TRIM support
[dragonfly.git] / sys / vfs / ufs / ffs_alloc.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95
34 * $FreeBSD: src/sys/ufs/ffs/ffs_alloc.c,v 1.64.2.2 2001/09/21 19:15:21 dillon Exp $
35 * $DragonFly: src/sys/vfs/ufs/ffs_alloc.c,v 1.27 2006/12/29 17:10:20 swildner Exp $
36 */
37
38#include "opt_quota.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/buf.h>
43#include <sys/buf2.h>
44#include <sys/conf.h>
45#include <sys/proc.h>
46#include <sys/vnode.h>
47#include <sys/mount.h>
48#include <sys/kernel.h>
49#include <sys/sysctl.h>
50#include <sys/syslog.h>
51
52#include <sys/taskqueue.h>
53#include <machine/inttypes.h>
54
55#include "quota.h"
56#include "inode.h"
57#include "ufs_extern.h"
58#include "ufsmount.h"
59
60#include "fs.h"
61#include "ffs_extern.h"
62
63typedef ufs_daddr_t allocfcn_t (struct inode *ip, int cg, ufs_daddr_t bpref,
64 int size);
65
66static ufs_daddr_t ffs_alloccg (struct inode *, int, ufs_daddr_t, int);
67static ufs_daddr_t
68 ffs_alloccgblk (struct inode *, struct buf *, ufs_daddr_t);
69static void ffs_blkfree_cg(struct fs *, struct vnode *, cdev_t , ino_t,
70 uint32_t , ufs_daddr_t, long );
71#ifdef DIAGNOSTIC
72static int ffs_checkblk (struct inode *, ufs_daddr_t, long);
73#endif
74static void ffs_clusteracct (struct fs *, struct cg *, ufs_daddr_t,
75 int);
76static ufs_daddr_t ffs_clusteralloc (struct inode *, int, ufs_daddr_t,
77 int);
78static ino_t ffs_dirpref (struct inode *);
79static ufs_daddr_t ffs_fragextend (struct inode *, int, long, int, int);
80static void ffs_fserr (struct fs *, uint, char *);
81static u_long ffs_hashalloc
82 (struct inode *, int, long, int, allocfcn_t *);
83static ino_t ffs_nodealloccg (struct inode *, int, ufs_daddr_t, int);
84static ufs_daddr_t ffs_mapsearch (struct fs *, struct cg *, ufs_daddr_t,
85 int);
86
87/*
88 * Allocate a block in the filesystem.
89 *
90 * The size of the requested block is given, which must be some
91 * multiple of fs_fsize and <= fs_bsize.
92 * A preference may be optionally specified. If a preference is given
93 * the following hierarchy is used to allocate a block:
94 * 1) allocate the requested block.
95 * 2) allocate a rotationally optimal block in the same cylinder.
96 * 3) allocate a block in the same cylinder group.
97 * 4) quadradically rehash into other cylinder groups, until an
98 * available block is located.
99 * If no block preference is given the following heirarchy is used
100 * to allocate a block:
101 * 1) allocate a block in the cylinder group that contains the
102 * inode for the file.
103 * 2) quadradically rehash into other cylinder groups, until an
104 * available block is located.
105 */
106int
107ffs_alloc(struct inode *ip, ufs_daddr_t lbn, ufs_daddr_t bpref, int size,
108 struct ucred *cred, ufs_daddr_t *bnp)
109{
110 struct fs *fs;
111 ufs_daddr_t bno;
112 int cg;
113#ifdef QUOTA
114 int error;
115#endif
116
117 *bnp = 0;
118 fs = ip->i_fs;
119#ifdef DIAGNOSTIC
120 if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0) {
121 kprintf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
122 devtoname(ip->i_dev), (long)fs->fs_bsize, size,
123 fs->fs_fsmnt);
124 panic("ffs_alloc: bad size");
125 }
126 if (cred == NOCRED)
127 panic("ffs_alloc: missing credential");
128#endif /* DIAGNOSTIC */
129 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
130 goto nospace;
131 if (cred->cr_uid != 0 &&
132 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
133 goto nospace;
134#ifdef QUOTA
135 error = ufs_chkdq(ip, (long)btodb(size), cred, 0);
136 if (error)
137 return (error);
138#endif
139 if (bpref >= fs->fs_size)
140 bpref = 0;
141 if (bpref == 0)
142 cg = ino_to_cg(fs, ip->i_number);
143 else
144 cg = dtog(fs, bpref);
145 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
146 ffs_alloccg);
147 if (bno > 0) {
148 ip->i_blocks += btodb(size);
149 ip->i_flag |= IN_CHANGE | IN_UPDATE;
150 *bnp = bno;
151 return (0);
152 }
153#ifdef QUOTA
154 /*
155 * Restore user's disk quota because allocation failed.
156 */
157 (void) ufs_chkdq(ip, (long)-btodb(size), cred, FORCE);
158#endif
159nospace:
160 ffs_fserr(fs, cred->cr_uid, "filesystem full");
161 uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
162 return (ENOSPC);
163}
164
165/*
166 * Reallocate a fragment to a bigger size
167 *
168 * The number and size of the old block is given, and a preference
169 * and new size is also specified. The allocator attempts to extend
170 * the original block. Failing that, the regular block allocator is
171 * invoked to get an appropriate block.
172 */
173int
174ffs_realloccg(struct inode *ip, ufs_daddr_t lbprev, ufs_daddr_t bpref,
175 int osize, int nsize, struct ucred *cred, struct buf **bpp)
176{
177 struct fs *fs;
178 struct buf *bp;
179 int cg, request, error;
180 ufs_daddr_t bprev, bno;
181
182 *bpp = 0;
183 fs = ip->i_fs;
184#ifdef DIAGNOSTIC
185 if ((uint)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
186 (uint)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
187 kprintf(
188 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
189 devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
190 nsize, fs->fs_fsmnt);
191 panic("ffs_realloccg: bad size");
192 }
193 if (cred == NOCRED)
194 panic("ffs_realloccg: missing credential");
195#endif /* DIAGNOSTIC */
196 if (cred->cr_uid != 0 &&
197 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0)
198 goto nospace;
199 if ((bprev = ip->i_db[lbprev]) == 0) {
200 kprintf("dev = %s, bsize = %ld, bprev = %ld, fs = %s\n",
201 devtoname(ip->i_dev), (long)fs->fs_bsize, (long)bprev,
202 fs->fs_fsmnt);
203 panic("ffs_realloccg: bad bprev");
204 }
205 /*
206 * Allocate the extra space in the buffer.
207 */
208 error = bread(ITOV(ip), lblktodoff(fs, lbprev), osize, &bp);
209 if (error) {
210 brelse(bp);
211 return (error);
212 }
213
214 if(bp->b_bio2.bio_offset == NOOFFSET) {
215 if( lbprev >= NDADDR)
216 panic("ffs_realloccg: lbprev out of range");
217 bp->b_bio2.bio_offset = fsbtodoff(fs, bprev);
218 }
219
220#ifdef QUOTA
221 error = ufs_chkdq(ip, (long)btodb(nsize - osize), cred, 0);
222 if (error) {
223 brelse(bp);
224 return (error);
225 }
226#endif
227 /*
228 * Check for extension in the existing location.
229 */
230 cg = dtog(fs, bprev);
231 bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize);
232 if (bno) {
233 if (bp->b_bio2.bio_offset != fsbtodoff(fs, bno))
234 panic("ffs_realloccg: bad blockno");
235 ip->i_blocks += btodb(nsize - osize);
236 ip->i_flag |= IN_CHANGE | IN_UPDATE;
237 allocbuf(bp, nsize);
238 bzero((char *)bp->b_data + osize, (uint)nsize - osize);
239 *bpp = bp;
240 return (0);
241 }
242 /*
243 * Allocate a new disk location.
244 */
245 if (bpref >= fs->fs_size)
246 bpref = 0;
247 switch ((int)fs->fs_optim) {
248 case FS_OPTSPACE:
249 /*
250 * Allocate an exact sized fragment. Although this makes
251 * best use of space, we will waste time relocating it if
252 * the file continues to grow. If the fragmentation is
253 * less than half of the minimum free reserve, we choose
254 * to begin optimizing for time.
255 */
256 request = nsize;
257 if (fs->fs_minfree <= 5 ||
258 fs->fs_cstotal.cs_nffree >
259 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
260 break;
261 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
262 fs->fs_fsmnt);
263 fs->fs_optim = FS_OPTTIME;
264 break;
265 case FS_OPTTIME:
266 /*
267 * At this point we have discovered a file that is trying to
268 * grow a small fragment to a larger fragment. To save time,
269 * we allocate a full sized block, then free the unused portion.
