x86_64/pmap: Remove an unused function.
[dragonfly.git] / sys / platform / pc64 / x86_64 / pmap.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1994 David Greenman
5 * Copyright (c) 2003 Peter Wemm
6 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7 * Copyright (c) 2008, 2009 The DragonFly Project.
8 * Copyright (c) 2008, 2009 Jordan Gordeev.
9 * Copyright (c) 2011 Matthew Dillon
10 * All rights reserved.
11 *
12 * This code is derived from software contributed to Berkeley by
13 * the Systems Programming Group of the University of Utah Computer
14 * Science Department and William Jolitz of UUNET Technologies Inc.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 */
44/*
45 * Manage physical address maps for x86-64 systems.
46 */
47
48#if JG
49#include "opt_disable_pse.h"
50#include "opt_pmap.h"
51#endif
52#include "opt_msgbuf.h"
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/kernel.h>
57#include <sys/proc.h>
58#include <sys/msgbuf.h>
59#include <sys/vmmeter.h>
60#include <sys/mman.h>
61
62#include <vm/vm.h>
63#include <vm/vm_param.h>
64#include <sys/sysctl.h>
65#include <sys/lock.h>
66#include <vm/vm_kern.h>
67#include <vm/vm_page.h>
68#include <vm/vm_map.h>
69#include <vm/vm_object.h>
70#include <vm/vm_extern.h>
71#include <vm/vm_pageout.h>
72#include <vm/vm_pager.h>
73#include <vm/vm_zone.h>
74
75#include <sys/user.h>
76#include <sys/thread2.h>
77#include <sys/sysref2.h>
78#include <sys/spinlock2.h>
79#include <vm/vm_page2.h>
80
81#include <machine/cputypes.h>
82#include <machine/md_var.h>
83#include <machine/specialreg.h>
84#include <machine/smp.h>
85#include <machine_base/apic/apicreg.h>
86#include <machine/globaldata.h>
87#include <machine/pmap.h>
88#include <machine/pmap_inval.h>
89#include <machine/inttypes.h>
90
91#include <ddb/ddb.h>
92
93#define PMAP_KEEP_PDIRS
94#ifndef PMAP_SHPGPERPROC
95#define PMAP_SHPGPERPROC 2000
96#endif
97
98#if defined(DIAGNOSTIC)
99#define PMAP_DIAGNOSTIC
100#endif
101
102#define MINPV 2048
103
104/*
105 * pmap debugging will report who owns a pv lock when blocking.
106 */
107#ifdef PMAP_DEBUG
108
109#define PMAP_DEBUG_DECL ,const char *func, int lineno
110#define PMAP_DEBUG_ARGS , __func__, __LINE__
111#define PMAP_DEBUG_COPY , func, lineno
112
113#define pv_get(pmap, pindex) _pv_get(pmap, pindex \
114 PMAP_DEBUG_ARGS)
115#define pv_lock(pv) _pv_lock(pv \
116 PMAP_DEBUG_ARGS)
117#define pv_hold_try(pv) _pv_hold_try(pv \
118 PMAP_DEBUG_ARGS)
119#define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp \
120 PMAP_DEBUG_ARGS)
121
122#else
123
124#define PMAP_DEBUG_DECL
125#define PMAP_DEBUG_ARGS
126#define PMAP_DEBUG_COPY
127
128#define pv_get(pmap, pindex) _pv_get(pmap, pindex)
129#define pv_lock(pv) _pv_lock(pv)
130#define pv_hold_try(pv) _pv_hold_try(pv)
131#define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp)
132
133#endif
134
135/*
136 * Get PDEs and PTEs for user/kernel address space
137 */
138#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
139
140#define pmap_pde_v(pte) ((*(pd_entry_t *)pte & PG_V) != 0)
141#define pmap_pte_w(pte) ((*(pt_entry_t *)pte & PG_W) != 0)
142#define pmap_pte_m(pte) ((*(pt_entry_t *)pte & PG_M) != 0)
143#define pmap_pte_u(pte) ((*(pt_entry_t *)pte & PG_A) != 0)
144#define pmap_pte_v(pte) ((*(pt_entry_t *)pte & PG_V) != 0)
145
146/*
147 * Given a map and a machine independent protection code,
148 * convert to a vax protection code.
149 */
150#define pte_prot(m, p) \
151 (protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
152static int protection_codes[8];
153
154struct pmap kernel_pmap;
155static TAILQ_HEAD(,pmap) pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
156
157vm_paddr_t avail_start; /* PA of first available physical page */
158vm_paddr_t avail_end; /* PA of last available physical page */
159vm_offset_t virtual2_start; /* cutout free area prior to kernel start */
160vm_offset_t virtual2_end;
161vm_offset_t virtual_start; /* VA of first avail page (after kernel bss) */
162vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
163vm_offset_t KvaStart; /* VA start of KVA space */
164vm_offset_t KvaEnd; /* VA end of KVA space (non-inclusive) */
165vm_offset_t KvaSize; /* max size of kernel virtual address space */
166static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
167static int pgeflag; /* PG_G or-in */
168static int pseflag; /* PG_PS or-in */
169
170static int ndmpdp;
171static vm_paddr_t dmaplimit;
172static int nkpt;
173vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
174
175static uint64_t KPTbase;
176static uint64_t KPTphys;
177static uint64_t KPDphys; /* phys addr of kernel level 2 */
178static uint64_t KPDbase; /* phys addr of kernel level 2 @ KERNBASE */
179uint64_t KPDPphys; /* phys addr of kernel level 3 */
180uint64_t KPML4phys; /* phys addr of kernel level 4 */
181
182static uint64_t DMPDphys; /* phys addr of direct mapped level 2 */
183static uint64_t DMPDPphys; /* phys addr of direct mapped level 3 */
184
185/*
186 * Data for the pv entry allocation mechanism
187 */
188static vm_zone_t pvzone;
189static struct vm_zone pvzone_store;
190static struct vm_object pvzone_obj;
191static int pv_entry_max=0, pv_entry_high_water=0;
192static int pmap_pagedaemon_waken = 0;
193static struct pv_entry *pvinit;
194
195/*
196 * All those kernel PT submaps that BSD is so fond of
197 */
198pt_entry_t *CMAP1 = 0, *ptmmap;
199caddr_t CADDR1 = 0, ptvmmap = 0;
200static pt_entry_t *msgbufmap;
201struct msgbuf *msgbufp=0;
202
203/*
204 * Crashdump maps.
205 */
206static pt_entry_t *pt_crashdumpmap;
207static caddr_t crashdumpmap;
208
209static int pmap_yield_count = 64;
210SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
211 &pmap_yield_count, 0, "Yield during init_pt/release");
212
213#define DISABLE_PSE
214
215static void pv_hold(pv_entry_t pv);
216static int _pv_hold_try(pv_entry_t pv
217 PMAP_DEBUG_DECL);
218static void pv_drop(pv_entry_t pv);
219static void _pv_lock(pv_entry_t pv
220 PMAP_DEBUG_DECL);
221static void pv_unlock(pv_entry_t pv);
222static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
223 PMAP_DEBUG_DECL);
224static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex
225 PMAP_DEBUG_DECL);
226static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex, int *errorp);
227static pv_entry_t pv_find(pmap_t pmap, vm_pindex_t pindex);
228static void pv_put(pv_entry_t pv);
229static void pv_free(pv_entry_t pv);
230static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
231static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
232 pv_entry_t *pvpp);
233static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
234 struct pmap_inval_info *info);
235static vm_page_t pmap_remove_pv_page(pv_entry_t pv);
236
237static void pmap_remove_callback(pmap_t pmap, struct pmap_inval_info *info,
238 pv_entry_t pte_pv, pv_entry_t pt_pv, vm_offset_t va,
239 pt_entry_t *ptep, void *arg __unused);
240static void pmap_protect_callback(pmap_t pmap, struct pmap_inval_info *info,
241 pv_entry_t pte_pv, pv_entry_t pt_pv, vm_offset_t va,
242 pt_entry_t *ptep, void *arg __unused);
243
244static void i386_protection_init (void);
245static void create_pagetables(vm_paddr_t *firstaddr);
246static void pmap_remove_all (vm_page_t m);
247static boolean_t pmap_testbit (vm_page_t m, int bit);
248
249static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
250static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
251
252static unsigned pdir4mb;
253
254static int
255pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
256{
257 if (pv1->pv_pindex < pv2->pv_pindex)
258 return(-1);
259 if (pv1->pv_pindex > pv2->pv_pindex)
260 return(1);
261 return(0);
262}
263
264RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
265 pv_entry_compare, vm_pindex_t, pv_pindex);
266
267/*
268 * Move the kernel virtual free pointer to the next
269 * 2MB. This is used to help improve performance
270 * by using a large (2MB) page for much of the kernel
271 * (.text, .data, .bss)
272 */
273static
274vm_offset_t
275pmap_kmem_choose(vm_offset_t addr)
276{
277 vm_offset_t newaddr = addr;
278
279 newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
280 return newaddr;
281}
282
283/*
284 * pmap_pte_quick:
285 *
286 * Super fast pmap_pte routine best used when scanning the pv lists.
287 * This eliminates many course-grained invltlb calls. Note that many of
288 * the pv list scans are across different pmaps and it is very wasteful
289 * to do an entire invltlb when checking a single mapping.
290 */
291static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
292
293static
294pt_entry_t *
295pmap_pte_quick(pmap_t pmap, vm_offset_t va)
296{
297 return pmap_pte(pmap, va);
298}
299
300/*
301 * Returns the pindex of a page table entry (representing a terminal page).
302 * There are NUPTE_TOTAL page table entries possible (a huge number)
303 *
304 * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
305 * We want to properly translate negative KVAs.
306 */
307static __inline
308vm_pindex_t
309pmap_pte_pindex(vm_offset_t va)
310{
311 return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
312}
313
314/*
315 * Returns the pindex of a page table.
316 */
317static __inline
318vm_pindex_t
319pmap_pt_pindex(vm_offset_t va)
320{
321 return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
322}
323
324/*
325 * Returns the pindex of a page directory.
326 */
327static __inline
328vm_pindex_t
329pmap_pd_pindex(vm_offset_t va)
330{
331 return (NUPTE_TOTAL + NUPT_TOTAL +
332 ((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
333}
334
335static __inline
336vm_pindex_t
337pmap_pdp_pindex(vm_offset_t va)
338{
339 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
340 ((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
341}
342
343static __inline
344vm_pindex_t
345pmap_pml4_pindex(void)
346{
347 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
348}
349
350/*
351 * Return various clipped indexes for a given VA
352 *
353 * Returns the index of a pte in a page table, representing a terminal
354 * page.
355 */
356static __inline
357vm_pindex_t
358pmap_pte_index(vm_offset_t va)
359{
360 return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
361}
362
363/*
364 * Returns the index of a pt in a page directory, representing a page
365 * table.
366 */
367static __inline
368vm_pindex_t
369pmap_pt_index(vm_offset_t va)
370{
371 return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
372}
373
374/*
375 * Returns the index of a pd in a page directory page, representing a page
376 * directory.
377 */
378static __inline
379vm_pindex_t
380pmap_pd_index(vm_offset_t va)
381{
382 return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
383}
384
385/*
386 * Returns the index of a pdp in the pml4 table, representing a page
387 * directory page.
388 */
389static __inline
390vm_pindex_t
391pmap_pdp_index(vm_offset_t va)
392{
393 return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
394}
395
396/*
397 * Generic procedure to index a pte from a pt, pd, or pdp.
398 */
399static
400void *
401pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
402{
403 pt_entry_t *pte;
404
405 pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
406 return(&pte[pindex]);
407}
408
409/*
410 * Return pointer to PDP slot in the PML4
411 */
412static __inline
413pml4_entry_t *
414pmap_pdp(pmap_t pmap, vm_offset_t va)
415{
416 return (&pmap->pm_pml4[pmap_pdp_index(va)]);
417}
418
419/*
420 * Return pointer to PD slot in the PDP given a pointer to the PDP
421 */
422static __inline
423pdp_entry_t *
424pmap_pdp_to_pd(pml4_entry_t *pdp, vm_offset_t va)
425{
426 pdp_entry_t *pd;
427
428 pd = (pdp_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
429 return (&pd[pmap_pd_index(va)]);
430}
431
432/*
433 * Return pointer to PD slot in the PDP
434 **/
435static __inline
436pdp_entry_t *
437pmap_pd(pmap_t pmap, vm_offset_t va)
438{
439 pml4_entry_t *pdp;
440
441 pdp = pmap_pdp(pmap, va);
442 if ((*pdp & PG_V) == 0)
443 return NULL;
444 return (pmap_pdp_to_pd(pdp, va));
445}
446
447/*
448 * Return pointer to PT slot in the PD given a pointer to the PD
449 */
450static __inline
451pd_entry_t *
452pmap_pd_to_pt(pdp_entry_t *pd, vm_offset_t va)
453{
454 pd_entry_t *pt;
455
456 pt = (pd_entry_t *)PHYS_TO_DMAP(*pd & PG_FRAME);
457 return (&pt[pmap_pt_index(va)]);
458}
459
460/*
461 * Return pointer to PT slot in the PD
462 */
463static __inline
464pd_entry_t *
465pmap_pt(pmap_t pmap, vm_offset_t va)
466{
467 pdp_entry_t *pd;
468
469 pd = pmap_pd(pmap, va);
470 if (pd == NULL || (*pd & PG_V) == 0)
471 return NULL;
472 return (pmap_pd_to_pt(pd, va));
473}
474
475/*
476 * Return pointer to PTE slot in the PT given a pointer to the PT
477 */
478static __inline
479pt_entry_t *
480pmap_pt_to_pte(pd_entry_t *pt, vm_offset_t va)
481{
482 pt_entry_t *pte;
483
484 pte = (pt_entry_t *)PHYS_TO_DMAP(*pt & PG_FRAME);
485 return (&pte[pmap_pte_index(va)]);
486}
487
488/*
489 * Return pointer to PTE slot in the PT
490 */
491static __inline
492pt_entry_t *
493pmap_pte(pmap_t pmap, vm_offset_t va)
494{
495 pd_entry_t *pt;
496
497 pt = pmap_pt(pmap, va);
498 if (pt == NULL || (*pt & PG_V) == 0)
499 return NULL;
500 if ((*pt & PG_PS) != 0)
501 return ((pt_entry_t *)pt);
502 return (pmap_pt_to_pte(pt, va));
503}
504
505/*
506 * Of all the layers (PTE, PT, PD, PDP, PML4) the best one to cache is
507 * the PT layer. This will speed up core pmap operations considerably.
508 */
509static __inline
510void
511pv_cache(pv_entry_t pv, vm_pindex_t pindex)
512{
513 if (pindex >= pmap_pt_pindex(0) && pindex <= pmap_pd_pindex(0))
514 pv->pv_pmap->pm_pvhint = pv;
515}
516
517
518/*
519 * KVM - return address of PT slot in PD
520 */
521static __inline
522pd_entry_t *
523vtopt(vm_offset_t va)
524{
525 uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
526 NPML4EPGSHIFT)) - 1);
527
528 return (PDmap + ((va >> PDRSHIFT) & mask));
529}
530
531/*
532 * KVM - return address of PTE slot in PT
533 */
534static __inline
535pt_entry_t *
536vtopte(vm_offset_t va)
537{
538 uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
539 NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
540
541 return (PTmap + ((va >> PAGE_SHIFT) & mask));
542}
543
544static uint64_t
545allocpages(vm_paddr_t *firstaddr, long n)
546{
547 uint64_t ret;
548
549 ret = *firstaddr;
550 bzero((void *)ret, n * PAGE_SIZE);
551 *firstaddr += n * PAGE_SIZE;
552 return (ret);
553}
554
555static
556void
557create_pagetables(vm_paddr_t *firstaddr)
558{
559 long i; /* must be 64 bits */
560 long nkpt_base;
561 long nkpt_phys;
562 int j;
563
564 /*
565 * We are running (mostly) V=P at this point
566 *
567 * Calculate NKPT - number of kernel page tables. We have to
568 * accomodoate prealloction of the vm_page_array, dump bitmap,
569 * MSGBUF_SIZE, and other stuff. Be generous.
