Add platform vkernel64.
[dragonfly.git] / sys / platform / vkernel64 / amd64 / cpu_regs.c
... / ...
CommitLineData
1/*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (C) 1994, David Greenman
4 * Copyright (c) 1982, 1987, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
39 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
40 * $DragonFly: src/sys/platform/vkernel/i386/cpu_regs.c,v 1.29 2008/06/06 13:19:25 swildner Exp $
41 */
42
43#include "use_ether.h"
44#include "use_isa.h"
45#include "opt_atalk.h"
46#include "opt_compat.h"
47#include "opt_ddb.h"
48#include "opt_directio.h"
49#include "opt_inet.h"
50#include "opt_ipx.h"
51#include "opt_msgbuf.h"
52#include "opt_swap.h"
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/sysproto.h>
57#include <sys/signalvar.h>
58#include <sys/kernel.h>
59#include <sys/linker.h>
60#include <sys/malloc.h>
61#include <sys/proc.h>
62#include <sys/buf.h>
63#include <sys/reboot.h>
64#include <sys/mbuf.h>
65#include <sys/msgbuf.h>
66#include <sys/sysent.h>
67#include <sys/sysctl.h>
68#include <sys/vmmeter.h>
69#include <sys/bus.h>
70#include <sys/upcall.h>
71#include <sys/usched.h>
72#include <sys/reg.h>
73
74#include <vm/vm.h>
75#include <vm/vm_param.h>
76#include <sys/lock.h>
77#include <vm/vm_kern.h>
78#include <vm/vm_object.h>
79#include <vm/vm_page.h>
80#include <vm/vm_map.h>
81#include <vm/vm_pager.h>
82#include <vm/vm_extern.h>
83
84#include <sys/thread2.h>
85
86#include <sys/user.h>
87#include <sys/exec.h>
88#include <sys/cons.h>
89
90#include <ddb/ddb.h>
91
92#include <machine/cpu.h>
93#include <machine/clock.h>
94#include <machine/specialreg.h>
95#include <machine/md_var.h>
96#include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
97#include <machine/globaldata.h> /* CPU_prvspace */
98#include <machine/smp.h>
99#ifdef PERFMON
100#include <machine/perfmon.h>
101#endif
102#include <machine/cputypes.h>
103
104#include <bus/isa/rtc.h>
105#include <sys/random.h>
106#include <sys/ptrace.h>
107#include <machine/sigframe.h>
108#include <unistd.h> /* umtx_* functions */
109
110extern void dblfault_handler (void);
111
112#ifndef CPU_DISABLE_SSE
113static void set_fpregs_xmm (struct save87 *, struct savexmm *);
114static void fill_fpregs_xmm (struct savexmm *, struct save87 *);
115#endif /* CPU_DISABLE_SSE */
116#ifdef DIRECTIO
117extern void ffs_rawread_setup(void);
118#endif /* DIRECTIO */
119
120#ifdef SMP
121int64_t tsc_offsets[MAXCPU];
122#else
123int64_t tsc_offsets[1];
124#endif
125
126#if defined(SWTCH_OPTIM_STATS)
127extern int swtch_optim_stats;
128SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
129 CTLFLAG_RD, &swtch_optim_stats, 0, "");
130SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
131 CTLFLAG_RD, &tlb_flush_count, 0, "");
132#endif
133
134static int
135sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
136{
137 /* JG */
138 int error = sysctl_handle_int(oidp, 0, ctob((int)Maxmem), req);
139 return (error);
140}
141
142SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
143 0, 0, sysctl_hw_physmem, "IU", "");
144
145static int
146sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
147{
148 /* JG */
149 int error = sysctl_handle_int(oidp, 0,
150 ctob((int)Maxmem - vmstats.v_wire_count), req);
151 return (error);
152}
153
154SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
155 0, 0, sysctl_hw_usermem, "IU", "");
156
157SYSCTL_ULONG(_hw, OID_AUTO, availpages, CTLFLAG_RD, &Maxmem, 0, "");
158
159#if 0
160
161static int
162sysctl_machdep_msgbuf(SYSCTL_HANDLER_ARGS)
163{
164 int error;
165
166 /* Unwind the buffer, so that it's linear (possibly starting with
167 * some initial nulls).
