Fix some IO sequencing performance issues and reformulate the strategy
[dragonfly.git] / sys / vfs / hammer / hammer_disk.h
... / ...
CommitLineData
1/*
2 * Copyright (c) 2007 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $DragonFly: src/sys/vfs/hammer/hammer_disk.h,v 1.27 2008/03/19 20:18:17 dillon Exp $
35 */
36
37#ifndef VFS_HAMMER_DISK_H_
38#define VFS_HAMMER_DISK_H_
39
40#ifndef _SYS_UUID_H_
41#include <sys/uuid.h>
42#endif
43
44/*
45 * The structures below represent the on-disk format for a HAMMER
46 * filesystem. Note that all fields for on-disk structures are naturally
47 * aligned. The host endian format is used - compatibility is possible
48 * if the implementation detects reversed endian and adjusts data accordingly.
49 *
50 * Most of HAMMER revolves around the concept of an object identifier. An
51 * obj_id is a 64 bit quantity which uniquely identifies a filesystem object
52 * FOR THE ENTIRE LIFE OF THE FILESYSTEM. This uniqueness allows backups
53 * and mirrors to retain varying amounts of filesystem history by removing
54 * any possibility of conflict through identifier reuse.
55 *
56 * A HAMMER filesystem may spam multiple volumes.
57 *
58 * A HAMMER filesystem uses a 16K filesystem buffer size. All filesystem
59 * I/O is done in multiples of 16K. Most buffer-sized headers such as those
60 * used by volumes, super-clusters, clusters, and basic filesystem buffers
61 * use fixed-sized A-lists which are heavily dependant on HAMMER_BUFSIZE.
62 *
63 * Per-volume storage limit: 52 bits 4096 TB
64 * Per-Zone storage limit: 59 bits 512 KTB (due to blockmap)
65 * Per-filesystem storage limit: 60 bits 1 MTB
66 */
67#define HAMMER_BUFSIZE 16384
68#define HAMMER_BUFMASK (HAMMER_BUFSIZE - 1)
69#define HAMMER_MAXDATA (256*1024)
70#define HAMMER_BUFFER_BITS 14
71
72#if (1 << HAMMER_BUFFER_BITS) != HAMMER_BUFSIZE
73#error "HAMMER_BUFFER_BITS BROKEN"
74#endif
75
76#define HAMMER_BUFSIZE64 ((u_int64_t)HAMMER_BUFSIZE)
77#define HAMMER_BUFMASK64 ((u_int64_t)HAMMER_BUFMASK)
78
79#define HAMMER_OFF_ZONE_MASK 0xF000000000000000ULL /* zone portion */
80#define HAMMER_OFF_VOL_MASK 0x0FF0000000000000ULL /* volume portion */
81#define HAMMER_OFF_SHORT_MASK 0x000FFFFFFFFFFFFFULL /* offset portion */
82#define HAMMER_OFF_LONG_MASK 0x0FFFFFFFFFFFFFFFULL /* offset portion */
83#define HAMMER_OFF_SHORT_REC_MASK 0x000FFFFFFF000000ULL /* recovery boundary */
84#define HAMMER_OFF_LONG_REC_MASK 0x0FFFFFFFFF000000ULL /* recovery boundary */
85#define HAMMER_RECOVERY_BND 0x0000000001000000ULL
86
87/*
88 * Hammer transction ids are 64 bit unsigned integers and are usually
89 * synchronized with the time of day in nanoseconds.
90 *
91 * Hammer offsets are used for FIFO indexing and embed a cycle counter
92 * and volume number in addition to the offset. Most offsets are required
93 * to be 64-byte aligned.