570 *
571 * Maxmem is in pages.
572 *
573 * ndmpdp is the number of 1GB pages we wish to map.
574 */
575 ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
576 if (ndmpdp < 4) /* Minimum 4GB of dirmap */
577 ndmpdp = 4;
578 KKASSERT(ndmpdp <= NKPDPE * NPDEPG);
579
580 /*
581 * Starting at the beginning of kvm (not KERNBASE).
582 */
583 nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
584 nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
585 nkpt_phys += ((nkpt + nkpt + 1 + NKPML4E + NKPDPE + NDMPML4E +
586 ndmpdp) + 511) / 512;
587 nkpt_phys += 128;
588
589 /*
590 * Starting at KERNBASE - map 2G worth of page table pages.
591 * KERNBASE is offset -2G from the end of kvm.
592 */
593 nkpt_base = (NPDPEPG - KPDPI) * NPTEPG; /* typically 2 x 512 */
594
595 /*
596 * Allocate pages
597 */
598 KPTbase = allocpages(firstaddr, nkpt_base);
599 KPTphys = allocpages(firstaddr, nkpt_phys);
600 KPML4phys = allocpages(firstaddr, 1);
601 KPDPphys = allocpages(firstaddr, NKPML4E);
602 KPDphys = allocpages(firstaddr, NKPDPE);
603
604 /*
605 * Calculate the page directory base for KERNBASE,
606 * that is where we start populating the page table pages.
607 * Basically this is the end - 2.
608 */
609 KPDbase = KPDphys + ((NKPDPE - (NPDPEPG - KPDPI)) << PAGE_SHIFT);
610
611 DMPDPphys = allocpages(firstaddr, NDMPML4E);
612 if ((amd_feature & AMDID_PAGE1GB) == 0)
613 DMPDphys = allocpages(firstaddr, ndmpdp);
614 dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
615
616 /*
617 * Fill in the underlying page table pages for the area around
618 * KERNBASE. This remaps low physical memory to KERNBASE.
619 *
620 * Read-only from zero to physfree
621 * XXX not fully used, underneath 2M pages
622 */
623 for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
624 ((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
625 ((pt_entry_t *)KPTbase)[i] |= PG_RW | PG_V | PG_G;
626 }
627
628 /*
629 * Now map the initial kernel page tables. One block of page
630 * tables is placed at the beginning of kernel virtual memory,
631 * and another block is placed at KERNBASE to map the kernel binary,
632 * data, bss, and initial pre-allocations.
633 */
634 for (i = 0; i < nkpt_base; i++) {
635 ((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
636 ((pd_entry_t *)KPDbase)[i] |= PG_RW | PG_V;
637 }
638 for (i = 0; i < nkpt_phys; i++) {
639 ((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
640 ((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V;
641 }
642
643 /*
644 * Map from zero to end of allocations using 2M pages as an
645 * optimization. This will bypass some of the KPTBase pages
646 * above in the KERNBASE area.
647 */
648 for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
649 ((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
650 ((pd_entry_t *)KPDbase)[i] |= PG_RW | PG_V | PG_PS | PG_G;
651 }
652
653 /*
654 * And connect up the PD to the PDP. The kernel pmap is expected
655 * to pre-populate all of its PDs. See NKPDPE in vmparam.h.
656 */
657 for (i = 0; i < NKPDPE; i++) {
658 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] =
659 KPDphys + (i << PAGE_SHIFT);
660 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] |=
661 PG_RW | PG_V | PG_U;
662 }
663
664 /*
665 * Now set up the direct map space using either 2MB or 1GB pages
666 * Preset PG_M and PG_A because demotion expects it.
667 *
668 * When filling in entries in the PD pages make sure any excess
669 * entries are set to zero as we allocated enough PD pages
670 */
671 if ((amd_feature & AMDID_PAGE1GB) == 0) {
672 for (i = 0; i < NPDEPG * ndmpdp; i++) {
673 ((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
674 ((pd_entry_t *)DMPDphys)[i] |= PG_RW | PG_V | PG_PS |
675 PG_G | PG_M | PG_A;
676 }
677
678 /*
679 * And the direct map space's PDP
680 */
681 for (i = 0; i < ndmpdp; i++) {
682 ((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
683 (i << PAGE_SHIFT);
684 ((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_U;
685 }
686 } else {
687 for (i = 0; i < ndmpdp; i++) {
688 ((pdp_entry_t *)DMPDPphys)[i] =
689 (vm_paddr_t)i << PDPSHIFT;
690 ((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_PS |
691 PG_G | PG_M | PG_A;
692 }
693 }
694
695 /* And recursively map PML4 to itself in order to get PTmap */
696 ((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
697 ((pdp_entry_t *)KPML4phys)[PML4PML4I] |= PG_RW | PG_V | PG_U;
698
699 /*
700 * Connect the Direct Map slots up to the PML4
701 */
702 for (j = 0; j < NDMPML4E; ++j) {
703 ((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
704 (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
705 PG_RW | PG_V | PG_U;
706 }
707
708 /*
709 * Connect the KVA slot up to the PML4
710 */
711 ((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
712 ((pdp_entry_t *)KPML4phys)[KPML4I] |= PG_RW | PG_V | PG_U;
713}
714
715/*
716 * Bootstrap the system enough to run with virtual memory.
717 *
718 * On the i386 this is called after mapping has already been enabled
719 * and just syncs the pmap module with what has already been done.
720 * [We can't call it easily with mapping off since the kernel is not
721 * mapped with PA == VA, hence we would have to relocate every address
722 * from the linked base (virtual) address "KERNBASE" to the actual
723 * (physical) address starting relative to 0]
724 */
725void
726pmap_bootstrap(vm_paddr_t *firstaddr)
727{
728 vm_offset_t va;
729 pt_entry_t *pte;
730 struct mdglobaldata *gd;
731 int pg;
732
733 KvaStart = VM_MIN_KERNEL_ADDRESS;
734 KvaEnd = VM_MAX_KERNEL_ADDRESS;
735 KvaSize = KvaEnd - KvaStart;
736
737 avail_start = *firstaddr;
738
739 /*
740 * Create an initial set of page tables to run the kernel in.
741 */
742 create_pagetables(firstaddr);
743
744 virtual2_start = KvaStart;
745 virtual2_end = PTOV_OFFSET;
746
747 virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
748 virtual_start = pmap_kmem_choose(virtual_start);
749
750 virtual_end = VM_MAX_KERNEL_ADDRESS;
751
752 /* XXX do %cr0 as well */
753 load_cr4(rcr4() | CR4_PGE | CR4_PSE);
754 load_cr3(KPML4phys);
755
756 /*
757 * Initialize protection array.
758 */
759 i386_protection_init();
760
761 /*
762 * The kernel's pmap is statically allocated so we don't have to use
763 * pmap_create, which is unlikely to work correctly at this part of
764 * the boot sequence (XXX and which no longer exists).
765 */
766 kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
767 kernel_pmap.pm_count = 1;
768 kernel_pmap.pm_active = (cpumask_t)-1 & ~CPUMASK_LOCK;
769 RB_INIT(&kernel_pmap.pm_pvroot);
770 spin_init(&kernel_pmap.pm_spin);
771 lwkt_token_init(&kernel_pmap.pm_token, "kpmap_tok");
772
773 /*
774 * Reserve some special page table entries/VA space for temporary
775 * mapping of pages.
776 */
777#define SYSMAP(c, p, v, n) \
778 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
779
780 va = virtual_start;
781 pte = vtopte(va);
782
783 /*
784 * CMAP1/CMAP2 are used for zeroing and copying pages.
785 */
786 SYSMAP(caddr_t, CMAP1, CADDR1, 1)
787
788 /*
789 * Crashdump maps.
790 */
791 SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
792
793 /*
794 * ptvmmap is used for reading arbitrary physical pages via
795 * /dev/mem.
796 */
797 SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
798
799 /*
800 * msgbufp is used to map the system message buffer.
801 * XXX msgbufmap is not used.
802 */
803 SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
804 atop(round_page(MSGBUF_SIZE)))
805
806 virtual_start = va;
807
808 *CMAP1 = 0;
809
810 /*
811 * PG_G is terribly broken on SMP because we IPI invltlb's in some
812 * cases rather then invl1pg. Actually, I don't even know why it
813 * works under UP because self-referential page table mappings
814 */
815#ifdef SMP
816 pgeflag = 0;
817#else
818 if (cpu_feature & CPUID_PGE)
819 pgeflag = PG_G;
820#endif
821
822/*
823 * Initialize the 4MB page size flag
824 */
825 pseflag = 0;
826/*
827 * The 4MB page version of the initial
828 * kernel page mapping.
829 */
830 pdir4mb = 0;
831
832#if !defined(DISABLE_PSE)
833 if (cpu_feature & CPUID_PSE) {
834 pt_entry_t ptditmp;
835 /*
836 * Note that we have enabled PSE mode
837 */
838 pseflag = PG_PS;
839 ptditmp = *(PTmap + x86_64_btop(KERNBASE));
840 ptditmp &= ~(NBPDR - 1);
841 ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
842 pdir4mb = ptditmp;
843
844#ifndef SMP
845 /*
846 * Enable the PSE mode. If we are SMP we can't do this
847 * now because the APs will not be able to use it when
848 * they boot up.
849 */
850 load_cr4(rcr4() | CR4_PSE);
851
852 /*
853 * We can do the mapping here for the single processor
854 * case. We simply ignore the old page table page from
855 * now on.
856 */
857 /*
858 * For SMP, we still need 4K pages to bootstrap APs,
859 * PSE will be enabled as soon as all APs are up.
860 */
861 PTD[KPTDI] = (pd_entry_t)ptditmp;
862 cpu_invltlb();
863#endif
864 }
865#endif
866
867 /*
868 * We need to finish setting up the globaldata page for the BSP.
869 * locore has already populated the page table for the mdglobaldata
870 * portion.
871 */
872 pg = MDGLOBALDATA_BASEALLOC_PAGES;
873 gd = &CPU_prvspace[0].mdglobaldata;
874
875 cpu_invltlb();
876}
877
878#ifdef SMP
879/*
880 * Set 4mb pdir for mp startup
881 */
882void
883pmap_set_opt(void)
884{
885 if (pseflag && (cpu_feature & CPUID_PSE)) {
886 load_cr4(rcr4() | CR4_PSE);
887 if (pdir4mb && mycpu->gd_cpuid == 0) { /* only on BSP */
888 cpu_invltlb();
889 }
890 }
891}
892#endif
893
894/*
895 * Initialize the pmap module.
896 * Called by vm_init, to initialize any structures that the pmap
897 * system needs to map virtual memory.
898 * pmap_init has been enhanced to support in a fairly consistant
899 * way, discontiguous physical memory.
900 */
901void
902pmap_init(void)
903{
904 int i;
905 int initial_pvs;
906
907 /*
908 * Allocate memory for random pmap data structures. Includes the
909 * pv_head_table.
910 */
911
912 for (i = 0; i < vm_page_array_size; i++) {
913 vm_page_t m;
914
915 m = &vm_page_array[i];
916 TAILQ_INIT(&m->md.pv_list);
917 }
918
919 /*
920 * init the pv free list
921 */
922 initial_pvs = vm_page_array_size;
923 if (initial_pvs < MINPV)
924 initial_pvs = MINPV;
925 pvzone = &pvzone_store;
926 pvinit = (void *)kmem_alloc(&kernel_map,
927 initial_pvs * sizeof (struct pv_entry));
928 zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
929 pvinit, initial_pvs);
930
931 /*
932 * Now it is safe to enable pv_table recording.
933 */
934 pmap_initialized = TRUE;
935}
936
937/*
938 * Initialize the address space (zone) for the pv_entries. Set a
939 * high water mark so that the system can recover from excessive
940 * numbers of pv entries.
941 */
942void
943pmap_init2(void)
944{
945 int shpgperproc = PMAP_SHPGPERPROC;
946 int entry_max;
947
948 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
949 pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
950 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
951 pv_entry_high_water = 9 * (pv_entry_max / 10);
952
953 /*
954 * Subtract out pages already installed in the zone (hack)
955 */
956 entry_max = pv_entry_max - vm_page_array_size;
957 if (entry_max <= 0)
958 entry_max = 1;
959
960 zinitna(pvzone, &pvzone_obj, NULL, 0, entry_max, ZONE_INTERRUPT, 1);
961}
962
963
964/***************************************************
965 * Low level helper routines.....
966 ***************************************************/
967
968/*
969 * this routine defines the region(s) of memory that should
970 * not be tested for the modified bit.
971 */
972static __inline
973int
974pmap_track_modified(vm_pindex_t pindex)
975{
976 vm_offset_t va = (vm_offset_t)pindex << PAGE_SHIFT;
977 if ((va < clean_sva) || (va >= clean_eva))
978 return 1;
979 else
980 return 0;
981}
982
983/*
984 * Extract the physical page address associated with the map/VA pair.
985 * The page must be wired for this to work reliably.
986 *
987 * XXX for the moment we're using pv_find() instead of pv_get(), as
988 * callers might be expecting non-blocking operation.
989 */
990vm_paddr_t
991pmap_extract(pmap_t pmap, vm_offset_t va)
992{
993 vm_paddr_t rtval;
994 pv_entry_t pt_pv;
995 pt_entry_t *ptep;
996
997 rtval = 0;
998 if (va >= VM_MAX_USER_ADDRESS) {
999 /*
1000 * Kernel page directories might be direct-mapped and
1001 * there is typically no PV tracking of pte's
1002 */
1003 pd_entry_t *pt;
1004
1005 pt = pmap_pt(pmap, va);
1006 if (pt && (*pt & PG_V)) {
1007 if (*pt & PG_PS) {
1008 rtval = *pt & PG_PS_FRAME;
1009 rtval |= va & PDRMASK;
1010 } else {
1011 ptep = pmap_pt_to_pte(pt, va);
1012 if (*pt & PG_V) {
1013 rtval = *ptep & PG_FRAME;
1014 rtval |= va & PAGE_MASK;
1015 }
1016 }
1017 }
1018 } else {
1019 /*
1020 * User pages currently do not direct-map the page directory
1021 * and some pages might not used managed PVs. But all PT's
1022 * will have a PV.
1023 */
1024 pt_pv = pv_find(pmap, pmap_pt_pindex(va));
1025 if (pt_pv) {
1026 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1027 if (*ptep & PG_V) {
1028 rtval = *ptep & PG_FRAME;
1029 rtval |= va & PAGE_MASK;
1030 }
1031 pv_drop(pt_pv);
1032 }
1033 }
1034 return rtval;
1035}
1036
1037/*
1038 * Extract the physical page address associated kernel virtual address.
1039 */
1040vm_paddr_t
1041pmap_kextract(vm_offset_t va)
1042{
1043 pd_entry_t pt; /* pt entry in pd */
1044 vm_paddr_t pa;
1045
1046 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1047 pa = DMAP_TO_PHYS(va);
1048 } else {
1049 pt = *vtopt(va);
1050 if (pt & PG_PS) {
1051 pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
1052 } else {
1053 /*
1054 * Beware of a concurrent promotion that changes the
1055 * PDE at this point! For example, vtopte() must not
1056 * be used to access the PTE because it would use the
1057 * new PDE. It is, however, safe to use the old PDE
1058 * because the page table page is preserved by the
1059 * promotion.
1060 */
1061 pa = *pmap_pt_to_pte(&pt, va);
1062 pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1063 }
1064 }
1065 return pa;
1066}
1067
1068/***************************************************
1069 * Low level mapping routines.....
1070 ***************************************************/
1071
1072/*
1073 * Routine: pmap_kenter
1074 * Function:
1075 * Add a wired page to the KVA
1076 * NOTE! note that in order for the mapping to take effect -- you
1077 * should do an invltlb after doing the pmap_kenter().