168 */
169 error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
170 msgbufp->msg_size-msgbufp->msg_bufr,req);
171 if(error) return(error);
172 if(msgbufp->msg_bufr>0) {
173 error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
174 msgbufp->msg_bufr,req);
175 }
176 return(error);
177}
178
179SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
180 0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
181
182static int msgbuf_clear;
183
184static int
185sysctl_machdep_msgbuf_clear(SYSCTL_HANDLER_ARGS)
186{
187 int error;
188 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
189 req);
190 if (!error && req->newptr) {
191 /* Clear the buffer and reset write pointer */
192 bzero(msgbufp->msg_ptr,msgbufp->msg_size);
193 msgbufp->msg_bufr=msgbufp->msg_bufx=0;
194 msgbuf_clear=0;
195 }
196 return (error);
197}
198
199SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
200 &msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
201 "Clear kernel message buffer");
202
203#endif
204
205/*
206 * Send an interrupt to process.
207 *
208 * Stack is set up to allow sigcode stored
209 * at top to call routine, followed by kcall
210 * to sigreturn routine below. After sigreturn
211 * resets the signal mask, the stack, and the
212 * frame pointer, it returns to the user
213 * specified pc, psl.
214 */
215void
216sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
217{
218 struct lwp *lp = curthread->td_lwp;
219 struct proc *p = lp->lwp_proc;
220 struct trapframe *regs;
221 struct sigacts *psp = p->p_sigacts;
222 struct sigframe sf, *sfp;
223 int oonstack;
224 char *sp;
225
226 regs = lp->lwp_md.md_regs;
227 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
228
229 /* Save user context */
230 bzero(&sf, sizeof(struct sigframe));
231 sf.sf_uc.uc_sigmask = *mask;
232 sf.sf_uc.uc_stack = lp->lwp_sigstk;
233 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
234 KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
235 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
236
237 /* Make the size of the saved context visible to userland */
238 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
239
240 /* Save mailbox pending state for syscall interlock semantics */
241 if (p->p_flag & P_MAILBOX)
242 sf.sf_uc.uc_mcontext.mc_xflags |= PGEX_MAILBOX;
243
244 /* Allocate and validate space for the signal handler context. */
245 if ((lp->lwp_flag & LWP_ALTSTACK) != 0 && !oonstack &&
246 SIGISMEMBER(psp->ps_sigonstack, sig)) {
247 sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
248 sizeof(struct sigframe));
249 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
250 } else {
251 /* We take red zone into account */
252 sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
253 }
254
255 /* Align to 16 bytes */
256 sfp = (struct sigframe *)((intptr_t)sp & ~0xFUL);
257
258 /* Translate the signal is appropriate */
259 if (p->p_sysent->sv_sigtbl) {
260 if (sig <= p->p_sysent->sv_sigsize)
261 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
262 }
263
264 /*
265 * Build the argument list for the signal handler.
266 *
267 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
268 */
269 regs->tf_rdi = sig; /* argument 1 */
270 regs->tf_rdx = (register_t)&sfp->sf_uc; /* argument 3 */
271
272 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
273 /*
274 * Signal handler installed with SA_SIGINFO.
275 *
276 * action(signo, siginfo, ucontext)
277 */
278 regs->tf_rsi = (register_t)&sfp->sf_si; /* argument 2 */
279 regs->tf_rcx = (register_t)regs->tf_err; /* argument 4 */
280 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
281
282 /* fill siginfo structure */
283 sf.sf_si.si_signo = sig;
284 sf.sf_si.si_code = code;
285 sf.sf_si.si_addr = (void *)regs->tf_err;
286 } else {
287 /*
288 * Old FreeBSD-style arguments.
289 *
290 * handler (signo, code, [uc], addr)
291 */
292 regs->tf_rsi = (register_t)code; /* argument 2 */
293 regs->tf_rcx = (register_t)regs->tf_err; /* argument 4 */
294 sf.sf_ahu.sf_handler = catcher;
295 }
296
297#if 0
298 /*
299 * If we're a vm86 process, we want to save the segment registers.
300 * We also change eflags to be our emulated eflags, not the actual
301 * eflags.
302 */
303 if (regs->tf_eflags & PSL_VM) {
304 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
305 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
306
307 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
308 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
309 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
310 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
311
312 if (vm86->vm86_has_vme == 0)
313 sf.sf_uc.uc_mcontext.mc_eflags =
314 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
315 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
316
317 /*
318 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
319 * syscalls made by the signal handler. This just avoids
320 * wasting time for our lazy fixup of such faults. PSL_NT
321 * does nothing in vm86 mode, but vm86 programs can set it
322 * almost legitimately in probes for old cpu types.