270 * If the file continues to grow, the `ffs_fragextend' call
271 * above will be able to grow it in place without further
272 * copying. If aberrant programs cause disk fragmentation to
273 * grow within 2% of the free reserve, we choose to begin
274 * optimizing for space.
275 */
276 request = fs->fs_bsize;
277 if (fs->fs_cstotal.cs_nffree <
278 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
279 break;
280 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
281 fs->fs_fsmnt);
282 fs->fs_optim = FS_OPTSPACE;
283 break;
284 default:
285 kprintf("dev = %s, optim = %ld, fs = %s\n",
286 devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
287 panic("ffs_realloccg: bad optim");
288 /* NOTREACHED */
289 }
290 bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
291 ffs_alloccg);
292 if (bno > 0) {
293 bp->b_bio2.bio_offset = fsbtodoff(fs, bno);
294 if (!DOINGSOFTDEP(ITOV(ip)))
295 ffs_blkfree(ip, bprev, (long)osize);
296 if (nsize < request)
297 ffs_blkfree(ip, bno + numfrags(fs, nsize),
298 (long)(request - nsize));
299 ip->i_blocks += btodb(nsize - osize);
300 ip->i_flag |= IN_CHANGE | IN_UPDATE;
301 allocbuf(bp, nsize);
302 bzero((char *)bp->b_data + osize, (uint)nsize - osize);
303 *bpp = bp;
304 return (0);
305 }
306#ifdef QUOTA
307 /*
308 * Restore user's disk quota because allocation failed.
309 */
310 (void) ufs_chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
311#endif
312 brelse(bp);
313nospace:
314 /*
315 * no space available
316 */
317 ffs_fserr(fs, cred->cr_uid, "filesystem full");
318 uprintf("\n%s: write failed, filesystem is full\n", fs->fs_fsmnt);
319 return (ENOSPC);
320}
321
322SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
323
324/*
325 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
326 *
327 * The vnode and an array of buffer pointers for a range of sequential
328 * logical blocks to be made contiguous is given. The allocator attempts
329 * to find a range of sequential blocks starting as close as possible to
330 * an fs_rotdelay offset from the end of the allocation for the logical
331 * block immediately preceeding the current range. If successful, the
332 * physical block numbers in the buffer pointers and in the inode are
333 * changed to reflect the new allocation. If unsuccessful, the allocation
334 * is left unchanged. The success in doing the reallocation is returned.
335 * Note that the error return is not reflected back to the user. Rather
336 * the previous block allocation will be used.
337 */
338static int doasyncfree = 1;
339SYSCTL_INT(_vfs_ffs, FFS_ASYNCFREE, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
340
341static int doreallocblks = 1;
342SYSCTL_INT(_vfs_ffs, FFS_REALLOCBLKS, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
343
344#ifdef DEBUG
345static volatile int prtrealloc = 0;
346#endif
347
348/*
349 * ffs_reallocblks(struct vnode *a_vp, struct cluster_save *a_buflist)
350 */
351int
352ffs_reallocblks(struct vop_reallocblks_args *ap)
353{
354 struct fs *fs;
355 struct inode *ip;
356 struct vnode *vp;
357 struct buf *sbp, *ebp;
358 ufs_daddr_t *bap, *sbap, *ebap = 0;
359 struct cluster_save *buflist;
360 ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
361#ifdef DIAGNOSTIC
362 off_t boffset;
363#endif
364 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
365 int i, len, slen, start_lvl, end_lvl, pref, ssize;
366
367 if (doreallocblks == 0)
368 return (ENOSPC);
369 vp = ap->a_vp;
370 ip = VTOI(vp);
371 fs = ip->i_fs;
372 if (fs->fs_contigsumsize <= 0)
373 return (ENOSPC);
374 buflist = ap->a_buflist;
375 len = buflist->bs_nchildren;
376 start_lbn = lblkno(fs, buflist->bs_children[0]->b_loffset);
377 end_lbn = start_lbn + len - 1;
378#ifdef DIAGNOSTIC
379 for (i = 0; i < len; i++)
380 if (!ffs_checkblk(ip,
381 dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize))
382 panic("ffs_reallocblks: unallocated block 1");
383 for (i = 1; i < len; i++) {
384 if (buflist->bs_children[i]->b_loffset != lblktodoff(fs, start_lbn) + lblktodoff(fs, i))
385 panic("ffs_reallocblks: non-logical cluster");
386 }
387 boffset = buflist->bs_children[0]->b_bio2.bio_offset;
388 ssize = (int)fsbtodoff(fs, fs->fs_frag);
389 for (i = 1; i < len - 1; i++)
390 if (buflist->bs_children[i]->b_bio2.bio_offset != boffset + (i * ssize))
391 panic("ffs_reallocblks: non-physical cluster %d", i);
392#endif
393 /*
394 * If the latest allocation is in a new cylinder group, assume that
395 * the filesystem has decided to move and do not force it back to
396 * the previous cylinder group.
397 */
398 if (dtog(fs, dofftofsb(fs, buflist->bs_children[0]->b_bio2.bio_offset)) !=
399 dtog(fs, dofftofsb(fs, buflist->bs_children[len - 1]->b_bio2.bio_offset)))
400 return (ENOSPC);
401 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
402 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
403 return (ENOSPC);
404 /*
405 * Get the starting offset and block map for the first block and
406 * the number of blocks that will fit into sbap starting at soff.
407 */
408 if (start_lvl == 0) {
409 sbap = &ip->i_db[0];
410 soff = start_lbn;
411 slen = NDADDR - soff;
412 } else {
413 idp = &start_ap[start_lvl - 1];
414 if (bread(vp, lblktodoff(fs, idp->in_lbn), (int)fs->fs_bsize, &sbp)) {
415 brelse(sbp);
416 return (ENOSPC);
417 }
418 sbap = (ufs_daddr_t *)sbp->b_data;
419 soff = idp->in_off;
420 slen = fs->fs_nindir - soff;
421 }
422 /*
423 * Find the preferred location for the cluster.
424 */
425 pref = ffs_blkpref(ip, start_lbn, soff, sbap);
426
427 /*
428 * If the block range spans two block maps, get the second map.
429 */
430 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
431 ssize = len;
432 } else {
433#ifdef DIAGNOSTIC
434 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
435 panic("ffs_reallocblk: start == end");
436#endif
437 ssize = len - (idp->in_off + 1);
438 if (bread(vp, lblktodoff(fs, idp->in_lbn), (int)fs->fs_bsize, &ebp))
439 goto fail;
440 ebap = (ufs_daddr_t *)ebp->b_data;
441 }
442
443 /*
444 * Make sure we aren't spanning more then two blockmaps. ssize is
445 * our calculation of the span we have to scan in the first blockmap,
446 * while slen is our calculation of the number of entries available
447 * in the first blockmap (from soff).
448 */
449 if (ssize > slen) {
450 panic("ffs_reallocblks: range spans more then two blockmaps!"
451 " start_lbn %ld len %d (%d/%d)",
452 (long)start_lbn, len, slen, ssize);
453 }
454 /*
455 * Search the block map looking for an allocation of the desired size.
456 */
457 if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
458 len, ffs_clusteralloc)) == 0)
459 goto fail;
460 /*
461 * We have found a new contiguous block.
462 *
463 * First we have to replace the old block pointers with the new
464 * block pointers in the inode and indirect blocks associated
465 * with the file.
466 */
467#ifdef DEBUG
468 if (prtrealloc)
469 kprintf("realloc: ino %ju, lbns %d-%d\n\told:",
470 (uintmax_t)ip->i_number, start_lbn, end_lbn);
471#endif
472 blkno = newblk;
473 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
474 if (i == ssize) {
475 bap = ebap;
476 soff = -i;
477 }
478#ifdef DIAGNOSTIC
479 if (!ffs_checkblk(ip,
480 dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize))
481 panic("ffs_reallocblks: unallocated block 2");
482 if (dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset) != *bap)
483 panic("ffs_reallocblks: alloc mismatch");
484#endif
485#ifdef DEBUG
486 if (prtrealloc)
487 kprintf(" %d,", *bap);
488#endif
489 if (DOINGSOFTDEP(vp)) {
490 if (sbap == &ip->i_db[0] && i < ssize)
491 softdep_setup_allocdirect(ip, start_lbn + i,
492 blkno, *bap, fs->fs_bsize, fs->fs_bsize,
493 buflist->bs_children[i]);
494 else
495 softdep_setup_allocindir_page(ip, start_lbn + i,
496 i < ssize ? sbp : ebp, soff + i, blkno,
497 *bap, buflist->bs_children[i]);
498 }
499 *bap++ = blkno;
500 }
501 /*
502 * Next we must write out the modified inode and indirect blocks.
503 * For strict correctness, the writes should be synchronous since
504 * the old block values may have been written to disk. In practise
505 * they are almost never written, but if we are concerned about
506 * strict correctness, the `doasyncfree' flag should be set to zero.