1078 */
1079void
1080pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1081{
1082 pt_entry_t *pte;
1083 pt_entry_t npte;
1084 pmap_inval_info info;
1085
1086 pmap_inval_init(&info); /* XXX remove */
1087 npte = pa | PG_RW | PG_V | pgeflag;
1088 pte = vtopte(va);
1089 pmap_inval_interlock(&info, &kernel_pmap, va); /* XXX remove */
1090 *pte = npte;
1091 pmap_inval_deinterlock(&info, &kernel_pmap); /* XXX remove */
1092 pmap_inval_done(&info); /* XXX remove */
1093}
1094
1095/*
1096 * Routine: pmap_kenter_quick
1097 * Function:
1098 * Similar to pmap_kenter(), except we only invalidate the
1099 * mapping on the current CPU.
1100 */
1101void
1102pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1103{
1104 pt_entry_t *pte;
1105 pt_entry_t npte;
1106
1107 npte = pa | PG_RW | PG_V | pgeflag;
1108 pte = vtopte(va);
1109 *pte = npte;
1110 cpu_invlpg((void *)va);
1111}
1112
1113void
1114pmap_kenter_sync(vm_offset_t va)
1115{
1116 pmap_inval_info info;
1117
1118 pmap_inval_init(&info);
1119 pmap_inval_interlock(&info, &kernel_pmap, va);
1120 pmap_inval_deinterlock(&info, &kernel_pmap);
1121 pmap_inval_done(&info);
1122}
1123
1124void
1125pmap_kenter_sync_quick(vm_offset_t va)
1126{
1127 cpu_invlpg((void *)va);
1128}
1129
1130/*
1131 * remove a page from the kernel pagetables
1132 */
1133void
1134pmap_kremove(vm_offset_t va)
1135{
1136 pt_entry_t *pte;
1137 pmap_inval_info info;
1138
1139 pmap_inval_init(&info);
1140 pte = vtopte(va);
1141 pmap_inval_interlock(&info, &kernel_pmap, va);
1142 (void)pte_load_clear(pte);
1143 pmap_inval_deinterlock(&info, &kernel_pmap);
1144 pmap_inval_done(&info);
1145}
1146
1147void
1148pmap_kremove_quick(vm_offset_t va)
1149{
1150 pt_entry_t *pte;
1151 pte = vtopte(va);
1152 (void)pte_load_clear(pte);
1153 cpu_invlpg((void *)va);
1154}
1155
1156/*
1157 * XXX these need to be recoded. They are not used in any critical path.
1158 */
1159void
1160pmap_kmodify_rw(vm_offset_t va)
1161{
1162 atomic_set_long(vtopte(va), PG_RW);
1163 cpu_invlpg((void *)va);
1164}
1165
1166void
1167pmap_kmodify_nc(vm_offset_t va)
1168{
1169 atomic_set_long(vtopte(va), PG_N);
1170 cpu_invlpg((void *)va);
1171}
1172
1173/*
1174 * Used to map a range of physical addresses into kernel virtual
1175 * address space during the low level boot, typically to map the
1176 * dump bitmap, message buffer, and vm_page_array.
1177 *
1178 * These mappings are typically made at some pointer after the end of the
1179 * kernel text+data.
1180 *
1181 * We could return PHYS_TO_DMAP(start) here and not allocate any
1182 * via (*virtp), but then kmem from userland and kernel dumps won't
1183 * have access to the related pointers.
1184 */
1185vm_offset_t
1186pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1187{
1188 vm_offset_t va;
1189 vm_offset_t va_start;
1190
1191 /*return PHYS_TO_DMAP(start);*/
1192
1193 va_start = *virtp;
1194 va = va_start;
1195
1196 while (start < end) {
1197 pmap_kenter_quick(va, start);
1198 va += PAGE_SIZE;
1199 start += PAGE_SIZE;
1200 }
1201 *virtp = va;
1202 return va_start;
1203}
1204
1205
1206/*
1207 * Add a list of wired pages to the kva
1208 * this routine is only used for temporary
1209 * kernel mappings that do not need to have
1210 * page modification or references recorded.
1211 * Note that old mappings are simply written
1212 * over. The page *must* be wired.
1213 */
1214void
1215pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
1216{
1217 vm_offset_t end_va;
1218
1219 end_va = va + count * PAGE_SIZE;
1220
1221 while (va < end_va) {
1222 pt_entry_t *pte;
1223
1224 pte = vtopte(va);
1225 *pte = VM_PAGE_TO_PHYS(*m) | PG_RW | PG_V | pgeflag;
1226 cpu_invlpg((void *)va);
1227 va += PAGE_SIZE;
1228 m++;
1229 }
1230 smp_invltlb();
1231}
1232
1233/*
1234 * This routine jerks page mappings from the
1235 * kernel -- it is meant only for temporary mappings.
1236 *
1237 * MPSAFE, INTERRUPT SAFE (cluster callback)
1238 */
1239void
1240pmap_qremove(vm_offset_t va, int count)
1241{
1242 vm_offset_t end_va;
1243
1244 end_va = va + count * PAGE_SIZE;
1245
1246 while (va < end_va) {
1247 pt_entry_t *pte;
1248
1249 pte = vtopte(va);
1250 (void)pte_load_clear(pte);
1251 cpu_invlpg((void *)va);
1252 va += PAGE_SIZE;
1253 }
1254 smp_invltlb();
1255}
1256
1257/*
1258 * Create a new thread and optionally associate it with a (new) process.
1259 * NOTE! the new thread's cpu may not equal the current cpu.
1260 */
1261void
1262pmap_init_thread(thread_t td)
1263{
1264 /* enforce pcb placement & alignment */
1265 td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1266 td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
1267 td->td_savefpu = &td->td_pcb->pcb_save;
1268 td->td_sp = (char *)td->td_pcb; /* no -16 */
1269}
1270
1271/*
1272 * This routine directly affects the fork perf for a process.
1273 */
1274void
1275pmap_init_proc(struct proc *p)
1276{
1277}
1278
1279/*
1280 * Initialize pmap0/vmspace0. This pmap is not added to pmap_list because
1281 * it, and IdlePTD, represents the template used to update all other pmaps.
1282 *
1283 * On architectures where the kernel pmap is not integrated into the user
1284 * process pmap, this pmap represents the process pmap, not the kernel pmap.
1285 * kernel_pmap should be used to directly access the kernel_pmap.
1286 */
1287void
1288pmap_pinit0(struct pmap *pmap)
1289{
1290 pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1291 pmap->pm_count = 1;
1292 pmap->pm_active = 0;
1293 pmap->pm_pvhint = NULL;
1294 RB_INIT(&pmap->pm_pvroot);
1295 spin_init(&pmap->pm_spin);
1296 lwkt_token_init(&pmap->pm_token, "pmap_tok");
1297 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1298}
1299
1300/*
1301 * Initialize a preallocated and zeroed pmap structure,
1302 * such as one in a vmspace structure.
1303 */
1304void
1305pmap_pinit(struct pmap *pmap)
1306{
1307 pv_entry_t pv;
1308 int j;
1309
1310 /*
1311 * Misc initialization
1312 */
1313 pmap->pm_count = 1;
1314 pmap->pm_active = 0;
1315 pmap->pm_pvhint = NULL;
1316 if (pmap->pm_pmlpv == NULL) {
1317 RB_INIT(&pmap->pm_pvroot);
1318 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1319 spin_init(&pmap->pm_spin);
1320 lwkt_token_init(&pmap->pm_token, "pmap_tok");
1321 }
1322
1323 /*
1324 * No need to allocate page table space yet but we do need a valid
1325 * page directory table.
1326 */
1327 if (pmap->pm_pml4 == NULL) {
1328 pmap->pm_pml4 =
1329 (pml4_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1330 }
1331
1332 /*
1333 * Allocate the page directory page, which wires it even though
1334 * it isn't being entered into some higher level page table (it
1335 * being the highest level). If one is already cached we don't
1336 * have to do anything.
1337 */
1338 if ((pv = pmap->pm_pmlpv) == NULL) {
1339 pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1340 pmap->pm_pmlpv = pv;
1341 pmap_kenter((vm_offset_t)pmap->pm_pml4,
1342 VM_PAGE_TO_PHYS(pv->pv_m));
1343 pv_put(pv);
1344
1345 /*
1346 * Install DMAP and KMAP.
1347 */
1348 for (j = 0; j < NDMPML4E; ++j) {
1349 pmap->pm_pml4[DMPML4I + j] =
1350 (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
1351 PG_RW | PG_V | PG_U;
1352 }
1353 pmap->pm_pml4[KPML4I] = KPDPphys | PG_RW | PG_V | PG_U;
1354
1355 /*
1356 * install self-referential address mapping entry
1357 */
1358 pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
1359 PG_V | PG_RW | PG_A | PG_M;
1360 } else {
1361 KKASSERT(pv->pv_m->flags & PG_MAPPED);
1362 KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
1363 }
1364}
1365
1366/*
1367 * Clean up a pmap structure so it can be physically freed. This routine
1368 * is called by the vmspace dtor function. A great deal of pmap data is
1369 * left passively mapped to improve vmspace management so we have a bit
1370 * of cleanup work to do here.
1371 */
1372void
1373pmap_puninit(pmap_t pmap)
1374{
1375 pv_entry_t pv;
1376 vm_page_t p;
1377
1378 KKASSERT(pmap->pm_active == 0);
1379 if ((pv = pmap->pm_pmlpv) != NULL) {
1380 if (pv_hold_try(pv) == 0)
1381 pv_lock(pv);
1382 p = pmap_remove_pv_page(pv);
1383 pv_free(pv);
1384 pmap_kremove((vm_offset_t)pmap->pm_pml4);
1385 vm_page_busy_wait(p, FALSE, "pgpun");
1386 KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
1387 vm_page_unwire(p, 0);
1388 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1389
1390 /*
1391 * XXX eventually clean out PML4 static entries and
1392 * use vm_page_free_zero()
1393 */
1394 vm_page_free(p);
1395 pmap->pm_pmlpv = NULL;
1396 }
1397 if (pmap->pm_pml4) {
1398 KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1399 kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1400 pmap->pm_pml4 = NULL;
1401 }
1402 KKASSERT(pmap->pm_stats.resident_count == 0);
1403 KKASSERT(pmap->pm_stats.wired_count == 0);
1404}
1405
1406/*
1407 * Wire in kernel global address entries. To avoid a race condition
1408 * between pmap initialization and pmap_growkernel, this procedure
1409 * adds the pmap to the master list (which growkernel scans to update),
1410 * then copies the template.
1411 */
1412void
1413pmap_pinit2(struct pmap *pmap)
1414{
1415 /*
1416 * XXX copies current process, does not fill in MPPTDI
1417 */
1418 spin_lock(&pmap_spin);
1419 TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1420 spin_unlock(&pmap_spin);
1421}
1422
1423/*
1424 * This routine is called when various levels in the page table need to
1425 * be populated. This routine cannot fail.
1426 *
1427 * This function returns two locked pv_entry's, one representing the
1428 * requested pv and one representing the requested pv's parent pv. If
1429 * the pv did not previously exist it will be mapped into its parent
1430 * and wired, otherwise no additional wire count will be added.
1431 */
1432static
1433pv_entry_t
1434pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
1435{
1436 pt_entry_t *ptep;
1437 pv_entry_t pv;
1438 pv_entry_t pvp;
1439 vm_pindex_t pt_pindex;
1440 vm_page_t m;
1441 int isnew;
1442
1443 /*
1444 * If the pv already exists and we aren't being asked for the
1445 * parent page table page we can just return it. A locked+held pv
1446 * is returned.
1447 */
1448 pv = pv_alloc(pmap, ptepindex, &isnew);
1449 if (isnew == 0 && pvpp == NULL)
1450 return(pv);
1451
1452 /*
1453 * This is a new PV, we have to resolve its parent page table and
1454 * add an additional wiring to the page if necessary.
1455 */
1456
1457 /*
1458 * Special case terminal PVs. These are not page table pages so
1459 * no vm_page is allocated (the caller supplied the vm_page). If
1460 * pvpp is non-NULL we are being asked to also removed the pt_pv
1461 * for this pv.
1462 *
1463 * Note that pt_pv's are only returned for user VAs. We assert that
1464 * a pt_pv is not being requested for kernel VAs.
1465 */
1466 if (ptepindex < pmap_pt_pindex(0)) {
1467 if (ptepindex >= NUPTE_USER)
1468 KKASSERT(pvpp == NULL);
1469 else
1470 KKASSERT(pvpp != NULL);
1471 if (pvpp) {
1472 pt_pindex = NUPTE_TOTAL + (ptepindex >> NPTEPGSHIFT);
1473 pvp = pmap_allocpte(pmap, pt_pindex, NULL);
1474 if (isnew)
1475 vm_page_wire_quick(pvp->pv_m);
1476 *pvpp = pvp;
1477 } else {
1478 pvp = NULL;
1479 }
1480 return(pv);
1481 }
1482
1483 /*
1484 * Non-terminal PVs allocate a VM page to represent the page table,
1485 * so we have to resolve pvp and calculate ptepindex for the pvp
1486 * and then for the page table entry index in the pvp for
1487 * fall-through.
1488 */
1489 if (ptepindex < pmap_pd_pindex(0)) {
1490 /*
1491 * pv is PT, pvp is PD
1492 */
1493 ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
1494 ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
1495 pvp = pmap_allocpte(pmap, ptepindex, NULL);
1496 if (!isnew)
1497 goto notnew;
1498
1499 /*
1500 * PT index in PD
1501 */
1502 ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
1503 ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
1504 } else if (ptepindex < pmap_pdp_pindex(0)) {
1505 /*
1506 * pv is PD, pvp is PDP
1507 */
1508 ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
1509 ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
1510 pvp = pmap_allocpte(pmap, ptepindex, NULL);
1511 if (!isnew)
1512 goto notnew;
1513
1514 /*
1515 * PD index in PDP
1516 */
1517 ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
1518 ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
1519 } else if (ptepindex < pmap_pml4_pindex()) {
1520 /*
1521 * pv is PDP, pvp is the root pml4 table
1522 */
1523 pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1524 if (!isnew)
1525 goto notnew;
1526
1527 /*
1528 * PDP index in PML4
1529 */
1530 ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
1531 ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
1532 } else {
1533 /*
1534 * pv represents the top-level PML4, there is no parent.
1535 */
1536 pvp = NULL;
1537 if (!isnew)
1538 goto notnew;
1539 }
1540
1541 /*
1542 * This code is only reached if isnew is TRUE and this is not a
1543 * terminal PV. We need to allocate a vm_page for the page table
1544 * at this level and enter it into the parent page table.
1545 *
1546 * page table pages are marked PG_WRITEABLE and PG_MAPPED.
1547 */
1548 for (;;) {
1549 m = vm_page_alloc(NULL, pv->pv_pindex,
1550 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
1551 VM_ALLOC_INTERRUPT);
1552 if (m)
1553 break;
1554 vm_wait(0);
1555 }
1556 vm_page_spin_lock(m);
1557 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1558 pv->pv_m = m;
1559 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1560 vm_page_spin_unlock(m);
1561 vm_page_unmanage(m); /* m must be spinunlocked */
1562
1563 if ((m->flags & PG_ZERO) == 0) {
1564 pmap_zero_page(VM_PAGE_TO_PHYS(m));
1565 }
1566#ifdef PMAP_DEBUG
1567 else {
1568 pmap_page_assertzero(VM_PAGE_TO_PHYS(m));
1569 }
1570#endif
1571 m->valid = VM_PAGE_BITS_ALL;
1572 vm_page_flag_clear(m, PG_ZERO);
1573 vm_page_wire(m); /* wire for mapping in parent */
1574
1575 /*
1576 * Wire the page into pvp, bump the wire-count for pvp's page table
1577 * page. Bump the resident_count for the pmap. There is no pvp
1578 * for the top level, address the pm_pml4[] array directly.
1579 *
1580 * If the caller wants the parent we return it, otherwise
1581 * we just put it away.
1582 *
1583 * No interlock is needed for pte 0 -> non-zero.
