1887 * it is possible for us to miss an event due to race conditions, but
1888 * that condition is expected to be rare, so for the moment it is the
1889 * preferred interface.
1890 */
1891void
1892vn_pollevent(struct vnode *vp, int events)
1893{
1894 lwkt_tokref ilock;
1895
1896 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1897 if (vp->v_pollinfo.vpi_events & events) {
1898 /*
1899 * We clear vpi_events so that we don't
1900 * call selwakeup() twice if two events are
1901 * posted before the polling process(es) is
1902 * awakened. This also ensures that we take at
1903 * most one selwakeup() if the polling process
1904 * is no longer interested. However, it does
1905 * mean that only one event can be noticed at
1906 * a time. (Perhaps we should only clear those
1907 * event bits which we note?) XXX
1908 */
1909 vp->v_pollinfo.vpi_events = 0; /* &= ~events ??? */
1910 vp->v_pollinfo.vpi_revents |= events;
1911 selwakeup(&vp->v_pollinfo.vpi_selinfo);
1912 }
1913 lwkt_reltoken(&ilock);
1914}
1915
1916/*
1917 * Wake up anyone polling on vp because it is being revoked.
1918 * This depends on dead_poll() returning POLLHUP for correct
1919 * behavior.
1920 */
1921void
1922vn_pollgone(struct vnode *vp)
1923{
1924 lwkt_tokref ilock;
1925
1926 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1927 if (vp->v_pollinfo.vpi_events) {
1928 vp->v_pollinfo.vpi_events = 0;
1929 selwakeup(&vp->v_pollinfo.vpi_selinfo);
1930 }
1931 lwkt_reltoken(&ilock);
1932}
1933
1934/*
1935 * extract the dev_t from a VBLK or VCHR. The vnode must have been opened
1936 * (or v_rdev might be NULL).
1937 */
1938dev_t
1939vn_todev(struct vnode *vp)
1940{
1941 if (vp->v_type != VBLK && vp->v_type != VCHR)
1942 return (NODEV);
1943 KKASSERT(vp->v_rdev != NULL);
1944 return (vp->v_rdev);
1945}
1946
1947/*
1948 * Check if vnode represents a disk device. The vnode does not need to be
1949 * opened.
1950 */
1951int
1952vn_isdisk(struct vnode *vp, int *errp)
1953{
1954 dev_t dev;
1955
1956 if (vp->v_type != VBLK && vp->v_type != VCHR) {
1957 if (errp != NULL)
1958 *errp = ENOTBLK;
1959 return (0);
1960 }
1961
1962 if ((dev = vp->v_rdev) == NULL)
1963 dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
1964 if (dev == NULL || dev == NODEV) {
1965 if (errp != NULL)
1966 *errp = ENXIO;
1967 return (0);
1968 }
1969 if (dev_is_good(dev) == 0) {
1970 if (errp != NULL)
1971 *errp = ENXIO;
1972 return (0);
1973 }
1974 if ((dev_dflags(dev) & D_DISK) == 0) {
1975 if (errp != NULL)
1976 *errp = ENOTBLK;
1977 return (0);
1978 }
1979 if (errp != NULL)
1980 *errp = 0;
1981 return (1);
1982}
1983
1984#ifdef DEBUG_VFS_LOCKS
1985
1986void
1987assert_vop_locked(struct vnode *vp, const char *str)
1988{
1989 if (vp && IS_LOCKING_VFS(vp) && !VOP_ISLOCKED(vp, NULL)) {
1990 panic("%s: %p is not locked shared but should be", str, vp);
1991 }
1992}
1993
1994void
1995assert_vop_unlocked(struct vnode *vp, const char *str)
1996{
1997 if (vp && IS_LOCKING_VFS(vp)) {
1998 if (VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE) {
1999 panic("%s: %p is locked but should not be", str, vp);
2000 }
2001 }
2002}
2003
2004#endif
2005
2006int
2007vn_get_namelen(struct vnode *vp, int *namelen)
2008{
2009 int error, retval[2];
2010
2011 error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2012 if (error)
2013 return (error);
2014 *namelen = *retval;
2015 return (0);
2016}
2017
2018int
2019vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2020 uint16_t d_namlen, const char *d_name)
2021{
2022 struct dirent *dp;
2023 size_t len;
2024
2025 len = _DIRENT_RECLEN(d_namlen);
2026 if (len > uio->uio_resid)
2027 return(1);
2028
2029 dp = malloc(len, M_TEMP, M_WAITOK | M_ZERO);
2030
2031 dp->d_ino = d_ino;
2032 dp->d_namlen = d_namlen;
2033 dp->d_type = d_type;
2034 bcopy(d_name, dp->d_name, d_namlen);
2035
2036 *error = uiomove((caddr_t)dp, len, uio);
2037
2038 free(dp, M_TEMP);
2039
2040 return(0);
2041}