HAMMER Utilities: Critical bug in newfs_hammer
[dragonfly.git] / sys / vfs / hammer / hammer_inode.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $DragonFly: src/sys/vfs/hammer/hammer_inode.c,v 1.65 2008/06/07 07:41:51 dillon Exp $
35 */
36
37#include "hammer.h"
38#include <vm/vm_extern.h>
39#include <sys/buf.h>
40#include <sys/buf2.h>
41
42static int hammer_unload_inode(struct hammer_inode *ip);
43static void hammer_flush_inode_core(hammer_inode_t ip, int flags);
44static int hammer_setup_child_callback(hammer_record_t rec, void *data);
45static int hammer_setup_parent_inodes(hammer_record_t record);
46
47/*
48 * The kernel is not actively referencing this vnode but is still holding
49 * it cached.
50 *
51 * This is called from the frontend.
52 */
53int
54hammer_vop_inactive(struct vop_inactive_args *ap)
55{
56 struct hammer_inode *ip = VTOI(ap->a_vp);
57
58 /*
59 * Degenerate case
60 */
61 if (ip == NULL) {
62 vrecycle(ap->a_vp);
63 return(0);
64 }
65
66 /*
67 * If the inode no longer has visibility in the filesystem and is
68 * fairly clean, try to recycle it immediately. This can deadlock
69 * in vfsync() if we aren't careful.
70 *
71 * Do not queue the inode to the flusher if we still have visibility,
72 * otherwise namespace calls such as chmod will unnecessarily generate
73 * multiple inode updates.
74 */
75 hammer_inode_unloadable_check(ip, 0);
76 if (ip->ino_data.nlinks == 0) {
77 if (ip->flags & HAMMER_INODE_MODMASK)
78 hammer_flush_inode(ip, 0);
79 else
80 vrecycle(ap->a_vp);
81 }
82 return(0);
83}
84
85/*
86 * Release the vnode association. This is typically (but not always)
87 * the last reference on the inode.
88 *
89 * Once the association is lost we are on our own with regards to
90 * flushing the inode.
91 */
92int
93hammer_vop_reclaim(struct vop_reclaim_args *ap)
94{
95 struct hammer_inode *ip;
96 struct vnode *vp;
97
98 vp = ap->a_vp;
99
100 if ((ip = vp->v_data) != NULL) {
101 vp->v_data = NULL;
102 ip->vp = NULL;
103 hammer_rel_inode(ip, 1);
104 }
105 return(0);
106}
107
108/*
109 * Return a locked vnode for the specified inode. The inode must be
110 * referenced but NOT LOCKED on entry and will remain referenced on
111 * return.
112 *
113 * Called from the frontend.
114 */
115int
116hammer_get_vnode(struct hammer_inode *ip, struct vnode **vpp)
117{
118 struct vnode *vp;
119 int error = 0;
120
121 for (;;) {
122 if ((vp = ip->vp) == NULL) {
123 error = getnewvnode(VT_HAMMER, ip->hmp->mp, vpp, 0, 0);
124 if (error)
125 break;
126 hammer_lock_ex(&ip->lock);
127 if (ip->vp != NULL) {
128 hammer_unlock(&ip->lock);
129 vp->v_type = VBAD;
130 vx_put(vp);
131 continue;
132 }
133 hammer_ref(&ip->lock);
134 vp = *vpp;
135 ip->vp = vp;
136 vp->v_type =
137 hammer_get_vnode_type(ip->ino_data.obj_type);
138
139 switch(ip->ino_data.obj_type) {
140 case HAMMER_OBJTYPE_CDEV:
141 case HAMMER_OBJTYPE_BDEV:
142 vp->v_ops = &ip->hmp->mp->mnt_vn_spec_ops;
143 addaliasu(vp, ip->ino_data.rmajor,
144 ip->ino_data.rminor);
145 break;
146 case HAMMER_OBJTYPE_FIFO:
147 vp->v_ops = &ip->hmp->mp->mnt_vn_fifo_ops;
148 break;
149 default:
150 break;
151 }
152
153 /*
154 * Only mark as the root vnode if the ip is not
155 * historical, otherwise the VFS cache will get
156 * confused. The other half of the special handling
157 * is in hammer_vop_nlookupdotdot().
158 */
159 if (ip->obj_id == HAMMER_OBJID_ROOT &&
160 ip->obj_asof == ip->hmp->asof) {
161 vp->v_flag |= VROOT;
162 }
163
164 vp->v_data = (void *)ip;
165 /* vnode locked by getnewvnode() */
166 /* make related vnode dirty if inode dirty? */
167 hammer_unlock(&ip->lock);
168 if (vp->v_type == VREG)
169 vinitvmio(vp, ip->ino_data.size);
170 break;
171 }
172
173 /*
174 * loop if the vget fails (aka races), or if the vp
175 * no longer matches ip->vp.
176 */
177 if (vget(vp, LK_EXCLUSIVE) == 0) {
178 if (vp == ip->vp)
179 break;
180 vput(vp);
181 }
182 }
183 *vpp = vp;
184 return(error);
185}
186
187/*
188 * Acquire a HAMMER inode. The returned inode is not locked. These functions
189 * do not attach or detach the related vnode (use hammer_get_vnode() for
190 * that).
191 *
192 * The flags argument is only applied for newly created inodes, and only
193 * certain flags are inherited.
194 *
195 * Called from the frontend.
196 */
197struct hammer_inode *
198hammer_get_inode(hammer_transaction_t trans, struct hammer_node **cache,
199 u_int64_t obj_id, hammer_tid_t asof, int flags, int *errorp)
200{
201 hammer_mount_t hmp = trans->hmp;
202 struct hammer_inode_info iinfo;
203 struct hammer_cursor cursor;
204 struct hammer_inode *ip;
205
206 /*
207 * Determine if we already have an inode cached. If we do then
208 * we are golden.
209 */
210 iinfo.obj_id = obj_id;
211 iinfo.obj_asof = asof;
212loop:
213 ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
214 if (ip) {
215 hammer_ref(&ip->lock);
216 *errorp = 0;
217 return(ip);
218 }
219
220 ip = kmalloc(sizeof(*ip), M_HAMMER, M_WAITOK|M_ZERO);
221 ++hammer_count_inodes;
222 ip->obj_id = obj_id;
223 ip->obj_asof = iinfo.obj_asof;
224 ip->hmp = hmp;
225 ip->flags = flags & HAMMER_INODE_RO;
226 if (hmp->ronly)
227 ip->flags |= HAMMER_INODE_RO;
228 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
229 RB_INIT(&ip->rec_tree);
230 TAILQ_INIT(&ip->bio_list);
231 TAILQ_INIT(&ip->bio_alt_list);
232 TAILQ_INIT(&ip->target_list);
233
234 /*
235 * Locate the on-disk inode.
236 */
237retry:
238 hammer_init_cursor(trans, &cursor, cache, NULL);
239 cursor.key_beg.localization = HAMMER_LOCALIZE_INODE;
240 cursor.key_beg.obj_id = ip->obj_id;
241 cursor.key_beg.key = 0;
242 cursor.key_beg.create_tid = 0;
243 cursor.key_beg.delete_tid = 0;
244 cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE;
245 cursor.key_beg.obj_type = 0;
246 cursor.asof = iinfo.obj_asof;
247 cursor.flags = HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_GET_DATA |
248 HAMMER_CURSOR_ASOF;
249
250 *errorp = hammer_btree_lookup(&cursor);
251 if (*errorp == EDEADLK) {
252 hammer_done_cursor(&cursor);
253 goto retry;
254 }
255
256 /*
257 * On success the B-Tree lookup will hold the appropriate
258 * buffer cache buffers and provide a pointer to the requested
259 * information. Copy the information to the in-memory inode
260 * and cache the B-Tree node to improve future operations.
261 */
262 if (*errorp == 0) {
263 ip->ino_leaf = cursor.node->ondisk->elms[cursor.index].leaf;
264 ip->ino_data = cursor.data->inode;
265 hammer_cache_node(cursor.node, &ip->cache[0]);
266 if (cache)
267 hammer_cache_node(cursor.node, cache);
268 }
269
270 /*
271 * On success load the inode's record and data and insert the
272 * inode into the B-Tree. It is possible to race another lookup
273 * insertion of the same inode so deal with that condition too.
274 *
275 * The cursor's locked node interlocks against others creating and
276 * destroying ip while we were blocked.