507 *
508 * The test on `doasyncfree' should be changed to test a flag
509 * that shows whether the associated buffers and inodes have
510 * been written. The flag should be set when the cluster is
511 * started and cleared whenever the buffer or inode is flushed.
512 * We can then check below to see if it is set, and do the
513 * synchronous write only when it has been cleared.
514 */
515 if (sbap != &ip->i_db[0]) {
516 if (doasyncfree)
517 bdwrite(sbp);
518 else
519 bwrite(sbp);
520 } else {
521 ip->i_flag |= IN_CHANGE | IN_UPDATE;
522 if (!doasyncfree)
523 ffs_update(vp, 1);
524 }
525 if (ssize < len) {
526 if (doasyncfree)
527 bdwrite(ebp);
528 else
529 bwrite(ebp);
530 }
531 /*
532 * Last, free the old blocks and assign the new blocks to the buffers.
533 */
534#ifdef DEBUG
535 if (prtrealloc)
536 kprintf("\n\tnew:");
537#endif
538 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
539 if (!DOINGSOFTDEP(vp))
540 ffs_blkfree(ip,
541 dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset),
542 fs->fs_bsize);
543 buflist->bs_children[i]->b_bio2.bio_offset = fsbtodoff(fs, blkno);
544#ifdef DIAGNOSTIC
545 if (!ffs_checkblk(ip,
546 dofftofsb(fs, buflist->bs_children[i]->b_bio2.bio_offset), fs->fs_bsize))
547 panic("ffs_reallocblks: unallocated block 3");
548#endif
549#ifdef DEBUG
550 if (prtrealloc)
551 kprintf(" %d,", blkno);
552#endif
553 }
554#ifdef DEBUG
555 if (prtrealloc) {
556 prtrealloc--;
557 kprintf("\n");
558 }
559#endif
560 return (0);
561
562fail:
563 if (ssize < len)
564 brelse(ebp);
565 if (sbap != &ip->i_db[0])
566 brelse(sbp);
567 return (ENOSPC);
568}
569
570/*
571 * Allocate an inode in the filesystem.
572 *
573 * If allocating a directory, use ffs_dirpref to select the inode.
574 * If allocating in a directory, the following hierarchy is followed:
575 * 1) allocate the preferred inode.
576 * 2) allocate an inode in the same cylinder group.
577 * 3) quadradically rehash into other cylinder groups, until an
578 * available inode is located.
579 * If no inode preference is given the following heirarchy is used
580 * to allocate an inode:
581 * 1) allocate an inode in cylinder group 0.
582 * 2) quadradically rehash into other cylinder groups, until an
583 * available inode is located.
584 */
585int
586ffs_valloc(struct vnode *pvp, int mode, struct ucred *cred, struct vnode **vpp)
587{
588 struct inode *pip;
589 struct fs *fs;
590 struct inode *ip;
591 ino_t ino, ipref;
592 int cg, error;
593
594 *vpp = NULL;
595 pip = VTOI(pvp);
596 fs = pip->i_fs;
597 if (fs->fs_cstotal.cs_nifree == 0)
598 goto noinodes;
599
600 if ((mode & IFMT) == IFDIR)
601 ipref = ffs_dirpref(pip);
602 else
603 ipref = pip->i_number;
604 if (ipref >= fs->fs_ncg * fs->fs_ipg)
605 ipref = 0;
606 cg = ino_to_cg(fs, ipref);
607 /*
608 * Track number of dirs created one after another
609 * in a same cg without intervening by files.
610 */
611 if ((mode & IFMT) == IFDIR) {
612 if (fs->fs_contigdirs[cg] < 255)
613 fs->fs_contigdirs[cg]++;
614 } else {
615 if (fs->fs_contigdirs[cg] > 0)
616 fs->fs_contigdirs[cg]--;
617 }
618 ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode,
619 (allocfcn_t *)ffs_nodealloccg);
620 if (ino == 0)
621 goto noinodes;
622 error = VFS_VGET(pvp->v_mount, NULL, ino, vpp);
623 if (error) {
624 ffs_vfree(pvp, ino, mode);
625 return (error);
626 }
627 ip = VTOI(*vpp);
628 if (ip->i_mode) {
629 kprintf("mode = 0%o, inum = %lu, fs = %s\n",
630 ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
631 panic("ffs_valloc: dup alloc");
632 }
633 if (ip->i_blocks) { /* XXX */
634 kprintf("free inode %s/%lu had %ld blocks\n",
635 fs->fs_fsmnt, (u_long)ino, (long)ip->i_blocks);
636 ip->i_blocks = 0;
637 }
638 ip->i_flags = 0;
639 /*
640 * Set up a new generation number for this inode.
641 */
642 if (ip->i_gen == 0 || ++ip->i_gen == 0)
643 ip->i_gen = krandom() / 2 + 1;
644 return (0);
645noinodes:
646 ffs_fserr(fs, cred->cr_uid, "out of inodes");
647 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
648 return (ENOSPC);
649}
650
651/*
652 * Find a cylinder group to place a directory.
653 *
654 * The policy implemented by this algorithm is to allocate a
655 * directory inode in the same cylinder group as its parent
656 * directory, but also to reserve space for its files inodes
657 * and data. Restrict the number of directories which may be
658 * allocated one after another in the same cylinder group
659 * without intervening allocation of files.
660 *
661 * If we allocate a first level directory then force allocation
662 * in another cylinder group.
663 */
664static ino_t
665ffs_dirpref(struct inode *pip)
666{
667 struct fs *fs;
668 int cg, prefcg, dirsize, cgsize;
669 int64_t dirsize64;
670 int avgifree, avgbfree, avgndir, curdirsize;
671 int minifree, minbfree, maxndir;
672 int mincg, minndir;
673 int maxcontigdirs;
674
675 fs = pip->i_fs;
676
677 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
678 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
679 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
680
681 /*
682 * Force allocation in another cg if creating a first level dir.
683 */
684 if (ITOV(pip)->v_flag & VROOT) {
685 prefcg = karc4random() % fs->fs_ncg;
686 mincg = prefcg;
687 minndir = fs->fs_ipg;
688 for (cg = prefcg; cg < fs->fs_ncg; cg++)
689 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
690 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
691 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
692 mincg = cg;
693 minndir = fs->fs_cs(fs, cg).cs_ndir;
694 }
695 for (cg = 0; cg < prefcg; cg++)
696 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
697 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
698 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
699 mincg = cg;
700 minndir = fs->fs_cs(fs, cg).cs_ndir;
701 }
702 return ((ino_t)(fs->fs_ipg * mincg));
703 }
704
705 /*
706 * Count various limits which used for
707 * optimal allocation of a directory inode.
708 */
709 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
710 minifree = avgifree - avgifree / 4;
711 if (minifree < 1)
712 minifree = 1;
713 minbfree = avgbfree - avgbfree / 4;
714 if (minbfree < 1)
715 minbfree = 1;
716 cgsize = fs->fs_fsize * fs->fs_fpg;
717
718 /*
719 * fs_avgfilesize and fs_avgfpdir are user-settable entities and
720 * multiplying them may overflow a 32 bit integer.
721 */
722 dirsize64 = fs->fs_avgfilesize * (int64_t)fs->fs_avgfpdir;
723 if (dirsize64 > 0x7fffffff) {
724 maxcontigdirs = 1;
725 } else {
726 dirsize = (int)dirsize64;
727 curdirsize = avgndir ?
728 (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
729 if (dirsize < curdirsize)
730 dirsize = curdirsize;
731 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
732 if (fs->fs_avgfpdir > 0)
733 maxcontigdirs = min(maxcontigdirs,
734 fs->fs_ipg / fs->fs_avgfpdir);
735 if (maxcontigdirs == 0)
736 maxcontigdirs = 1;
737 }
738
739 /*
740 * Limit number of dirs in one cg and reserve space for
741 * regular files, but only if we have no deficit in
742 * inodes or space.
743 */
744 prefcg = ino_to_cg(fs, pip->i_number);
745 for (cg = prefcg; cg < fs->fs_ncg; cg++)
746 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
747 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
748 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
749 if (fs->fs_contigdirs[cg] < maxcontigdirs)
750 return ((ino_t)(fs->fs_ipg * cg));
751 }
752 for (cg = 0; cg < prefcg; cg++)
753 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
754 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
755 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
756 if (fs->fs_contigdirs[cg] < maxcontigdirs)
757 return ((ino_t)(fs->fs_ipg * cg));
758 }
759 /*
760 * This is a backstop when we have deficit in space.