1584 */
1585 if (pvp) {
1586 vm_page_wire_quick(pvp->pv_m);
1587 ptep = pv_pte_lookup(pvp, ptepindex);
1588 KKASSERT((*ptep & PG_V) == 0);
1589 *ptep = VM_PAGE_TO_PHYS(m) | (PG_U | PG_RW | PG_V |
1590 PG_A | PG_M);
1591 }
1592 vm_page_wakeup(m);
1593notnew:
1594 if (pvpp)
1595 *pvpp = pvp;
1596 else if (pvp)
1597 pv_put(pvp);
1598 return (pv);
1599}
1600
1601/*
1602 * Release any resources held by the given physical map.
1603 *
1604 * Called when a pmap initialized by pmap_pinit is being released. Should
1605 * only be called if the map contains no valid mappings.
1606 *
1607 * Caller must hold pmap->pm_token
1608 */
1609struct pmap_release_info {
1610 pmap_t pmap;
1611 int retry;
1612};
1613
1614static int pmap_release_callback(pv_entry_t pv, void *data);
1615
1616void
1617pmap_release(struct pmap *pmap)
1618{
1619 struct pmap_release_info info;
1620
1621 KASSERT(pmap->pm_active == 0,
1622 ("pmap still active! %016jx", (uintmax_t)pmap->pm_active));
1623
1624 spin_lock(&pmap_spin);
1625 TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
1626 spin_unlock(&pmap_spin);
1627
1628 /*
1629 * Pull pv's off the RB tree in order from low to high and release
1630 * each page.
1631 */
1632 info.pmap = pmap;
1633 do {
1634 info.retry = 0;
1635 spin_lock(&pmap->pm_spin);
1636 RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
1637 pmap_release_callback, &info);
1638 spin_unlock(&pmap->pm_spin);
1639 } while (info.retry);
1640
1641
1642 /*
1643 * One resident page (the pml4 page) should remain.
1644 * No wired pages should remain.
1645 */
1646 KKASSERT(pmap->pm_stats.resident_count == 1);
1647 KKASSERT(pmap->pm_stats.wired_count == 0);
1648}
1649
1650static int
1651pmap_release_callback(pv_entry_t pv, void *data)
1652{
1653 struct pmap_release_info *info = data;
1654 pmap_t pmap = info->pmap;
1655 vm_page_t p;
1656
1657 if (pv_hold_try(pv)) {
1658 spin_unlock(&pmap->pm_spin);
1659 } else {
1660 spin_unlock(&pmap->pm_spin);
1661 pv_lock(pv);
1662 if (pv->pv_pmap != pmap) {
1663 pv_put(pv);
1664 spin_lock(&pmap->pm_spin);
1665 info->retry = 1;
1666 return(-1);
1667 }
1668 }
1669
1670 /*
1671 * The pmap is currently not spinlocked, pv is held+locked.
1672 * Remove the pv's page from its parent's page table. The
1673 * parent's page table page's wire_count will be decremented.
1674 */
1675 pmap_remove_pv_pte(pv, NULL, NULL);
1676
1677 /*
1678 * Terminal pvs are unhooked from their vm_pages. Because
1679 * terminal pages aren't page table pages they aren't wired
1680 * by us, so we have to be sure not to unwire them either.
1681 */
1682 if (pv->pv_pindex < pmap_pt_pindex(0)) {
1683 pmap_remove_pv_page(pv);
1684 goto skip;
1685 }
1686
1687 /*
1688 * We leave the top-level page table page cached, wired, and
1689 * mapped in the pmap until the dtor function (pmap_puninit())
1690 * gets called.
1691 *
1692 * Since we are leaving the top-level pv intact we need
1693 * to break out of what would otherwise be an infinite loop.
1694 */
1695 if (pv->pv_pindex == pmap_pml4_pindex()) {
1696 pv_put(pv);
1697 spin_lock(&pmap->pm_spin);
1698 return(-1);
1699 }
1700
1701 /*
1702 * For page table pages (other than the top-level page),
1703 * remove and free the vm_page. The representitive mapping
1704 * removed above by pmap_remove_pv_pte() did not undo the
1705 * last wire_count so we have to do that as well.
1706 */
1707 p = pmap_remove_pv_page(pv);
1708 vm_page_busy_wait(p, FALSE, "pmaprl");
1709 if (p->wire_count != 1) {
1710 kprintf("p->wire_count was %016lx %d\n",
1711 pv->pv_pindex, p->wire_count);
1712 }
1713 KKASSERT(p->wire_count == 1);
1714 KKASSERT(p->flags & PG_UNMANAGED);
1715
1716 vm_page_unwire(p, 0);
1717 KKASSERT(p->wire_count == 0);
1718 /* JG eventually revert to using vm_page_free_zero() */
1719 vm_page_free(p);
1720skip:
1721 pv_free(pv);
1722 spin_lock(&pmap->pm_spin);
1723 return(0);
1724}
1725
1726/*
1727 * This function will remove the pte associated with a pv from its parent.
1728 * Terminal pv's are supported. The removal will be interlocked if info
1729 * is non-NULL. The caller must dispose of pv instead of just unlocking
1730 * it.
1731 *
1732 * The wire count will be dropped on the parent page table. The wire
1733 * count on the page being removed (pv->pv_m) from the parent page table
1734 * is NOT touched. Note that terminal pages will not have any additional
1735 * wire counts while page table pages will have at least one representing
1736 * the mapping, plus others representing sub-mappings.
1737 *
1738 * NOTE: Cannot be called on kernel page table pages, only KVM terminal
1739 * pages and user page table and terminal pages.
1740 *
1741 * The pv must be locked.
1742 *
1743 * XXX must lock parent pv's if they exist to remove pte XXX
1744 */
1745static
1746void
1747pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, struct pmap_inval_info *info)
1748{
1749 vm_pindex_t ptepindex = pv->pv_pindex;
1750 pmap_t pmap = pv->pv_pmap;
1751 vm_page_t p;
1752 int gotpvp = 0;
1753
1754 KKASSERT(pmap);
1755
1756 if (ptepindex == pmap_pml4_pindex()) {
1757 /*
1758 * We are the top level pml4 table, there is no parent.
1759 */
1760 p = pmap->pm_pmlpv->pv_m;
1761 } else if (ptepindex >= pmap_pdp_pindex(0)) {
1762 /*
1763 * Remove a PDP page from the pml4e. This can only occur
1764 * with user page tables. We do not have to lock the
1765 * pml4 PV so just ignore pvp.
1766 */
1767 vm_pindex_t pml4_pindex;
1768 vm_pindex_t pdp_index;
1769 pml4_entry_t *pdp;
1770
1771 pdp_index = ptepindex - pmap_pdp_pindex(0);
1772 if (pvp == NULL) {
1773 pml4_pindex = pmap_pml4_pindex();
1774 pvp = pv_get(pv->pv_pmap, pml4_pindex);
1775 gotpvp = 1;
1776 }
1777 pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
1778 KKASSERT((*pdp & PG_V) != 0);
1779 p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
1780 *pdp = 0;
1781 KKASSERT(info == NULL);
1782 } else if (ptepindex >= pmap_pd_pindex(0)) {
1783 /*
1784 * Remove a PD page from the pdp
1785 */
1786 vm_pindex_t pdp_pindex;
1787 vm_pindex_t pd_index;
1788 pdp_entry_t *pd;
1789
1790 pd_index = ptepindex - pmap_pd_pindex(0);
1791
1792 if (pvp == NULL) {
1793 pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
1794 (pd_index >> NPML4EPGSHIFT);
1795 pvp = pv_get(pv->pv_pmap, pdp_pindex);
1796 gotpvp = 1;
1797 }
1798 pd = pv_pte_lookup(pvp, pd_index & ((1ul << NPDPEPGSHIFT) - 1));
1799 KKASSERT((*pd & PG_V) != 0);
1800 p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
1801 *pd = 0;
1802 KKASSERT(info == NULL);
1803 } else if (ptepindex >= pmap_pt_pindex(0)) {
1804 /*
1805 * Remove a PT page from the pd
1806 */
1807 vm_pindex_t pd_pindex;
1808 vm_pindex_t pt_index;
1809 pd_entry_t *pt;
1810
1811 pt_index = ptepindex - pmap_pt_pindex(0);
1812
1813 if (pvp == NULL) {
1814 pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
1815 (pt_index >> NPDPEPGSHIFT);
1816 pvp = pv_get(pv->pv_pmap, pd_pindex);
1817 gotpvp = 1;
1818 }
1819 pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
1820 KKASSERT((*pt & PG_V) != 0);
1821 p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
1822 *pt = 0;
1823 KKASSERT(info == NULL);
1824 } else {
1825 /*
1826 * Remove a PTE from the PT page
1827 *
1828 * NOTE: pv's must be locked bottom-up to avoid deadlocking.
1829 * pv is a pte_pv so we can safely lock pt_pv.
1830 */
1831 vm_pindex_t pt_pindex;
1832 pt_entry_t *ptep;
1833 pt_entry_t pte;
1834 vm_offset_t va;
1835
1836 pt_pindex = ptepindex >> NPTEPGSHIFT;
1837 va = (vm_offset_t)ptepindex << PAGE_SHIFT;
1838
1839 if (ptepindex >= NUPTE_USER) {
1840 ptep = vtopte(ptepindex << PAGE_SHIFT);
1841 KKASSERT(pvp == NULL);
1842 } else {
1843 if (pvp == NULL) {
1844 pt_pindex = NUPTE_TOTAL +
1845 (ptepindex >> NPDPEPGSHIFT);
1846 pvp = pv_get(pv->pv_pmap, pt_pindex);
1847 gotpvp = 1;
1848 }
1849 ptep = pv_pte_lookup(pvp, ptepindex &
1850 ((1ul << NPDPEPGSHIFT) - 1));
1851 }
1852
1853 if (info)
1854 pmap_inval_interlock(info, pmap, va);
1855 pte = pte_load_clear(ptep);
1856 if (info)
1857 pmap_inval_deinterlock(info, pmap);
1858 else
1859 cpu_invlpg((void *)va);
1860
1861 /*
1862 * Now update the vm_page_t
1863 */
1864 if ((pte & (PG_MANAGED|PG_V)) != (PG_MANAGED|PG_V)) {
1865 kprintf("remove_pte badpte %016lx %016lx %d\n",
1866 pte, pv->pv_pindex,
1867 pv->pv_pindex < pmap_pt_pindex(0));
1868 }
1869 /*KKASSERT((pte & (PG_MANAGED|PG_V)) == (PG_MANAGED|PG_V));*/
1870 p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1871
1872 if (pte & PG_M) {
1873 if (pmap_track_modified(ptepindex))
1874 vm_page_dirty(p);
1875 }
1876 if (pte & PG_A) {
1877 vm_page_flag_set(p, PG_REFERENCED);
1878 }
1879 if (pte & PG_W)
1880 atomic_add_long(&pmap->pm_stats.wired_count, -1);
1881 if (pte & PG_G)
1882 cpu_invlpg((void *)va);
1883 }
1884
1885 /*
1886 * Unwire the parent page table page. The wire_count cannot go below
1887 * 1 here because the parent page table page is itself still mapped.
1888 *
1889 * XXX remove the assertions later.
1890 */
1891 KKASSERT(pv->pv_m == p);
1892 if (pvp && vm_page_unwire_quick(pvp->pv_m))
1893 panic("pmap_remove_pv_pte: Insufficient wire_count");
1894
1895 if (gotpvp)
1896 pv_put(pvp);
1897}
1898
1899static
1900vm_page_t
1901pmap_remove_pv_page(pv_entry_t pv)
1902{
1903 vm_page_t m;
1904
1905 m = pv->pv_m;
1906 KKASSERT(m);
1907 vm_page_spin_lock(m);
1908 pv->pv_m = NULL;
1909 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1910 /*
1911 if (m->object)
1912 atomic_add_int(&m->object->agg_pv_list_count, -1);
1913 */
1914 if (TAILQ_EMPTY(&m->md.pv_list))
1915 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1916 vm_page_spin_unlock(m);
1917 return(m);
1918}
1919
1920/*
1921 * Grow the number of kernel page table entries, if needed.
1922 *
1923 * This routine is always called to validate any address space
1924 * beyond KERNBASE (for kldloads). kernel_vm_end only governs the address
1925 * space below KERNBASE.
1926 */
1927void
1928pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
1929{
1930 vm_paddr_t paddr;
1931 vm_offset_t ptppaddr;
1932 vm_page_t nkpg;
1933 pd_entry_t *pt, newpt;
1934 pdp_entry_t newpd;
1935 int update_kernel_vm_end;
1936
1937 /*
1938 * bootstrap kernel_vm_end on first real VM use
1939 */
1940 if (kernel_vm_end == 0) {
1941 kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
1942 nkpt = 0;
1943 while ((*pmap_pt(&kernel_pmap, kernel_vm_end) & PG_V) != 0) {
1944 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1945 ~(PAGE_SIZE * NPTEPG - 1);
1946 nkpt++;
1947 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1948 kernel_vm_end = kernel_map.max_offset;
1949 break;
1950 }
1951 }
1952 }
1953
1954 /*
1955 * Fill in the gaps. kernel_vm_end is only adjusted for ranges
1956 * below KERNBASE. Ranges above KERNBASE are kldloaded and we
1957 * do not want to force-fill 128G worth of page tables.
1958 */
1959 if (kstart < KERNBASE) {
1960 if (kstart > kernel_vm_end)
1961 kstart = kernel_vm_end;
1962 KKASSERT(kend <= KERNBASE);
1963 update_kernel_vm_end = 1;
1964 } else {
1965 update_kernel_vm_end = 0;
1966 }
1967
1968 kstart = rounddown2(kstart, PAGE_SIZE * NPTEPG);
1969 kend = roundup2(kend, PAGE_SIZE * NPTEPG);
1970
1971 if (kend - 1 >= kernel_map.max_offset)
1972 kend = kernel_map.max_offset;
1973
1974 while (kstart < kend) {
1975 pt = pmap_pt(&kernel_pmap, kstart);
1976 if (pt == NULL) {
1977 /* We need a new PDP entry */
1978 nkpg = vm_page_alloc(NULL, nkpt,
1979 VM_ALLOC_NORMAL |
1980 VM_ALLOC_SYSTEM |
1981 VM_ALLOC_INTERRUPT);
1982 if (nkpg == NULL) {
1983 panic("pmap_growkernel: no memory to grow "
1984 "kernel");
1985 }
1986 paddr = VM_PAGE_TO_PHYS(nkpg);
1987 if ((nkpg->flags & PG_ZERO) == 0)
1988 pmap_zero_page(paddr);
1989 vm_page_flag_clear(nkpg, PG_ZERO);
1990 newpd = (pdp_entry_t)
1991 (paddr | PG_V | PG_RW | PG_A | PG_M);
1992 *pmap_pd(&kernel_pmap, kstart) = newpd;
1993 nkpt++;
1994 continue; /* try again */
1995 }
1996 if ((*pt & PG_V) != 0) {
1997 kstart = (kstart + PAGE_SIZE * NPTEPG) &
1998 ~(PAGE_SIZE * NPTEPG - 1);
1999 if (kstart - 1 >= kernel_map.max_offset) {
2000 kstart = kernel_map.max_offset;
2001 break;
2002 }
2003 continue;
2004 }
2005
2006 /*
2007 * This index is bogus, but out of the way
2008 */
2009 nkpg = vm_page_alloc(NULL, nkpt,
2010 VM_ALLOC_NORMAL |
2011 VM_ALLOC_SYSTEM |
2012 VM_ALLOC_INTERRUPT);
2013 if (nkpg == NULL)
2014 panic("pmap_growkernel: no memory to grow kernel");
2015
2016 vm_page_wire(nkpg);
2017 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2018 pmap_zero_page(ptppaddr);
2019 vm_page_flag_clear(nkpg, PG_ZERO);
2020 newpt = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2021 *pmap_pt(&kernel_pmap, kstart) = newpt;
2022 nkpt++;
2023
2024 kstart = (kstart + PAGE_SIZE * NPTEPG) &
2025 ~(PAGE_SIZE * NPTEPG - 1);
2026
2027 if (kstart - 1 >= kernel_map.max_offset) {
2028 kstart = kernel_map.max_offset;
2029 break;
2030 }
2031 }
2032
2033 /*
2034 * Only update kernel_vm_end for areas below KERNBASE.