277 */
278 if (*errorp == 0) {
279 hammer_ref(&ip->lock);
280 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
281 hammer_uncache_node(&ip->cache[0]);
282 hammer_uncache_node(&ip->cache[1]);
283 KKASSERT(ip->lock.refs == 1);
284 --hammer_count_inodes;
285 kfree(ip, M_HAMMER);
286 hammer_done_cursor(&cursor);
287 goto loop;
288 }
289 ip->flags |= HAMMER_INODE_ONDISK;
290 } else {
291 /*
292 * Do not panic on read-only accesses which fail, particularly
293 * historical accesses where the snapshot might not have
294 * complete connectivity.
295 */
296 if ((flags & HAMMER_INODE_RO) == 0) {
297 kprintf("hammer_get_inode: failed ip %p obj_id %016llx cursor %p error %d\n",
298 ip, ip->obj_id, &cursor, *errorp);
299 Debugger("x");
300 }
301 if (ip->flags & HAMMER_INODE_RSV_INODES) {
302 ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
303 --ip->hmp->rsv_inodes;
304 }
305 ip->hmp->rsv_databufs -= ip->rsv_databufs;
306 ip->rsv_databufs = 0; /* sanity */
307
308 --hammer_count_inodes;
309 kfree(ip, M_HAMMER);
310 ip = NULL;
311 }
312 hammer_done_cursor(&cursor);
313 return (ip);
314}
315
316/*
317 * Create a new filesystem object, returning the inode in *ipp. The
318 * returned inode will be referenced.
319 *
320 * The inode is created in-memory.
321 */
322int
323hammer_create_inode(hammer_transaction_t trans, struct vattr *vap,
324 struct ucred *cred, hammer_inode_t dip,
325 struct hammer_inode **ipp)
326{
327 hammer_mount_t hmp;
328 hammer_inode_t ip;
329 uid_t xuid;
330
331 hmp = trans->hmp;
332 ip = kmalloc(sizeof(*ip), M_HAMMER, M_WAITOK|M_ZERO);
333 ++hammer_count_inodes;
334 ip->obj_id = hammer_alloc_objid(trans, dip);
335 KKASSERT(ip->obj_id != 0);
336 ip->obj_asof = hmp->asof;
337 ip->hmp = hmp;
338 ip->flush_state = HAMMER_FST_IDLE;
339 ip->flags = HAMMER_INODE_DDIRTY | HAMMER_INODE_ITIMES;
340
341 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
342 RB_INIT(&ip->rec_tree);
343 TAILQ_INIT(&ip->bio_list);
344 TAILQ_INIT(&ip->bio_alt_list);
345 TAILQ_INIT(&ip->target_list);
346
347 ip->ino_leaf.atime = trans->time;
348 ip->ino_data.mtime = trans->time;
349 ip->ino_data.size = 0;
350 ip->ino_data.nlinks = 0;
351
352 /*
353 * A nohistory designator on the parent directory is inherited by
354 * the child.
355 */
356 ip->ino_data.uflags = dip->ino_data.uflags &
357 (SF_NOHISTORY|UF_NOHISTORY|UF_NODUMP);
358
359 ip->ino_leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
360 ip->ino_leaf.base.localization = HAMMER_LOCALIZE_INODE;
361 ip->ino_leaf.base.obj_id = ip->obj_id;
362 ip->ino_leaf.base.key = 0;
363 ip->ino_leaf.base.create_tid = 0;
364 ip->ino_leaf.base.delete_tid = 0;
365 ip->ino_leaf.base.rec_type = HAMMER_RECTYPE_INODE;
366 ip->ino_leaf.base.obj_type = hammer_get_obj_type(vap->va_type);
367
368 ip->ino_data.obj_type = ip->ino_leaf.base.obj_type;
369 ip->ino_data.version = HAMMER_INODE_DATA_VERSION;
370 ip->ino_data.mode = vap->va_mode;
371 ip->ino_data.ctime = trans->time;
372 ip->ino_data.parent_obj_id = (dip) ? dip->ino_leaf.base.obj_id : 0;
373
374 switch(ip->ino_leaf.base.obj_type) {
375 case HAMMER_OBJTYPE_CDEV:
376 case HAMMER_OBJTYPE_BDEV:
377 ip->ino_data.rmajor = vap->va_rmajor;
378 ip->ino_data.rminor = vap->va_rminor;
379 break;
380 default:
381 break;
382 }
383
384 /*
385 * Calculate default uid/gid and overwrite with information from
386 * the vap.
387 */
388 xuid = hammer_to_unix_xid(&dip->ino_data.uid);
389 xuid = vop_helper_create_uid(hmp->mp, dip->ino_data.mode, xuid, cred,
390 &vap->va_mode);
391 ip->ino_data.mode = vap->va_mode;
392
393 if (vap->va_vaflags & VA_UID_UUID_VALID)
394 ip->ino_data.uid = vap->va_uid_uuid;
395 else if (vap->va_uid != (uid_t)VNOVAL)
396 hammer_guid_to_uuid(&ip->ino_data.uid, vap->va_uid);
397 else
398 hammer_guid_to_uuid(&ip->ino_data.uid, xuid);
399
400 if (vap->va_vaflags & VA_GID_UUID_VALID)
401 ip->ino_data.gid = vap->va_gid_uuid;
402 else if (vap->va_gid != (gid_t)VNOVAL)
403 hammer_guid_to_uuid(&ip->ino_data.gid, vap->va_gid);
404 else
405 ip->ino_data.gid = dip->ino_data.gid;
406
407 hammer_ref(&ip->lock);
408 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
409 hammer_unref(&ip->lock);
410 panic("hammer_create_inode: duplicate obj_id %llx", ip->obj_id);
411 }
412 *ipp = ip;
413 return(0);
414}
415
416/*
417 * Called by hammer_sync_inode().
418 */
419static int
420hammer_update_inode(hammer_cursor_t cursor, hammer_inode_t ip)
421{
422 hammer_transaction_t trans = cursor->trans;
423 hammer_record_t record;
424 int error;
425
426retry:
427 error = 0;
428
429 /*
430 * If the inode has a presence on-disk then locate it and mark
431 * it deleted, setting DELONDISK.
432 *
433 * The record may or may not be physically deleted, depending on
434 * the retention policy.
435 */
436 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
437 HAMMER_INODE_ONDISK) {
438 hammer_normalize_cursor(cursor);
439 cursor->key_beg.localization = HAMMER_LOCALIZE_INODE;
440 cursor->key_beg.obj_id = ip->obj_id;
441 cursor->key_beg.key = 0;
442 cursor->key_beg.create_tid = 0;
443 cursor->key_beg.delete_tid = 0;
444 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
445 cursor->key_beg.obj_type = 0;
446 cursor->asof = ip->obj_asof;
447 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
448 cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
449 cursor->flags |= HAMMER_CURSOR_BACKEND;
450
451 error = hammer_btree_lookup(cursor);
452 if (hammer_debug_inode)
453 kprintf("IPDEL %p %08x %d", ip, ip->flags, error);
454 if (error) {
455 kprintf("error %d\n", error);
456 Debugger("hammer_update_inode");
457 }
458
459 if (error == 0) {
460 error = hammer_ip_delete_record(cursor, ip, trans->tid);
461 if (hammer_debug_inode)
462 kprintf(" error %d\n", error);
463 if (error && error != EDEADLK) {
464 kprintf("error %d\n", error);
465 Debugger("hammer_update_inode2");
466 }
467 if (error == 0) {
468 ip->flags |= HAMMER_INODE_DELONDISK;
469 }
470 if (cursor->node)
471 hammer_cache_node(cursor->node, &ip->cache[0]);
472 }
473 if (error == EDEADLK) {
474 hammer_done_cursor(cursor);
475 error = hammer_init_cursor(trans, cursor,
476 &ip->cache[0], ip);
477 if (hammer_debug_inode)
478 kprintf("IPDED %p %d\n", ip, error);
479 if (error == 0)
480 goto retry;
481 }
482 }
483
484 /*
485 * Ok, write out the initial record or a new record (after deleting
486 * the old one), unless the DELETED flag is set. This routine will
487 * clear DELONDISK if it writes out a record.
488 *
489 * Update our inode statistics if this is the first application of
490 * the inode on-disk.