761 */
762 for (cg = prefcg; cg < fs->fs_ncg; cg++)
763 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
764 return ((ino_t)(fs->fs_ipg * cg));
765 for (cg = 0; cg < prefcg; cg++)
766 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
767 break;
768 return ((ino_t)(fs->fs_ipg * cg));
769}
770
771/*
772 * Select the desired position for the next block in a file. The file is
773 * logically divided into sections. The first section is composed of the
774 * direct blocks. Each additional section contains fs_maxbpg blocks.
775 *
776 * If no blocks have been allocated in the first section, the policy is to
777 * request a block in the same cylinder group as the inode that describes
778 * the file. If no blocks have been allocated in any other section, the
779 * policy is to place the section in a cylinder group with a greater than
780 * average number of free blocks. An appropriate cylinder group is found
781 * by using a rotor that sweeps the cylinder groups. When a new group of
782 * blocks is needed, the sweep begins in the cylinder group following the
783 * cylinder group from which the previous allocation was made. The sweep
784 * continues until a cylinder group with greater than the average number
785 * of free blocks is found. If the allocation is for the first block in an
786 * indirect block, the information on the previous allocation is unavailable;
787 * here a best guess is made based upon the logical block number being
788 * allocated.
789 *
790 * If a section is already partially allocated, the policy is to
791 * contiguously allocate fs_maxcontig blocks. The end of one of these
792 * contiguous blocks and the beginning of the next is physically separated
793 * so that the disk head will be in transit between them for at least
794 * fs_rotdelay milliseconds. This is to allow time for the processor to
795 * schedule another I/O transfer.
796 */
797ufs_daddr_t
798ffs_blkpref(struct inode *ip, ufs_daddr_t lbn, int indx, ufs_daddr_t *bap)
799{
800 struct fs *fs;
801 int cg;
802 int avgbfree, startcg;
803 ufs_daddr_t nextblk;
804
805 fs = ip->i_fs;
806 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
807 if (lbn < NDADDR + NINDIR(fs)) {
808 cg = ino_to_cg(fs, ip->i_number);
809 return (fs->fs_fpg * cg + fs->fs_frag);
810 }
811 /*
812 * Find a cylinder with greater than average number of
813 * unused data blocks.
814 */
815 if (indx == 0 || bap[indx - 1] == 0)
816 startcg =
817 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
818 else
819 startcg = dtog(fs, bap[indx - 1]) + 1;
820 startcg %= fs->fs_ncg;
821 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
822 for (cg = startcg; cg < fs->fs_ncg; cg++)
823 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
824 fs->fs_cgrotor = cg;
825 return (fs->fs_fpg * cg + fs->fs_frag);
826 }
827 for (cg = 0; cg <= startcg; cg++)
828 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
829 fs->fs_cgrotor = cg;
830 return (fs->fs_fpg * cg + fs->fs_frag);
831 }
832 return (0);
833 }
834 /*
835 * One or more previous blocks have been laid out. If less
836 * than fs_maxcontig previous blocks are contiguous, the
837 * next block is requested contiguously, otherwise it is
838 * requested rotationally delayed by fs_rotdelay milliseconds.
839 */
840 nextblk = bap[indx - 1] + fs->fs_frag;
841 if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig ||
842 bap[indx - fs->fs_maxcontig] +
843 blkstofrags(fs, fs->fs_maxcontig) != nextblk)
844 return (nextblk);
845 /*
846 * Here we convert ms of delay to frags as:
847 * (frags) = (ms) * (rev/sec) * (sect/rev) /
848 * ((sect/frag) * (ms/sec))
849 * then round up to the next block.
850 */
851 nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
852 (NSPF(fs) * 1000), fs->fs_frag);
853 return (nextblk);
854}
855
856/*
857 * Implement the cylinder overflow algorithm.
858 *
859 * The policy implemented by this algorithm is:
860 * 1) allocate the block in its requested cylinder group.
861 * 2) quadradically rehash on the cylinder group number.
862 * 3) brute force search for a free block.
863 */
864/*VARARGS5*/
865static u_long
866ffs_hashalloc(struct inode *ip, int cg, long pref,
867 int size, /* size for data blocks, mode for inodes */
868 allocfcn_t *allocator)
869{
870 struct fs *fs;
871 long result; /* XXX why not same type as we return? */
872 int i, icg = cg;
873
874 fs = ip->i_fs;
875 /*
876 * 1: preferred cylinder group
877 */
878 result = (*allocator)(ip, cg, pref, size);
879 if (result)
880 return (result);
881 /*
882 * 2: quadratic rehash
883 */
884 for (i = 1; i < fs->fs_ncg; i *= 2) {
885 cg += i;
886 if (cg >= fs->fs_ncg)
887 cg -= fs->fs_ncg;
888 result = (*allocator)(ip, cg, 0, size);
889 if (result)
890 return (result);
891 }
892 /*
893 * 3: brute force search
894 * Note that we start at i == 2, since 0 was checked initially,
895 * and 1 is always checked in the quadratic rehash.
896 */
897 cg = (icg + 2) % fs->fs_ncg;
898 for (i = 2; i < fs->fs_ncg; i++) {
899 result = (*allocator)(ip, cg, 0, size);
900 if (result)
901 return (result);
902 cg++;
903 if (cg == fs->fs_ncg)
904 cg = 0;
905 }
906 return (0);
907}
908
909/*
910 * Determine whether a fragment can be extended.
911 *
912 * Check to see if the necessary fragments are available, and
913 * if they are, allocate them.
914 */
915static ufs_daddr_t
916ffs_fragextend(struct inode *ip, int cg, long bprev, int osize, int nsize)
917{
918 struct fs *fs;
919 struct cg *cgp;
920 struct buf *bp;
921 long bno;
922 int frags, bbase;
923 int i, error;
924 uint8_t *blksfree;
925
926 fs = ip->i_fs;
927 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
928 return (0);
929 frags = numfrags(fs, nsize);
930 bbase = fragnum(fs, bprev);
931 if (bbase > fragnum(fs, (bprev + frags - 1))) {
932 /* cannot extend across a block boundary */
933 return (0);
934 }
935 KKASSERT(blknum(fs, bprev) == blknum(fs, bprev + frags - 1));
936 error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
937 (int)fs->fs_cgsize, &bp);
938 if (error) {
939 brelse(bp);
940 return (0);
941 }
942 cgp = (struct cg *)bp->b_data;
943 if (!cg_chkmagic(cgp)) {
944 brelse(bp);
945 return (0);
946 }
947 cgp->cg_time = time_second;
948 bno = dtogd(fs, bprev);
949 blksfree = cg_blksfree(cgp);
950 for (i = numfrags(fs, osize); i < frags; i++) {
951 if (isclr(blksfree, bno + i)) {
952 brelse(bp);
953 return (0);
954 }
955 }
956
957 /*
958 * the current fragment can be extended
959 * deduct the count on fragment being extended into
960 * increase the count on the remaining fragment (if any)
961 * allocate the extended piece
962 *
963 * ---oooooooooonnnnnnn111----
964 * [-----frags-----]
965 * ^ ^
966 * bbase fs_frag
967 */
968 for (i = frags; i < fs->fs_frag - bbase; i++) {
969 if (isclr(blksfree, bno + i))
970 break;
971 }
972
973 /*
974 * Size of original free frag is [i - numfrags(fs, osize)]
975 * Size of remaining free frag is [i - frags]
976 */
977 cgp->cg_frsum[i - numfrags(fs, osize)]--;
978 if (i != frags)
979 cgp->cg_frsum[i - frags]++;
980 for (i = numfrags(fs, osize); i < frags; i++) {
981 clrbit(blksfree, bno + i);
982 cgp->cg_cs.cs_nffree--;
983 fs->fs_cstotal.cs_nffree--;
984 fs->fs_cs(fs, cg).cs_nffree--;
985 }
986 fs->fs_fmod = 1;
987 if (DOINGSOFTDEP(ITOV(ip)))
988 softdep_setup_blkmapdep(bp, fs, bprev);
989 bdwrite(bp);
990 return (bprev);
991}
992
993/*
994 * Determine whether a block can be allocated.
995 *
996 * Check to see if a block of the appropriate size is available,
997 * and if it is, allocate it.
998 */
999static ufs_daddr_t
1000ffs_alloccg(struct inode *ip, int cg, ufs_daddr_t bpref, int size)
1001{
1002 struct fs *fs;
1003 struct cg *cgp;
1004 struct buf *bp;
1005 int i;
1006 ufs_daddr_t bno, blkno;
1007 int allocsiz, error, frags;
1008 uint8_t *blksfree;
1009
1010 fs = ip->i_fs;
1011 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1012 return (0);
1013 error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1014 (int)fs->fs_cgsize, &bp);
1015 if (error) {
1016 brelse(bp);
1017 return (0);
1018 }
1019 cgp = (struct cg *)bp->b_data;
1020 if (!cg_chkmagic(cgp) ||
1021 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1022 brelse(bp);
1023 return (0);
1024 }
1025 cgp->cg_time = time_second;
1026 if (size == fs->fs_bsize) {
1027 bno = ffs_alloccgblk(ip, bp, bpref);
1028 bdwrite(bp);
1029 return (bno);
1030 }
1031 /*
1032 * Check to see if any fragments of sufficient size are already
1033 * available. Fit the data into a larger fragment if necessary,
1034 * before allocating a whole new block.
