Update build for OpenSSL-0.9.8j upgrade.
[dragonfly.git] / secure / lib / libcrypto / man / bn_internal.3
... / ...
CommitLineData
1.\" Automatically generated by Pod::Man 2.16 (Pod::Simple 3.05)
2.\"
3.\" Standard preamble:
4.\" ========================================================================
5.de Sh \" Subsection heading
6.br
7.if t .Sp
8.ne 5
9.PP
10\fB\\$1\fR
11.PP
12..
13.de Sp \" Vertical space (when we can't use .PP)
14.if t .sp .5v
15.if n .sp
16..
17.de Vb \" Begin verbatim text
18.ft CW
19.nf
20.ne \\$1
21..
22.de Ve \" End verbatim text
23.ft R
24.fi
25..
26.\" Set up some character translations and predefined strings. \*(-- will
27.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
28.\" double quote, and \*(R" will give a right double quote. \*(C+ will
29.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
30.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
31.\" nothing in troff, for use with C<>.
32.tr \(*W-
33.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
34.ie n \{\
35. ds -- \(*W-
36. ds PI pi
37. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
38. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
39. ds L" ""
40. ds R" ""
41. ds C` ""
42. ds C' ""
43'br\}
44.el\{\
45. ds -- \|\(em\|
46. ds PI \(*p
47. ds L" ``
48. ds R" ''
49'br\}
50.\"
51.\" Escape single quotes in literal strings from groff's Unicode transform.
52.ie \n(.g .ds Aq \(aq
53.el .ds Aq '
54.\"
55.\" If the F register is turned on, we'll generate index entries on stderr for
56.\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
57.\" entries marked with X<> in POD. Of course, you'll have to process the
58.\" output yourself in some meaningful fashion.
59.ie \nF \{\
60. de IX
61. tm Index:\\$1\t\\n%\t"\\$2"
62..
63. nr % 0
64. rr F
65.\}
66.el \{\
67. de IX
68..
69.\}
70.\"
71.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
72.\" Fear. Run. Save yourself. No user-serviceable parts.
73. \" fudge factors for nroff and troff
74.if n \{\
75. ds #H 0
76. ds #V .8m
77. ds #F .3m
78. ds #[ \f1
79. ds #] \fP
80.\}
81.if t \{\
82. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
83. ds #V .6m
84. ds #F 0
85. ds #[ \&
86. ds #] \&
87.\}
88. \" simple accents for nroff and troff
89.if n \{\
90. ds ' \&
91. ds ` \&
92. ds ^ \&
93. ds , \&
94. ds ~ ~
95. ds /
96.\}
97.if t \{\
98. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
99. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
100. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
101. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
102. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
103. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
104.\}
105. \" troff and (daisy-wheel) nroff accents
106.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
107.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
108.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
109.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
110.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
111.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
112.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
113.ds ae a\h'-(\w'a'u*4/10)'e
114.ds Ae A\h'-(\w'A'u*4/10)'E
115. \" corrections for vroff
116.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
117.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
118. \" for low resolution devices (crt and lpr)
119.if \n(.H>23 .if \n(.V>19 \
120\{\
121. ds : e
122. ds 8 ss
123. ds o a
124. ds d- d\h'-1'\(ga
125. ds D- D\h'-1'\(hy
126. ds th \o'bp'
127. ds Th \o'LP'
128. ds ae ae
129. ds Ae AE
130.\}
131.rm #[ #] #H #V #F C
132.\" ========================================================================
133.\"
134.IX Title "bn_internal 3"
135.TH bn_internal 3 "2009-01-11" "0.9.8j" "OpenSSL"
136.\" For nroff, turn off justification. Always turn off hyphenation; it makes
137.\" way too many mistakes in technical documents.