491 */
492 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED) == 0) {
493 /*
494 * Generate a record and write it to the media
495 */
496 record = hammer_alloc_mem_record(ip, 0);
497 record->type = HAMMER_MEM_RECORD_INODE;
498 record->flush_state = HAMMER_FST_FLUSH;
499 record->leaf = ip->sync_ino_leaf;
500 record->leaf.base.create_tid = trans->tid;
501 record->leaf.data_len = sizeof(ip->sync_ino_data);
502 record->data = (void *)&ip->sync_ino_data;
503 record->flags |= HAMMER_RECF_INTERLOCK_BE;
504 for (;;) {
505 error = hammer_ip_sync_record_cursor(cursor, record);
506 if (hammer_debug_inode)
507 kprintf("GENREC %p rec %08x %d\n",
508 ip, record->flags, error);
509 if (error != EDEADLK)
510 break;
511 hammer_done_cursor(cursor);
512 error = hammer_init_cursor(trans, cursor,
513 &ip->cache[0], ip);
514 if (hammer_debug_inode)
515 kprintf("GENREC reinit %d\n", error);
516 if (error)
517 break;
518 }
519 if (error) {
520 kprintf("error %d\n", error);
521 Debugger("hammer_update_inode3");
522 }
523
524 /*
525 * The record isn't managed by the inode's record tree,
526 * destroy it whether we succeed or fail.
527 */
528 record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
529 record->flags |= HAMMER_RECF_DELETED_FE;
530 record->flush_state = HAMMER_FST_IDLE;
531 hammer_rel_mem_record(record);
532
533 /*
534 * Finish up.
535 */
536 if (error == 0) {
537 if (hammer_debug_inode)
538 kprintf("CLEANDELOND %p %08x\n", ip, ip->flags);
539 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
540 HAMMER_INODE_ITIMES);
541 ip->flags &= ~HAMMER_INODE_DELONDISK;
542
543 /*
544 * Root volume count of inodes
545 */
546 if ((ip->flags & HAMMER_INODE_ONDISK) == 0) {
547 hammer_modify_volume_field(trans,
548 trans->rootvol,
549 vol0_stat_inodes);
550 ++ip->hmp->rootvol->ondisk->vol0_stat_inodes;
551 hammer_modify_volume_done(trans->rootvol);
552 ip->flags |= HAMMER_INODE_ONDISK;
553 if (hammer_debug_inode)
554 kprintf("NOWONDISK %p\n", ip);
555 }
556 }
557 }
558
559 /*
560 * If the inode has been destroyed, clean out any left-over flags
561 * that may have been set by the frontend.
562 */
563 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED)) {
564 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
565 HAMMER_INODE_ITIMES);
566 }
567 return(error);
568}
569
570/*
571 * Update only the itimes fields. This is done no-historically. The
572 * record is updated in-place on the disk.
573 */
574static int
575hammer_update_itimes(hammer_cursor_t cursor, hammer_inode_t ip)
576{
577 hammer_transaction_t trans = cursor->trans;
578 struct hammer_btree_leaf_elm *leaf;
579 int error;
580
581retry:
582 error = 0;
583 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
584 HAMMER_INODE_ONDISK) {
585 hammer_normalize_cursor(cursor);
586 cursor->key_beg.localization = HAMMER_LOCALIZE_INODE;
587 cursor->key_beg.obj_id = ip->obj_id;
588 cursor->key_beg.key = 0;
589 cursor->key_beg.create_tid = 0;
590 cursor->key_beg.delete_tid = 0;
591 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
592 cursor->key_beg.obj_type = 0;
593 cursor->asof = ip->obj_asof;
594 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
595 cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
596 cursor->flags |= HAMMER_CURSOR_BACKEND;
597
598 error = hammer_btree_lookup(cursor);
599 if (error) {
600 kprintf("error %d\n", error);
601 Debugger("hammer_update_itimes1");
602 }
603 if (error == 0) {
604 /*
605 * Do not generate UNDO records for atime updates.
606 */
607 leaf = cursor->leaf;
608 hammer_modify_node(trans, cursor->node,
609 &leaf->atime, sizeof(leaf->atime));
610 leaf->atime = ip->sync_ino_leaf.atime;
611 hammer_modify_node_done(cursor->node);
612 /*rec->ino_mtime = ip->sync_ino_rec.ino_mtime;*/
613 ip->sync_flags &= ~HAMMER_INODE_ITIMES;
614 /* XXX recalculate crc */
615 hammer_cache_node(cursor->node, &ip->cache[0]);
616 }
617 if (error == EDEADLK) {
618 hammer_done_cursor(cursor);
619 error = hammer_init_cursor(trans, cursor,
620 &ip->cache[0], ip);
621 if (error == 0)
622 goto retry;
623 }
624 }
625 return(error);
626}
627
628/*
629 * Release a reference on an inode, flush as requested.
630 *
631 * On the last reference we queue the inode to the flusher for its final
632 * disposition.
633 */
634void
635hammer_rel_inode(struct hammer_inode *ip, int flush)
636{
637 hammer_mount_t hmp = ip->hmp;
638
639 /*
640 * Handle disposition when dropping the last ref.
641 */
642 for (;;) {
643 if (ip->lock.refs == 1) {
644 /*
645 * Determine whether on-disk action is needed for
646 * the inode's final disposition.
647 */
648 KKASSERT(ip->vp == NULL);
649 hammer_inode_unloadable_check(ip, 0);
650 if (ip->flags & HAMMER_INODE_MODMASK) {
651 hammer_flush_inode(ip, 0);
652 } else if (ip->lock.refs == 1) {
653 hammer_unload_inode(ip);
654 break;
655 }
656 } else {
657 if (flush)
658 hammer_flush_inode(ip, 0);
659
660 /*
661 * The inode still has multiple refs, try to drop
662 * one ref.
663 */
664 KKASSERT(ip->lock.refs >= 1);
665 if (ip->lock.refs > 1) {
666 hammer_unref(&ip->lock);
667 break;
668 }
669 }
670 }
671
672 /*
673 * XXX bad hack until I add code to track inodes in SETUP. We
674 * can queue a lot of inodes to the syncer but if we don't wake
675 * it up the undo sets will be too large or too many unflushed
676 * records will build up and blow our malloc limit.
677 */
678 if (++hmp->reclaim_count > 256) {
679 hmp->reclaim_count = 0;
680 hammer_flusher_async(hmp);
681 }
682}
683
684/*
685 * Unload and destroy the specified inode. Must be called with one remaining
686 * reference. The reference is disposed of.
687 *
688 * This can only be called in the context of the flusher.
689 */
690static int
691hammer_unload_inode(struct hammer_inode *ip)
692{
693 KASSERT(ip->lock.refs == 1,
694 ("hammer_unload_inode: %d refs\n", ip->lock.refs));
695 KKASSERT(ip->vp == NULL);
696 KKASSERT(ip->flush_state == HAMMER_FST_IDLE);
697 KKASSERT(ip->cursor_ip_refs == 0);
698 KKASSERT(ip->lock.lockcount == 0);
699 KKASSERT((ip->flags & HAMMER_INODE_MODMASK) == 0);
700
701 KKASSERT(RB_EMPTY(&ip->rec_tree));
702 KKASSERT(TAILQ_EMPTY(&ip->target_list));
703 KKASSERT(TAILQ_EMPTY(&ip->bio_list));
704 KKASSERT(TAILQ_EMPTY(&ip->bio_alt_list));
705
706 RB_REMOVE(hammer_ino_rb_tree, &ip->hmp->rb_inos_root, ip);
707
708 hammer_uncache_node(&ip->cache[0]);
709 hammer_uncache_node(&ip->cache[1]);
710 if (ip->objid_cache)
711 hammer_clear_objid(ip);
712 --hammer_count_inodes;
713 kfree(ip, M_HAMMER);
714
715 return(0);
716}
717
718/*
719 * Called on mount -u when switching from RW to RO or vise-versa. Adjust
720 * the read-only flag for cached inodes.
721 *
722 * This routine is called from a RB_SCAN().
723 */
724int
725hammer_reload_inode(hammer_inode_t ip, void *arg __unused)
726{
727 hammer_mount_t hmp = ip->hmp;
728
729 if (hmp->ronly || hmp->asof != HAMMER_MAX_TID)
730 ip->flags |= HAMMER_INODE_RO;
731 else
732 ip->flags &= ~HAMMER_INODE_RO;
733 return(0);
734}
735
736/*
737 * A transaction has modified an inode, requiring updates as specified by
738 * the passed flags.