1035 */
1036 blksfree = cg_blksfree(cgp);
1037 frags = numfrags(fs, size);
1038 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) {
1039 if (cgp->cg_frsum[allocsiz] != 0)
1040 break;
1041 }
1042 if (allocsiz == fs->fs_frag) {
1043 /*
1044 * No fragments were available, allocate a whole block and
1045 * cut the requested fragment (of size frags) out of it.
1046 */
1047 if (cgp->cg_cs.cs_nbfree == 0) {
1048 brelse(bp);
1049 return (0);
1050 }
1051 bno = ffs_alloccgblk(ip, bp, bpref);
1052 bpref = dtogd(fs, bno);
1053 for (i = frags; i < fs->fs_frag; i++)
1054 setbit(blksfree, bpref + i);
1055
1056 /*
1057 * Calculate the number of free frags still remaining after
1058 * we have cut out the requested allocation. Indicate that
1059 * a fragment of that size is now available for future
1060 * allocation.
1061 */
1062 i = fs->fs_frag - frags;
1063 cgp->cg_cs.cs_nffree += i;
1064 fs->fs_cstotal.cs_nffree += i;
1065 fs->fs_cs(fs, cg).cs_nffree += i;
1066 fs->fs_fmod = 1;
1067 cgp->cg_frsum[i]++;
1068 bdwrite(bp);
1069 return (bno);
1070 }
1071
1072 /*
1073 * cg_frsum[] has told us that a free fragment of allocsiz size is
1074 * available. Find it, then clear the bitmap bits associated with
1075 * the size we want.
1076 */
1077 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1078 if (bno < 0) {
1079 brelse(bp);
1080 return (0);
1081 }
1082 for (i = 0; i < frags; i++)
1083 clrbit(blksfree, bno + i);
1084 cgp->cg_cs.cs_nffree -= frags;
1085 fs->fs_cstotal.cs_nffree -= frags;
1086 fs->fs_cs(fs, cg).cs_nffree -= frags;
1087 fs->fs_fmod = 1;
1088
1089 /*
1090 * Account for the allocation. The original searched size that we
1091 * found is no longer available. If we cut out a smaller piece then
1092 * a smaller fragment is now available.
1093 */
1094 cgp->cg_frsum[allocsiz]--;
1095 if (frags != allocsiz)
1096 cgp->cg_frsum[allocsiz - frags]++;
1097 blkno = cg * fs->fs_fpg + bno;
1098 if (DOINGSOFTDEP(ITOV(ip)))
1099 softdep_setup_blkmapdep(bp, fs, blkno);
1100 bdwrite(bp);
1101 return ((u_long)blkno);
1102}
1103
1104/*
1105 * Allocate a block in a cylinder group.
1106 *
1107 * This algorithm implements the following policy:
1108 * 1) allocate the requested block.
1109 * 2) allocate a rotationally optimal block in the same cylinder.
1110 * 3) allocate the next available block on the block rotor for the
1111 * specified cylinder group.
1112 * Note that this routine only allocates fs_bsize blocks; these
1113 * blocks may be fragmented by the routine that allocates them.
1114 */
1115static ufs_daddr_t
1116ffs_alloccgblk(struct inode *ip, struct buf *bp, ufs_daddr_t bpref)
1117{
1118 struct fs *fs;
1119 struct cg *cgp;
1120 ufs_daddr_t bno, blkno;
1121 int cylno, pos, delta;
1122 short *cylbp;
1123 int i;
1124 uint8_t *blksfree;
1125
1126 fs = ip->i_fs;
1127 cgp = (struct cg *)bp->b_data;
1128 blksfree = cg_blksfree(cgp);
1129 if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1130 bpref = cgp->cg_rotor;
1131 goto norot;
1132 }
1133 bpref = blknum(fs, bpref);
1134 bpref = dtogd(fs, bpref);
1135 /*
1136 * if the requested block is available, use it
1137 */
1138 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bpref))) {
1139 bno = bpref;
1140 goto gotit;
1141 }
1142 if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1143 /*
1144 * Block layout information is not available.
1145 * Leaving bpref unchanged means we take the
1146 * next available free block following the one
1147 * we just allocated. Hopefully this will at
1148 * least hit a track cache on drives of unknown
1149 * geometry (e.g. SCSI).
1150 */
1151 goto norot;
1152 }
1153 /*
1154 * check for a block available on the same cylinder
1155 */
1156 cylno = cbtocylno(fs, bpref);
1157 if (cg_blktot(cgp)[cylno] == 0)
1158 goto norot;
1159 /*
1160 * check the summary information to see if a block is
1161 * available in the requested cylinder starting at the
1162 * requested rotational position and proceeding around.
1163 */
1164 cylbp = cg_blks(fs, cgp, cylno);
1165 pos = cbtorpos(fs, bpref);
1166 for (i = pos; i < fs->fs_nrpos; i++)
1167 if (cylbp[i] > 0)
1168 break;
1169 if (i == fs->fs_nrpos)
1170 for (i = 0; i < pos; i++)
1171 if (cylbp[i] > 0)
1172 break;
1173 if (cylbp[i] > 0) {
1174 /*
1175 * found a rotational position, now find the actual
1176 * block. A panic if none is actually there.
1177 */
1178 pos = cylno % fs->fs_cpc;
1179 bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1180 if (fs_postbl(fs, pos)[i] == -1) {
1181 kprintf("pos = %d, i = %d, fs = %s\n",
1182 pos, i, fs->fs_fsmnt);
1183 panic("ffs_alloccgblk: cyl groups corrupted");
1184 }
1185 for (i = fs_postbl(fs, pos)[i];; ) {
1186 if (ffs_isblock(fs, blksfree, bno + i)) {
1187 bno = blkstofrags(fs, (bno + i));
1188 goto gotit;
1189 }
1190 delta = fs_rotbl(fs)[i];
1191 if (delta <= 0 ||
1192 delta + i > fragstoblks(fs, fs->fs_fpg))
1193 break;
1194 i += delta;
1195 }
1196 kprintf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1197 panic("ffs_alloccgblk: can't find blk in cyl");
1198 }
1199norot:
1200 /*
1201 * no blocks in the requested cylinder, so take next
1202 * available one in this cylinder group.
1203 */
1204 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1205 if (bno < 0)
1206 return (0);
1207 cgp->cg_rotor = bno;
1208gotit:
1209 blkno = fragstoblks(fs, bno);
1210 ffs_clrblock(fs, blksfree, (long)blkno);
1211 ffs_clusteracct(fs, cgp, blkno, -1);
1212 cgp->cg_cs.cs_nbfree--;
1213 fs->fs_cstotal.cs_nbfree--;
1214 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1215 cylno = cbtocylno(fs, bno);
1216 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1217 cg_blktot(cgp)[cylno]--;
1218 fs->fs_fmod = 1;
1219 blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1220 if (DOINGSOFTDEP(ITOV(ip)))
1221 softdep_setup_blkmapdep(bp, fs, blkno);
1222 return (blkno);
1223}
1224
1225/*
1226 * Determine whether a cluster can be allocated.
1227 *
1228 * We do not currently check for optimal rotational layout if there
1229 * are multiple choices in the same cylinder group. Instead we just
1230 * take the first one that we find following bpref.
1231 */
1232static ufs_daddr_t
1233ffs_clusteralloc(struct inode *ip, int cg, ufs_daddr_t bpref, int len)
1234{
1235 struct fs *fs;
1236 struct cg *cgp;
1237 struct buf *bp;
1238 int i, got, run, bno, bit, map;
1239 u_char *mapp;
1240 int32_t *lp;
1241 uint8_t *blksfree;
1242
1243 fs = ip->i_fs;
1244 if (fs->fs_maxcluster[cg] < len)
1245 return (0);
1246 if (bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1247 (int)fs->fs_cgsize, &bp)) {
1248 goto fail;
1249 }
1250 cgp = (struct cg *)bp->b_data;
1251 if (!cg_chkmagic(cgp))
1252 goto fail;
1253
1254 /*
1255 * Check to see if a cluster of the needed size (or bigger) is
1256 * available in this cylinder group.
1257 */
1258 lp = &cg_clustersum(cgp)[len];
1259 for (i = len; i <= fs->fs_contigsumsize; i++)
1260 if (*lp++ > 0)
1261 break;
1262 if (i > fs->fs_contigsumsize) {
1263 /*
1264 * This is the first time looking for a cluster in this
1265 * cylinder group. Update the cluster summary information
1266 * to reflect the true maximum sized cluster so that
1267 * future cluster allocation requests can avoid reading
1268 * the cylinder group map only to find no clusters.
