syscons - Avoid potential blocking issue.
[dragonfly.git] / sys / kern / lwkt_ipiq.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35/*
36 * This module implements IPI message queueing and the MI portion of IPI
37 * message processing.
38 */
39
40#include "opt_ddb.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/proc.h>
46#include <sys/rtprio.h>
47#include <sys/queue.h>
48#include <sys/thread2.h>
49#include <sys/sysctl.h>
50#include <sys/ktr.h>
51#include <sys/kthread.h>
52#include <machine/cpu.h>
53#include <sys/lock.h>
54#include <sys/caps.h>
55
56#include <vm/vm.h>
57#include <vm/vm_param.h>
58#include <vm/vm_kern.h>
59#include <vm/vm_object.h>
60#include <vm/vm_page.h>
61#include <vm/vm_map.h>
62#include <vm/vm_pager.h>
63#include <vm/vm_extern.h>
64#include <vm/vm_zone.h>
65
66#include <machine/stdarg.h>
67#include <machine/smp.h>
68#include <machine/atomic.h>
69
70#ifdef SMP
71static __int64_t ipiq_count; /* total calls to lwkt_send_ipiq*() */
72static __int64_t ipiq_fifofull; /* number of fifo full conditions detected */
73static __int64_t ipiq_avoided; /* interlock with target avoids cpu ipi */
74static __int64_t ipiq_passive; /* passive IPI messages */
75static __int64_t ipiq_cscount; /* number of cpu synchronizations */
76static int ipiq_optimized = 1; /* XXX temporary sysctl */
77static int ipiq_debug; /* set to 1 for debug */
78#ifdef PANIC_DEBUG
79static int panic_ipiq_cpu = -1;
80static int panic_ipiq_count = 100;
81#endif
82#endif
83
84#ifdef SMP
85SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_count, CTLFLAG_RW, &ipiq_count, 0,
86 "Number of IPI's sent");
87SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_fifofull, CTLFLAG_RW, &ipiq_fifofull, 0,
88 "Number of fifo full conditions detected");
89SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_avoided, CTLFLAG_RW, &ipiq_avoided, 0,
90 "Number of IPI's avoided by interlock with target cpu");
91SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_passive, CTLFLAG_RW, &ipiq_passive, 0,
92 "Number of passive IPI messages sent");
93SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_cscount, CTLFLAG_RW, &ipiq_cscount, 0,
94 "Number of cpu synchronizations");
95SYSCTL_INT(_lwkt, OID_AUTO, ipiq_optimized, CTLFLAG_RW, &ipiq_optimized, 0,
96 "");
97SYSCTL_INT(_lwkt, OID_AUTO, ipiq_debug, CTLFLAG_RW, &ipiq_debug, 0,
98 "");
99#ifdef PANIC_DEBUG
100SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_cpu, CTLFLAG_RW, &panic_ipiq_cpu, 0, "");
101SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_count, CTLFLAG_RW, &panic_ipiq_count, 0, "");
102#endif
103
104#define IPIQ_STRING "func=%p arg1=%p arg2=%d scpu=%d dcpu=%d"
105#define IPIQ_ARG_SIZE (sizeof(void *) * 2 + sizeof(int) * 3)
106
107#if !defined(KTR_IPIQ)
108#define KTR_IPIQ KTR_ALL
109#endif
110KTR_INFO_MASTER(ipiq);
111KTR_INFO(KTR_IPIQ, ipiq, send_norm, 0, IPIQ_STRING, IPIQ_ARG_SIZE);
112KTR_INFO(KTR_IPIQ, ipiq, send_pasv, 1, IPIQ_STRING, IPIQ_ARG_SIZE);
113KTR_INFO(KTR_IPIQ, ipiq, send_nbio, 2, IPIQ_STRING, IPIQ_ARG_SIZE);
114KTR_INFO(KTR_IPIQ, ipiq, send_fail, 3, IPIQ_STRING, IPIQ_ARG_SIZE);
115KTR_INFO(KTR_IPIQ, ipiq, receive, 4, IPIQ_STRING, IPIQ_ARG_SIZE);
116KTR_INFO(KTR_IPIQ, ipiq, sync_start, 5, "cpumask=%08x", sizeof(cpumask_t));
117KTR_INFO(KTR_IPIQ, ipiq, sync_end, 6, "cpumask=%08x", sizeof(cpumask_t));
118KTR_INFO(KTR_IPIQ, ipiq, cpu_send, 7, IPIQ_STRING, IPIQ_ARG_SIZE);
119KTR_INFO(KTR_IPIQ, ipiq, send_end, 8, IPIQ_STRING, IPIQ_ARG_SIZE);
120
121#define logipiq(name, func, arg1, arg2, sgd, dgd) \
122 KTR_LOG(ipiq_ ## name, func, arg1, arg2, sgd->gd_cpuid, dgd->gd_cpuid)
123#define logipiq2(name, arg) \
124 KTR_LOG(ipiq_ ## name, arg)
125
126#endif /* SMP */
127
128#ifdef SMP
129
130static int lwkt_process_ipiq_core(globaldata_t sgd, lwkt_ipiq_t ip,
131 struct intrframe *frame);
132static void lwkt_cpusync_remote1(lwkt_cpusync_t cs);
133static void lwkt_cpusync_remote2(lwkt_cpusync_t cs);
134
135/*
136 * Send a function execution request to another cpu. The request is queued
137 * on the cpu<->cpu ipiq matrix. Each cpu owns a unique ipiq FIFO for every
138 * possible target cpu. The FIFO can be written.