138.if n .ad l
139.nh
140.SH "NAME"
141bn_mul_words, bn_mul_add_words, bn_sqr_words, bn_div_words,
142bn_add_words, bn_sub_words, bn_mul_comba4, bn_mul_comba8,
143bn_sqr_comba4, bn_sqr_comba8, bn_cmp_words, bn_mul_normal,
144bn_mul_low_normal, bn_mul_recursive, bn_mul_part_recursive,
145bn_mul_low_recursive, bn_mul_high, bn_sqr_normal, bn_sqr_recursive,
146bn_expand, bn_wexpand, bn_expand2, bn_fix_top, bn_check_top,
147bn_print, bn_dump, bn_set_max, bn_set_high, bn_set_low \- BIGNUM
148library internal functions
149.SH "SYNOPSIS"
150.IX Header "SYNOPSIS"
151.Vb 9
152\& BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w);
153\& BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num,
154\& BN_ULONG w);
155\& void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num);
156\& BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
157\& BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,
158\& int num);
159\& BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,
160\& int num);
161\&
162\& void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
163\& void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
164\& void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a);
165\& void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a);
166\&
167\& int bn_cmp_words(BN_ULONG *a, BN_ULONG *b, int n);
168\&
169\& void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b,
170\& int nb);
171\& void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
172\& void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
173\& int dna,int dnb,BN_ULONG *tmp);
174\& void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
175\& int n, int tna,int tnb, BN_ULONG *tmp);
176\& void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
177\& int n2, BN_ULONG *tmp);
178\& void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l,
179\& int n2, BN_ULONG *tmp);
180\&
181\& void bn_sqr_normal(BN_ULONG *r, BN_ULONG *a, int n, BN_ULONG *tmp);
182\& void bn_sqr_recursive(BN_ULONG *r, BN_ULONG *a, int n2, BN_ULONG *tmp);
183\&
184\& void mul(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
185\& void mul_add(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
186\& void sqr(BN_ULONG r0, BN_ULONG r1, BN_ULONG a);
187\&
188\& BIGNUM *bn_expand(BIGNUM *a, int bits);
189\& BIGNUM *bn_wexpand(BIGNUM *a, int n);
190\& BIGNUM *bn_expand2(BIGNUM *a, int n);
191\& void bn_fix_top(BIGNUM *a);
192\&
193\& void bn_check_top(BIGNUM *a);
194\& void bn_print(BIGNUM *a);
195\& void bn_dump(BN_ULONG *d, int n);
196\& void bn_set_max(BIGNUM *a);
197\& void bn_set_high(BIGNUM *r, BIGNUM *a, int n);
198\& void bn_set_low(BIGNUM *r, BIGNUM *a, int n);
199.Ve
200.SH "DESCRIPTION"
201.IX Header "DESCRIPTION"
202This page documents the internal functions used by the OpenSSL
203\&\fB\s-1BIGNUM\s0\fR implementation. They are described here to facilitate
204debugging and extending the library. They are \fInot\fR to be used by
205applications.
206.Sh "The \s-1BIGNUM\s0 structure"
207.IX Subsection "The BIGNUM structure"
208.Vb 7
209\& typedef struct bignum_st
210\& {
211\& int top; /* number of words used in d */
212\& BN_ULONG *d; /* pointer to an array containing the integer value */
213\& int max; /* size of the d array */
214\& int neg; /* sign */
215\& } BIGNUM;
216.Ve
217.PP
218The integer value is stored in \fBd\fR, a \fImalloc()\fRed array of words (\fB\s-1BN_ULONG\s0\fR),
219least significant word first. A \fB\s-1BN_ULONG\s0\fR can be either 16, 32 or 64 bits
220in size, depending on the 'number of bits' (\fB\s-1BITS2\s0\fR) specified in
221\&\f(CW\*(C`openssl/bn.h\*(C'\fR.
222.PP
223\&\fBmax\fR is the size of the \fBd\fR array that has been allocated. \fBtop\fR
224is the number of words being used, so for a value of 4, bn.d[0]=4 and
225bn.top=1. \fBneg\fR is 1 if the number is negative. When a \fB\s-1BIGNUM\s0\fR is
226\&\fB0\fR, the \fBd\fR field can be \fB\s-1NULL\s0\fR and \fBtop\fR == \fB0\fR.
227.PP
228Various routines in this library require the use of temporary
229\&\fB\s-1BIGNUM\s0\fR variables during their execution. Since dynamic memory
230allocation to create \fB\s-1BIGNUM\s0\fRs is rather expensive when used in
231conjunction with repeated subroutine calls, the \fB\s-1BN_CTX\s0\fR structure is
232used. This structure contains \fB\s-1BN_CTX_NUM\s0\fR \fB\s-1BIGNUM\s0\fRs, see
233\&\fIBN_CTX_start\fR\|(3).
234.Sh "Low-level arithmetic operations"
235.IX Subsection "Low-level arithmetic operations"
236These functions are implemented in C and for several platforms in
237assembly language:
238.PP
239bn_mul_words(\fBrp\fR, \fBap\fR, \fBnum\fR, \fBw\fR) operates on the \fBnum\fR word
240arrays \fBrp\fR and \fBap\fR. It computes \fBap\fR * \fBw\fR, places the result
241in \fBrp\fR, and returns the high word (carry).