323 */
324 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
325 }
326#endif
327
328 /*
329 * Save the FPU state and reinit the FP unit
330 */
331 npxpush(&sf.sf_uc.uc_mcontext);
332
333 /*
334 * Copy the sigframe out to the user's stack.
335 */
336 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
337 /*
338 * Something is wrong with the stack pointer.
339 * ...Kill the process.
340 */
341 sigexit(lp, SIGILL);
342 }
343
344 regs->tf_rsp = (register_t)sfp;
345 regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
346
347 /*
348 * i386 abi specifies that the direction flag must be cleared
349 * on function entry
350 */
351 regs->tf_rflags &= ~(PSL_T|PSL_D);
352
353 /*
354 * 64 bit mode has a code and stack selector but
355 * no data or extra selector. %fs and %gs are not
356 * stored in-context.
357 */
358 regs->tf_cs = _ucodesel;
359 regs->tf_ss = _udatasel;
360}
361
362/*
363 * Sanitize the trapframe for a virtual kernel passing control to a custom
364 * VM context. Remove any items that would otherwise create a privilage
365 * issue.
366 *
367 * XXX at the moment we allow userland to set the resume flag. Is this a
368 * bad idea?
369 */
370int
371cpu_sanitize_frame(struct trapframe *frame)
372{
373 frame->tf_cs = _ucodesel;
374 frame->tf_ss = _udatasel;
375 /* XXX VM (8086) mode not supported? */
376 frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
377 frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
378
379 return(0);
380}
381
382/*
383 * Sanitize the tls so loading the descriptor does not blow up
384 * on us. For AMD64 we don't have to do anything.
385 */
386int
387cpu_sanitize_tls(struct savetls *tls)
388{
389 return(0);
390}
391
392/*
393 * sigreturn(ucontext_t *sigcntxp)
394 *
395 * System call to cleanup state after a signal
396 * has been taken. Reset signal mask and
397 * stack state from context left by sendsig (above).
398 * Return to previous pc and psl as specified by
399 * context left by sendsig. Check carefully to
400 * make sure that the user has not modified the
401 * state to gain improper privileges.
402 */
403#define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
404#define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
405
406int
407sys_sigreturn(struct sigreturn_args *uap)
408{
409 struct lwp *lp = curthread->td_lwp;
410 struct proc *p = lp->lwp_proc;
411 struct trapframe *regs;
412 ucontext_t uc;
413 ucontext_t *ucp;
414 register_t rflags;
415 int cs;
416 int error;
417
418 /*
419 * We have to copy the information into kernel space so userland
420 * can't modify it while we are sniffing it.
421 */
422 regs = lp->lwp_md.md_regs;
423 error = copyin(uap->sigcntxp, &uc, sizeof(uc));
424 if (error)
425 return (error);
426 ucp = &uc;
427 rflags = ucp->uc_mcontext.mc_rflags;
428
429 /* VM (8086) mode not supported */
430 rflags &= ~PSL_VM_UNSUPP;
431
432#if 0
433 if (eflags & PSL_VM) {
434 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
435 struct vm86_kernel *vm86;
436
437 /*
438 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
439 * set up the vm86 area, and we can't enter vm86 mode.
440 */
441 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
442 return (EINVAL);
443 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
444 if (vm86->vm86_inited == 0)
445 return (EINVAL);
446
447 /* go back to user mode if both flags are set */
448 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
449 trapsignal(lp->lwp_proc, SIGBUS, 0);
450
451 if (vm86->vm86_has_vme) {
452 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
453 (eflags & VME_USERCHANGE) | PSL_VM;
454 } else {
455 vm86->vm86_eflags = eflags; /* save VIF, VIP */
456 eflags = (tf->tf_eflags & ~VM_USERCHANGE) | (eflags & VM_USERCHANGE) | PSL_VM;
457 }
458 bcopy(&ucp.uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
459 tf->tf_eflags = eflags;
460 tf->tf_vm86_ds = tf->tf_ds;
461 tf->tf_vm86_es = tf->tf_es;
462 tf->tf_vm86_fs = tf->tf_fs;
463 tf->tf_vm86_gs = tf->tf_gs;
464 tf->tf_ds = _udatasel;
465 tf->tf_es = _udatasel;
466#if 0
467 tf->tf_fs = _udatasel;
468 tf->tf_gs = _udatasel;
469#endif
470 } else
471#endif
472 {
473 /*
474 * Don't allow users to change privileged or reserved flags.