94 */
95typedef u_int64_t hammer_tid_t;
96typedef u_int64_t hammer_off_t;
97
98#define HAMMER_MIN_TID 0ULL /* unsigned */
99#define HAMMER_MAX_TID 0xFFFFFFFFFFFFFFFFULL /* unsigned */
100#define HAMMER_MIN_KEY -0x8000000000000000LL /* signed */
101#define HAMMER_MAX_KEY 0x7FFFFFFFFFFFFFFFLL /* signed */
102#define HAMMER_MIN_OBJID HAMMER_MIN_KEY /* signed */
103#define HAMMER_MAX_OBJID HAMMER_MAX_KEY /* signed */
104#define HAMMER_MIN_RECTYPE 0x0U /* unsigned */
105#define HAMMER_MAX_RECTYPE 0xFFFFU /* unsigned */
106#define HAMMER_MIN_OFFSET 0ULL /* unsigned */
107#define HAMMER_MAX_OFFSET 0xFFFFFFFFFFFFFFFFULL /* unsigned */
108
109/*
110 * hammer_off_t has several different encodings. Note that not all zones
111 * encode a vol_no.
112 *
113 * zone 0 (z,v,o): reserved (for sanity)
114 * zone 1 (z,v,o): raw volume relative (offset 0 is the volume header)
115 * zone 2 (z,v,o): raw buffer relative (offset 0 is the first buffer)
116 * zone 3 (z,o): undo fifo - fixed layer2 array in root vol hdr
117 * zone 4 (z,v,o): freemap - freemap-backed self-mapping special
118 * cased layering.
119 *
120 * zone 8 (z,o): B-Tree - blkmap-backed
121 * zone 9 (z,o): Record - blkmap-backed
122 * zone 10 (z,o): Large-data - blkmap-backed
123 */
124
125#define HAMMER_ZONE_RAW_VOLUME 0x1000000000000000ULL
126#define HAMMER_ZONE_RAW_BUFFER 0x2000000000000000ULL
127#define HAMMER_ZONE_UNDO 0x3000000000000000ULL
128#define HAMMER_ZONE_FREEMAP 0x4000000000000000ULL
129#define HAMMER_ZONE_RESERVED05 0x5000000000000000ULL
130#define HAMMER_ZONE_RESERVED06 0x6000000000000000ULL
131#define HAMMER_ZONE_RESERVED07 0x7000000000000000ULL
132#define HAMMER_ZONE_BTREE 0x8000000000000000ULL
133#define HAMMER_ZONE_RECORD 0x9000000000000000ULL
134#define HAMMER_ZONE_LARGE_DATA 0xA000000000000000ULL
135#define HAMMER_ZONE_SMALL_DATA 0xB000000000000000ULL
136#define HAMMER_ZONE_RESERVED0C 0xC000000000000000ULL
137#define HAMMER_ZONE_RESERVED0D 0xD000000000000000ULL
138#define HAMMER_ZONE_RESERVED0E 0xE000000000000000ULL
139#define HAMMER_ZONE_RESERVED0F 0xF000000000000000ULL
140
141#define HAMMER_ZONE_RAW_VOLUME_INDEX 1
142#define HAMMER_ZONE_RAW_BUFFER_INDEX 2
143#define HAMMER_ZONE_UNDO_INDEX 3
144#define HAMMER_ZONE_FREEMAP_INDEX 4
145#define HAMMER_ZONE_BTREE_INDEX 8
146#define HAMMER_ZONE_RECORD_INDEX 9
147#define HAMMER_ZONE_LARGE_DATA_INDEX 10
148#define HAMMER_ZONE_SMALL_DATA_INDEX 11
149
150/*
151 * Per-zone size limitation. This just makes the iterator easier
152 * to deal with by preventing an iterator overflow.