739 *
740 * HAMMER_INODE_DDIRTY: Inode data has been updated
741 * HAMMER_INODE_XDIRTY: Dirty in-memory records
742 * HAMMER_INODE_BUFS: Dirty buffer cache buffers
743 * HAMMER_INODE_DELETED: Inode record/data must be deleted
744 * HAMMER_INODE_ITIMES: mtime/atime has been updated
745 */
746void
747hammer_modify_inode(hammer_inode_t ip, int flags)
748{
749 KKASSERT ((ip->flags & HAMMER_INODE_RO) == 0 ||
750 (flags & (HAMMER_INODE_DDIRTY |
751 HAMMER_INODE_XDIRTY | HAMMER_INODE_BUFS |
752 HAMMER_INODE_DELETED | HAMMER_INODE_ITIMES)) == 0);
753 if ((ip->flags & HAMMER_INODE_RSV_INODES) == 0) {
754 ip->flags |= HAMMER_INODE_RSV_INODES;
755 ++ip->hmp->rsv_inodes;
756 }
757
758 ip->flags |= flags;
759}
760
761/*
762 * Request that an inode be flushed. This whole mess cannot block and may
763 * recurse. Once requested HAMMER will attempt to actively flush it until
764 * the flush can be done.
765 *
766 * The inode may already be flushing, or may be in a setup state. We can
767 * place the inode in a flushing state if it is currently idle and flag it
768 * to reflush if it is currently flushing.
769 */
770void
771hammer_flush_inode(hammer_inode_t ip, int flags)
772{
773 hammer_record_t depend;
774 int r, good;
775
776 /*
777 * Trivial 'nothing to flush' case. If the inode is ina SETUP
778 * state we have to put it back into an IDLE state so we can
779 * drop the extra ref.
780 */
781 if ((ip->flags & HAMMER_INODE_MODMASK) == 0) {
782 if (ip->flush_state == HAMMER_FST_SETUP) {
783 ip->flush_state = HAMMER_FST_IDLE;
784 hammer_rel_inode(ip, 0);
785 }
786 return;
787 }
788
789 /*
790 * Our flush action will depend on the current state.
791 */
792 switch(ip->flush_state) {
793 case HAMMER_FST_IDLE:
794 /*
795 * We have no dependancies and can flush immediately. Some
796 * our children may not be flushable so we have to re-test
797 * with that additional knowledge.
798 */
799 hammer_flush_inode_core(ip, flags);
800 break;
801 case HAMMER_FST_SETUP:
802 /*
803 * Recurse upwards through dependancies via target_list
804 * and start their flusher actions going if possible.
805 *
806 * 'good' is our connectivity. -1 means we have none and
807 * can't flush, 0 means there weren't any dependancies, and
808 * 1 means we have good connectivity.
809 */
810 good = 0;
811 TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
812 r = hammer_setup_parent_inodes(depend);
813 if (r < 0 && good == 0)
814 good = -1;
815 if (r > 0)
816 good = 1;
817 }
818
819 /*
820 * We can continue if good >= 0. Determine how many records
821 * under our inode can be flushed (and mark them).
822 */
823 if (good >= 0) {
824 hammer_flush_inode_core(ip, flags);
825 } else {
826 ip->flags |= HAMMER_INODE_REFLUSH;
827 if (flags & HAMMER_FLUSH_SIGNAL) {
828 ip->flags |= HAMMER_INODE_RESIGNAL;
829 hammer_flusher_async(ip->hmp);
830 }
831 }
832 break;
833 default:
834 /*
835 * We are already flushing, flag the inode to reflush
836 * if needed after it completes its current flush.
837 */
838 if ((ip->flags & HAMMER_INODE_REFLUSH) == 0)
839 ip->flags |= HAMMER_INODE_REFLUSH;
840 if (flags & HAMMER_FLUSH_SIGNAL) {
841 ip->flags |= HAMMER_INODE_RESIGNAL;
842 hammer_flusher_async(ip->hmp);
843 }
844 break;
845 }
846}
847
848/*
849 * We are asked to recurse upwards and convert the record from SETUP
850 * to FLUSH if possible. record->ip is a parent of the caller's inode,
851 * and record->target_ip is the caller's inode.
852 *
853 * Return 1 if the record gives us connectivity
854 *
855 * Return 0 if the record is not relevant
856 *
857 * Return -1 if we can't resolve the dependancy and there is no connectivity.
858 */
859static int
860hammer_setup_parent_inodes(hammer_record_t record)
861{
862 hammer_mount_t hmp = record->ip->hmp;
863 hammer_record_t depend;
864 hammer_inode_t ip;
865 int r, good;
866
867 KKASSERT(record->flush_state != HAMMER_FST_IDLE);
868 ip = record->ip;
869
870 /*
871 * If the record is already flushing, is it in our flush group?
872 *
873 * If it is in our flush group but it is a general record or a
874 * delete-on-disk, it does not improve our connectivity (return 0),
875 * and if the target inode is not trying to destroy itself we can't
876 * allow the operation yet anyway (the second return -1).
877 */
878 if (record->flush_state == HAMMER_FST_FLUSH) {
879 if (record->flush_group != hmp->flusher_next) {
880 ip->flags |= HAMMER_INODE_REFLUSH;
881 return(-1);
882 }
883 if (record->type == HAMMER_MEM_RECORD_ADD)
884 return(1);
885 /* GENERAL or DEL */
886 return(0);
887 }
888
889 /*
890 * It must be a setup record. Try to resolve the setup dependancies
891 * by recursing upwards so we can place ip on the flush list.
892 */
893 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
894
895 good = 0;
896 TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
897 r = hammer_setup_parent_inodes(depend);
898 if (r < 0 && good == 0)
899 good = -1;
900 if (r > 0)
901 good = 1;
902 }
903
904 /*
905 * We can't flush ip because it has no connectivity (XXX also check
906 * nlinks for pre-existing connectivity!). Flag it so any resolution
907 * recurses back down.
908 */
909 if (good < 0) {
910 ip->flags |= HAMMER_INODE_REFLUSH;
911 return(good);
912 }
913
914 /*
915 * We are go, place the parent inode in a flushing state so we can
916 * place its record in a flushing state. Note that the parent
917 * may already be flushing. The record must be in the same flush
918 * group as the parent.
919 */
920 if (ip->flush_state != HAMMER_FST_FLUSH)
921 hammer_flush_inode_core(ip, HAMMER_FLUSH_RECURSION);
922 KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
923 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
924
925#if 0
926 if (record->type == HAMMER_MEM_RECORD_DEL &&
927 (record->target_ip->flags & (HAMMER_INODE_DELETED|HAMMER_INODE_DELONDISK)) == 0) {
928 /*
929 * Regardless of flushing state we cannot sync this path if the
930 * record represents a delete-on-disk but the target inode
931 * is not ready to sync its own deletion.
932 *
933 * XXX need to count effective nlinks to determine whether
934 * the flush is ok, otherwise removing a hardlink will
935 * just leave the DEL record to rot.
936 */
937 record->target_ip->flags |= HAMMER_INODE_REFLUSH;
938 return(-1);
939 } else
940#endif
941 if (ip->flush_group == ip->hmp->flusher_next) {
942 /*
943 * This is the record we wanted to synchronize.
944 */
945 record->flush_state = HAMMER_FST_FLUSH;
946 record->flush_group = ip->flush_group;
947 hammer_ref(&record->lock);
948 if (record->type == HAMMER_MEM_RECORD_ADD)
949 return(1);
950
951 /*
952 * A general or delete-on-disk record does not contribute
953 * to our visibility. We can still flush it, however.
954 */
955 return(0);
956 } else {
957 /*
958 * We couldn't resolve the dependancies, request that the
959 * inode be flushed when the dependancies can be resolved.
960 */
961 ip->flags |= HAMMER_INODE_REFLUSH;
962 return(-1);
963 }
964}
965
966/*
967 * This is the core routine placing an inode into the FST_FLUSH state.
968 */
969static void
970hammer_flush_inode_core(hammer_inode_t ip, int flags)
971{
972 int go_count;
973
974 /*
975 * Set flush state and prevent the flusher from cycling into
976 * the next flush group. Do not place the ip on the list yet.
977 * Inodes not in the idle state get an extra reference.
978 */
979 KKASSERT(ip->flush_state != HAMMER_FST_FLUSH);
980 if (ip->flush_state == HAMMER_FST_IDLE)
981 hammer_ref(&ip->lock);
982 ip->flush_state = HAMMER_FST_FLUSH;
983 ip->flush_group = ip->hmp->flusher_next;
984 ++ip->hmp->flusher_lock;
985
986 /*
987 * We need to be able to vfsync/truncate from the backend.