475 */
476 /*
477 * XXX do allow users to change the privileged flag PSL_RF.
478 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
479 * should sometimes set it there too. tf_eflags is kept in
480 * the signal context during signal handling and there is no
481 * other place to remember it, so the PSL_RF bit may be
482 * corrupted by the signal handler without us knowing.
483 * Corruption of the PSL_RF bit at worst causes one more or
484 * one less debugger trap, so allowing it is fairly harmless.
485 */
486 if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
487 kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
488 return(EINVAL);
489 }
490
491 /*
492 * Don't allow users to load a valid privileged %cs. Let the
493 * hardware check for invalid selectors, excess privilege in
494 * other selectors, invalid %eip's and invalid %esp's.
495 */
496 cs = ucp->uc_mcontext.mc_cs;
497 if (!CS_SECURE(cs)) {
498 kprintf("sigreturn: cs = 0x%x\n", cs);
499 trapsignal(lp, SIGBUS, T_PROTFLT);
500 return(EINVAL);
501 }
502 bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
503 }
504
505 /*
506 * Restore the FPU state from the frame
507 */
508 npxpop(&ucp->uc_mcontext);
509
510 /*
511 * Merge saved signal mailbox pending flag to maintain interlock
512 * semantics against system calls.
513 */
514 if (ucp->uc_mcontext.mc_xflags & PGEX_MAILBOX)
515 p->p_flag |= P_MAILBOX;
516
517 if (ucp->uc_mcontext.mc_onstack & 1)
518 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
519 else
520 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
521
522 lp->lwp_sigmask = ucp->uc_sigmask;
523 SIG_CANTMASK(lp->lwp_sigmask);
524 return(EJUSTRETURN);
525}
526
527/*
528 * Stack frame on entry to function. %rax will contain the function vector,
529 * %rcx will contain the function data. flags, rcx, and rax will have
530 * already been pushed on the stack.
531 */
532struct upc_frame {
533 register_t rax;
534 register_t rcx;
535 register_t rdx;
536 register_t flags;
537 register_t oldip;
538};
539
540void
541sendupcall(struct vmupcall *vu, int morepending)
542{
543 struct lwp *lp = curthread->td_lwp;
544 struct trapframe *regs;
545 struct upcall upcall;
546 struct upc_frame upc_frame;
547 int crit_count = 0;
548
549 /*
550 * If we are a virtual kernel running an emulated user process
551 * context, switch back to the virtual kernel context before
552 * trying to post the signal.
553 */
554 if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
555 lp->lwp_md.md_regs->tf_trapno = 0;
556 vkernel_trap(lp, lp->lwp_md.md_regs);
557 }
558
559 /*
560 * Get the upcall data structure
561 */
562 if (copyin(lp->lwp_upcall, &upcall, sizeof(upcall)) ||
563 copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int))
564 ) {
565 vu->vu_pending = 0;
566 kprintf("bad upcall address\n");
567 return;
568 }
569
570 /*
571 * If the data structure is already marked pending or has a critical
572 * section count, mark the data structure as pending and return
573 * without doing an upcall. vu_pending is left set.
574 */
575 if (upcall.upc_pending || crit_count >= vu->vu_pending) {
576 if (upcall.upc_pending < vu->vu_pending) {
577 upcall.upc_pending = vu->vu_pending;
578 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
579 sizeof(upcall.upc_pending));
580 }
581 return;
582 }
583
584 /*
585 * We can run this upcall now, clear vu_pending.
586 *
587 * Bump our critical section count and set or clear the
588 * user pending flag depending on whether more upcalls are
589 * pending. The user will be responsible for calling
590 * upc_dispatch(-1) to process remaining upcalls.