153 */
154#define HAMMER_ZONE_LIMIT \
155 (0x1000000000000000ULL - HAMMER_BLOCKMAP_LAYER2)
156
157#define HAMMER_MAX_ZONES 16
158
159#define HAMMER_VOL_ENCODE(vol_no) \
160 ((hammer_off_t)((vol_no) & 255) << 52)
161#define HAMMER_VOL_DECODE(ham_off) \
162 (int32_t)(((hammer_off_t)(ham_off) >> 52) & 255)
163#define HAMMER_ZONE_DECODE(ham_off) \
164 (int32_t)(((hammer_off_t)(ham_off) >> 60))
165#define HAMMER_ZONE_ENCODE(zone, ham_off) \
166 (((hammer_off_t)(zone) << 60) | (ham_off))
167#define HAMMER_SHORT_OFF_ENCODE(offset) \
168 ((hammer_off_t)(offset) & HAMMER_OFF_SHORT_MASK)
169#define HAMMER_LONG_OFF_ENCODE(offset) \
170 ((hammer_off_t)(offset) & HAMMER_OFF_LONG_MASK)
171
172#define HAMMER_ENCODE_RAW_VOLUME(vol_no, offset) \
173 (HAMMER_ZONE_RAW_VOLUME | \
174 HAMMER_VOL_ENCODE(vol_no) | \
175 HAMMER_SHORT_OFF_ENCODE(offset))
176
177#define HAMMER_ENCODE_RAW_BUFFER(vol_no, offset) \
178 (HAMMER_ZONE_RAW_BUFFER | \
179 HAMMER_VOL_ENCODE(vol_no) | \
180 HAMMER_SHORT_OFF_ENCODE(offset))
181
182#define HAMMER_ENCODE_FREEMAP(vol_no, offset) \
183 (HAMMER_ZONE_FREEMAP | \
184 HAMMER_VOL_ENCODE(vol_no) | \
185 HAMMER_SHORT_OFF_ENCODE(offset))
186
187/*
188 * Large-Block backing store
189 *
190 * A blockmap is a two-level map which translates a blockmap-backed zone
191 * offset into a raw zone 2 offset. Each layer handles 18 bits. The 8M
192 * large-block size is 23 bits so two layers gives us 23+18+18 = 59 bits
193 * of address space.
194 */
195#define HAMMER_LARGEBLOCK_SIZE (8192 * 1024)
196#define HAMMER_LARGEBLOCK_SIZE64 ((u_int64_t)HAMMER_LARGEBLOCK_SIZE)
197#define HAMMER_LARGEBLOCK_MASK (HAMMER_LARGEBLOCK_SIZE - 1)
198#define HAMMER_LARGEBLOCK_MASK64 ((u_int64_t)HAMMER_LARGEBLOCK_SIZE - 1)
199#define HAMMER_LARGEBLOCK_BITS 23
200#if (1 << HAMMER_LARGEBLOCK_BITS) != HAMMER_LARGEBLOCK_SIZE
201#error "HAMMER_LARGEBLOCK_BITS BROKEN"
202#endif
203
204#define HAMMER_BUFFERS_PER_LARGEBLOCK \
205 (HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE)
206#define HAMMER_BUFFERS_PER_LARGEBLOCK_MASK \
207 (HAMMER_BUFFERS_PER_LARGEBLOCK - 1)
208#define HAMMER_BUFFERS_PER_LARGEBLOCK_MASK64 \
209 ((hammer_off_t)HAMMER_BUFFERS_PER_LARGEBLOCK_MASK)
210
211/*
212 * Every blockmap has this root structure in the root volume header.
213 *
214 * NOTE: zone 3 (the undo FIFO) does not use phys_offset. first and next
215 * offsets represent the FIFO.
216 */
217struct hammer_blockmap {
218 hammer_off_t phys_offset; /* zone-2 physical offset */
219 hammer_off_t first_offset; /* zone-X logical offset (zone 3) */
220 hammer_off_t next_offset; /* zone-X logical offset */
221 hammer_off_t alloc_offset; /* zone-X logical offset */
222 u_int32_t entry_crc;
223 u_int32_t reserved01;
224};
225
226typedef struct hammer_blockmap *hammer_blockmap_t;
227
228/*
229 * The blockmap is a 2-layer entity made up of big-blocks. The first layer
230 * contains 262144 32-byte entries (18 bits), the second layer contains
231 * 524288 16-byte entries (19 bits), representing 8MB (23 bit) blockmaps.
232 * 18+19+23 = 60 bits. The top four bits are the zone id.
233 *
234 * Layer 2 encodes the physical bigblock mapping for a blockmap. The freemap
235 * uses this field to encode the virtual blockmap offset that allocated the
236 * physical block.
237 *
238 * NOTE: The freemap maps the vol_no in the upper 8 bits of layer1.