1269 */
1270 lp = &cg_clustersum(cgp)[len - 1];
1271 for (i = len - 1; i > 0; i--)
1272 if (*lp-- > 0)
1273 break;
1274 fs->fs_maxcluster[cg] = i;
1275 goto fail;
1276 }
1277 /*
1278 * Search the cluster map to find a big enough cluster.
1279 * We take the first one that we find, even if it is larger
1280 * than we need as we prefer to get one close to the previous
1281 * block allocation. We do not search before the current
1282 * preference point as we do not want to allocate a block
1283 * that is allocated before the previous one (as we will
1284 * then have to wait for another pass of the elevator
1285 * algorithm before it will be read). We prefer to fail and
1286 * be recalled to try an allocation in the next cylinder group.
1287 */
1288 if (dtog(fs, bpref) != cg)
1289 bpref = 0;
1290 else
1291 bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1292 mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1293 map = *mapp++;
1294 bit = 1 << (bpref % NBBY);
1295 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1296 if ((map & bit) == 0) {
1297 run = 0;
1298 } else {
1299 run++;
1300 if (run == len)
1301 break;
1302 }
1303 if ((got & (NBBY - 1)) != (NBBY - 1)) {
1304 bit <<= 1;
1305 } else {
1306 map = *mapp++;
1307 bit = 1;
1308 }
1309 }
1310 if (got >= cgp->cg_nclusterblks)
1311 goto fail;
1312 /*
1313 * Allocate the cluster that we have found.
1314 */
1315 blksfree = cg_blksfree(cgp);
1316 for (i = 1; i <= len; i++) {
1317 if (!ffs_isblock(fs, blksfree, got - run + i))
1318 panic("ffs_clusteralloc: map mismatch");
1319 }
1320 bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1321 if (dtog(fs, bno) != cg)
1322 panic("ffs_clusteralloc: allocated out of group");
1323 len = blkstofrags(fs, len);
1324 for (i = 0; i < len; i += fs->fs_frag) {
1325 if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1326 panic("ffs_clusteralloc: lost block");
1327 }
1328 bdwrite(bp);
1329 return (bno);
1330
1331fail:
1332 brelse(bp);
1333 return (0);
1334}
1335
1336/*
1337 * Determine whether an inode can be allocated.
1338 *
1339 * Check to see if an inode is available, and if it is,
1340 * allocate it using the following policy:
1341 * 1) allocate the requested inode.
1342 * 2) allocate the next available inode after the requested
1343 * inode in the specified cylinder group.
1344 * 3) the inode must not already be in the inode hash table. We
1345 * can encounter such a case because the vnode reclamation sequence
1346 * frees the bit
1347 * 3) the inode must not already be in the inode hash, otherwise it
1348 * may be in the process of being deallocated. This can occur
1349 * because the bitmap is updated before the inode is removed from
1350 * hash. If we were to reallocate the inode the caller could wind
1351 * up returning a vnode/inode combination which is in an indeterminate
1352 * state.
1353 */
1354static ino_t
1355ffs_nodealloccg(struct inode *ip, int cg, ufs_daddr_t ipref, int mode)
1356{
1357 struct fs *fs;
1358 struct cg *cgp;
1359 struct buf *bp;
1360 uint8_t *inosused;
1361 uint8_t map;
1362 int error, len, arraysize, i;
1363 int icheckmiss;
1364 ufs_daddr_t ibase;
1365
1366 fs = ip->i_fs;
1367 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1368 return (0);
1369 error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1370 (int)fs->fs_cgsize, &bp);
1371 if (error) {
1372 brelse(bp);
1373 return (0);
1374 }
1375 cgp = (struct cg *)bp->b_data;
1376 if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1377 brelse(bp);
1378 return (0);
1379 }
1380 inosused = cg_inosused(cgp);
1381 icheckmiss = 0;
1382
1383 /*
1384 * Quick check, reuse the most recently free inode or continue
1385 * a scan from where we left off the last time.
1386 */
1387 ibase = cg * fs->fs_ipg;
1388 if (ipref) {
1389 ipref %= fs->fs_ipg;
1390 if (isclr(inosused, ipref)) {
1391 if (ufs_ihashcheck(ip->i_dev, ibase + ipref) == 0)
1392 goto gotit;
1393 }
1394 }
1395
1396 /*
1397 * Scan the inode bitmap starting at irotor, be sure to handle
1398 * the edge case by going back to the beginning of the array.
1399 *
1400 * If the number of inodes is not byte-aligned, the unused bits
1401 * should be set to 1. This will be sanity checked in gotit. Note
1402 * that we have to be sure not to overlap the beginning and end
1403 * when irotor is in the middle of a byte as this will cause the
1404 * same bitmap byte to be checked twice. To solve this problem we
1405 * just convert everything to a byte index for the loop.
1406 */
1407 ipref = (cgp->cg_irotor % fs->fs_ipg) >> 3; /* byte index */
1408 len = (fs->fs_ipg + 7) >> 3; /* byte size */
1409 arraysize = len;
1410
1411 while (len > 0) {
1412 map = inosused[ipref];
1413 if (map != 255) {
1414 for (i = 0; i < NBBY; ++i) {
1415 /*
1416 * If we find a free bit we have to make sure
1417 * that the inode is not in the middle of
1418 * being destroyed. The inode should not exist
1419 * in the inode hash.
1420 *
1421 * Adjust the rotor to try to hit the
1422 * quick-check up above.
1423 */
1424 if ((map & (1 << i)) == 0) {
1425 if (ufs_ihashcheck(ip->i_dev, ibase + (ipref << 3) + i) == 0) {
1426 ipref = (ipref << 3) + i;
1427 cgp->cg_irotor = (ipref + 1) % fs->fs_ipg;
1428 goto gotit;
1429 }
1430 ++icheckmiss;
1431 }
1432 }
1433 }
1434
1435 /*
1436 * Setup for the next byte, start at the beginning again if
1437 * we hit the end of the array.
1438 */
1439 if (++ipref == arraysize)
1440 ipref = 0;
1441 --len;
1442 }
1443 if (icheckmiss == cgp->cg_cs.cs_nifree) {
1444 brelse(bp);
1445 return(0);
1446 }
1447 kprintf("fs = %s\n", fs->fs_fsmnt);
1448 panic("ffs_nodealloccg: block not in map, icheckmiss/nfree %d/%d",
1449 icheckmiss, cgp->cg_cs.cs_nifree);
1450 /* NOTREACHED */
1451
1452 /*
1453 * ipref is a bit index as of the gotit label.
1454 */
1455gotit:
1456 KKASSERT(ipref >= 0 && ipref < fs->fs_ipg);
1457 cgp->cg_time = time_second;
1458 if (DOINGSOFTDEP(ITOV(ip)))
1459 softdep_setup_inomapdep(bp, ip, ibase + ipref);
1460 setbit(inosused, ipref);
1461 cgp->cg_cs.cs_nifree--;
1462 fs->fs_cstotal.cs_nifree--;
1463 fs->fs_cs(fs, cg).cs_nifree--;
1464 fs->fs_fmod = 1;
1465 if ((mode & IFMT) == IFDIR) {
1466 cgp->cg_cs.cs_ndir++;
1467 fs->fs_cstotal.cs_ndir++;
1468 fs->fs_cs(fs, cg).cs_ndir++;
1469 }
1470 bdwrite(bp);
1471 return (ibase + ipref);
1472}
1473
1474/*
1475 * Free a block or fragment.
1476 *
1477 * The specified block or fragment is placed back in the
1478 * free map. If a fragment is deallocated, a possible
1479 * block reassembly is checked.