2035 */
2036 if (update_kernel_vm_end && kernel_vm_end < kstart)
2037 kernel_vm_end = kstart;
2038}
2039
2040/*
2041 * Retire the given physical map from service.
2042 * Should only be called if the map contains
2043 * no valid mappings.
2044 */
2045void
2046pmap_destroy(pmap_t pmap)
2047{
2048 int count;
2049
2050 if (pmap == NULL)
2051 return;
2052
2053 lwkt_gettoken(&pmap->pm_token);
2054 count = --pmap->pm_count;
2055 if (count == 0) {
2056 pmap_release(pmap); /* eats pm_token */
2057 panic("destroying a pmap is not yet implemented");
2058 }
2059 lwkt_reltoken(&pmap->pm_token);
2060}
2061
2062/*
2063 * Add a reference to the specified pmap.
2064 */
2065void
2066pmap_reference(pmap_t pmap)
2067{
2068 if (pmap != NULL) {
2069 lwkt_gettoken(&pmap->pm_token);
2070 pmap->pm_count++;
2071 lwkt_reltoken(&pmap->pm_token);
2072 }
2073}
2074
2075/***************************************************
2076 * page management routines.
2077 ***************************************************/
2078
2079/*
2080 * Hold a pv without locking it
2081 */
2082static void
2083pv_hold(pv_entry_t pv)
2084{
2085 u_int count;
2086
2087 if (atomic_cmpset_int(&pv->pv_hold, 0, 1))
2088 return;
2089
2090 for (;;) {
2091 count = pv->pv_hold;
2092 cpu_ccfence();
2093 if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
2094 return;
2095 /* retry */
2096 }
2097}
2098
2099/*
2100 * Hold a pv_entry, preventing its destruction. TRUE is returned if the pv
2101 * was successfully locked, FALSE if it wasn't. The caller must dispose of
2102 * the pv properly.
2103 *
2104 * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
2105 * pv list via its page) must be held by the caller.
2106 */
2107static int
2108_pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
2109{
2110 u_int count;
2111
2112 if (atomic_cmpset_int(&pv->pv_hold, 0, PV_HOLD_LOCKED | 1)) {
2113#ifdef PMAP_DEBUG
2114 pv->pv_func = func;
2115 pv->pv_line = lineno;
2116#endif
2117 return TRUE;
2118 }
2119
2120 for (;;) {
2121 count = pv->pv_hold;
2122 cpu_ccfence();
2123 if ((count & PV_HOLD_LOCKED) == 0) {
2124 if (atomic_cmpset_int(&pv->pv_hold, count,
2125 (count + 1) | PV_HOLD_LOCKED)) {
2126#ifdef PMAP_DEBUG
2127 pv->pv_func = func;
2128 pv->pv_line = lineno;
2129#endif
2130 return TRUE;
2131 }
2132 } else {
2133 if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
2134 return FALSE;
2135 }
2136 /* retry */
2137 }
2138}
2139
2140/*
2141 * Drop a previously held pv_entry which could not be locked, allowing its
2142 * destruction.
2143 *
2144 * Must not be called with a spinlock held as we might zfree() the pv if it
2145 * is no longer associated with a pmap and this was the last hold count.
2146 */
2147static void
2148pv_drop(pv_entry_t pv)
2149{
2150 u_int count;
2151
2152 if (atomic_cmpset_int(&pv->pv_hold, 1, 0)) {
2153 if (pv->pv_pmap == NULL)
2154 zfree(pvzone, pv);
2155 return;
2156 }
2157
2158 for (;;) {
2159 count = pv->pv_hold;
2160 cpu_ccfence();
2161 KKASSERT((count & PV_HOLD_MASK) > 0);
2162 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
2163 (PV_HOLD_LOCKED | 1));
2164 if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
2165 if (count == 1 && pv->pv_pmap == NULL)
2166 zfree(pvzone, pv);
2167 return;
2168 }
2169 /* retry */
2170 }
2171}
2172
2173/*
2174 * Find or allocate the requested PV entry, returning a locked pv
2175 */
2176static
2177pv_entry_t
2178_pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
2179{
2180 pv_entry_t pv;
2181 pv_entry_t pnew = NULL;
2182
2183 spin_lock(&pmap->pm_spin);
2184 for (;;) {
2185 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex) {
2186 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
2187 pindex);
2188 }
2189 if (pv == NULL) {
2190 if (pnew == NULL) {
2191 spin_unlock(&pmap->pm_spin);
2192 pnew = zalloc(pvzone);
2193 spin_lock(&pmap->pm_spin);
2194 continue;
2195 }
2196 pnew->pv_pmap = pmap;
2197 pnew->pv_pindex = pindex;
2198 pnew->pv_hold = PV_HOLD_LOCKED | 1;
2199#ifdef PMAP_DEBUG
2200 pnew->pv_func = func;
2201 pnew->pv_line = lineno;
2202#endif
2203 pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
2204 atomic_add_long(&pmap->pm_stats.resident_count, 1);
2205 spin_unlock(&pmap->pm_spin);
2206 *isnew = 1;
2207 return(pnew);
2208 }
2209 if (pnew) {
2210 spin_unlock(&pmap->pm_spin);
2211 zfree(pvzone, pnew);
2212 pnew = NULL;
2213 spin_lock(&pmap->pm_spin);
2214 continue;
2215 }
2216 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
2217 spin_unlock(&pmap->pm_spin);
2218 *isnew = 0;
2219 return(pv);
2220 }
2221 spin_unlock(&pmap->pm_spin);
2222 _pv_lock(pv PMAP_DEBUG_COPY);
2223 if (pv->pv_pmap == pmap && pv->pv_pindex == pindex) {
2224 *isnew = 0;
2225 return(pv);
2226 }
2227 pv_put(pv);
2228 spin_lock(&pmap->pm_spin);
2229 }
2230
2231
2232}
2233
2234/*
2235 * Find the requested PV entry, returning a locked+held pv or NULL
2236 */
2237static
2238pv_entry_t
2239_pv_get(pmap_t pmap, vm_pindex_t pindex PMAP_DEBUG_DECL)
2240{
2241 pv_entry_t pv;
2242
2243 spin_lock(&pmap->pm_spin);
2244 for (;;) {
2245 /*
2246 * Shortcut cache
2247 */
2248 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex) {
2249 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
2250 pindex);
2251 }
2252 if (pv == NULL) {
2253 spin_unlock(&pmap->pm_spin);
2254 return NULL;
2255 }
2256 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
2257 pv_cache(pv, pindex);
2258 spin_unlock(&pmap->pm_spin);
2259 return(pv);
2260 }
2261 spin_unlock(&pmap->pm_spin);
2262 _pv_lock(pv PMAP_DEBUG_COPY);
2263 if (pv->pv_pmap == pmap && pv->pv_pindex == pindex)
2264 return(pv);
2265 pv_put(pv);
2266 spin_lock(&pmap->pm_spin);
2267 }
2268}
2269
2270/*
2271 * Lookup, hold, and attempt to lock (pmap,pindex).
2272 *
2273 * If the entry does not exist NULL is returned and *errorp is set to 0
2274 *
2275 * If the entry exists and could be successfully locked it is returned and
2276 * errorp is set to 0.
2277 *
2278 * If the entry exists but could NOT be successfully locked it is returned
2279 * held and *errorp is set to 1.
2280 */
2281static
2282pv_entry_t
2283pv_get_try(pmap_t pmap, vm_pindex_t pindex, int *errorp)
2284{
2285 pv_entry_t pv;
2286
2287 spin_lock(&pmap->pm_spin);
2288 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex)
2289 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
2290 if (pv == NULL) {
2291 spin_unlock(&pmap->pm_spin);
2292 *errorp = 0;
2293 return NULL;
2294 }
2295 if (pv_hold_try(pv)) {
2296 pv_cache(pv, pindex);
2297 spin_unlock(&pmap->pm_spin);
2298 *errorp = 0;
2299 return(pv); /* lock succeeded */
2300 }
2301 spin_unlock(&pmap->pm_spin);
2302 *errorp = 1;
2303 return (pv); /* lock failed */
2304}
2305
2306/*
2307 * Find the requested PV entry, returning a held pv or NULL
2308 */
2309static
2310pv_entry_t
2311pv_find(pmap_t pmap, vm_pindex_t pindex)
2312{
2313 pv_entry_t pv;
2314
2315 spin_lock(&pmap->pm_spin);
2316
2317 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex)
2318 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
2319 if (pv == NULL) {
2320 spin_unlock(&pmap->pm_spin);
2321 return NULL;
2322 }
2323 pv_hold(pv);
2324 pv_cache(pv, pindex);
2325 spin_unlock(&pmap->pm_spin);
2326 return(pv);
2327}
2328
2329/*
2330 * Lock a held pv, keeping the hold count
2331 */
2332static
2333void
2334_pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
2335{
2336 u_int count;
2337
2338 for (;;) {
2339 count = pv->pv_hold;
2340 cpu_ccfence();
2341 if ((count & PV_HOLD_LOCKED) == 0) {
2342 if (atomic_cmpset_int(&pv->pv_hold, count,
2343 count | PV_HOLD_LOCKED)) {
2344#ifdef PMAP_DEBUG
2345 pv->pv_func = func;
2346 pv->pv_line = lineno;
2347#endif
2348 return;
2349 }
2350 continue;
2351 }
2352 tsleep_interlock(pv, 0);
2353 if (atomic_cmpset_int(&pv->pv_hold, count,
2354 count | PV_HOLD_WAITING)) {
2355#ifdef PMAP_DEBUG
2356 kprintf("pv waiting on %s:%d\n",
2357 pv->pv_func, pv->pv_line);
2358#endif
2359 tsleep(pv, PINTERLOCKED, "pvwait", hz);
2360 }
2361 /* retry */
2362 }
2363}
2364
2365/*
2366 * Unlock a held and locked pv, keeping the hold count.
2367 */
2368static
2369void
2370pv_unlock(pv_entry_t pv)
2371{
2372 u_int count;
2373
2374 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 1, 1))
2375 return;
2376
2377 for (;;) {
2378 count = pv->pv_hold;
2379 cpu_ccfence();
2380 KKASSERT((count & (PV_HOLD_LOCKED|PV_HOLD_MASK)) >=
2381 (PV_HOLD_LOCKED | 1));
2382 if (atomic_cmpset_int(&pv->pv_hold, count,
2383 count &
2384 ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
2385 if (count & PV_HOLD_WAITING)
2386 wakeup(pv);
2387 break;
2388 }
2389 }
2390}
2391
2392/*
2393 * Unlock and drop a pv. If the pv is no longer associated with a pmap
2394 * and the hold count drops to zero we will free it.
2395 *
2396 * Caller should not hold any spin locks. We are protected from hold races
2397 * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
2398 * lock held. A pv cannot be located otherwise.
2399 */
2400static
2401void
2402pv_put(pv_entry_t pv)
2403{
2404 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 1, 0)) {
2405 if (pv->pv_pmap == NULL)
2406 zfree(pvzone, pv);
2407 return;
2408 }
2409 pv_unlock(pv);
2410 pv_drop(pv);
2411}
2412
2413/*
2414 * Unlock, drop, and free a pv, destroying it. The pv is removed from its
2415 * pmap. Any pte operations must have already been completed.
2416 */
2417static
2418void
2419pv_free(pv_entry_t pv)
2420{
2421 pmap_t pmap;
2422
2423 KKASSERT(pv->pv_m == NULL);
2424 if ((pmap = pv->pv_pmap) != NULL) {
2425 spin_lock(&pmap->pm_spin);
2426 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
2427 if (pmap->pm_pvhint == pv)
2428 pmap->pm_pvhint = NULL;
2429 atomic_add_long(&pmap->pm_stats.resident_count, -1);
2430 pv->pv_pmap = NULL;
2431 pv->pv_pindex = 0;
2432 spin_unlock(&pmap->pm_spin);
2433 }
2434 pv_put(pv);
2435}
2436
2437/*
2438 * This routine is very drastic, but can save the system
2439 * in a pinch.
2440 */
2441void
2442pmap_collect(void)
2443{
2444 int i;
2445 vm_page_t m;
2446 static int warningdone=0;
2447
2448 if (pmap_pagedaemon_waken == 0)
2449 return;
2450 pmap_pagedaemon_waken = 0;
2451 if (warningdone < 5) {
2452 kprintf("pmap_collect: collecting pv entries -- "
2453 "suggest increasing PMAP_SHPGPERPROC\n");
2454 warningdone++;
2455 }
2456
2457 for (i = 0; i < vm_page_array_size; i++) {
2458 m = &vm_page_array[i];
2459 if (m->wire_count || m->hold_count)
2460 continue;
2461 if (vm_page_busy_try(m, TRUE) == 0) {
2462 if (m->wire_count == 0 && m->hold_count == 0) {
2463 pmap_remove_all(m);
2464 }
2465 vm_page_wakeup(m);
2466 }
2467 }
2468}
2469
2470/*
2471 * Scan the pmap for active page table entries and issue a callback.
2472 * The callback must dispose of pte_pv.
2473 *
2474 * NOTE: Unmanaged page table entries will not have a pte_pv
2475 *
2476 * NOTE: Kernel page table entries will not have a pt_pv. That is, wiring
2477 * counts are not tracked in kernel page table pages.
2478 *
2479 * It is assumed that the start and end are properly rounded to the page size.
2480 */
2481static void
2482pmap_scan(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva,
2483 void (*func)(pmap_t, struct pmap_inval_info *,
2484 pv_entry_t, pv_entry_t, vm_offset_t,
2485 pt_entry_t *, void *),
2486 void *arg)
2487{
2488 pv_entry_t pdp_pv; /* A page directory page PV */
2489 pv_entry_t pd_pv; /* A page directory PV */
2490 pv_entry_t pt_pv; /* A page table PV */
2491 pv_entry_t pte_pv; /* A page table entry PV */
2492 pt_entry_t *ptep;
2493 vm_offset_t va_next;
2494 struct pmap_inval_info info;
2495 int error;
2496
2497 if (pmap == NULL)
2498 return;
2499
2500 /*
2501 * Hold the token for stability; if the pmap is empty we have nothing
2502 * to do.
2503 */
2504 lwkt_gettoken(&pmap->pm_token);
2505#if 0
2506 if (pmap->pm_stats.resident_count == 0) {
2507 lwkt_reltoken(&pmap->pm_token);
2508 return;
2509 }
2510#endif
2511
2512 pmap_inval_init(&info);
2513
2514 /*
2515 * Special handling for removing one page, which is a very common
2516 * operation (it is?).
2517 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
2518 */
2519 if (sva + PAGE_SIZE == eva) {
2520 if (sva >= VM_MAX_USER_ADDRESS) {
2521 /*
2522 * Kernel mappings do not track wire counts on
2523 * page table pages.
2524 */
2525 pt_pv = NULL;
2526 pte_pv = pv_get(pmap, pmap_pte_pindex(sva));
2527 ptep = vtopte(sva);
2528 } else {
2529 /*
2530 * User mappings may or may not have a pte_pv but
2531 * will always have a pt_pv if the page is present.
2532 */
2533 pte_pv = pv_get(pmap, pmap_pte_pindex(sva));
2534 pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
2535 if (pt_pv == NULL) {
2536 KKASSERT(pte_pv == NULL);
2537 goto fast_skip;
2538 }
2539 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
2540 }
2541 if (*ptep == 0) {
2542 /*
2543 * Unlike the pv_find() case below we actually
2544 * acquired a locked pv in this case so any
2545 * race should have been resolved. It is expected
2546 * to not exist.