988 */
989 KKASSERT((ip->flags & HAMMER_INODE_VHELD) == 0);
990 if (ip->vp && (ip->vp->v_flag & VINACTIVE) == 0) {
991 ip->flags |= HAMMER_INODE_VHELD;
992 vref(ip->vp);
993 }
994
995 /*
996 * Figure out how many in-memory records we can actually flush
997 * (not including inode meta-data, buffers, etc).
998 */
999 if (flags & HAMMER_FLUSH_RECURSION) {
1000 go_count = 1;
1001 } else {
1002 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1003 hammer_setup_child_callback, NULL);
1004 }
1005
1006 /*
1007 * This is a more involved test that includes go_count. If we
1008 * can't flush, flag the inode and return. If go_count is 0 we
1009 * were are unable to flush any records in our rec_tree and
1010 * must ignore the XDIRTY flag.
1011 */
1012 if (go_count == 0) {
1013 if ((ip->flags & HAMMER_INODE_MODMASK_NOXDIRTY) == 0) {
1014 ip->flags |= HAMMER_INODE_REFLUSH;
1015 ip->flush_state = HAMMER_FST_SETUP;
1016 if (ip->flags & HAMMER_INODE_VHELD) {
1017 ip->flags &= ~HAMMER_INODE_VHELD;
1018 vrele(ip->vp);
1019 }
1020 if (flags & HAMMER_FLUSH_SIGNAL) {
1021 ip->flags |= HAMMER_INODE_RESIGNAL;
1022 hammer_flusher_async(ip->hmp);
1023 }
1024 if (--ip->hmp->flusher_lock == 0)
1025 wakeup(&ip->hmp->flusher_lock);
1026 return;
1027 }
1028 }
1029
1030 /*
1031 * Snapshot the state of the inode for the backend flusher.
1032 *
1033 * The truncation must be retained in the frontend until after
1034 * we've actually performed the record deletion.
1035 *
1036 * NOTE: The DELETING flag is a mod flag, but it is also sticky,
1037 * and stays in ip->flags. Once set, it stays set until the
1038 * inode is destroyed.
1039 */
1040 ip->sync_flags = (ip->flags & HAMMER_INODE_MODMASK);
1041 ip->sync_trunc_off = ip->trunc_off;
1042 ip->sync_ino_leaf = ip->ino_leaf;
1043 ip->sync_ino_data = ip->ino_data;
1044 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
1045 ip->flags &= ~HAMMER_INODE_MODMASK;
1046
1047 /*
1048 * The flusher list inherits our inode and reference.
1049 */
1050 TAILQ_INSERT_TAIL(&ip->hmp->flush_list, ip, flush_entry);
1051 if (--ip->hmp->flusher_lock == 0)
1052 wakeup(&ip->hmp->flusher_lock);
1053
1054 if (flags & HAMMER_FLUSH_SIGNAL)
1055 hammer_flusher_async(ip->hmp);
1056}
1057
1058/*
1059 * Callback for scan of ip->rec_tree. Try to include each record in our
1060 * flush. ip->flush_group has been set but the inode has not yet been
1061 * moved into a flushing state.
1062 *
1063 * If we get stuck on a record we have to set HAMMER_INODE_REFLUSH on
1064 * both inodes.
1065 *
1066 * We return 1 for any record placed or found in FST_FLUSH, which prevents
1067 * the caller from shortcutting the flush.
1068 */
1069static int
1070hammer_setup_child_callback(hammer_record_t rec, void *data)
1071{
1072 hammer_inode_t target_ip;
1073 hammer_inode_t ip;
1074 int r;
1075
1076 /*
1077 * If the record has been deleted by the backend (it's being held
1078 * by the frontend in a race), just ignore it.
1079 */
1080 if (rec->flags & HAMMER_RECF_DELETED_BE)
1081 return(0);
1082
1083 /*
1084 * If the record is in an idle state it has no dependancies and
1085 * can be flushed.
1086 */
1087 ip = rec->ip;
1088 r = 0;
1089
1090 switch(rec->flush_state) {
1091 case HAMMER_FST_IDLE:
1092 /*
1093 * Record has no setup dependancy, we can flush it.
1094 */
1095 KKASSERT(rec->target_ip == NULL);
1096 rec->flush_state = HAMMER_FST_FLUSH;
1097 rec->flush_group = ip->flush_group;
1098 hammer_ref(&rec->lock);
1099 r = 1;
1100 break;
1101 case HAMMER_FST_SETUP:
1102 /*
1103 * Record has a setup dependancy. Try to include the
1104 * target ip in the flush.
1105 *
1106 * We have to be careful here, if we do not do the right
1107 * thing we can lose track of dirty inodes and the system
1108 * will lockup trying to allocate buffers.
1109 */
1110 target_ip = rec->target_ip;
1111 KKASSERT(target_ip != NULL);
1112 KKASSERT(target_ip->flush_state != HAMMER_FST_IDLE);
1113 if (target_ip->flush_state == HAMMER_FST_FLUSH) {
1114 /*
1115 * If the target IP is already flushing in our group
1116 * we are golden, otherwise make sure the target
1117 * reflushes.
1118 */
1119 if (target_ip->flush_group == ip->flush_group) {
1120 rec->flush_state = HAMMER_FST_FLUSH;
1121 rec->flush_group = ip->flush_group;
1122 hammer_ref(&rec->lock);
1123 r = 1;
1124 } else {
1125 target_ip->flags |= HAMMER_INODE_REFLUSH;
1126 }
1127 } else if (rec->type == HAMMER_MEM_RECORD_ADD) {
1128 /*
1129 * If the target IP is not flushing we can force
1130 * it to flush, even if it is unable to write out
1131 * any of its own records we have at least one in
1132 * hand that we CAN deal with.
1133 */
1134 rec->flush_state = HAMMER_FST_FLUSH;
1135 rec->flush_group = ip->flush_group;
1136 hammer_ref(&rec->lock);
1137 hammer_flush_inode_core(target_ip,
1138 HAMMER_FLUSH_RECURSION);
1139 r = 1;
1140 } else {
1141 /*
1142 * General or delete-on-disk record.
1143 *
1144 * XXX this needs help. If a delete-on-disk we could
1145 * disconnect the target. If the target has its own
1146 * dependancies they really need to be flushed.
1147 *
1148 * XXX
1149 */
1150 rec->flush_state = HAMMER_FST_FLUSH;
1151 rec->flush_group = ip->flush_group;
1152 hammer_ref(&rec->lock);
1153 hammer_flush_inode_core(target_ip,
1154 HAMMER_FLUSH_RECURSION);
1155 r = 1;
1156 }
1157 break;
1158 case HAMMER_FST_FLUSH:
1159 /*
1160 * Record already associated with a flush group. It had
1161 * better be ours.
1162 */
1163 KKASSERT(rec->flush_group == ip->flush_group);
1164 r = 1;
1165 break;
1166 }
1167 return(r);
1168}
1169
1170/*
1171 * Wait for a previously queued flush to complete
1172 */
1173void
1174hammer_wait_inode(hammer_inode_t ip)
1175{
1176 while (ip->flush_state != HAMMER_FST_IDLE) {
1177 ip->flags |= HAMMER_INODE_FLUSHW;
1178 tsleep(&ip->flags, 0, "hmrwin", 0);
1179 }
1180}
1181
1182/*
1183 * Called by the backend code when a flush has been completed.
1184 * The inode has already been removed from the flush list.
1185 *
1186 * A pipelined flush can occur, in which case we must re-enter the
1187 * inode on the list and re-copy its fields.
1188 */
1189void
1190hammer_flush_inode_done(hammer_inode_t ip)
1191{
1192 struct bio *bio;
1193 int dorel = 0;
1194
1195 KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
1196
1197 /*
1198 * Merge left-over flags back into the frontend and fix the state.
1199 */
1200 ip->flags |= ip->sync_flags;
1201
1202 /*
1203 * The backend may have adjusted nlinks, so if the adjusted nlinks
1204 * does not match the fronttend set the frontend's RDIRTY flag again.
1205 */
1206 if (ip->ino_data.nlinks != ip->sync_ino_data.nlinks)
1207 ip->flags |= HAMMER_INODE_DDIRTY;
1208
1209 /*
1210 * Reflush any BIOs that wound up in the alt list. Our inode will
1211 * also wind up at the end of the flusher's list.