1480 */
1481void
1482ffs_blkfree_cg(struct fs * fs, struct vnode * i_devvp, cdev_t i_dev, ino_t i_number,
1483 uint32_t i_din_uid, ufs_daddr_t bno, long size)
1484{
1485 struct cg *cgp;
1486 struct buf *bp;
1487 ufs_daddr_t blkno;
1488 int i, error, cg, blk, frags, bbase;
1489 uint8_t *blksfree;
1490
1491 VOP_FREEBLKS(i_devvp, fsbtodoff(fs, bno), size);
1492 if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1493 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1494 kprintf("dev=%s, bno = %ld, bsize = %ld, size = %ld, fs = %s\n",
1495 devtoname(i_dev), (long)bno, (long)fs->fs_bsize, size,
1496 fs->fs_fsmnt);
1497 panic("ffs_blkfree: bad size");
1498 }
1499 cg = dtog(fs, bno);
1500 if ((uint)bno >= fs->fs_size) {
1501 kprintf("bad block %ld, ino %lu\n",
1502 (long)bno, (u_long)i_number);
1503 ffs_fserr(fs, i_din_uid, "bad block");
1504 return;
1505 }
1506
1507 /*
1508 * Load the cylinder group
1509 */
1510 error = bread(i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1511 (int)fs->fs_cgsize, &bp);
1512 if (error) {
1513 brelse(bp);
1514 return;
1515 }
1516 cgp = (struct cg *)bp->b_data;
1517 if (!cg_chkmagic(cgp)) {
1518 brelse(bp);
1519 return;
1520 }
1521 cgp->cg_time = time_second;
1522 bno = dtogd(fs, bno);
1523 blksfree = cg_blksfree(cgp);
1524
1525 if (size == fs->fs_bsize) {
1526 /*
1527 * Free a whole block
1528 */
1529 blkno = fragstoblks(fs, bno);
1530 if (!ffs_isfreeblock(fs, blksfree, blkno)) {
1531 kprintf("dev = %s, block = %ld, fs = %s\n",
1532 devtoname(i_dev), (long)bno, fs->fs_fsmnt);
1533 panic("ffs_blkfree: freeing free block");
1534 }
1535 ffs_setblock(fs, blksfree, blkno);
1536 ffs_clusteracct(fs, cgp, blkno, 1);
1537 cgp->cg_cs.cs_nbfree++;
1538 fs->fs_cstotal.cs_nbfree++;
1539 fs->fs_cs(fs, cg).cs_nbfree++;
1540 i = cbtocylno(fs, bno);
1541 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1542 cg_blktot(cgp)[i]++;
1543 } else {
1544 /*
1545 * Free a fragment within a block.
1546 *
1547 * bno is the starting block number of the fragment being
1548 * freed.
1549 *
1550 * bbase is the starting block number for the filesystem
1551 * block containing the fragment.
1552 *
1553 * blk is the current bitmap for the fragments within the
1554 * filesystem block containing the fragment.
1555 *
1556 * frags is the number of fragments being freed
1557 *
1558 * Call ffs_fragacct() to account for the removal of all
1559 * current fragments, then adjust the bitmap to free the
1560 * requested fragment, and finally call ffs_fragacct() again
1561 * to regenerate the accounting.
1562 */
1563 bbase = bno - fragnum(fs, bno);
1564 blk = blkmap(fs, blksfree, bbase);
1565 ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1566 frags = numfrags(fs, size);
1567 for (i = 0; i < frags; i++) {
1568 if (isset(blksfree, bno + i)) {
1569 kprintf("dev = %s, block = %ld, fs = %s\n",
1570 devtoname(i_dev), (long)(bno + i),
1571 fs->fs_fsmnt);
1572 panic("ffs_blkfree: freeing free frag");
1573 }
1574 setbit(blksfree, bno + i);
1575 }
1576 cgp->cg_cs.cs_nffree += i;
1577 fs->fs_cstotal.cs_nffree += i;
1578 fs->fs_cs(fs, cg).cs_nffree += i;
1579
1580 /*
1581 * Add back in counts associated with the new frags
1582 */
1583 blk = blkmap(fs, blksfree, bbase);
1584 ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1585
1586 /*
1587 * If a complete block has been reassembled, account for it
1588 */
1589 blkno = fragstoblks(fs, bbase);
1590 if (ffs_isblock(fs, blksfree, blkno)) {
1591 cgp->cg_cs.cs_nffree -= fs->fs_frag;
1592 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1593 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1594 ffs_clusteracct(fs, cgp, blkno, 1);
1595 cgp->cg_cs.cs_nbfree++;
1596 fs->fs_cstotal.cs_nbfree++;
1597 fs->fs_cs(fs, cg).cs_nbfree++;
1598 i = cbtocylno(fs, bbase);
1599 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1600 cg_blktot(cgp)[i]++;
1601 }
1602 }
1603 fs->fs_fmod = 1;
1604 bdwrite(bp);
1605}
1606
1607struct ffs_blkfree_trim_params {
1608 struct task task;
1609 ufs_daddr_t bno;
1610 long size;
1611
1612 /*
1613 * With TRIM, inode pointer is gone in the callback but we still need
1614 * the following fields for ffs_blkfree_cg()
1615 */
1616 struct vnode *i_devvp;
1617 struct fs *i_fs;
1618 cdev_t i_dev;
1619 ino_t i_number;
1620 uint32_t i_din_uid;
1621};
1622
1623
1624static void
1625ffs_blkfree_trim_task(void *ctx, int pending)
1626{
1627 struct ffs_blkfree_trim_params *tp;
1628
1629 tp = ctx;
1630 ffs_blkfree_cg(tp->i_fs, tp->i_devvp, tp->i_dev, tp->i_number,
1631 tp->i_din_uid, tp->bno, tp->size);
1632 kfree(tp, M_TEMP);
1633}
1634
1635
1636
1637static void
1638ffs_blkfree_trim_completed(struct bio *biop)
1639{
1640 struct buf *bp = biop->bio_buf;
1641 struct ffs_blkfree_trim_params *tp;
1642
1643 tp = bp->b_bio1.bio_caller_info1.ptr;
1644 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
1645 tp = biop->bio_caller_info1.ptr;
1646 taskqueue_enqueue(taskqueue_swi, &tp->task);
1647 biodone(biop);
1648}
1649
1650
1651/*
1652 * If TRIM is enabled, we TRIM the blocks first then free them. We do this
1653 * after TRIM is finished and the callback handler is called. The logic here
1654 * is that we free the blocks before updating the bitmap so that we don't
1655 * reuse a block before we actually trim it, which would result in trimming
1656 * a valid block.
1657 */
1658void
1659ffs_blkfree(struct inode *ip, ufs_daddr_t bno, long size)
1660{
1661 struct ufsmount *ump = VFSTOUFS(ITOV(ip)->v_mount);;
1662 struct ffs_blkfree_trim_params *tp;
1663
1664 if (!(ump->um_mountp->mnt_flag & MNT_TRIM)) {
1665 ffs_blkfree_cg(ip->i_fs, ip->i_devvp,ip->i_dev,ip->i_number,
1666 ip->i_uid, bno, size);
1667 return;
1668 }
1669
1670 struct buf *bp;
1671
1672 tp = kmalloc(sizeof(struct ffs_blkfree_trim_params), M_TEMP, M_WAITOK);
1673 tp->bno = bno;
1674 tp->i_fs= ip->i_fs;
1675 tp->i_devvp = ip->i_devvp;
1676 tp->i_dev = ip->i_dev;
1677 tp->i_din_uid = ip->i_uid;
1678 tp->i_number = ip->i_number;
1679 tp->size = size;
1680
1681 bp = getnewbuf(0,0,0,1);
1682 BUF_KERNPROC(bp);
1683 bp->b_cmd = BUF_CMD_FREEBLKS;
1684 bp->b_bio1.bio_offset = fsbtodoff(ip->i_fs, bno);
1685 bp->b_bcount = size;
1686 bp->b_bio1.bio_caller_info1.ptr = tp;
1687 bp->b_bio1.bio_done = ffs_blkfree_trim_completed;
1688 vn_strategy(ip->i_devvp, &bp->b_bio1);
1689}
1690
1691#ifdef DIAGNOSTIC
1692/*
1693 * Verify allocation of a block or fragment. Returns true if block or
1694 * fragment is allocated, false if it is free.
1695 */
1696static int
1697ffs_checkblk(struct inode *ip, ufs_daddr_t bno, long size)
1698{
1699 struct fs *fs;
1700 struct cg *cgp;
1701 struct buf *bp;
1702 int i, error, frags, free;
1703 uint8_t *blksfree;
1704
1705 fs = ip->i_fs;
1706 if ((uint)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1707 kprintf("bsize = %ld, size = %ld, fs = %s\n",
1708 (long)fs->fs_bsize, size, fs->fs_fsmnt);
1709 panic("ffs_checkblk: bad size");
1710 }
1711 if ((uint)bno >= fs->fs_size)
1712 panic("ffs_checkblk: bad block %d", bno);
1713 error = bread(ip->i_devvp, fsbtodoff(fs, cgtod(fs, dtog(fs, bno))),
1714 (int)fs->fs_cgsize, &bp);
1715 if (error)
1716 panic("ffs_checkblk: cg bread failed");
1717 cgp = (struct cg *)bp->b_data;
1718 if (!cg_chkmagic(cgp))
1719 panic("ffs_checkblk: cg magic mismatch");
1720 blksfree = cg_blksfree(cgp);
1721 bno = dtogd(fs, bno);
1722 if (size == fs->fs_bsize) {
1723 free = ffs_isblock(fs, blksfree, fragstoblks(fs, bno));
1724 } else {
1725 frags = numfrags(fs, size);
1726 for (free = 0, i = 0; i < frags; i++)
1727 if (isset(blksfree, bno + i))
1728 free++;
1729 if (free != 0 && free != frags)
1730 panic("ffs_checkblk: partially free fragment");
1731 }
1732 brelse(bp);
1733 return (!free);
1734}
1735#endif /* DIAGNOSTIC */
1736
1737/*
1738 * Free an inode.