2547 */
2548 KKASSERT(pte_pv == NULL);
2549 } else if (pte_pv) {
2550 KASSERT((*ptep & (PG_MANAGED|PG_V)) == (PG_MANAGED|
2551 PG_V),
2552 ("bad *ptep %016lx sva %016lx pte_pv %p",
2553 *ptep, sva, pte_pv));
2554 func(pmap, &info, pte_pv, pt_pv, sva, ptep, arg);
2555 } else {
2556 KASSERT((*ptep & (PG_MANAGED|PG_V)) == PG_V,
2557 ("bad *ptep %016lx sva %016lx pte_pv NULL",
2558 *ptep, sva));
2559 func(pmap, &info, pte_pv, pt_pv, sva, ptep, arg);
2560 }
2561 if (pt_pv)
2562 pv_put(pt_pv);
2563fast_skip:
2564 pmap_inval_done(&info);
2565 lwkt_reltoken(&pmap->pm_token);
2566 return;
2567 }
2568
2569 /*
2570 * NOTE: kernel mappings do not track page table pages, only
2571 * terminal pages.
2572 *
2573 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
2574 * However, for the scan to be efficient we try to
2575 * cache items top-down.
2576 */
2577 pdp_pv = NULL;
2578 pd_pv = NULL;
2579 pt_pv = NULL;
2580
2581 for (; sva < eva; sva = va_next) {
2582 lwkt_yield();
2583 if (sva >= VM_MAX_USER_ADDRESS) {
2584 if (pt_pv) {
2585 pv_put(pt_pv);
2586 pt_pv = NULL;
2587 }
2588 goto kernel_skip;
2589 }
2590
2591 /*
2592 * PDP cache
2593 */
2594 if (pdp_pv == NULL) {
2595 pdp_pv = pv_get(pmap, pmap_pdp_pindex(sva));
2596 } else if (pdp_pv->pv_pindex != pmap_pdp_pindex(sva)) {
2597 pv_put(pdp_pv);
2598 pdp_pv = pv_get(pmap, pmap_pdp_pindex(sva));
2599 }
2600 if (pdp_pv == NULL) {
2601 va_next = (sva + NBPML4) & ~PML4MASK;
2602 if (va_next < sva)
2603 va_next = eva;
2604 continue;
2605 }
2606
2607 /*
2608 * PD cache
2609 */
2610 if (pd_pv == NULL) {
2611 if (pdp_pv) {
2612 pv_put(pdp_pv);
2613 pdp_pv = NULL;
2614 }
2615 pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
2616 } else if (pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
2617 pv_put(pd_pv);
2618 if (pdp_pv) {
2619 pv_put(pdp_pv);
2620 pdp_pv = NULL;
2621 }
2622 pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
2623 }
2624 if (pd_pv == NULL) {
2625 va_next = (sva + NBPDP) & ~PDPMASK;
2626 if (va_next < sva)
2627 va_next = eva;
2628 continue;
2629 }
2630
2631 /*
2632 * PT cache
2633 */
2634 if (pt_pv == NULL) {
2635 if (pdp_pv) {
2636 pv_put(pdp_pv);
2637 pdp_pv = NULL;
2638 }
2639 if (pd_pv) {
2640 pv_put(pd_pv);
2641 pd_pv = NULL;
2642 }
2643 pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
2644 } else if (pt_pv->pv_pindex != pmap_pt_pindex(sva)) {
2645 if (pdp_pv) {
2646 pv_put(pdp_pv);
2647 pdp_pv = NULL;
2648 }
2649 if (pd_pv) {
2650 pv_put(pd_pv);
2651 pd_pv = NULL;
2652 }
2653 pv_put(pt_pv);
2654 pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
2655 }
2656
2657 /*
2658 * We will scan or skip a page table page so adjust va_next
2659 * either way.
2660 */
2661 if (pt_pv == NULL) {
2662 va_next = (sva + NBPDR) & ~PDRMASK;
2663 if (va_next < sva)
2664 va_next = eva;
2665 continue;
2666 }
2667
2668 /*
2669 * From this point in the loop testing pt_pv for non-NULL
2670 * means we are in UVM, else if it is NULL we are in KVM.
2671 */
2672kernel_skip:
2673 va_next = (sva + NBPDR) & ~PDRMASK;
2674 if (va_next < sva)
2675 va_next = eva;
2676
2677 /*
2678 * Limit our scan to either the end of the va represented
2679 * by the current page table page, or to the end of the
2680 * range being removed.
2681 *
2682 * Scan the page table for pages. Some pages may not be
2683 * managed (might not have a pv_entry).
2684 *
2685 * There is no page table management for kernel pages so
2686 * pt_pv will be NULL in that case, but otherwise pt_pv
2687 * is non-NULL, locked, and referenced.
2688 */
2689 if (va_next > eva)
2690 va_next = eva;
2691
2692 /*
2693 * At this point a non-NULL pt_pv means a UVA, and a NULL
2694 * pt_pv means a KVA.
2695 */
2696 if (pt_pv)
2697 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
2698 else
2699 ptep = vtopte(sva);
2700
2701 while (sva < va_next) {
2702 /*
2703 * Acquire the related pte_pv, if any. If *ptep == 0
2704 * the related pte_pv should not exist, but if *ptep
2705 * is not zero the pte_pv may or may not exist (e.g.
2706 * will not exist for an unmanaged page).
2707 *
2708 * However a multitude of races are possible here.
2709 *
2710 * In addition, the (pt_pv, pte_pv) lock order is
2711 * backwards, so we have to be careful in aquiring
2712 * a properly locked pte_pv.
2713 */
2714 lwkt_yield();
2715 if (pt_pv) {
2716 pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
2717 &error);
2718 if (error) {
2719 if (pdp_pv) {
2720 pv_put(pdp_pv);
2721 pdp_pv = NULL;
2722 }
2723 if (pd_pv) {
2724 pv_put(pd_pv);
2725 pd_pv = NULL;
2726 }
2727 pv_put(pt_pv); /* must be non-NULL */
2728 pt_pv = NULL;
2729 pv_lock(pte_pv); /* safe to block now */
2730 pv_put(pte_pv);
2731 pte_pv = NULL;
2732 pt_pv = pv_get(pmap,
2733 pmap_pt_pindex(sva));
2734 continue;
2735 }
2736 } else {
2737 pte_pv = pv_get(pmap, pmap_pte_pindex(sva));
2738 }
2739
2740 /*
2741 * Ok, if *ptep == 0 we had better NOT have a pte_pv.
2742 */
2743 if (*ptep == 0) {
2744 if (pte_pv) {
2745 kprintf("Unexpected non-NULL pte_pv "
2746 "%p pt_pv %p *ptep = %016lx\n",
2747 pte_pv, pt_pv, *ptep);
2748 panic("Unexpected non-NULL pte_pv");
2749 }
2750 sva += PAGE_SIZE;
2751 ++ptep;
2752 continue;
2753 }
2754
2755 /*
2756 * Ready for the callback. The locked pte_pv (if any)
2757 * is consumed by the callback. pte_pv will exist if
2758 * the page is managed, and will not exist if it
2759 * isn't.
2760 */
2761 if (pte_pv) {
2762 KASSERT((*ptep & (PG_MANAGED|PG_V)) ==
2763 (PG_MANAGED|PG_V),
2764 ("bad *ptep %016lx sva %016lx "
2765 "pte_pv %p",
2766 *ptep, sva, pte_pv));
2767 func(pmap, &info, pte_pv, pt_pv, sva,
2768 ptep, arg);
2769 } else {
2770 KASSERT((*ptep & (PG_MANAGED|PG_V)) ==
2771 PG_V,
2772 ("bad *ptep %016lx sva %016lx "
2773 "pte_pv NULL",
2774 *ptep, sva));
2775 func(pmap, &info, pte_pv, pt_pv, sva,
2776 ptep, arg);
2777 }
2778 pte_pv = NULL;
2779 sva += PAGE_SIZE;
2780 ++ptep;
2781 }
2782 }
2783 if (pdp_pv) {
2784 pv_put(pdp_pv);
2785 pdp_pv = NULL;
2786 }
2787 if (pd_pv) {
2788 pv_put(pd_pv);
2789 pd_pv = NULL;
2790 }
2791 if (pt_pv) {
2792 pv_put(pt_pv);
2793 pt_pv = NULL;
2794 }
2795 pmap_inval_done(&info);
2796 lwkt_reltoken(&pmap->pm_token);
2797}
2798
2799void
2800pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
2801{
2802 pmap_scan(pmap, sva, eva, pmap_remove_callback, NULL);
2803}
2804
2805static void
2806pmap_remove_callback(pmap_t pmap, struct pmap_inval_info *info,
2807 pv_entry_t pte_pv, pv_entry_t pt_pv, vm_offset_t va,
2808 pt_entry_t *ptep, void *arg __unused)
2809{
2810 pt_entry_t pte;
2811
2812 if (pte_pv) {
2813 /*
2814 * This will also drop pt_pv's wire_count. Note that
2815 * terminal pages are not wired based on mmu presence.
2816 */
2817 pmap_remove_pv_pte(pte_pv, pt_pv, info);
2818 pmap_remove_pv_page(pte_pv);
2819 pv_free(pte_pv);
2820 } else {
2821 /*
2822 * pt_pv's wire_count is still bumped by unmanaged pages
2823 * so we must decrement it manually.
2824 */
2825 pmap_inval_interlock(info, pmap, va);
2826 pte = pte_load_clear(ptep);
2827 pmap_inval_deinterlock(info, pmap);
2828 if (pte & PG_W)
2829 atomic_add_long(&pmap->pm_stats.wired_count, -1);
2830 atomic_add_long(&pmap->pm_stats.resident_count, -1);
2831 if (pt_pv && vm_page_unwire_quick(pt_pv->pv_m))
2832 panic("pmap_remove: insufficient wirecount");
2833 }
2834}
2835
2836/*
2837 * Removes this physical page from all physical maps in which it resides.
2838 * Reflects back modify bits to the pager.
2839 *
2840 * This routine may not be called from an interrupt.
2841 */
2842static
2843void
2844pmap_remove_all(vm_page_t m)
2845{
2846 struct pmap_inval_info info;
2847 pv_entry_t pv;
2848
2849 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2850 return;
2851
2852 pmap_inval_init(&info);
2853 vm_page_spin_lock(m);
2854 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2855 KKASSERT(pv->pv_m == m);
2856 if (pv_hold_try(pv)) {
2857 vm_page_spin_unlock(m);
2858 } else {
2859 vm_page_spin_unlock(m);
2860 pv_lock(pv);
2861 if (pv->pv_m != m) {
2862 pv_put(pv);
2863 vm_page_spin_lock(m);
2864 continue;
2865 }
2866 }
2867 /*
2868 * Holding no spinlocks, pv is locked.
2869 */
2870 pmap_remove_pv_pte(pv, NULL, &info);
2871 pmap_remove_pv_page(pv);
2872 pv_free(pv);
2873 vm_page_spin_lock(m);
2874 }
2875 KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
2876 vm_page_spin_unlock(m);
2877 pmap_inval_done(&info);
2878}
2879
2880/*
2881 * pmap_protect:
2882 *
2883 * Set the physical protection on the specified range of this map
2884 * as requested.
2885 *
2886 * This function may not be called from an interrupt if the map is
2887 * not the kernel_pmap.
2888 */
2889void
2890pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2891{
2892 /* JG review for NX */
2893
2894 if (pmap == NULL)
2895 return;
2896 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2897 pmap_remove(pmap, sva, eva);
2898 return;
2899 }
2900 if (prot & VM_PROT_WRITE)
2901 return;
2902 pmap_scan(pmap, sva, eva, pmap_protect_callback, &prot);
2903}
2904
2905static
2906void
2907pmap_protect_callback(pmap_t pmap, struct pmap_inval_info *info,
2908 pv_entry_t pte_pv, pv_entry_t pt_pv, vm_offset_t va,
2909 pt_entry_t *ptep, void *arg __unused)
2910{
2911 pt_entry_t pbits;
2912 pt_entry_t cbits;
2913 vm_page_t m;
2914
2915 /*
2916 * XXX non-optimal.
2917 */
2918 pmap_inval_interlock(info, pmap, va);
2919again:
2920 pbits = *ptep;
2921 cbits = pbits;
2922 if (pte_pv) {
2923 m = NULL;
2924 if (pbits & PG_A) {
2925 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2926 KKASSERT(m == pte_pv->pv_m);
2927 vm_page_flag_set(m, PG_REFERENCED);
2928 cbits &= ~PG_A;
2929 }
2930 if (pbits & PG_M) {
2931 if (pmap_track_modified(pte_pv->pv_pindex)) {
2932 if (m == NULL)
2933 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2934 vm_page_dirty(m);
2935 cbits &= ~PG_M;
2936 }
2937 }
2938 }
2939 cbits &= ~PG_RW;
2940 if (pbits != cbits && !atomic_cmpset_long(ptep, pbits, cbits)) {
2941 goto again;
2942 }
2943 pmap_inval_deinterlock(info, pmap);
2944 if (pte_pv)
2945 pv_put(pte_pv);
2946}
2947
2948/*
2949 * Insert the vm_page (m) at the virtual address (va), replacing any prior
2950 * mapping at that address. Set protection and wiring as requested.
2951 *
2952 * NOTE: This routine MUST insert the page into the pmap now, it cannot
2953 * lazy-evaluate.
2954 */
2955void
2956pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2957 boolean_t wired)
2958{
2959 pmap_inval_info info;
2960 pv_entry_t pt_pv; /* page table */
2961 pv_entry_t pte_pv; /* page table entry */
2962 pt_entry_t *ptep;
2963 vm_paddr_t opa;
2964 pt_entry_t origpte, newpte;
2965 vm_paddr_t pa;
2966
2967 if (pmap == NULL)
2968 return;
2969 va = trunc_page(va);
2970#ifdef PMAP_DIAGNOSTIC
2971 if (va >= KvaEnd)
2972 panic("pmap_enter: toobig");
2973 if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2974 panic("pmap_enter: invalid to pmap_enter page table "
2975 "pages (va: 0x%lx)", va);
2976#endif
2977 if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
2978 kprintf("Warning: pmap_enter called on UVA with "
2979 "kernel_pmap\n");
2980#ifdef DDB
2981 db_print_backtrace();
2982#endif
2983 }
2984 if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
2985 kprintf("Warning: pmap_enter called on KVA without"
2986 "kernel_pmap\n");
2987#ifdef DDB
2988 db_print_backtrace();
2989#endif
2990 }
2991
2992 /*
2993 * Get locked PV entries for our new page table entry (pte_pv)
2994 * and for its parent page table (pt_pv). We need the parent
2995 * so we can resolve the location of the ptep.
2996 *
2997 * Only hardware MMU actions can modify the ptep out from
2998 * under us.
2999 *
3000 * if (m) is fictitious or unmanaged we do not create a managing
3001 * pte_pv for it. Any pre-existing page's management state must
3002 * match (avoiding code complexity).
3003 *
3004 * If the pmap is still being initialized we assume existing
3005 * page tables.
3006 *
3007 * Kernel mapppings do not track page table pages (i.e. pt_pv).
3008 * pmap_allocpte() checks the
3009 */
3010 if (pmap_initialized == FALSE) {
3011 pte_pv = NULL;
3012 pt_pv = NULL;
3013 ptep = vtopte(va);
3014 } else if (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) {
3015 pte_pv = NULL;
3016 if (va >= VM_MAX_USER_ADDRESS) {
3017 pt_pv = NULL;
3018 ptep = vtopte(va);
3019 } else {
3020 pt_pv = pmap_allocpte(pmap, pmap_pt_pindex(va), NULL);
3021 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
3022 }
3023 KKASSERT(*ptep == 0 || (*ptep & PG_MANAGED) == 0);
3024 } else {
3025 if (va >= VM_MAX_USER_ADDRESS) {
3026 pt_pv = NULL;
3027 pte_pv = pmap_allocpte(pmap, pmap_pte_pindex(va), NULL);
3028 ptep = vtopte(va);
3029 } else {
3030 pte_pv = pmap_allocpte(pmap, pmap_pte_pindex(va),
3031 &pt_pv);
3032 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
3033 }
3034 KKASSERT(*ptep == 0 || (*ptep & PG_MANAGED));
3035 }
3036
3037 pa = VM_PAGE_TO_PHYS(m);
3038 origpte = *ptep;
3039 opa = origpte & PG_FRAME;
3040
3041 newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) | PG_V | PG_A);
3042 if (wired)
3043 newpte |= PG_W;
3044 if (va < VM_MAX_USER_ADDRESS)
3045 newpte |= PG_U;
3046 if (pte_pv)
3047 newpte |= PG_MANAGED;
3048 if (pmap == &kernel_pmap)
3049 newpte |= pgeflag;
3050
3051 /*
3052 * It is possible for multiple faults to occur in threaded
3053 * environments, the existing pte might be correct.