239 *
240 * zone-4 blockmap offset: [z:4][layer1:18][layer2:19][bigblock:23]
241 */
242struct hammer_blockmap_layer1 {
243 hammer_off_t blocks_free; /* big-blocks free */
244 hammer_off_t phys_offset; /* UNAVAIL or zone-2 */
245 u_int32_t layer1_crc; /* crc of this entry */
246 u_int32_t layer2_crc; /* xor'd crc's of HAMMER_BLOCKSIZE */
247 hammer_off_t reserved01;
248};
249
250struct hammer_blockmap_layer2 {
251 u_int32_t entry_crc;
252 u_int32_t bytes_free; /* bytes free within this bigblock */
253 union {
254 hammer_off_t owner; /* used by freemap */
255 hammer_off_t phys_offset; /* used by blockmap */
256 } u;
257};
258
259#define HAMMER_BLOCKMAP_FREE 0ULL
260#define HAMMER_BLOCKMAP_UNAVAIL ((hammer_off_t)-1LL)
261
262#define HAMMER_BLOCKMAP_RADIX1 /* 262144 (18) */ \
263 (HAMMER_LARGEBLOCK_SIZE / sizeof(struct hammer_blockmap_layer1))
264#define HAMMER_BLOCKMAP_RADIX2 /* 524288 (19) */ \
265 (HAMMER_LARGEBLOCK_SIZE / sizeof(struct hammer_blockmap_layer2))
266
267#define HAMMER_BLOCKMAP_RADIX1_PERBUFFER \
268 (HAMMER_BLOCKMAP_RADIX1 / (HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE))
269#define HAMMER_BLOCKMAP_RADIX2_PERBUFFER \
270 (HAMMER_BLOCKMAP_RADIX2 / (HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE))
271
272#define HAMMER_BLOCKMAP_LAYER1 /* 18+19+23 */ \
273 (HAMMER_BLOCKMAP_RADIX1 * HAMMER_BLOCKMAP_LAYER2)
274#define HAMMER_BLOCKMAP_LAYER2 /* 19+23 */ \
275 (HAMMER_BLOCKMAP_RADIX2 * HAMMER_LARGEBLOCK_SIZE64)
276
277#define HAMMER_BLOCKMAP_LAYER1_MASK (HAMMER_BLOCKMAP_LAYER1 - 1)
278#define HAMMER_BLOCKMAP_LAYER2_MASK (HAMMER_BLOCKMAP_LAYER2 - 1)
279
280/*
281 * byte offset within layer1 or layer2 big-block for the entry representing
282 * a zone-2 physical offset.
283 */
284#define HAMMER_BLOCKMAP_LAYER1_OFFSET(zone2_offset) \
285 (((zone2_offset) & HAMMER_BLOCKMAP_LAYER1_MASK) / \
286 HAMMER_BLOCKMAP_LAYER2 * sizeof(struct hammer_blockmap_layer1))
287
288#define HAMMER_BLOCKMAP_LAYER2_OFFSET(zone2_offset) \
289 (((zone2_offset) & HAMMER_BLOCKMAP_LAYER2_MASK) / \
290 HAMMER_LARGEBLOCK_SIZE64 * sizeof(struct hammer_blockmap_layer2))
291
292/*
293 * HAMMER UNDO parameters. The UNDO fifo is mapped directly in the volume
294 * header with an array of layer2 structures. A maximum of (64x8MB) = 512MB
295 * may be reserved. The size of the undo fifo is usually set a newfs time
296 * but can be adjusted if the filesystem is taken offline.
297 */
298
299#define HAMMER_UNDO_LAYER2 64 /* max layer2 undo mapping entries */
300
301/*
302 * All on-disk HAMMER structures which make up elements of the UNDO FIFO
303 * contain a hammer_fifo_head and hammer_fifo_tail structure. This structure
304 * contains all the information required to validate the fifo element
305 * and to scan the fifo in either direction. The head is typically embedded
306 * in higher level hammer on-disk structures while the tail is typically
307 * out-of-band. hdr_size is the size of the whole mess, including the tail.
308 *
309 * All undo structures are guaranteed to not cross a 16K filesystem
310 * buffer boundary. Most undo structures are fairly small. Data spaces
311 * are not immediately reused by HAMMER so file data is not usually recorded
312 * as part of an UNDO.
313 *
314 * PAD elements are allowed to take up only 8 bytes of space as a special
315 * case, containing only hdr_signature, hdr_type, and hdr_size fields,
316 * and with the tail overloaded onto the head structure for 8 bytes total.