139 *
140 * If the FIFO fills up we have to enable interrupts to avoid an APIC
141 * deadlock and process pending IPIQs while waiting for it to empty.
142 * Otherwise we may soft-deadlock with another cpu whos FIFO is also full.
143 *
144 * We can safely bump gd_intr_nesting_level because our crit_exit() at the
145 * end will take care of any pending interrupts.
146 *
147 * The actual hardware IPI is avoided if the target cpu is already processing
148 * the queue from a prior IPI. It is possible to pipeline IPI messages
149 * very quickly between cpus due to the FIFO hysteresis.
150 *
151 * Need not be called from a critical section.
152 */
153int
154lwkt_send_ipiq3(globaldata_t target, ipifunc3_t func, void *arg1, int arg2)
155{
156 lwkt_ipiq_t ip;
157 int windex;
158 struct globaldata *gd = mycpu;
159
160 logipiq(send_norm, func, arg1, arg2, gd, target);
161
162 if (target == gd) {
163 func(arg1, arg2, NULL);
164 logipiq(send_end, func, arg1, arg2, gd, target);
165 return(0);
166 }
167 crit_enter();
168 ++gd->gd_intr_nesting_level;
169#ifdef INVARIANTS
170 if (gd->gd_intr_nesting_level > 20)
171 panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
172#endif
173 KKASSERT(curthread->td_critcount);
174 ++ipiq_count;
175 ip = &gd->gd_ipiq[target->gd_cpuid];
176
177 /*
178 * Do not allow the FIFO to become full. Interrupts must be physically
179 * enabled while we liveloop to avoid deadlocking the APIC.
180 *
181 * The target ipiq may have gotten filled up due to passive IPIs and thus
182 * not be aware that its queue is too full, so be sure to issue an
183 * ipiq interrupt to the target cpu.
184 */
185 if (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 2) {
186#if defined(__i386__)
187 unsigned int eflags = read_eflags();
188#elif defined(__x86_64__)
189 unsigned long rflags = read_rflags();
190#endif
191
192 cpu_enable_intr();
193 ++ipiq_fifofull;
194 DEBUG_PUSH_INFO("send_ipiq3");
195 while (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 4) {
196 if (atomic_poll_acquire_int(&ip->ip_npoll) || ipiq_optimized == 0) {
197 logipiq(cpu_send, func, arg1, arg2, gd, target);
198 cpu_send_ipiq(target->gd_cpuid);
199 }
200 KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
201 lwkt_process_ipiq();
202 cpu_pause();
203 }
204 DEBUG_POP_INFO();
205#if defined(__i386__)
206 write_eflags(eflags);
207#elif defined(__x86_64__)
208 write_rflags(rflags);
209#endif
210 }
211
212 /*
213 * Queue the new message
214 */
215 windex = ip->ip_windex & MAXCPUFIFO_MASK;
216 ip->ip_func[windex] = func;
217 ip->ip_arg1[windex] = arg1;
218 ip->ip_arg2[windex] = arg2;
219 cpu_sfence();
220 ++ip->ip_windex;
221
222 /*
223 * signal the target cpu that there is work pending.