1212 */
1213 while ((bio = TAILQ_FIRST(&ip->bio_alt_list)) != NULL) {
1214 TAILQ_REMOVE(&ip->bio_alt_list, bio, bio_act);
1215 TAILQ_INSERT_TAIL(&ip->bio_list, bio, bio_act);
1216 }
1217 /*
1218 * Fix up the dirty buffer status. IO completions will also
1219 * try to clean up rsv_databufs.
1220 */
1221 if (TAILQ_FIRST(&ip->bio_list) ||
1222 (ip->vp && RB_ROOT(&ip->vp->v_rbdirty_tree))) {
1223 ip->flags |= HAMMER_INODE_BUFS;
1224 } else {
1225 ip->hmp->rsv_databufs -= ip->rsv_databufs;
1226 ip->rsv_databufs = 0;
1227 }
1228
1229 /*
1230 * Re-set the XDIRTY flag if some of the inode's in-memory records
1231 * could not be flushed.
1232 */
1233 if (RB_ROOT(&ip->rec_tree))
1234 ip->flags |= HAMMER_INODE_XDIRTY;
1235
1236 /*
1237 * Do not lose track of inodes which no longer have vnode
1238 * assocations, otherwise they may never get flushed again.
1239 */
1240 if ((ip->flags & HAMMER_INODE_MODMASK) && ip->vp == NULL)
1241 ip->flags |= HAMMER_INODE_REFLUSH;
1242
1243 /*
1244 * Adjust flush_state. The target state (idle or setup) shouldn't
1245 * be terribly important since we will reflush if we really need
1246 * to do anything. XXX
1247 */
1248 if (TAILQ_EMPTY(&ip->target_list) && RB_EMPTY(&ip->rec_tree)) {
1249 ip->flush_state = HAMMER_FST_IDLE;
1250 dorel = 1;
1251 } else {
1252 ip->flush_state = HAMMER_FST_SETUP;
1253 }
1254
1255 /*
1256 * Clean up the vnode ref
1257 */
1258 if (ip->flags & HAMMER_INODE_VHELD) {
1259 ip->flags &= ~HAMMER_INODE_VHELD;
1260 vrele(ip->vp);
1261 }
1262
1263 /*
1264 * If the frontend made more changes and requested another flush,
1265 * then try to get it running.
1266 */
1267 if (ip->flags & HAMMER_INODE_REFLUSH) {
1268 ip->flags &= ~HAMMER_INODE_REFLUSH;
1269 if (ip->flags & HAMMER_INODE_RESIGNAL) {
1270 ip->flags &= ~HAMMER_INODE_RESIGNAL;
1271 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1272 } else {
1273 hammer_flush_inode(ip, 0);
1274 }
1275 }
1276
1277 /*
1278 * If the inode is now clean drop the space reservation.
1279 */
1280 if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1281 (ip->flags & HAMMER_INODE_RSV_INODES)) {
1282 ip->flags &= ~HAMMER_INODE_RSV_INODES;
1283 --ip->hmp->rsv_inodes;
1284 }
1285
1286 /*
1287 * Finally, if the frontend is waiting for a flush to complete,
1288 * wake it up.
1289 */
1290 if (ip->flush_state != HAMMER_FST_FLUSH) {
1291 if (ip->flags & HAMMER_INODE_FLUSHW) {
1292 ip->flags &= ~HAMMER_INODE_FLUSHW;
1293 wakeup(&ip->flags);
1294 }
1295 }
1296 if (dorel)
1297 hammer_rel_inode(ip, 0);
1298}
1299
1300/*
1301 * Called from hammer_sync_inode() to synchronize in-memory records
1302 * to the media.
1303 */
1304static int
1305hammer_sync_record_callback(hammer_record_t record, void *data)
1306{
1307 hammer_cursor_t cursor = data;
1308 hammer_transaction_t trans = cursor->trans;
1309 int error;
1310
1311 /*
1312 * Skip records that do not belong to the current flush.
1313 */
1314 ++hammer_stats_record_iterations;
1315 if (record->flush_state != HAMMER_FST_FLUSH)
1316 return(0);
1317
1318#if 1
1319 if (record->flush_group != record->ip->flush_group) {
1320 kprintf("sync_record %p ip %p bad flush group %d %d\n", record, record->ip, record->flush_group ,record->ip->flush_group);
1321 Debugger("blah2");
1322 return(0);
1323 }
1324#endif
1325 KKASSERT(record->flush_group == record->ip->flush_group);
1326
1327 /*
1328 * Interlock the record using the BE flag. Once BE is set the
1329 * frontend cannot change the state of FE.
1330 *
1331 * NOTE: If FE is set prior to us setting BE we still sync the
1332 * record out, but the flush completion code converts it to
1333 * a delete-on-disk record instead of destroying it.
1334 */
1335 KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
1336 record->flags |= HAMMER_RECF_INTERLOCK_BE;
1337
1338 /*
1339 * The backend may have already disposed of the record.
1340 */
1341 if (record->flags & HAMMER_RECF_DELETED_BE) {
1342 error = 0;
1343 goto done;
1344 }
1345
1346 /*
1347 * If the whole inode is being deleting all on-disk records will
1348 * be deleted very soon, we can't sync any new records to disk
1349 * because they will be deleted in the same transaction they were
1350 * created in (delete_tid == create_tid), which will assert.
1351 *
1352 * XXX There may be a case with RECORD_ADD with DELETED_FE set
1353 * that we currently panic on.
1354 */
1355 if (record->ip->sync_flags & HAMMER_INODE_DELETING) {
1356 switch(record->type) {
1357 case HAMMER_MEM_RECORD_DATA:
1358 /*
1359 * We don't have to do anything, if the record was
1360 * committed the space will have been accounted for
1361 * in the blockmap.
1362 */
1363 /* fall through */
1364 case HAMMER_MEM_RECORD_GENERAL:
1365 record->flags |= HAMMER_RECF_DELETED_FE;
1366 record->flags |= HAMMER_RECF_DELETED_BE;
1367 error = 0;
1368 goto done;
1369 case HAMMER_MEM_RECORD_ADD:
1370 panic("hammer_sync_record_callback: illegal add "
1371 "during inode deletion record %p", record);
1372 break; /* NOT REACHED */
1373 case HAMMER_MEM_RECORD_INODE:
1374 panic("hammer_sync_record_callback: attempt to "
1375 "sync inode record %p?", record);
1376 break; /* NOT REACHED */
1377 case HAMMER_MEM_RECORD_DEL:
1378 /*
1379 * Follow through and issue the on-disk deletion
1380 */
1381 break;
1382 }
1383 }
1384
1385 /*
1386 * If DELETED_FE is set we may have already sent dependant pieces
1387 * to the disk and we must flush the record as if it hadn't been
1388 * deleted. This creates a bit of a mess because we have to
1389 * have ip_sync_record convert the record to MEM_RECORD_DEL before
1390 * it inserts the B-Tree record. Otherwise the media sync might
1391 * be visible to the frontend.
1392 */
1393 if (record->flags & HAMMER_RECF_DELETED_FE) {
1394 if (record->type == HAMMER_MEM_RECORD_ADD) {
1395 record->flags |= HAMMER_RECF_CONVERT_DELETE;
1396 } else {
1397 KKASSERT(record->type != HAMMER_MEM_RECORD_DEL);
1398 return(0);
1399 }
1400 }
1401
1402 /*
1403 * Assign the create_tid for new records. Deletions already
1404 * have the record's entire key properly set up.