1739 */
1740int
1741ffs_vfree(struct vnode *pvp, ino_t ino, int mode)
1742{
1743 if (DOINGSOFTDEP(pvp)) {
1744 softdep_freefile(pvp, ino, mode);
1745 return (0);
1746 }
1747 return (ffs_freefile(pvp, ino, mode));
1748}
1749
1750/*
1751 * Do the actual free operation.
1752 * The specified inode is placed back in the free map.
1753 */
1754int
1755ffs_freefile(struct vnode *pvp, ino_t ino, int mode)
1756{
1757 struct fs *fs;
1758 struct cg *cgp;
1759 struct inode *pip;
1760 struct buf *bp;
1761 int error, cg;
1762 uint8_t *inosused;
1763
1764 pip = VTOI(pvp);
1765 fs = pip->i_fs;
1766 if ((uint)ino >= fs->fs_ipg * fs->fs_ncg)
1767 panic("ffs_vfree: range: dev = (%d,%d), ino = %"PRId64", fs = %s",
1768 major(pip->i_dev), minor(pip->i_dev), ino, fs->fs_fsmnt);
1769 cg = ino_to_cg(fs, ino);
1770 error = bread(pip->i_devvp, fsbtodoff(fs, cgtod(fs, cg)),
1771 (int)fs->fs_cgsize, &bp);
1772 if (error) {
1773 brelse(bp);
1774 return (error);
1775 }
1776 cgp = (struct cg *)bp->b_data;
1777 if (!cg_chkmagic(cgp)) {
1778 brelse(bp);
1779 return (0);
1780 }
1781 cgp->cg_time = time_second;
1782 inosused = cg_inosused(cgp);
1783 ino %= fs->fs_ipg;
1784 if (isclr(inosused, ino)) {
1785 kprintf("dev = %s, ino = %lu, fs = %s\n",
1786 devtoname(pip->i_dev), (u_long)ino, fs->fs_fsmnt);
1787 if (fs->fs_ronly == 0)
1788 panic("ffs_vfree: freeing free inode");
1789 }
1790 clrbit(inosused, ino);
1791 if (ino < cgp->cg_irotor)
1792 cgp->cg_irotor = ino;
1793 cgp->cg_cs.cs_nifree++;
1794 fs->fs_cstotal.cs_nifree++;
1795 fs->fs_cs(fs, cg).cs_nifree++;
1796 if ((mode & IFMT) == IFDIR) {
1797 cgp->cg_cs.cs_ndir--;
1798 fs->fs_cstotal.cs_ndir--;
1799 fs->fs_cs(fs, cg).cs_ndir--;
1800 }
1801 fs->fs_fmod = 1;
1802 bdwrite(bp);
1803 return (0);
1804}
1805
1806/*
1807 * Find a block of the specified size in the specified cylinder group.
1808 *
1809 * It is a panic if a request is made to find a block if none are
1810 * available.
1811 */
1812static ufs_daddr_t
1813ffs_mapsearch(struct fs *fs, struct cg *cgp, ufs_daddr_t bpref, int allocsiz)
1814{
1815 ufs_daddr_t bno;
1816 int start, len, loc, i;
1817 int blk, field, subfield, pos;
1818 uint8_t *blksfree;
1819
1820 /*
1821 * find the fragment by searching through the free block
1822 * map for an appropriate bit pattern.
1823 */
1824 if (bpref)
1825 start = dtogd(fs, bpref) / NBBY;
1826 else
1827 start = cgp->cg_frotor / NBBY;
1828 blksfree = cg_blksfree(cgp);
1829 len = howmany(fs->fs_fpg, NBBY) - start;
1830 loc = scanc((uint)len, (u_char *)&blksfree[start],
1831 (u_char *)fragtbl[fs->fs_frag],
1832 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1833 if (loc == 0) {
1834 len = start + 1; /* XXX why overlap here? */
1835 start = 0;
1836 loc = scanc((uint)len, (u_char *)&blksfree[0],
1837 (u_char *)fragtbl[fs->fs_frag],
1838 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1839 if (loc == 0) {
1840 kprintf("start = %d, len = %d, fs = %s\n",
1841 start, len, fs->fs_fsmnt);
1842 panic("ffs_alloccg: map corrupted");
1843 /* NOTREACHED */
1844 }
1845 }
1846 bno = (start + len - loc) * NBBY;
1847 cgp->cg_frotor = bno;
1848 /*
1849 * found the byte in the map
1850 * sift through the bits to find the selected frag
1851 */
1852 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1853 blk = blkmap(fs, blksfree, bno);
1854 blk <<= 1;
1855 field = around[allocsiz];
1856 subfield = inside[allocsiz];
1857 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1858 if ((blk & field) == subfield)
1859 return (bno + pos);
1860 field <<= 1;
1861 subfield <<= 1;
1862 }
1863 }
1864 kprintf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
1865 panic("ffs_alloccg: block not in map");
1866 return (-1);
1867}
1868
1869/*
1870 * Update the cluster map because of an allocation or free.
1871 *
1872 * Cnt == 1 means free; cnt == -1 means allocating.
1873 */
1874static void
1875ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs_daddr_t blkno, int cnt)
1876{
1877 int32_t *sump;
1878 int32_t *lp;
1879 u_char *freemapp, *mapp;
1880 int i, start, end, forw, back, map, bit;
1881
1882 if (fs->fs_contigsumsize <= 0)
1883 return;
1884 freemapp = cg_clustersfree(cgp);
1885 sump = cg_clustersum(cgp);
1886 /*
1887 * Allocate or clear the actual block.
1888 */
1889 if (cnt > 0)
1890 setbit(freemapp, blkno);
1891 else
1892 clrbit(freemapp, blkno);
1893 /*
1894 * Find the size of the cluster going forward.
1895 */
1896 start = blkno + 1;
1897 end = start + fs->fs_contigsumsize;
1898 if (end >= cgp->cg_nclusterblks)
1899 end = cgp->cg_nclusterblks;
1900 mapp = &freemapp[start / NBBY];
1901 map = *mapp++;
1902 bit = 1 << (start % NBBY);
1903 for (i = start; i < end; i++) {
1904 if ((map & bit) == 0)
1905 break;
1906 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1907 bit <<= 1;
1908 } else {
1909 map = *mapp++;
1910 bit = 1;
1911 }
1912 }
1913 forw = i - start;
1914 /*
1915 * Find the size of the cluster going backward.
1916 */
1917 start = blkno - 1;
1918 end = start - fs->fs_contigsumsize;
1919 if (end < 0)
1920 end = -1;
1921 mapp = &freemapp[start / NBBY];
1922 map = *mapp--;
1923 bit = 1 << (start % NBBY);
1924 for (i = start; i > end; i--) {
1925 if ((map & bit) == 0)
1926 break;
1927 if ((i & (NBBY - 1)) != 0) {
1928 bit >>= 1;
1929 } else {
1930 map = *mapp--;
1931 bit = 1 << (NBBY - 1);
1932 }
1933 }
1934 back = start - i;
1935 /*
1936 * Account for old cluster and the possibly new forward and
1937 * back clusters.
1938 */
1939 i = back + forw + 1;
1940 if (i > fs->fs_contigsumsize)
1941 i = fs->fs_contigsumsize;
1942 sump[i] += cnt;
1943 if (back > 0)
1944 sump[back] -= cnt;
1945 if (forw > 0)
1946 sump[forw] -= cnt;
1947 /*
1948 * Update cluster summary information.
1949 */
1950 lp = &sump[fs->fs_contigsumsize];
1951 for (i = fs->fs_contigsumsize; i > 0; i--)
1952 if (*lp-- > 0)
1953 break;
1954 fs->fs_maxcluster[cgp->cg_cgx] = i;
1955}
1956
1957/*
1958 * Fserr prints the name of a filesystem with an error diagnostic.
1959 *
1960 * The form of the error message is:
1961 * fs: error message
1962 */
1963static void
1964ffs_fserr(struct fs *fs, uint uid, char *cp)
1965{
1966 struct thread *td = curthread;
1967 struct proc *p;
1968
1969 if ((p = td->td_proc) != NULL) {
1970 log(LOG_ERR, "pid %d (%s), uid %d on %s: %s\n", p ? p->p_pid : -1,
1971 p ? p->p_comm : "-", uid, fs->fs_fsmnt, cp);
1972 } else {
1973 log(LOG_ERR, "system thread %p, uid %d on %s: %s\n",
1974 td, uid, fs->fs_fsmnt, cp);
1975 }
1976}