3054 */
3055 if (((origpte ^ newpte) & ~(pt_entry_t)(PG_M|PG_A)) == 0)
3056 goto done;
3057
3058 if ((prot & VM_PROT_NOSYNC) == 0)
3059 pmap_inval_init(&info);
3060
3061 /*
3062 * Ok, either the address changed or the protection or wiring
3063 * changed.
3064 *
3065 * Clear the current entry, interlocking the removal. For managed
3066 * pte's this will also flush the modified state to the vm_page.
3067 * Atomic ops are mandatory in order to ensure that PG_M events are
3068 * not lost during any transition.
3069 */
3070 if (opa) {
3071 if (pte_pv) {
3072 /*
3073 * pmap_remove_pv_pte() unwires pt_pv and assumes
3074 * we will free pte_pv, but since we are reusing
3075 * pte_pv we want to retain the wire count.
3076 *
3077 * pt_pv won't exist for a kernel page (managed or
3078 * otherwise).
3079 */
3080 if (pt_pv)
3081 vm_page_wire_quick(pt_pv->pv_m);
3082 if (prot & VM_PROT_NOSYNC)
3083 pmap_remove_pv_pte(pte_pv, pt_pv, NULL);
3084 else
3085 pmap_remove_pv_pte(pte_pv, pt_pv, &info);
3086 if (pte_pv->pv_m)
3087 pmap_remove_pv_page(pte_pv);
3088 } else if (prot & VM_PROT_NOSYNC) {
3089 /* leave wire count on PT page intact */
3090 (void)pte_load_clear(ptep);
3091 cpu_invlpg((void *)va);
3092 atomic_add_long(&pmap->pm_stats.resident_count, -1);
3093 } else {
3094 /* leave wire count on PT page intact */
3095 pmap_inval_interlock(&info, pmap, va);
3096 (void)pte_load_clear(ptep);
3097 pmap_inval_deinterlock(&info, pmap);
3098 atomic_add_long(&pmap->pm_stats.resident_count, -1);
3099 }
3100 KKASSERT(*ptep == 0);
3101 }
3102
3103 if (pte_pv) {
3104 /*
3105 * Enter on the PV list if part of our managed memory.
3106 * Wiring of the PT page is already handled.
3107 */
3108 KKASSERT(pte_pv->pv_m == NULL);
3109 vm_page_spin_lock(m);
3110 pte_pv->pv_m = m;
3111 TAILQ_INSERT_TAIL(&m->md.pv_list, pte_pv, pv_list);
3112 /*
3113 if (m->object)
3114 atomic_add_int(&m->object->agg_pv_list_count, 1);
3115 */
3116 vm_page_flag_set(m, PG_MAPPED);
3117 vm_page_spin_unlock(m);
3118 } else if (pt_pv && opa == 0) {
3119 /*
3120 * We have to adjust the wire count on the PT page ourselves
3121 * for unmanaged entries. If opa was non-zero we retained
3122 * the existing wire count from the removal.
3123 */
3124 vm_page_wire_quick(pt_pv->pv_m);
3125 }
3126
3127 /*
3128 * Ok, for UVM (pt_pv != NULL) we don't need to interlock or
3129 * invalidate anything, the TLB won't have any stale entries to
3130 * remove.
3131 *
3132 * For KVM there appear to still be issues. Theoretically we
3133 * should be able to scrap the interlocks entirely but we
3134 * get crashes.
3135 */
3136 if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL)
3137 pmap_inval_interlock(&info, pmap, va);
3138 *(volatile pt_entry_t *)ptep = newpte;
3139
3140 if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL)
3141 pmap_inval_deinterlock(&info, pmap);
3142 else if (pt_pv == NULL)
3143 cpu_invlpg((void *)va);
3144
3145 if (wired)
3146 atomic_add_long(&pmap->pm_stats.wired_count, 1);
3147 if (newpte & PG_RW)
3148 vm_page_flag_set(m, PG_WRITEABLE);
3149 if (pte_pv == NULL)
3150 atomic_add_long(&pmap->pm_stats.resident_count, 1);
3151
3152 /*
3153 * Cleanup
3154 */
3155 if ((prot & VM_PROT_NOSYNC) == 0 || pte_pv == NULL)
3156 pmap_inval_done(&info);
3157done:
3158 KKASSERT((newpte & PG_MANAGED) == 0 || (m->flags & PG_MAPPED));
3159
3160 /*
3161 * Cleanup the pv entry, allowing other accessors.
3162 */
3163 if (pte_pv)
3164 pv_put(pte_pv);
3165 if (pt_pv)
3166 pv_put(pt_pv);
3167}
3168
3169/*
3170 * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
3171 * This code also assumes that the pmap has no pre-existing entry for this
3172 * VA.
3173 *
3174 * This code currently may only be used on user pmaps, not kernel_pmap.
3175 */
3176void
3177pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
3178{
3179 pmap_enter(pmap, va, m, VM_PROT_READ, FALSE);
3180}
3181
3182/*
3183 * Make a temporary mapping for a physical address. This is only intended
3184 * to be used for panic dumps.
3185 *
3186 * The caller is responsible for calling smp_invltlb().
3187 */
3188void *
3189pmap_kenter_temporary(vm_paddr_t pa, long i)
3190{
3191 pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
3192 return ((void *)crashdumpmap);
3193}
3194
3195#define MAX_INIT_PT (96)
3196
3197/*
3198 * This routine preloads the ptes for a given object into the specified pmap.
3199 * This eliminates the blast of soft faults on process startup and
3200 * immediately after an mmap.
3201 */
3202static int pmap_object_init_pt_callback(vm_page_t p, void *data);
3203
3204void
3205pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
3206 vm_object_t object, vm_pindex_t pindex,
3207 vm_size_t size, int limit)
3208{
3209 struct rb_vm_page_scan_info info;
3210 struct lwp *lp;
3211 vm_size_t psize;
3212
3213 /*
3214 * We can't preinit if read access isn't set or there is no pmap
3215 * or object.
3216 */
3217 if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
3218 return;
3219
3220 /*
3221 * We can't preinit if the pmap is not the current pmap
3222 */
3223 lp = curthread->td_lwp;
3224 if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
3225 return;
3226
3227 psize = x86_64_btop(size);
3228
3229 if ((object->type != OBJT_VNODE) ||
3230 ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
3231 (object->resident_page_count > MAX_INIT_PT))) {
3232 return;
3233 }
3234
3235 if (pindex + psize > object->size) {
3236 if (object->size < pindex)
3237 return;
3238 psize = object->size - pindex;
3239 }
3240
3241 if (psize == 0)
3242 return;
3243
3244 /*
3245 * Use a red-black scan to traverse the requested range and load
3246 * any valid pages found into the pmap.
3247 *
3248 * We cannot safely scan the object's memq without holding the
3249 * object token.
3250 */
3251 info.start_pindex = pindex;
3252 info.end_pindex = pindex + psize - 1;
3253 info.limit = limit;
3254 info.mpte = NULL;
3255 info.addr = addr;
3256 info.pmap = pmap;
3257
3258 vm_object_hold_shared(object);
3259 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
3260 pmap_object_init_pt_callback, &info);
3261 vm_object_drop(object);
3262}
3263
3264static
3265int
3266pmap_object_init_pt_callback(vm_page_t p, void *data)
3267{
3268 struct rb_vm_page_scan_info *info = data;
3269 vm_pindex_t rel_index;
3270
3271 /*
3272 * don't allow an madvise to blow away our really
3273 * free pages allocating pv entries.
3274 */
3275 if ((info->limit & MAP_PREFAULT_MADVISE) &&
3276 vmstats.v_free_count < vmstats.v_free_reserved) {
3277 return(-1);
3278 }
3279 if (vm_page_busy_try(p, TRUE))
3280 return 0;
3281 if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
3282 (p->flags & PG_FICTITIOUS) == 0) {
3283 if ((p->queue - p->pc) == PQ_CACHE)
3284 vm_page_deactivate(p);
3285 rel_index = p->pindex - info->start_pindex;
3286 pmap_enter_quick(info->pmap,
3287 info->addr + x86_64_ptob(rel_index), p);
3288 }
3289 vm_page_wakeup(p);
3290 lwkt_yield();
3291 return(0);
3292}
3293
3294/*
3295 * Return TRUE if the pmap is in shape to trivially pre-fault the specified
3296 * address.
3297 *
3298 * Returns FALSE if it would be non-trivial or if a pte is already loaded
3299 * into the slot.
3300 *
3301 * XXX This is safe only because page table pages are not freed.
3302 */
3303int
3304pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
3305{
3306 pt_entry_t *pte;
3307
3308 /*spin_lock(&pmap->pm_spin);*/
3309 if ((pte = pmap_pte(pmap, addr)) != NULL) {
3310 if (*pte & PG_V) {
3311 /*spin_unlock(&pmap->pm_spin);*/
3312 return FALSE;
3313 }
3314 }
3315 /*spin_unlock(&pmap->pm_spin);*/
3316 return TRUE;
3317}
3318
3319/*
3320 * Change the wiring attribute for a pmap/va pair. The mapping must already
3321 * exist in the pmap. The mapping may or may not be managed.
3322 */
3323void
3324pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3325{
3326 pt_entry_t *ptep;
3327 pv_entry_t pv;
3328
3329 if (pmap == NULL)
3330 return;
3331 lwkt_gettoken(&pmap->pm_token);
3332 pv = pmap_allocpte(pmap, pmap_pt_pindex(va), NULL);
3333 ptep = pv_pte_lookup(pv, pmap_pte_index(va));
3334
3335 if (wired && !pmap_pte_w(ptep))
3336 atomic_add_long(&pmap->pm_stats.wired_count, 1);
3337 else if (!wired && pmap_pte_w(ptep))
3338 atomic_add_long(&pmap->pm_stats.wired_count, -1);
3339
3340 /*
3341 * Wiring is not a hardware characteristic so there is no need to
3342 * invalidate TLB. However, in an SMP environment we must use
3343 * a locked bus cycle to update the pte (if we are not using
3344 * the pmap_inval_*() API that is)... it's ok to do this for simple
3345 * wiring changes.
3346 */
3347#ifdef SMP
3348 if (wired)
3349 atomic_set_long(ptep, PG_W);
3350 else
3351 atomic_clear_long(ptep, PG_W);
3352#else
3353 if (wired)
3354 atomic_set_long_nonlocked(ptep, PG_W);
3355 else
3356 atomic_clear_long_nonlocked(ptep, PG_W);
3357#endif
3358 pv_put(pv);
3359 lwkt_reltoken(&pmap->pm_token);
3360}
3361
3362
3363
3364/*
3365 * Copy the range specified by src_addr/len from the source map to
3366 * the range dst_addr/len in the destination map.
3367 *
3368 * This routine is only advisory and need not do anything.
3369 */
3370void
3371pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
3372 vm_size_t len, vm_offset_t src_addr)
3373{
3374}
3375
3376/*
3377 * pmap_zero_page:
3378 *
3379 * Zero the specified physical page.
3380 *
3381 * This function may be called from an interrupt and no locking is
3382 * required.
3383 */
3384void
3385pmap_zero_page(vm_paddr_t phys)
3386{
3387 vm_offset_t va = PHYS_TO_DMAP(phys);
3388
3389 pagezero((void *)va);
3390}
3391
3392/*
3393 * pmap_page_assertzero:
3394 *
3395 * Assert that a page is empty, panic if it isn't.
3396 */
3397void
3398pmap_page_assertzero(vm_paddr_t phys)
3399{
3400 vm_offset_t va = PHYS_TO_DMAP(phys);
3401 size_t i;
3402
3403 for (i = 0; i < PAGE_SIZE; i += sizeof(long)) {
3404 if (*(long *)((char *)va + i) != 0) {
3405 panic("pmap_page_assertzero() @ %p not zero!\n",
3406 (void *)(intptr_t)va);
3407 }
3408 }
3409}
3410
3411/*
3412 * pmap_zero_page:
3413 *
3414 * Zero part of a physical page by mapping it into memory and clearing
3415 * its contents with bzero.
3416 *
3417 * off and size may not cover an area beyond a single hardware page.
3418 */
3419void
3420pmap_zero_page_area(vm_paddr_t phys, int off, int size)
3421{
3422 vm_offset_t virt = PHYS_TO_DMAP(phys);
3423
3424 bzero((char *)virt + off, size);
3425}
3426
3427/*
3428 * pmap_copy_page:
3429 *
3430 * Copy the physical page from the source PA to the target PA.
3431 * This function may be called from an interrupt. No locking
3432 * is required.
3433 */
3434void
3435pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
3436{
3437 vm_offset_t src_virt, dst_virt;
3438
3439 src_virt = PHYS_TO_DMAP(src);
3440 dst_virt = PHYS_TO_DMAP(dst);
3441 bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
3442}
3443
3444/*
3445 * pmap_copy_page_frag:
3446 *
3447 * Copy the physical page from the source PA to the target PA.
3448 * This function may be called from an interrupt. No locking
3449 * is required.
3450 */
3451void
3452pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
3453{
3454 vm_offset_t src_virt, dst_virt;
3455
3456 src_virt = PHYS_TO_DMAP(src);
3457 dst_virt = PHYS_TO_DMAP(dst);
3458
3459 bcopy((char *)src_virt + (src & PAGE_MASK),
3460 (char *)dst_virt + (dst & PAGE_MASK),
3461 bytes);
3462}
3463
3464/*
3465 * Returns true if the pmap's pv is one of the first 16 pvs linked to from
3466 * this page. This count may be changed upwards or downwards in the future;
3467 * it is only necessary that true be returned for a small subset of pmaps
3468 * for proper page aging.
3469 */
3470boolean_t
3471pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3472{
3473 pv_entry_t pv;
3474 int loops = 0;
3475
3476 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3477 return FALSE;
3478
3479 vm_page_spin_lock(m);
3480 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3481 if (pv->pv_pmap == pmap) {
3482 vm_page_spin_unlock(m);
3483 return TRUE;
3484 }
3485 loops++;
3486 if (loops >= 16)
3487 break;
3488 }
3489 vm_page_spin_unlock(m);
3490 return (FALSE);
3491}
3492
3493/*
3494 * Remove all pages from specified address space this aids process exit
3495 * speeds. Also, this code may be special cased for the current process
3496 * only.
3497 */
3498void
3499pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3500{
3501 pmap_remove(pmap, sva, eva);
3502}
3503
3504/*
3505 * pmap_testbit tests bits in pte's note that the testbit/clearbit
3506 * routines are inline, and a lot of things compile-time evaluate.
3507 */
3508static
3509boolean_t
3510pmap_testbit(vm_page_t m, int bit)
3511{
3512 pv_entry_t pv;
3513 pt_entry_t *pte;
3514
3515 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3516 return FALSE;
3517
3518 if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3519 return FALSE;
3520 vm_page_spin_lock(m);
3521 if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
3522 vm_page_spin_unlock(m);
3523 return FALSE;
3524 }
3525
3526 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3527 /*
3528 * if the bit being tested is the modified bit, then
3529 * mark clean_map and ptes as never
3530 * modified.