1405 */
1406 if (record->type != HAMMER_MEM_RECORD_DEL)
1407 record->leaf.base.create_tid = trans->tid;
1408 for (;;) {
1409 error = hammer_ip_sync_record_cursor(cursor, record);
1410 if (error != EDEADLK)
1411 break;
1412 hammer_done_cursor(cursor);
1413 error = hammer_init_cursor(trans, cursor, &record->ip->cache[0],
1414 record->ip);
1415 if (error)
1416 break;
1417 }
1418 record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
1419
1420 if (error) {
1421 error = -error;
1422 if (error != -ENOSPC) {
1423 kprintf("hammer_sync_record_callback: sync failed rec "
1424 "%p, error %d\n", record, error);
1425 Debugger("sync failed rec");
1426 }
1427 }
1428done:
1429 hammer_flush_record_done(record, error);
1430 return(error);
1431}
1432
1433/*
1434 * XXX error handling
1435 */
1436int
1437hammer_sync_inode(hammer_inode_t ip)
1438{
1439 struct hammer_transaction trans;
1440 struct hammer_cursor cursor;
1441 struct buf *bp;
1442 struct bio *bio;
1443 hammer_record_t depend;
1444 hammer_record_t next;
1445 int error, tmp_error;
1446 u_int64_t nlinks;
1447
1448 if ((ip->sync_flags & HAMMER_INODE_MODMASK) == 0)
1449 return(0);
1450
1451 hammer_start_transaction_fls(&trans, ip->hmp);
1452 error = hammer_init_cursor(&trans, &cursor, &ip->cache[0], ip);
1453 if (error)
1454 goto done;
1455
1456 /*
1457 * Any directory records referencing this inode which are not in
1458 * our current flush group must adjust our nlink count for the
1459 * purposes of synchronization to disk.
1460 *
1461 * Records which are in our flush group can be unlinked from our
1462 * inode now, potentially allowing the inode to be physically
1463 * deleted.
1464 */
1465 nlinks = ip->ino_data.nlinks;
1466 next = TAILQ_FIRST(&ip->target_list);
1467 while ((depend = next) != NULL) {
1468 next = TAILQ_NEXT(depend, target_entry);
1469 if (depend->flush_state == HAMMER_FST_FLUSH &&
1470 depend->flush_group == ip->hmp->flusher_act) {
1471 /*
1472 * If this is an ADD that was deleted by the frontend
1473 * the frontend nlinks count will have already been
1474 * decremented, but the backend is going to sync its
1475 * directory entry and must account for it. The
1476 * record will be converted to a delete-on-disk when
1477 * it gets synced.
1478 *
1479 * If the ADD was not deleted by the frontend we
1480 * can remove the dependancy from our target_list.
1481 */
1482 if (depend->flags & HAMMER_RECF_DELETED_FE) {
1483 ++nlinks;
1484 } else {
1485 TAILQ_REMOVE(&ip->target_list, depend,
1486 target_entry);
1487 depend->target_ip = NULL;
1488 }
1489 } else if ((depend->flags & HAMMER_RECF_DELETED_FE) == 0) {
1490 /*
1491 * Not part of our flush group
1492 */
1493 KKASSERT((depend->flags & HAMMER_RECF_DELETED_BE) == 0);
1494 switch(depend->type) {
1495 case HAMMER_MEM_RECORD_ADD:
1496 --nlinks;
1497 break;
1498 case HAMMER_MEM_RECORD_DEL:
1499 ++nlinks;
1500 break;
1501 default:
1502 break;
1503 }
1504 }
1505 }
1506
1507 /*
1508 * Set dirty if we had to modify the link count.
1509 */
1510 if (ip->sync_ino_data.nlinks != nlinks) {
1511 KKASSERT((int64_t)nlinks >= 0);
1512 ip->sync_ino_data.nlinks = nlinks;
1513 ip->sync_flags |= HAMMER_INODE_DDIRTY;
1514 }
1515
1516#if 0
1517 /*
1518 * XXX DISABLED FOR NOW. With the new reservation support
1519 * we cannot resync pending data without confusing the hell
1520 * out of the in-memory record tree.
1521 */
1522 /*
1523 * Queue up as many dirty buffers as we can then set a flag to
1524 * cause any further BIOs to go to the alternative queue.
1525 */
1526 if (ip->flags & HAMMER_INODE_VHELD)
1527 error = vfsync(ip->vp, MNT_NOWAIT, 1, NULL, NULL);
1528 ip->flags |= HAMMER_INODE_WRITE_ALT;
1529
1530 /*
1531 * The buffer cache may contain dirty buffers beyond the inode
1532 * state we copied from the frontend to the backend. Because
1533 * we are syncing our buffer cache on the backend, resync
1534 * the truncation point and the file size so we don't wipe out
1535 * any data.
1536 *
1537 * Syncing the buffer cache on the frontend has serious problems
1538 * because it prevents us from passively queueing dirty inodes
1539 * to the backend (the BIO's could stall indefinitely).
1540 */
1541 if (ip->flags & HAMMER_INODE_TRUNCATED) {
1542 ip->sync_trunc_off = ip->trunc_off;
1543 ip->sync_flags |= HAMMER_INODE_TRUNCATED;
1544 }
1545 if (ip->sync_ino_data.size != ip->ino_data.size) {
1546 ip->sync_ino_data.size = ip->ino_data.size;
1547 ip->sync_flags |= HAMMER_INODE_DDIRTY;
1548 }
1549#endif
1550
1551 /*
1552 * If there is a trunction queued destroy any data past the (aligned)
1553 * truncation point. Userland will have dealt with the buffer
1554 * containing the truncation point for us.
1555 *
1556 * We don't flush pending frontend data buffers until after we've
1557 * dealth with the truncation.
1558 *
1559 * Don't bother if the inode is or has been deleted.
1560 */
1561 if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
1562 /*
1563 * Interlock trunc_off. The VOP front-end may continue to
1564 * make adjustments to it while we are blocked.
1565 */
1566 off_t trunc_off;
1567 off_t aligned_trunc_off;
1568
1569 trunc_off = ip->sync_trunc_off;
1570 aligned_trunc_off = (trunc_off + HAMMER_BUFMASK) &
1571 ~HAMMER_BUFMASK64;
1572
1573 /*
1574 * Delete any whole blocks on-media. The front-end has
1575 * already cleaned out any partial block and made it
1576 * pending. The front-end may have updated trunc_off
1577 * while we were blocked so we only use sync_trunc_off.
1578 */
1579 error = hammer_ip_delete_range(&cursor, ip,
1580 aligned_trunc_off,
1581 0x7FFFFFFFFFFFFFFFLL, 1);
1582 if (error)
1583 Debugger("hammer_ip_delete_range errored");
1584
1585 /*
1586 * Clear the truncation flag on the backend after we have
1587 * complete the deletions. Backend data is now good again
1588 * (including new records we are about to sync, below).
1589 */
1590 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
1591 ip->sync_trunc_off = 0x7FFFFFFFFFFFFFFFLL;
1592 } else {
1593 error = 0;
1594 }
1595
1596 /*
1597 * Now sync related records. These will typically be directory
1598 * entries or delete-on-disk records.
1599 *
1600 * Not all records will be flushed, but clear XDIRTY anyway. We
1601 * will set it again in the frontend hammer_flush_inode_done()
1602 * if records remain.
1603 */
1604 if (error == 0) {
1605 int base_btree_iterations = hammer_stats_btree_iterations;
1606 int base_record_iterations = hammer_stats_record_iterations;
1607 tmp_error = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1608 hammer_sync_record_callback, &cursor);
1609#if 0
1610 kprintf("(%d,%d)", hammer_stats_record_iterations - base_record_iterations, hammer_stats_btree_iterations - base_btree_iterations);
1611#endif
1612 if (tmp_error < 0)
1613 tmp_error = -error;
1614 if (tmp_error)
1615 error = tmp_error;
1616 if (RB_EMPTY(&ip->rec_tree))
1617 ip->sync_flags &= ~HAMMER_INODE_XDIRTY;
1618 }
1619
1620 /*
1621 * If we are deleting the inode the frontend had better not have
1622 * any active references on elements making up the inode.
1623 */
1624 if (error == 0 && ip->sync_ino_data.nlinks == 0 &&
1625 RB_EMPTY(&ip->rec_tree) &&
1626 (ip->sync_flags & HAMMER_INODE_DELETING) &&
1627 (ip->flags & HAMMER_INODE_DELETED) == 0) {
1628 int count1 = 0;
1629
1630 ip->flags |= HAMMER_INODE_DELETED;
1631 error = hammer_ip_delete_range_all(&cursor, ip, &count1);
1632 if (error == 0) {
1633 ip->sync_flags &= ~HAMMER_INODE_DELETING;
1634 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
1635 KKASSERT(RB_EMPTY(&ip->rec_tree));
1636
1637 /*
1638 * Set delete_tid in both the frontend and backend
1639 * copy of the inode record. The DELETED flag handles
1640 * this, do not set RDIRTY.