591 */
592 vu->vu_pending = 0;
593 upcall.upc_pending = morepending;
594 crit_count += TDPRI_CRIT;
595 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
596 sizeof(upcall.upc_pending));
597 copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff,
598 sizeof(int));
599
600 /*
601 * Construct a stack frame and issue the upcall
602 */
603 regs = lp->lwp_md.md_regs;
604 upc_frame.rax = regs->tf_rax;
605 upc_frame.rcx = regs->tf_rcx;
606 upc_frame.rdx = regs->tf_rdx;
607 upc_frame.flags = regs->tf_rflags;
608 upc_frame.oldip = regs->tf_rip;
609 if (copyout(&upc_frame, (void *)(regs->tf_rsp - sizeof(upc_frame)),
610 sizeof(upc_frame)) != 0) {
611 kprintf("bad stack on upcall\n");
612 } else {
613 regs->tf_rax = (register_t)vu->vu_func;
614 regs->tf_rcx = (register_t)vu->vu_data;
615 regs->tf_rdx = (register_t)lp->lwp_upcall;
616 regs->tf_rip = (register_t)vu->vu_ctx;
617 regs->tf_rsp -= sizeof(upc_frame);
618 }
619}
620
621/*
622 * fetchupcall occurs in the context of a system call, which means that
623 * we have to return EJUSTRETURN in order to prevent eax and edx from
624 * being overwritten by the syscall return value.
625 *
626 * if vu is not NULL we return the new context in %edx, the new data in %ecx,
627 * and the function pointer in %eax.
628 */
629int
630fetchupcall(struct vmupcall *vu, int morepending, void *rsp)
631{
632 struct upc_frame upc_frame;
633 struct lwp *lp = curthread->td_lwp;
634 struct trapframe *regs;
635 int error;
636 struct upcall upcall;
637 int crit_count;
638
639 regs = lp->lwp_md.md_regs;
640
641 error = copyout(&morepending, &lp->lwp_upcall->upc_pending, sizeof(int));
642 if (error == 0) {
643 if (vu) {
644 /*
645 * This jumps us to the next ready context.
646 */
647 vu->vu_pending = 0;
648 error = copyin(lp->lwp_upcall, &upcall, sizeof(upcall));
649 crit_count = 0;
650 if (error == 0)
651 error = copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int));
652 crit_count += TDPRI_CRIT;
653 if (error == 0)
654 error = copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff, sizeof(int));
655 regs->tf_rax = (register_t)vu->vu_func;
656 regs->tf_rcx = (register_t)vu->vu_data;
657 regs->tf_rdx = (register_t)lp->lwp_upcall;
658 regs->tf_rip = (register_t)vu->vu_ctx;
659 regs->tf_rsp = (register_t)rsp;
660 } else {
661 /*
662 * This returns us to the originally interrupted code.
663 */
664 error = copyin(rsp, &upc_frame, sizeof(upc_frame));
665 regs->tf_rax = upc_frame.rax;
666 regs->tf_rcx = upc_frame.rcx;
667 regs->tf_rdx = upc_frame.rdx;
668 regs->tf_rflags = (regs->tf_rflags & ~PSL_USERCHANGE) |
669 (upc_frame.flags & PSL_USERCHANGE);
670 regs->tf_rip = upc_frame.oldip;
671 regs->tf_rsp = (register_t)((char *)rsp + sizeof(upc_frame));
672 }
673 }
674 if (error == 0)
675 error = EJUSTRETURN;
676 return(error);
677}
678
679/*
680 * cpu_idle() represents the idle LWKT. You cannot return from this function
681 * (unless you want to blow things up!). Instead we look for runnable threads
682 * and loop or halt as appropriate. Giant is not held on entry to the thread.
683 *
684 * The main loop is entered with a critical section held, we must release
685 * the critical section before doing anything else. lwkt_switch() will
686 * check for pending interrupts due to entering and exiting its own
687 * critical section.
688 *
689 * Note on cpu_idle_hlt: On an SMP system we rely on a scheduler IPI
690 * to wake a HLTed cpu up. However, there are cases where the idlethread
691 * will be entered with the possibility that no IPI will occur and in such
692 * cases lwkt_switch() sets TDF_IDLE_NOHLT.
693 */
694static int cpu_idle_hlt = 1;
695static int cpu_idle_hltcnt;
696static int cpu_idle_spincnt;
697SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
698 &cpu_idle_hlt, 0, "Idle loop HLT enable");
699SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
700 &cpu_idle_hltcnt, 0, "Idle loop entry halts");
701SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
702 &cpu_idle_spincnt, 0, "Idle loop entry spins");
703
704void
705cpu_idle(void)
706{
707 struct thread *td = curthread;
708 struct mdglobaldata *gd = mdcpu;
709
710 crit_exit();
711 KKASSERT(td->td_pri < TDPRI_CRIT);
712 cpu_enable_intr();
713 for (;;) {
714 /*
715 * See if there are any LWKTs ready to go.