317 *
318 * Every undo record has a sequence number. This number is unrelated to
319 * transaction ids and instead collects the undo transactions associated
320 * with a single atomic operation. A larger transactional operation, such
321 * as a remove(), may consist of several smaller atomic operations
322 * representing raw meta-data operations.
323 */
324#define HAMMER_HEAD_ONDISK_SIZE 32
325#define HAMMER_HEAD_ALIGN 8
326#define HAMMER_HEAD_ALIGN_MASK (HAMMER_HEAD_ALIGN - 1)
327#define HAMMER_TAIL_ONDISK_SIZE 8
328
329struct hammer_fifo_head {
330 u_int16_t hdr_signature;
331 u_int16_t hdr_type;
332 u_int32_t hdr_size; /* aligned size of the whole mess */
333 u_int32_t hdr_crc;
334 u_int32_t hdr_seq;
335 u_int64_t hdr_tid; /* related TID */
336};
337
338struct hammer_fifo_tail {
339 u_int16_t tail_signature;
340 u_int16_t tail_type;
341 u_int32_t tail_size; /* aligned size of the whole mess */
342};
343
344typedef struct hammer_fifo_head *hammer_fifo_head_t;
345typedef struct hammer_fifo_tail *hammer_fifo_tail_t;
346
347/*
348 * Fifo header types.
349 */
350#define HAMMER_HEAD_TYPE_PAD (0x0040U|HAMMER_HEAD_FLAG_FREE)
351#define HAMMER_HEAD_TYPE_VOL 0x0041U /* Volume (dummy header) */
352#define HAMMER_HEAD_TYPE_BTREE 0x0042U /* B-Tree node */
353#define HAMMER_HEAD_TYPE_UNDO 0x0043U /* random UNDO information */
354#define HAMMER_HEAD_TYPE_DELETE 0x0044U /* record deletion */
355#define HAMMER_HEAD_TYPE_RECORD 0x0045U /* Filesystem record */
356
357#define HAMMER_HEAD_FLAG_FREE 0x8000U /* Indicates object freed */
358
359#define HAMMER_HEAD_SIGNATURE 0xC84EU
360#define HAMMER_TAIL_SIGNATURE 0xC74FU
361
362#define HAMMER_HEAD_SEQ_BEG 0x80000000U
363#define HAMMER_HEAD_SEQ_END 0x40000000U
364#define HAMMER_HEAD_SEQ_MASK 0x3FFFFFFFU
365
366/*
367 * Misc FIFO structures.
368 */
369struct hammer_fifo_undo {
370 struct hammer_fifo_head head;
371 hammer_off_t undo_offset; /* zone-1 offset */
372 int32_t undo_data_bytes;
373 int32_t undo_reserved01;
374 /* followed by data */
375};
376
377typedef struct hammer_fifo_undo *hammer_fifo_undo_t;
378
379struct hammer_fifo_buf_commit {
380 hammer_off_t undo_offset;
381};
382
383/*
384 * Volume header types
385 */
386#define HAMMER_FSBUF_VOLUME 0xC8414D4DC5523031ULL /* HAMMER01 */
387#define HAMMER_FSBUF_VOLUME_REV 0x313052C54D4D41C8ULL /* (reverse endian) */
388
389/*
390 * The B-Tree structures need hammer_fsbuf_head.
391 */
392#include "hammer_btree.h"
393
394/*
395 * HAMMER Volume header
396 *
397 * A HAMMER filesystem is built from any number of block devices, Each block
398 * device contains a volume header followed by however many buffers fit
399 * into the volume.
400 *
401 * One of the volumes making up a HAMMER filesystem is the master, the
402 * rest are slaves. It does not have to be volume #0.
403 *
404 * The volume header takes up an entire 16K filesystem buffer and may
405 * represent up to 64KTB (65536 TB) of space.
406 *
407 * Special field notes:
408 *
409 * vol_bot_beg - offset of boot area (mem_beg - bot_beg bytes)
410 * vol_mem_beg - offset of memory log (clu_beg - mem_beg bytes)
411 * vol_buf_beg - offset of the first buffer.