1641 */
1642 ip->ino_leaf.base.delete_tid = trans.tid;
1643 ip->sync_ino_leaf.base.delete_tid = trans.tid;
1644
1645 /*
1646 * Adjust the inode count in the volume header
1647 */
1648 if (ip->flags & HAMMER_INODE_ONDISK) {
1649 hammer_modify_volume_field(&trans,
1650 trans.rootvol,
1651 vol0_stat_inodes);
1652 --ip->hmp->rootvol->ondisk->vol0_stat_inodes;
1653 hammer_modify_volume_done(trans.rootvol);
1654 }
1655 } else {
1656 ip->flags &= ~HAMMER_INODE_DELETED;
1657 Debugger("hammer_ip_delete_range_all errored");
1658 }
1659 }
1660
1661 /*
1662 * Flush any queued BIOs. These will just biodone() the IO's if
1663 * the inode has been deleted.
1664 */
1665 while ((bio = TAILQ_FIRST(&ip->bio_list)) != NULL) {
1666 TAILQ_REMOVE(&ip->bio_list, bio, bio_act);
1667 bp = bio->bio_buf;
1668 tmp_error = hammer_dowrite(&cursor, ip, bio->bio_offset,
1669 bp->b_data, bp->b_bufsize);
1670 if (tmp_error) {
1671 bp->b_resid = bio->bio_buf->b_bufsize;
1672 bp->b_error = error;
1673 bp->b_flags |= B_ERROR;
1674 error = tmp_error;
1675 } else {
1676 bp->b_resid = 0;
1677 }
1678 biodone(bio);
1679 --hammer_bio_count;
1680 hammer_cleanup_write_io(ip);
1681 }
1682 ip->sync_flags &= ~HAMMER_INODE_BUFS;
1683
1684 if (error)
1685 Debugger("RB_SCAN errored");
1686
1687 /*
1688 * Now update the inode's on-disk inode-data and/or on-disk record.
1689 * DELETED and ONDISK are managed only in ip->flags.
1690 */
1691 switch(ip->flags & (HAMMER_INODE_DELETED | HAMMER_INODE_ONDISK)) {
1692 case HAMMER_INODE_DELETED|HAMMER_INODE_ONDISK:
1693 /*
1694 * If deleted and on-disk, don't set any additional flags.
1695 * the delete flag takes care of things.
1696 *
1697 * Clear flags which may have been set by the frontend.
1698 */
1699 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY|
1700 HAMMER_INODE_XDIRTY|HAMMER_INODE_ITIMES|
1701 HAMMER_INODE_DELETING);
1702 break;
1703 case HAMMER_INODE_DELETED:
1704 /*
1705 * Take care of the case where a deleted inode was never
1706 * flushed to the disk in the first place.
1707 *
1708 * Clear flags which may have been set by the frontend.
1709 */
1710 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY|
1711 HAMMER_INODE_XDIRTY|HAMMER_INODE_ITIMES|
1712 HAMMER_INODE_DELETING);
1713 while (RB_ROOT(&ip->rec_tree)) {
1714 hammer_record_t record = RB_ROOT(&ip->rec_tree);
1715 hammer_ref(&record->lock);
1716 KKASSERT(record->lock.refs == 1);
1717 record->flags |= HAMMER_RECF_DELETED_FE;
1718 record->flags |= HAMMER_RECF_DELETED_BE;
1719 hammer_rel_mem_record(record);
1720 }
1721 break;
1722 case HAMMER_INODE_ONDISK:
1723 /*
1724 * If already on-disk, do not set any additional flags.
1725 */
1726 break;
1727 default:
1728 /*
1729 * If not on-disk and not deleted, set both dirty flags
1730 * to force an initial record to be written. Also set
1731 * the create_tid for the inode.
1732 *
1733 * Set create_tid in both the frontend and backend
1734 * copy of the inode record.
1735 */
1736 ip->ino_leaf.base.create_tid = trans.tid;
1737 ip->sync_ino_leaf.base.create_tid = trans.tid;
1738 ip->sync_flags |= HAMMER_INODE_DDIRTY;
1739 break;
1740 }
1741
1742 /*
1743 * If RDIRTY or DDIRTY is set, write out a new record. If the inode
1744 * is already on-disk the old record is marked as deleted.
1745 *
1746 * If DELETED is set hammer_update_inode() will delete the existing
1747 * record without writing out a new one.
1748 *
1749 * If *ONLY* the ITIMES flag is set we can update the record in-place.
1750 */
1751 if (ip->flags & HAMMER_INODE_DELETED) {
1752 error = hammer_update_inode(&cursor, ip);
1753 } else
1754 if ((ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_ITIMES)) ==
1755 HAMMER_INODE_ITIMES) {
1756 error = hammer_update_itimes(&cursor, ip);
1757 } else
1758 if (ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_ITIMES)) {
1759 error = hammer_update_inode(&cursor, ip);
1760 }
1761 if (error)
1762 Debugger("hammer_update_itimes/inode errored");
1763done:
1764 /*
1765 * Save the TID we used to sync the inode with to make sure we
1766 * do not improperly reuse it.
1767 */
1768 hammer_done_cursor(&cursor);
1769 hammer_done_transaction(&trans);
1770 return(error);
1771}
1772
1773/*
1774 * This routine is called when the OS is no longer actively referencing
1775 * the inode (but might still be keeping it cached), or when releasing
1776 * the last reference to an inode.
1777 *
1778 * At this point if the inode's nlinks count is zero we want to destroy
1779 * it, which may mean destroying it on-media too.
1780 */
1781void
1782hammer_inode_unloadable_check(hammer_inode_t ip, int getvp)
1783{
1784 struct vnode *vp;
1785 struct bio *bio;
1786
1787 /*
1788 * Set the DELETING flag when the link count drops to 0 and the
1789 * OS no longer has any opens on the inode.
1790 *
1791 * The backend will clear DELETING (a mod flag) and set DELETED
1792 * (a state flag) when it is actually able to perform the
1793 * operation.
1794 */
1795 if (ip->ino_data.nlinks == 0 &&
1796 (ip->flags & (HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) == 0) {
1797 ip->flags |= HAMMER_INODE_DELETING;
1798 ip->flags |= HAMMER_INODE_TRUNCATED;
1799 ip->trunc_off = 0;
1800 vp = NULL;
1801 if (getvp) {
1802 if (hammer_get_vnode(ip, &vp) != 0)
1803 return;
1804 }
1805
1806 /*
1807 * biodone any buffers with pending IO. These buffers are
1808 * holding a BUF_KERNPROC() exclusive lock and our
1809 * vtruncbuf() call will deadlock if any remain.
1810 *
1811 * (interlocked against hammer_vop_strategy_write via
1812 * HAMMER_INODE_DELETING|HAMMER_INODE_DELETED).
1813 */
1814 while ((bio = TAILQ_FIRST(&ip->bio_list)) != NULL) {
1815 TAILQ_REMOVE(&ip->bio_list, bio, bio_act);
1816 bio->bio_buf->b_resid = 0;
1817 biodone(bio);
1818 if (ip->rsv_databufs) {
1819 --ip->rsv_databufs;
1820 --ip->hmp->rsv_databufs;
1821 }
1822 }
1823 while ((bio = TAILQ_FIRST(&ip->bio_alt_list)) != NULL) {
1824 TAILQ_REMOVE(&ip->bio_alt_list, bio, bio_act);
1825 bio->bio_buf->b_resid = 0;
1826 biodone(bio);
1827 if (ip->rsv_databufs) {
1828 --ip->rsv_databufs;
1829 --ip->hmp->rsv_databufs;
1830 }
1831 }
1832
1833 /*
1834 * Final cleanup
1835 */
1836 if (ip->vp) {
1837 vtruncbuf(ip->vp, 0, HAMMER_BUFSIZE);
1838 vnode_pager_setsize(ip->vp, 0);
1839 }
1840 if (getvp) {
1841 vput(vp);
1842 }
1843 }
1844}
1845
1846/*
1847 * Re-test an inode when a dependancy had gone away to see if we
1848 * can chain flush it.
1849 */
1850void
1851hammer_test_inode(hammer_inode_t ip)
1852{
1853 if (ip->flags & HAMMER_INODE_REFLUSH) {
1854 ip->flags &= ~HAMMER_INODE_REFLUSH;
1855 hammer_ref(&ip->lock);
1856 if (ip->flags & HAMMER_INODE_RESIGNAL) {
1857 ip->flags &= ~HAMMER_INODE_RESIGNAL;
1858 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1859 } else {
1860 hammer_flush_inode(ip, 0);
1861 }
1862 hammer_rel_inode(ip, 0);
1863 }
1864}
1865