716 */
717 lwkt_switch();
718
719 /*
720 * The idle loop halts only if no threads are scheduleable
721 * and no signals have occured.
722 */
723 if (cpu_idle_hlt && !lwkt_runnable() &&
724 (td->td_flags & TDF_IDLE_NOHLT) == 0) {
725 splz();
726 if (!lwkt_runnable()) {
727#ifdef DEBUGIDLE
728 struct timeval tv1, tv2;
729 gettimeofday(&tv1, NULL);
730#endif
731 umtx_sleep(&gd->mi.gd_runqmask, 0, 1000000);
732#ifdef DEBUGIDLE
733 gettimeofday(&tv2, NULL);
734 if (tv2.tv_usec - tv1.tv_usec +
735 (tv2.tv_sec - tv1.tv_sec) * 1000000
736 > 500000) {
737 kprintf("cpu %d idlelock %08x %08x\n",
738 gd->mi.gd_cpuid,
739 gd->mi.gd_runqmask,
740 gd->gd_fpending);
741 }
742#endif
743 }
744#ifdef SMP
745 else {
746 __asm __volatile("pause");
747 }
748#endif
749 ++cpu_idle_hltcnt;
750 } else {
751 td->td_flags &= ~TDF_IDLE_NOHLT;
752 splz();
753#ifdef SMP
754 /*__asm __volatile("sti; pause");*/
755 __asm __volatile("pause");
756#else
757 /*__asm __volatile("sti");*/
758#endif
759 ++cpu_idle_spincnt;
760 }
761 }
762}
763
764#ifdef SMP
765
766/*
767 * Called by the LWKT switch core with a critical section held if the only
768 * schedulable thread needs the MP lock and we couldn't get it. On
769 * a real cpu we just spin in the scheduler. In the virtual kernel
770 * we sleep for a bit.
771 */
772void
773cpu_mplock_contested(void)
774{
775 usleep(1000);
776}
777
778/*
779 * Called by the spinlock code with or without a critical section held
780 * when a spinlock is found to be seriously constested.
781 *
782 * We need to enter a critical section to prevent signals from recursing
783 * into pthreads.
784 */
785void
786cpu_spinlock_contested(void)
787{
788 crit_enter();
789 usleep(1000);
790 crit_exit();
791}
792
793#endif
794
795/*
796 * Clear registers on exec
797 */
798void
799exec_setregs(u_long entry, u_long stack, u_long ps_strings)
800{
801 struct thread *td = curthread;
802 struct lwp *lp = td->td_lwp;
803 struct pcb *pcb = td->td_pcb;
804 struct trapframe *regs = lp->lwp_md.md_regs;
805
806 /* was i386_user_cleanup() in NetBSD */
807 user_ldt_free(pcb);
808
809 bzero((char *)regs, sizeof(struct trapframe));
810 regs->tf_rip = entry;
811 regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
812 regs->tf_rdi = stack; /* argv */
813 regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
814 regs->tf_ss = _udatasel;
815 regs->tf_cs = _ucodesel;
816 regs->tf_rbx = ps_strings;
817
818 /*
819 * Reset the hardware debug registers if they were in use.
820 * They won't have any meaning for the newly exec'd process.
821 */
822 if (pcb->pcb_flags & PCB_DBREGS) {
823 pcb->pcb_dr0 = 0;
824 pcb->pcb_dr1 = 0;
825 pcb->pcb_dr2 = 0;
826 pcb->pcb_dr3 = 0;
827 pcb->pcb_dr6 = 0;
828 pcb->pcb_dr7 = 0; /* JG set bit 10? */
829 if (pcb == td->td_pcb) {
830 /*
831 * Clear the debug registers on the running
832 * CPU, otherwise they will end up affecting
833 * the next process we switch to.
834 */
835 reset_dbregs();
836 }
837 pcb->pcb_flags &= ~PCB_DBREGS;
838 }
839
840 /*
841 * Initialize the math emulator (if any) for the current process.
842 * Actually, just clear the bit that says that the emulator has
843 * been initialized. Initialization is delayed until the process
844 * traps to the emulator (if it is done at all) mainly because
845 * emulators don't provide an entry point for initialization.