412 *
413 * The memory log area allows a kernel to cache new records and data
414 * in memory without allocating space in the actual filesystem to hold
415 * the records and data. In the event that a filesystem becomes full,
416 * any records remaining in memory can be flushed to the memory log
417 * area. This allows the kernel to immediately return success.
418 */
419
420#define HAMMER_BOOT_MINBYTES (32*1024)
421#define HAMMER_BOOT_NOMBYTES (64LL*1024*1024)
422#define HAMMER_BOOT_MAXBYTES (256LL*1024*1024)
423
424#define HAMMER_MEM_MINBYTES (256*1024)
425#define HAMMER_MEM_NOMBYTES (1LL*1024*1024*1024)
426#define HAMMER_MEM_MAXBYTES (64LL*1024*1024*1024)
427
428struct hammer_volume_ondisk {
429 u_int64_t vol_signature;/* Signature */
430
431 int64_t vol_bot_beg; /* byte offset of boot area or 0 */
432 int64_t vol_mem_beg; /* byte offset of memory log or 0 */
433 int64_t vol_buf_beg; /* byte offset of first buffer in volume */
434 int64_t vol_buf_end; /* byte offset of volume EOF (on buf bndry) */
435 int64_t vol_locked; /* reserved clusters are >= this offset */
436
437 uuid_t vol_fsid; /* identify filesystem */
438 uuid_t vol_fstype; /* identify filesystem type */
439 char vol_name[64]; /* Name of volume */
440
441 int32_t vol_no; /* volume number within filesystem */
442 int32_t vol_count; /* number of volumes making up FS */
443
444 u_int32_t vol_version; /* version control information */
445 u_int32_t vol_reserved01;
446 u_int32_t vol_flags; /* volume flags */
447 u_int32_t vol_rootvol; /* which volume is the root volume? */
448
449 int32_t vol_reserved04;
450 int32_t vol_reserved05;
451 u_int32_t vol_reserved06;
452 u_int32_t vol_reserved07;
453
454 int32_t vol_blocksize; /* for statfs only */
455 int32_t vol_reserved08;
456 int64_t vol_nblocks; /* total allocatable hammer bufs */
457
458 /*
459 * These fields are initialized and space is reserved in every
460 * volume making up a HAMMER filesytem, but only the master volume
461 * contains valid data.
462 */
463 int64_t vol0_stat_bigblocks; /* total bigblocks when fs is empty */
464 int64_t vol0_stat_freebigblocks;/* number of free bigblocks */
465 int64_t vol0_stat_bytes; /* for statfs only */
466 int64_t vol0_stat_inodes; /* for statfs only */
467 int64_t vol0_stat_records; /* total records in filesystem */
468 hammer_off_t vol0_btree_root; /* B-Tree root */
469 hammer_tid_t vol0_next_tid; /* highest synchronized TID */
470 u_int32_t vol0_reserved00;
471 u_int32_t vol0_reserved01;
472
473 /*
474 * Blockmaps for zones. Not all zones use a blockmap.
475 */
476 struct hammer_blockmap vol0_blockmap[HAMMER_MAX_ZONES];
477
478 /*
479 * Layer-2 array for undo fifo
480 */
481 struct hammer_blockmap_layer2 vol0_undo_array[HAMMER_UNDO_LAYER2];
482
483};
484
485typedef struct hammer_volume_ondisk *hammer_volume_ondisk_t;
486
487#define HAMMER_VOLF_VALID 0x0001 /* valid entry */
488#define HAMMER_VOLF_OPEN 0x0002 /* volume is open */
489
490/*
491 * All HAMMER records have a common 64-byte base and a 32 byte extension,
492 * plus a possible data reference. The data reference can be in-band or
493 * out-of-band.
494 */
495
496#define HAMMER_RECORD_SIZE (64+32)
497
498struct hammer_base_record {
499 u_int32_t signature; /* record signature */
500 u_int32_t data_crc; /* data crc */
501 struct hammer_base_elm base; /* 40 byte base element */
502 hammer_off_t data_off; /* in-band or out-of-band */
503 int32_t data_len; /* size of data in bytes */
504 u_int32_t reserved02;
505};
506
507/*
508 * Record types are fairly straightforward. The B-Tree includes the record
509 * type in its index sort.