242.PP
243bn_mul_add_words(\fBrp\fR, \fBap\fR, \fBnum\fR, \fBw\fR) operates on the \fBnum\fR
244word arrays \fBrp\fR and \fBap\fR. It computes \fBap\fR * \fBw\fR + \fBrp\fR, places
245the result in \fBrp\fR, and returns the high word (carry).
246.PP
247bn_sqr_words(\fBrp\fR, \fBap\fR, \fBn\fR) operates on the \fBnum\fR word array
248\&\fBap\fR and the 2*\fBnum\fR word array \fBap\fR. It computes \fBap\fR * \fBap\fR
249word-wise, and places the low and high bytes of the result in \fBrp\fR.
250.PP
251bn_div_words(\fBh\fR, \fBl\fR, \fBd\fR) divides the two word number (\fBh\fR,\fBl\fR)
252by \fBd\fR and returns the result.
253.PP
254bn_add_words(\fBrp\fR, \fBap\fR, \fBbp\fR, \fBnum\fR) operates on the \fBnum\fR word
255arrays \fBap\fR, \fBbp\fR and \fBrp\fR. It computes \fBap\fR + \fBbp\fR, places the
256result in \fBrp\fR, and returns the high word (carry).
257.PP
258bn_sub_words(\fBrp\fR, \fBap\fR, \fBbp\fR, \fBnum\fR) operates on the \fBnum\fR word
259arrays \fBap\fR, \fBbp\fR and \fBrp\fR. It computes \fBap\fR \- \fBbp\fR, places the
260result in \fBrp\fR, and returns the carry (1 if \fBbp\fR > \fBap\fR, 0
261otherwise).
262.PP
263bn_mul_comba4(\fBr\fR, \fBa\fR, \fBb\fR) operates on the 4 word arrays \fBa\fR and
264\&\fBb\fR and the 8 word array \fBr\fR. It computes \fBa\fR*\fBb\fR and places the
265result in \fBr\fR.
266.PP
267bn_mul_comba8(\fBr\fR, \fBa\fR, \fBb\fR) operates on the 8 word arrays \fBa\fR and
268\&\fBb\fR and the 16 word array \fBr\fR. It computes \fBa\fR*\fBb\fR and places the
269result in \fBr\fR.
270.PP
271bn_sqr_comba4(\fBr\fR, \fBa\fR, \fBb\fR) operates on the 4 word arrays \fBa\fR and
272\&\fBb\fR and the 8 word array \fBr\fR.
273.PP
274bn_sqr_comba8(\fBr\fR, \fBa\fR, \fBb\fR) operates on the 8 word arrays \fBa\fR and
275\&\fBb\fR and the 16 word array \fBr\fR.
276.PP
277The following functions are implemented in C:
278.PP
279bn_cmp_words(\fBa\fR, \fBb\fR, \fBn\fR) operates on the \fBn\fR word arrays \fBa\fR
280and \fBb\fR. It returns 1, 0 and \-1 if \fBa\fR is greater than, equal and
281less than \fBb\fR.
282.PP
283bn_mul_normal(\fBr\fR, \fBa\fR, \fBna\fR, \fBb\fR, \fBnb\fR) operates on the \fBna\fR
284word array \fBa\fR, the \fBnb\fR word array \fBb\fR and the \fBna\fR+\fBnb\fR word
285array \fBr\fR. It computes \fBa\fR*\fBb\fR and places the result in \fBr\fR.
286.PP
287bn_mul_low_normal(\fBr\fR, \fBa\fR, \fBb\fR, \fBn\fR) operates on the \fBn\fR word
288arrays \fBr\fR, \fBa\fR and \fBb\fR. It computes the \fBn\fR low words of
289\&\fBa\fR*\fBb\fR and places the result in \fBr\fR.
290.PP
291bn_mul_recursive(\fBr\fR, \fBa\fR, \fBb\fR, \fBn2\fR, \fBdna\fR, \fBdnb\fR, \fBt\fR) operates
292on the word arrays \fBa\fR and \fBb\fR of length \fBn2\fR+\fBdna\fR and \fBn2\fR+\fBdnb\fR
293(\fBdna\fR and \fBdnb\fR are currently allowed to be 0 or negative) and the 2*\fBn2\fR
294word arrays \fBr\fR and \fBt\fR. \fBn2\fR must be a power of 2. It computes
295\&\fBa\fR*\fBb\fR and places the result in \fBr\fR.
296.PP
297bn_mul_part_recursive(\fBr\fR, \fBa\fR, \fBb\fR, \fBn\fR, \fBtna\fR, \fBtnb\fR, \fBtmp\fR)
298operates on the word arrays \fBa\fR and \fBb\fR of length \fBn\fR+\fBtna\fR and
299\&\fBn\fR+\fBtnb\fR and the 4*\fBn\fR word arrays \fBr\fR and \fBtmp\fR.