846 */
847 pcb->pcb_flags &= ~FP_SOFTFP;
848
849 /*
850 * NOTE: do not set CR0_TS here. npxinit() must do it after clearing
851 * gd_npxthread. Otherwise a preemptive interrupt thread
852 * may panic in npxdna().
853 */
854 crit_enter();
855#if 0
856 load_cr0(rcr0() | CR0_MP);
857#endif
858
859 /*
860 * NOTE: The MSR values must be correct so we can return to
861 * userland. gd_user_fs/gs must be correct so the switch
862 * code knows what the current MSR values are.
863 */
864 pcb->pcb_fsbase = 0; /* Values loaded from PCB on switch */
865 pcb->pcb_gsbase = 0;
866 /* Initialize the npx (if any) for the current process. */
867 npxinit(__INITIAL_NPXCW__);
868 crit_exit();
869
870 /*
871 * note: linux emulator needs edx to be 0x0 on entry, which is
872 * handled in execve simply by setting the 64 bit syscall
873 * return value to 0.
874 */
875}
876
877void
878cpu_setregs(void)
879{
880#if 0
881 unsigned int cr0;
882
883 cr0 = rcr0();
884 cr0 |= CR0_NE; /* Done by npxinit() */
885 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
886 cr0 |= CR0_WP | CR0_AM;
887 load_cr0(cr0);
888 load_gs(_udatasel);
889#endif
890}
891
892static int
893sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
894{
895 int error;
896 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
897 req);
898 if (!error && req->newptr)
899 resettodr();
900 return (error);
901}
902
903SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
904 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
905
906extern u_long bootdev; /* not a cdev_t - encoding is different */
907SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
908 CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
909
910/*
911 * Initialize 386 and configure to run kernel
912 */
913
914/*
915 * Initialize segments & interrupt table
916 */
917
918extern struct user *proc0paddr;
919
920#if 0
921
922extern inthand_t
923 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
924 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
925 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
926 IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
927 IDTVEC(xmm), IDTVEC(dblfault),
928 IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
929#endif
930
931#ifdef DEBUG_INTERRUPTS
932extern inthand_t *Xrsvdary[256];
933#endif
934
935int
936ptrace_set_pc(struct lwp *lp, unsigned long addr)
937{
938 lp->lwp_md.md_regs->tf_rip = addr;
939 return (0);
940}
941
942int
943ptrace_single_step(struct lwp *lp)
944{
945 lp->lwp_md.md_regs->tf_rflags |= PSL_T;
946 return (0);
947}
948
949int
950fill_regs(struct lwp *lp, struct reg *regs)
951{
952 struct pcb *pcb;
953 struct trapframe *tp;
954
955 tp = lp->lwp_md.md_regs;
956 bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
957
958 pcb = lp->lwp_thread->td_pcb;
959 return (0);
960}
961
962int
963set_regs(struct lwp *lp, struct reg *regs)
964{
965 struct pcb *pcb;
966 struct trapframe *tp;
967
968 tp = lp->lwp_md.md_regs;
969 if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
970 !CS_SECURE(regs->r_cs))
971 return (EINVAL);
972 bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
973 pcb = lp->lwp_thread->td_pcb;
974 return (0);
975}
976
977#ifndef CPU_DISABLE_SSE
978static void
979fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
980{
981 struct env87 *penv_87 = &sv_87->sv_env;
982 struct envxmm *penv_xmm = &sv_xmm->sv_env;
983 int i;
984
985 /* FPU control/status */
986 penv_87->en_cw = penv_xmm->en_cw;
987 penv_87->en_sw = penv_xmm->en_sw;
988 penv_87->en_tw = penv_xmm->en_tw;
989 penv_87->en_fip = penv_xmm->en_fip;
990 penv_87->en_fcs = penv_xmm->en_fcs;
991 penv_87->en_opcode = penv_xmm->en_opcode;
992 penv_87->en_foo = penv_xmm->en_foo;
993 penv_87->en_fos = penv_xmm->en_fos;