510 *
511 * In particular please note that it is possible to create a pseudo-
512 * filesystem within a HAMMER filesystem by creating a special object
513 * type within a directory. Pseudo-filesystems are used as replication
514 * targets and even though they are built within a HAMMER filesystem they
515 * get their own obj_id space (and thus can serve as a replication target)
516 * and look like a mount point to the system.
517 *
518 * Inter-cluster records are special-cased in the B-Tree. These records
519 * are referenced from a B-Tree INTERNAL node, NOT A LEAF. This means
520 * that the element in the B-Tree node is actually a boundary element whos
521 * base element fields, including rec_type, reflect the boundary, NOT
522 * the inter-cluster record type.
523 *
524 * HAMMER_RECTYPE_CLUSTER - only set in the actual inter-cluster record,
525 * not set in the left or right boundary elements around the inter-cluster
526 * reference of an internal node in the B-Tree (because doing so would
527 * interfere with the boundary tests).
528 *
529 * NOTE: hammer_ip_delete_range_all() deletes all record types greater
530 * then HAMMER_RECTYPE_INODE.
531 */
532#define HAMMER_RECTYPE_UNKNOWN 0
533#define HAMMER_RECTYPE_LOWEST 1 /* lowest record type avail */
534#define HAMMER_RECTYPE_INODE 1 /* inode in obj_id space */
535#define HAMMER_RECTYPE_PSEUDO_INODE 2 /* pseudo filesysem */
536#define HAMMER_RECTYPE_CLUSTER 3 /* inter-cluster reference */
537#define HAMMER_RECTYPE_DATA 0x0010
538#define HAMMER_RECTYPE_DIRENTRY 0x0011
539#define HAMMER_RECTYPE_DB 0x0012
540#define HAMMER_RECTYPE_EXT 0x0013 /* ext attributes */
541#define HAMMER_RECTYPE_FIX 0x0014 /* fixed attribute */
542#define HAMMER_RECTYPE_MOVED 0x8000 /* special recovery flag */
543
544#define HAMMER_FIXKEY_SYMLINK 1
545
546#define HAMMER_OBJTYPE_UNKNOWN 0 /* (never exists on-disk) */
547#define HAMMER_OBJTYPE_DIRECTORY 1
548#define HAMMER_OBJTYPE_REGFILE 2
549#define HAMMER_OBJTYPE_DBFILE 3
550#define HAMMER_OBJTYPE_FIFO 4
551#define HAMMER_OBJTYPE_CDEV 5
552#define HAMMER_OBJTYPE_BDEV 6
553#define HAMMER_OBJTYPE_SOFTLINK 7
554#define HAMMER_OBJTYPE_PSEUDOFS 8 /* pseudo filesystem obj */
555
556/*
557 * A HAMMER inode record.
558 *
559 * This forms the basis for a filesystem object. obj_id is the inode number,
560 * key1 represents the pseudo filesystem id for security partitioning
561 * (preventing cross-links and/or restricting a NFS export and specifying the
562 * security policy), and key2 represents the data retention policy id.
563 *
564 * Inode numbers are 64 bit quantities which uniquely identify a filesystem
565 * object for the ENTIRE life of the filesystem, even after the object has
566 * been deleted. For all intents and purposes inode numbers are simply
567 * allocated by incrementing a sequence space.
568 *
569 * There is an important distinction between the data stored in the inode
570 * record and the record's data reference. The record references a
571 * hammer_inode_data structure but the filesystem object size and hard link
572 * count is stored in the inode record itself. This allows multiple inodes
573 * to share the same hammer_inode_data structure. This is possible because
574 * any modifications will lay out new data. The HAMMER implementation need
575 * not use the data-sharing ability when laying down new records.
576 *
577 * A HAMMER inode is subject to the same historical storage requirements
578 * as any other record. In particular any change in filesystem or hard link
579 * count will lay down a new inode record when the filesystem is synced to
580 * disk. This can lead to a lot of junk records which get cleaned up by
581 * the data retention policy.