3531 */
3532 if (bit & (PG_A|PG_M)) {
3533 if (!pmap_track_modified(pv->pv_pindex))
3534 continue;
3535 }
3536
3537#if defined(PMAP_DIAGNOSTIC)
3538 if (pv->pv_pmap == NULL) {
3539 kprintf("Null pmap (tb) at pindex: %"PRIu64"\n",
3540 pv->pv_pindex);
3541 continue;
3542 }
3543#endif
3544 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
3545 if (*pte & bit) {
3546 vm_page_spin_unlock(m);
3547 return TRUE;
3548 }
3549 }
3550 vm_page_spin_unlock(m);
3551 return (FALSE);
3552}
3553
3554/*
3555 * This routine is used to modify bits in ptes. Only one bit should be
3556 * specified. PG_RW requires special handling.
3557 *
3558 * Caller must NOT hold any spin locks
3559 */
3560static __inline
3561void
3562pmap_clearbit(vm_page_t m, int bit)
3563{
3564 struct pmap_inval_info info;
3565 pv_entry_t pv;
3566 pt_entry_t *pte;
3567 pt_entry_t pbits;
3568 pmap_t save_pmap;
3569
3570 if (bit == PG_RW)
3571 vm_page_flag_clear(m, PG_WRITEABLE);
3572 if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
3573 return;
3574 }
3575
3576 /*
3577 * PG_M or PG_A case
3578 *
3579 * Loop over all current mappings setting/clearing as appropos If
3580 * setting RO do we need to clear the VAC?
3581 *
3582 * NOTE: When clearing PG_M we could also (not implemented) drop
3583 * through to the PG_RW code and clear PG_RW too, forcing
3584 * a fault on write to redetect PG_M for virtual kernels, but
3585 * it isn't necessary since virtual kernels invalidate the
3586 * pte when they clear the VPTE_M bit in their virtual page
3587 * tables.
3588 *
3589 * NOTE: Does not re-dirty the page when clearing only PG_M.
3590 */
3591 if ((bit & PG_RW) == 0) {
3592 vm_page_spin_lock(m);
3593 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3594 #if defined(PMAP_DIAGNOSTIC)
3595 if (pv->pv_pmap == NULL) {
3596 kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
3597 pv->pv_pindex);
3598 continue;
3599 }
3600 #endif
3601 pte = pmap_pte_quick(pv->pv_pmap,
3602 pv->pv_pindex << PAGE_SHIFT);
3603 pbits = *pte;
3604 if (pbits & bit)
3605 atomic_clear_long(pte, bit);
3606 }
3607 vm_page_spin_unlock(m);
3608 return;
3609 }
3610
3611 /*
3612 * Clear PG_RW. Also clears PG_M and marks the page dirty if PG_M
3613 * was set.
3614 */
3615 pmap_inval_init(&info);
3616
3617restart:
3618 vm_page_spin_lock(m);
3619 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3620 /*
3621 * don't write protect pager mappings
3622 */
3623 if (!pmap_track_modified(pv->pv_pindex))
3624 continue;
3625
3626#if defined(PMAP_DIAGNOSTIC)
3627 if (pv->pv_pmap == NULL) {
3628 kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
3629 pv->pv_pindex);
3630 continue;
3631 }
3632#endif
3633 /*
3634 * Skip pages which do not have PG_RW set.
3635 */
3636 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
3637 if ((*pte & PG_RW) == 0)
3638 continue;
3639
3640 /*
3641 * Lock the PV
3642 */
3643 if (pv_hold_try(pv) == 0) {
3644 vm_page_spin_unlock(m);
3645 pv_lock(pv); /* held, now do a blocking lock */
3646 pv_put(pv); /* and release */
3647 goto restart; /* anything could have happened */
3648 }
3649
3650 save_pmap = pv->pv_pmap;
3651 vm_page_spin_unlock(m);
3652 pmap_inval_interlock(&info, save_pmap,
3653 (vm_offset_t)pv->pv_pindex << PAGE_SHIFT);
3654 KKASSERT(pv->pv_pmap == save_pmap);
3655 for (;;) {
3656 pbits = *pte;
3657 cpu_ccfence();
3658 if (atomic_cmpset_long(pte, pbits,
3659 pbits & ~(PG_RW|PG_M))) {
3660 break;
3661 }
3662 }
3663 pmap_inval_deinterlock(&info, save_pmap);
3664 vm_page_spin_lock(m);
3665
3666 /*
3667 * If PG_M was found to be set while we were clearing PG_RW
3668 * we also clear PG_M (done above) and mark the page dirty.
3669 * Callers expect this behavior.
3670 */
3671 if (pbits & PG_M)
3672 vm_page_dirty(m);
3673 pv_put(pv);
3674 }
3675 vm_page_spin_unlock(m);
3676 pmap_inval_done(&info);
3677}
3678
3679/*
3680 * Lower the permission for all mappings to a given page.
3681 *
3682 * Page must be busied by caller.
3683 */
3684void
3685pmap_page_protect(vm_page_t m, vm_prot_t prot)
3686{
3687 /* JG NX support? */
3688 if ((prot & VM_PROT_WRITE) == 0) {
3689 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3690 /*
3691 * NOTE: pmap_clearbit(.. PG_RW) also clears
3692 * the PG_WRITEABLE flag in (m).
3693 */
3694 pmap_clearbit(m, PG_RW);
3695 } else {
3696 pmap_remove_all(m);
3697 }
3698 }
3699}
3700
3701vm_paddr_t
3702pmap_phys_address(vm_pindex_t ppn)
3703{
3704 return (x86_64_ptob(ppn));
3705}
3706
3707/*
3708 * Return a count of reference bits for a page, clearing those bits.
3709 * It is not necessary for every reference bit to be cleared, but it
3710 * is necessary that 0 only be returned when there are truly no
3711 * reference bits set.
3712 *
3713 * XXX: The exact number of bits to check and clear is a matter that
3714 * should be tested and standardized at some point in the future for
3715 * optimal aging of shared pages.
3716 *
3717 * This routine may not block.
3718 */
3719int
3720pmap_ts_referenced(vm_page_t m)
3721{
3722 pv_entry_t pv;
3723 pt_entry_t *pte;
3724 int rtval = 0;
3725
3726 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3727 return (rtval);
3728
3729 vm_page_spin_lock(m);
3730 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3731 if (!pmap_track_modified(pv->pv_pindex))
3732 continue;
3733 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
3734 if (pte && (*pte & PG_A)) {
3735#ifdef SMP
3736 atomic_clear_long(pte, PG_A);
3737#else
3738 atomic_clear_long_nonlocked(pte, PG_A);
3739#endif
3740 rtval++;
3741 if (rtval > 4)
3742 break;
3743 }
3744 }
3745 vm_page_spin_unlock(m);
3746 return (rtval);
3747}
3748
3749/*
3750 * pmap_is_modified:
3751 *
3752 * Return whether or not the specified physical page was modified
3753 * in any physical maps.
3754 */
3755boolean_t
3756pmap_is_modified(vm_page_t m)
3757{
3758 boolean_t res;
3759
3760 res = pmap_testbit(m, PG_M);
3761 return (res);
3762}
3763
3764/*
3765 * Clear the modify bits on the specified physical page.
3766 */
3767void
3768pmap_clear_modify(vm_page_t m)
3769{
3770 pmap_clearbit(m, PG_M);
3771}
3772
3773/*
3774 * pmap_clear_reference:
3775 *
3776 * Clear the reference bit on the specified physical page.
3777 */
3778void
3779pmap_clear_reference(vm_page_t m)
3780{
3781 pmap_clearbit(m, PG_A);
3782}
3783
3784/*
3785 * Miscellaneous support routines follow
3786 */
3787
3788static
3789void
3790i386_protection_init(void)
3791{
3792 int *kp, prot;
3793
3794 /* JG NX support may go here; No VM_PROT_EXECUTE ==> set NX bit */
3795 kp = protection_codes;
3796 for (prot = 0; prot < 8; prot++) {
3797 switch (prot) {
3798 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3799 /*
3800 * Read access is also 0. There isn't any execute bit,
3801 * so just make it readable.
3802 */
3803 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3804 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3805 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3806 *kp++ = 0;
3807 break;
3808 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3809 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3810 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3811 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3812 *kp++ = PG_RW;
3813 break;
3814 }
3815 }
3816}
3817
3818/*
3819 * Map a set of physical memory pages into the kernel virtual
3820 * address space. Return a pointer to where it is mapped. This
3821 * routine is intended to be used for mapping device memory,
3822 * NOT real memory.
3823 *
3824 * NOTE: we can't use pgeflag unless we invalidate the pages one at
3825 * a time.
3826 */
3827void *
3828pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3829{
3830 vm_offset_t va, tmpva, offset;
3831 pt_entry_t *pte;
3832
3833 offset = pa & PAGE_MASK;
3834 size = roundup(offset + size, PAGE_SIZE);
3835
3836 va = kmem_alloc_nofault(&kernel_map, size, PAGE_SIZE);
3837 if (va == 0)
3838 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3839
3840 pa = pa & ~PAGE_MASK;
3841 for (tmpva = va; size > 0;) {
3842 pte = vtopte(tmpva);
3843 *pte = pa | PG_RW | PG_V; /* | pgeflag; */
3844 size -= PAGE_SIZE;
3845 tmpva += PAGE_SIZE;
3846 pa += PAGE_SIZE;
3847 }
3848 cpu_invltlb();
3849 smp_invltlb();
3850
3851 return ((void *)(va + offset));
3852}
3853
3854void *
3855pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
3856{
3857 vm_offset_t va, tmpva, offset;
3858 pt_entry_t *pte;
3859
3860 offset = pa & PAGE_MASK;
3861 size = roundup(offset + size, PAGE_SIZE);
3862
3863 va = kmem_alloc_nofault(&kernel_map, size, PAGE_SIZE);
3864 if (va == 0)
3865 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3866
3867 pa = pa & ~PAGE_MASK;
3868 for (tmpva = va; size > 0;) {
3869 pte = vtopte(tmpva);
3870 *pte = pa | PG_RW | PG_V | PG_N; /* | pgeflag; */
3871 size -= PAGE_SIZE;
3872 tmpva += PAGE_SIZE;
3873 pa += PAGE_SIZE;
3874 }
3875 cpu_invltlb();
3876 smp_invltlb();
3877
3878 return ((void *)(va + offset));
3879}
3880
3881void
3882pmap_unmapdev(vm_offset_t va, vm_size_t size)
3883{
3884 vm_offset_t base, offset;
3885
3886 base = va & ~PAGE_MASK;
3887 offset = va & PAGE_MASK;
3888 size = roundup(offset + size, PAGE_SIZE);
3889 pmap_qremove(va, size >> PAGE_SHIFT);
3890 kmem_free(&kernel_map, base, size);
3891}
3892
3893/*
3894 * perform the pmap work for mincore
3895 */
3896int
3897pmap_mincore(pmap_t pmap, vm_offset_t addr)
3898{
3899 pt_entry_t *ptep, pte;
3900 vm_page_t m;
3901 int val = 0;
3902
3903 lwkt_gettoken(&pmap->pm_token);
3904 ptep = pmap_pte(pmap, addr);
3905
3906 if (ptep && (pte = *ptep) != 0) {
3907 vm_offset_t pa;
3908
3909 val = MINCORE_INCORE;
3910 if ((pte & PG_MANAGED) == 0)
3911 goto done;
3912
3913 pa = pte & PG_FRAME;
3914
3915 m = PHYS_TO_VM_PAGE(pa);
3916
3917 /*
3918 * Modified by us
3919 */
3920 if (pte & PG_M)
3921 val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3922 /*
3923 * Modified by someone
3924 */
3925 else if (m->dirty || pmap_is_modified(m))
3926 val |= MINCORE_MODIFIED_OTHER;
3927 /*
3928 * Referenced by us
3929 */
3930 if (pte & PG_A)
3931 val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3932
3933 /*
3934 * Referenced by someone
3935 */
3936 else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3937 val |= MINCORE_REFERENCED_OTHER;
3938 vm_page_flag_set(m, PG_REFERENCED);
3939 }
3940 }
3941done:
3942 lwkt_reltoken(&pmap->pm_token);
3943
3944 return val;
3945}
3946
3947/*
3948 * Replace p->p_vmspace with a new one. If adjrefs is non-zero the new
3949 * vmspace will be ref'd and the old one will be deref'd.
3950 *
3951 * The vmspace for all lwps associated with the process will be adjusted
3952 * and cr3 will be reloaded if any lwp is the current lwp.
3953 *
3954 * The process must hold the vmspace->vm_map.token for oldvm and newvm
3955 */
3956void
3957pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
3958{
3959 struct vmspace *oldvm;
3960 struct lwp *lp;
3961
3962 oldvm = p->p_vmspace;
3963 if (oldvm != newvm) {
3964 if (adjrefs)
3965 sysref_get(&newvm->vm_sysref);
3966 p->p_vmspace = newvm;
3967 KKASSERT(p->p_nthreads == 1);
3968 lp = RB_ROOT(&p->p_lwp_tree);
3969 pmap_setlwpvm(lp, newvm);
3970 if (adjrefs)
3971 sysref_put(&oldvm->vm_sysref);
3972 }
3973}
3974
3975/*
3976 * Set the vmspace for a LWP. The vmspace is almost universally set the
3977 * same as the process vmspace, but virtual kernels need to swap out contexts
3978 * on a per-lwp basis.
3979 *
3980 * Caller does not necessarily hold any vmspace tokens. Caller must control
3981 * the lwp (typically be in the context of the lwp). We use a critical
3982 * section to protect against statclock and hardclock (statistics collection).
3983 */
3984void
3985pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
3986{
3987 struct vmspace *oldvm;
3988 struct pmap *pmap;
3989
3990 oldvm = lp->lwp_vmspace;
3991
3992 if (oldvm != newvm) {
3993 crit_enter();
3994 lp->lwp_vmspace = newvm;
3995 if (curthread->td_lwp == lp) {
3996 pmap = vmspace_pmap(newvm);
3997#if defined(SMP)
3998 atomic_set_cpumask(&pmap->pm_active, mycpu->gd_cpumask);
3999 if (pmap->pm_active & CPUMASK_LOCK)
4000 pmap_interlock_wait(newvm);
4001#else
4002 pmap->pm_active |= 1;
4003#endif
4004#if defined(SWTCH_OPTIM_STATS)
4005 tlb_flush_count++;
4006#endif
4007 curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
4008 curthread->td_pcb->pcb_cr3 |= PG_RW | PG_U | PG_V;
4009 load_cr3(curthread->td_pcb->pcb_cr3);
4010 pmap = vmspace_pmap(oldvm);
4011#if defined(SMP)
4012 atomic_clear_cpumask(&pmap->pm_active, mycpu->gd_cpumask);
4013#else
4014 pmap->pm_active &= ~(cpumask_t)1;
4015#endif
4016 }
4017 crit_exit();
4018 }
4019}
4020
4021#ifdef SMP
4022
4023/*
4024 * Called when switching to a locked pmap, used to interlock against pmaps
4025 * undergoing modifications to prevent us from activating the MMU for the
4026 * target pmap until all such modifications have completed. We have to do
4027 * this because the thread making the modifications has already set up its
4028 * SMP synchronization mask.
4029 *
4030 * This function cannot sleep!
4031 *
4032 * No requirements.
4033 */
4034void
4035pmap_interlock_wait(struct vmspace *vm)
4036{
4037 struct pmap *pmap = &vm->vm_pmap;
4038
4039 if (pmap->pm_active & CPUMASK_LOCK) {
4040 crit_enter();
4041 DEBUG_PUSH_INFO("pmap_interlock_wait");
4042 while (pmap->pm_active & CPUMASK_LOCK) {
4043 cpu_ccfence();
4044 lwkt_process_ipiq();
4045 }
4046 DEBUG_POP_INFO();
4047 crit_exit();
4048 }
4049}
4050
4051#endif
4052
4053vm_offset_t
4054pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
4055{
4056
4057 if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
4058 return addr;
4059 }
4060
4061 addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
4062 return addr;
4063}
4064
4065/*
4066 * Used by kmalloc/kfree, page already exists at va
4067 */
4068vm_page_t
4069pmap_kvtom(vm_offset_t va)
4070{
4071 return(PHYS_TO_VM_PAGE(*vtopte(va) & PG_FRAME));
4072}