994
995 /* FPU registers */
996 for (i = 0; i < 8; ++i)
997 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
998
999 sv_87->sv_ex_sw = sv_xmm->sv_ex_sw;
1000}
1001
1002static void
1003set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
1004{
1005 struct env87 *penv_87 = &sv_87->sv_env;
1006 struct envxmm *penv_xmm = &sv_xmm->sv_env;
1007 int i;
1008
1009 /* FPU control/status */
1010 penv_xmm->en_cw = penv_87->en_cw;
1011 penv_xmm->en_sw = penv_87->en_sw;
1012 penv_xmm->en_tw = penv_87->en_tw;
1013 penv_xmm->en_fip = penv_87->en_fip;
1014 penv_xmm->en_fcs = penv_87->en_fcs;
1015 penv_xmm->en_opcode = penv_87->en_opcode;
1016 penv_xmm->en_foo = penv_87->en_foo;
1017 penv_xmm->en_fos = penv_87->en_fos;
1018
1019 /* FPU registers */
1020 for (i = 0; i < 8; ++i)
1021 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
1022
1023 sv_xmm->sv_ex_sw = sv_87->sv_ex_sw;
1024}
1025#endif /* CPU_DISABLE_SSE */
1026
1027int
1028fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
1029{
1030#ifndef CPU_DISABLE_SSE
1031 if (cpu_fxsr) {
1032 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
1033 (struct save87 *)fpregs);
1034 return (0);
1035 }
1036#endif /* CPU_DISABLE_SSE */
1037 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
1038 return (0);
1039}
1040
1041int
1042set_fpregs(struct lwp *lp, struct fpreg *fpregs)
1043{
1044#ifndef CPU_DISABLE_SSE
1045 if (cpu_fxsr) {
1046 set_fpregs_xmm((struct save87 *)fpregs,
1047 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
1048 return (0);
1049 }
1050#endif /* CPU_DISABLE_SSE */
1051 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
1052 return (0);
1053}
1054
1055int
1056fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
1057{
1058 return (ENOSYS);
1059}
1060
1061int
1062set_dbregs(struct lwp *lp, struct dbreg *dbregs)
1063{
1064 return (ENOSYS);
1065}
1066
1067#if 0
1068/*
1069 * Return > 0 if a hardware breakpoint has been hit, and the
1070 * breakpoint was in user space. Return 0, otherwise.
1071 */
1072int
1073user_dbreg_trap(void)
1074{
1075 u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
1076 u_int32_t bp; /* breakpoint bits extracted from dr6 */
1077 int nbp; /* number of breakpoints that triggered */
1078 caddr_t addr[4]; /* breakpoint addresses */
1079 int i;
1080
1081 dr7 = rdr7();
1082 if ((dr7 & 0x000000ff) == 0) {
1083 /*
1084 * all GE and LE bits in the dr7 register are zero,
1085 * thus the trap couldn't have been caused by the
1086 * hardware debug registers
1087 */
1088 return 0;
1089 }
1090
1091 nbp = 0;
1092 dr6 = rdr6();
1093 bp = dr6 & 0x0000000f;
1094
1095 if (!bp) {
1096 /*
1097 * None of the breakpoint bits are set meaning this
1098 * trap was not caused by any of the debug registers
1099 */
1100 return 0;
1101 }
1102
1103 /*
1104 * at least one of the breakpoints were hit, check to see
1105 * which ones and if any of them are user space addresses
1106 */
1107
1108 if (bp & 0x01) {
1109 addr[nbp++] = (caddr_t)rdr0();
1110 }
1111 if (bp & 0x02) {
1112 addr[nbp++] = (caddr_t)rdr1();
1113 }
1114 if (bp & 0x04) {
1115 addr[nbp++] = (caddr_t)rdr2();
1116 }
1117 if (bp & 0x08) {
1118 addr[nbp++] = (caddr_t)rdr3();
1119 }
1120
1121 for (i=0; i<nbp; i++) {
1122 if (addr[i] <
1123 (caddr_t)VM_MAX_USER_ADDRESS) {
1124 /*
1125 * addr[i] is in user space
1126 */
1127 return nbp;
1128 }
1129 }
1130
1131 /*
1132 * None of the breakpoints are in user space.
1133 */
1134 return 0;
1135}
1136
1137#endif
1138
1139void
1140identcpu(void)
1141{
1142 int regs[4];
1143
1144 do_cpuid(1, regs);
1145 cpu_feature = regs[3];
1146}
1147
1148
1149#ifndef DDB
1150void
1151Debugger(const char *msg)
1152{
1153 kprintf("Debugger(\"%s\") called.\n", msg);
1154}
1155#endif /* no DDB */