582 *
583 * The ino_atime and ino_mtime fields are a special case. Modifications to
584 * these fields do NOT lay down a new record by default, though the values
585 * are effectively frozen for snapshots which access historical versions
586 * of the inode record due to other operations. This means that atime will
587 * not necessarily be accurate in snapshots, backups, or mirrors. mtime
588 * will be accurate in backups and mirrors since it can be regenerated from
589 * the mirroring stream.
590 *
591 * Because nlinks is historically retained the hardlink count will be
592 * accurate when accessing a HAMMER filesystem snapshot.
593 */
594struct hammer_inode_record {
595 struct hammer_base_record base;
596 u_int64_t ino_atime; /* last access time (not historical) */
597 u_int64_t ino_mtime; /* last modified time (not historical) */
598 u_int64_t ino_size; /* filesystem object size */
599 u_int64_t ino_nlinks; /* hard links */
600};
601
602/*
603 * Data records specify the entire contents of a regular file object,
604 * including attributes. Small amounts of data can theoretically be
605 * embedded in the record itself but the use of this ability verses using
606 * an out-of-band data reference depends on the implementation.
607 */
608struct hammer_data_record {
609 struct hammer_base_record base;
610 char data[32];
611};
612
613/*
614 * A directory entry specifies the HAMMER filesystem object id, a copy of
615 * the file type, and file name (either embedded or as out-of-band data).
616 * If the file name is short enough to fit into den_name[] (including a
617 * terminating nul) then it will be embedded in the record, otherwise it
618 * is stored out-of-band. The base record's data reference always points
619 * to the nul-terminated filename regardless.
620 *
621 * Directory entries are indexed with a 128 bit namekey rather then an
622 * offset. A portion of the namekey is an iterator or randomizer to deal
623 * with collisions.
624 *
625 * NOTE: base.base.obj_type holds the filesystem object type of obj_id,
626 * e.g. a den_type equivalent.
627 *
628 * NOTE: den_name / the filename data reference is NOT terminated with \0.
629 *
630 */
631struct hammer_entry_record {
632 struct hammer_base_record base;
633 u_int64_t obj_id; /* object being referenced */
634 u_int64_t reserved01;
635 char name[16];
636};
637
638/*
639 * Hammer rollup record
640 */
641union hammer_record_ondisk {
642 struct hammer_base_record base;
643 struct hammer_inode_record inode;
644 struct hammer_data_record data;
645 struct hammer_entry_record entry;
646};
647
648typedef union hammer_record_ondisk *hammer_record_ondisk_t;
649
650/*
651 * HAMMER UNIX Attribute data
652 *
653 * The data reference in a HAMMER inode record points to this structure. Any
654 * modifications to the contents of this structure will result in a record
655 * replacement operation.
656 *
657 * short_data_off allows a small amount of data to be embedded in the
658 * hammer_inode_data structure. HAMMER typically uses this to represent
659 * up to 64 bytes of data, or to hold symlinks. Remember that allocations
660 * are in powers of 2 so 64, 192, 448, or 960 bytes of embedded data is
661 * support (64+64, 64+192, 64+448 64+960).
662 *
663 * parent_obj_id is only valid for directories (which cannot be hard-linked),
664 * and specifies the parent directory obj_id. This field will also be set
665 * for non-directory inodes as a recovery aid, but can wind up specifying
666 * stale information. However, since object id's are not reused, the worse
667 * that happens is that the recovery code is unable to use it.
668 */
669struct hammer_inode_data {
670 u_int16_t version; /* inode data version */
671 u_int16_t mode; /* basic unix permissions */
672 u_int32_t uflags; /* chflags */
673 u_int32_t rmajor; /* used by device nodes */
674 u_int32_t rminor; /* used by device nodes */
675 u_int64_t ctime;
676 u_int64_t parent_obj_id;/* parent directory obj_id */
677 uuid_t uid;
678 uuid_t gid;
679 /* XXX device, softlink extension */
680};
681
682#define HAMMER_INODE_DATA_VERSION 1
683
684#define HAMMER_OBJID_ROOT 1
685
686/*
687 * Rollup various structures embedded as record data
688 */
689union hammer_data_ondisk {
690 struct hammer_inode_data inode;
691};
692
693#endif