224 */
225 if (atomic_poll_acquire_int(&ip->ip_npoll) || ipiq_optimized == 0) {
226 logipiq(cpu_send, func, arg1, arg2, gd, target);
227 cpu_send_ipiq(target->gd_cpuid);
228 } else {
229 ++ipiq_avoided;
230 }
231 --gd->gd_intr_nesting_level;
232 crit_exit();
233 logipiq(send_end, func, arg1, arg2, gd, target);
234
235 return(ip->ip_windex);
236}
237
238/*
239 * Similar to lwkt_send_ipiq() but this function does not actually initiate
240 * the IPI to the target cpu unless the FIFO has become too full, so it is
241 * very fast.
242 *
243 * This function is used for non-critical IPI messages, such as memory
244 * deallocations. The queue will typically be flushed by the target cpu at
245 * the next clock interrupt.
246 *
247 * Need not be called from a critical section.
248 */
249int
250lwkt_send_ipiq3_passive(globaldata_t target, ipifunc3_t func,
251 void *arg1, int arg2)
252{
253 lwkt_ipiq_t ip;
254 int windex;
255 struct globaldata *gd = mycpu;
256
257 KKASSERT(target != gd);
258 crit_enter();
259 ++gd->gd_intr_nesting_level;
260 logipiq(send_pasv, func, arg1, arg2, gd, target);
261#ifdef INVARIANTS
262 if (gd->gd_intr_nesting_level > 20)
263 panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
264#endif
265 KKASSERT(curthread->td_critcount);
266 ++ipiq_count;
267 ++ipiq_passive;
268 ip = &gd->gd_ipiq[target->gd_cpuid];
269
270 /*
271 * Do not allow the FIFO to become full. Interrupts must be physically
272 * enabled while we liveloop to avoid deadlocking the APIC.
273 */
274 if (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 2) {
275#if defined(__i386__)
276 unsigned int eflags = read_eflags();
277#elif defined(__x86_64__)
278 unsigned long rflags = read_rflags();
279#endif
280
281 cpu_enable_intr();
282 ++ipiq_fifofull;
283 DEBUG_PUSH_INFO("send_ipiq3_passive");
284 while (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 4) {
285 if (atomic_poll_acquire_int(&ip->ip_npoll) || ipiq_optimized == 0) {
286 logipiq(cpu_send, func, arg1, arg2, gd, target);
287 cpu_send_ipiq(target->gd_cpuid);
288 }
289 KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
290 lwkt_process_ipiq();
291 cpu_pause();
292 }
293 DEBUG_POP_INFO();
294#if defined(__i386__)
295 write_eflags(eflags);
296#elif defined(__x86_64__)
297 write_rflags(rflags);
298#endif
299 }
300
301 /*
302 * Queue the new message
303 */
304 windex = ip->ip_windex & MAXCPUFIFO_MASK;
305 ip->ip_func[windex] = func;
306 ip->ip_arg1[windex] = arg1;
307 ip->ip_arg2[windex] = arg2;
308 cpu_sfence();
309 ++ip->ip_windex;
310 --gd->gd_intr_nesting_level;
311
312 /*
313 * Do not signal the target cpu, it will pick up the IPI when it next
314 * polls (typically on the next tick).
315 */
316 crit_exit();
317 logipiq(send_end, func, arg1, arg2, gd, target);
318
319 return(ip->ip_windex);
320}
321
322/*
323 * Send an IPI request without blocking, return 0 on success, ENOENT on
324 * failure. The actual queueing of the hardware IPI may still force us
325 * to spin and process incoming IPIs but that will eventually go away
326 * when we've gotten rid of the other general IPIs.