300.PP
301bn_mul_low_recursive(\fBr\fR, \fBa\fR, \fBb\fR, \fBn2\fR, \fBtmp\fR) operates on the
302\&\fBn2\fR word arrays \fBr\fR and \fBtmp\fR and the \fBn2\fR/2 word arrays \fBa\fR
303and \fBb\fR.
304.PP
305bn_mul_high(\fBr\fR, \fBa\fR, \fBb\fR, \fBl\fR, \fBn2\fR, \fBtmp\fR) operates on the
306\&\fBn2\fR word arrays \fBr\fR, \fBa\fR, \fBb\fR and \fBl\fR (?) and the 3*\fBn2\fR word
307array \fBtmp\fR.
308.PP
309\&\fIBN_mul()\fR calls \fIbn_mul_normal()\fR, or an optimized implementation if the
310factors have the same size: \fIbn_mul_comba8()\fR is used if they are 8
311words long, \fIbn_mul_recursive()\fR if they are larger than
312\&\fB\s-1BN_MULL_SIZE_NORMAL\s0\fR and the size is an exact multiple of the word
313size, and \fIbn_mul_part_recursive()\fR for others that are larger than
314\&\fB\s-1BN_MULL_SIZE_NORMAL\s0\fR.
315.PP
316bn_sqr_normal(\fBr\fR, \fBa\fR, \fBn\fR, \fBtmp\fR) operates on the \fBn\fR word array
317\&\fBa\fR and the 2*\fBn\fR word arrays \fBtmp\fR and \fBr\fR.
318.PP
319The implementations use the following macros which, depending on the
320architecture, may use \*(L"long long\*(R" C operations or inline assembler.
321They are defined in \f(CW\*(C`bn_lcl.h\*(C'\fR.
322.PP
323mul(\fBr\fR, \fBa\fR, \fBw\fR, \fBc\fR) computes \fBw\fR*\fBa\fR+\fBc\fR and places the
324low word of the result in \fBr\fR and the high word in \fBc\fR.
325.PP
326mul_add(\fBr\fR, \fBa\fR, \fBw\fR, \fBc\fR) computes \fBw\fR*\fBa\fR+\fBr\fR+\fBc\fR and
327places the low word of the result in \fBr\fR and the high word in \fBc\fR.
328.PP
329sqr(\fBr0\fR, \fBr1\fR, \fBa\fR) computes \fBa\fR*\fBa\fR and places the low word
330of the result in \fBr0\fR and the high word in \fBr1\fR.
331.Sh "Size changes"
332.IX Subsection "Size changes"
333\&\fIbn_expand()\fR ensures that \fBb\fR has enough space for a \fBbits\fR bit
334number. \fIbn_wexpand()\fR ensures that \fBb\fR has enough space for an
335\&\fBn\fR word number. If the number has to be expanded, both macros
336call \fIbn_expand2()\fR, which allocates a new \fBd\fR array and copies the
337data. They return \fB\s-1NULL\s0\fR on error, \fBb\fR otherwise.
338.PP
339The \fIbn_fix_top()\fR macro reduces \fBa\->top\fR to point to the most
340significant non-zero word plus one when \fBa\fR has shrunk.
341.Sh "Debugging"
342.IX Subsection "Debugging"
343\&\fIbn_check_top()\fR verifies that \f(CW\*(C`((a)\->top >= 0 && (a)\->top
344<= (a)\->max)\*(C'\fR. A violation will cause the program to abort.
345.PP
346\&\fIbn_print()\fR prints \fBa\fR to stderr. \fIbn_dump()\fR prints \fBn\fR words at \fBd\fR
347(in reverse order, i.e. most significant word first) to stderr.
348.PP
349\&\fIbn_set_max()\fR makes \fBa\fR a static number with a \fBmax\fR of its current size.
350This is used by \fIbn_set_low()\fR and \fIbn_set_high()\fR to make \fBr\fR a read-only
351\&\fB\s-1BIGNUM\s0\fR that contains the \fBn\fR low or high words of \fBa\fR.
352.PP
353If \fB\s-1BN_DEBUG\s0\fR is not defined, \fIbn_check_top()\fR, \fIbn_print()\fR, \fIbn_dump()\fR
354and \fIbn_set_max()\fR are defined as empty macros.
355.SH "SEE ALSO"
356.IX Header "SEE ALSO"
357\&\fIbn\fR\|(3)