327 */
328int
329lwkt_send_ipiq3_nowait(globaldata_t target, ipifunc3_t func,
330 void *arg1, int arg2)
331{
332 lwkt_ipiq_t ip;
333 int windex;
334 struct globaldata *gd = mycpu;
335
336 logipiq(send_nbio, func, arg1, arg2, gd, target);
337 KKASSERT(curthread->td_critcount);
338 if (target == gd) {
339 func(arg1, arg2, NULL);
340 logipiq(send_end, func, arg1, arg2, gd, target);
341 return(0);
342 }
343 crit_enter();
344 ++gd->gd_intr_nesting_level;
345 ++ipiq_count;
346 ip = &gd->gd_ipiq[target->gd_cpuid];
347
348 if (ip->ip_windex - ip->ip_rindex >= MAXCPUFIFO * 2 / 3) {
349 logipiq(send_fail, func, arg1, arg2, gd, target);
350 --gd->gd_intr_nesting_level;
351 crit_exit();
352 return(ENOENT);
353 }
354 windex = ip->ip_windex & MAXCPUFIFO_MASK;
355 ip->ip_func[windex] = func;
356 ip->ip_arg1[windex] = arg1;
357 ip->ip_arg2[windex] = arg2;
358 cpu_sfence();
359 ++ip->ip_windex;
360
361 /*
362 * This isn't a passive IPI, we still have to signal the target cpu.
363 */
364 if (atomic_poll_acquire_int(&ip->ip_npoll) || ipiq_optimized == 0) {
365 logipiq(cpu_send, func, arg1, arg2, gd, target);
366 cpu_send_ipiq(target->gd_cpuid);
367 } else {
368 ++ipiq_avoided;
369 }
370 --gd->gd_intr_nesting_level;
371 crit_exit();
372
373 logipiq(send_end, func, arg1, arg2, gd, target);
374 return(0);
375}
376
377/*
378 * deprecated, used only by fast int forwarding.
379 */
380int
381lwkt_send_ipiq3_bycpu(int dcpu, ipifunc3_t func, void *arg1, int arg2)
382{
383 return(lwkt_send_ipiq3(globaldata_find(dcpu), func, arg1, arg2));
384}
385
386/*
387 * Send a message to several target cpus. Typically used for scheduling.
388 * The message will not be sent to stopped cpus.
389 */
390int
391lwkt_send_ipiq3_mask(cpumask_t mask, ipifunc3_t func, void *arg1, int arg2)
392{
393 int cpuid;
394 int count = 0;
395
396 mask &= ~stopped_cpus;
397 while (mask) {
398 cpuid = BSFCPUMASK(mask);
399 lwkt_send_ipiq3(globaldata_find(cpuid), func, arg1, arg2);
400 mask &= ~CPUMASK(cpuid);
401 ++count;
402 }
403 return(count);
404}
405
406/*
407 * Wait for the remote cpu to finish processing a function.
408 *
409 * YYY we have to enable interrupts and process the IPIQ while waiting
410 * for it to empty or we may deadlock with another cpu. Create a CPU_*()
411 * function to do this! YYY we really should 'block' here.
412 *
413 * MUST be called from a critical section. This routine may be called
414 * from an interrupt (for example, if an interrupt wakes a foreign thread
415 * up).
416 */
417void
418lwkt_wait_ipiq(globaldata_t target, int seq)
419{
420 lwkt_ipiq_t ip;
421 int maxc = 100000000;
422
423 if (target != mycpu) {
424 ip = &mycpu->gd_ipiq[target->gd_cpuid];
425 if ((int)(ip->ip_xindex - seq) < 0) {
426#if defined(__i386__)
427 unsigned int eflags = read_eflags();
428#elif defined(__x86_64__)
429 unsigned long rflags = read_rflags();
430#endif
431 cpu_enable_intr();
432 DEBUG_PUSH_INFO("wait_ipiq");
433 while ((int)(ip->ip_xindex - seq) < 0) {
434 crit_enter();
435 lwkt_process_ipiq();
436 crit_exit();
437 if (--maxc == 0)
438 kprintf("LWKT_WAIT_IPIQ WARNING! %d wait %d (%d)\n", mycpu->gd_cpuid, target->gd_cpuid, ip->ip_xindex - seq);
439 if (maxc < -1000000)
440 panic("LWKT_WAIT_IPIQ");
441 /*
442 * xindex may be modified by another cpu, use a load fence
443 * to ensure that the loop does not use a speculative value
444 * (which may improve performance).
445 */
446 cpu_lfence();
447 }
448 DEBUG_POP_INFO();
449#if defined(__i386__)
450 write_eflags(eflags);
451#elif defined(__x86_64__)
452 write_rflags(rflags);
453#endif
454 }
455 }
456}
457
458int
459lwkt_seq_ipiq(globaldata_t target)
460{
461 lwkt_ipiq_t ip;
462
463 ip = &mycpu->gd_ipiq[target->gd_cpuid];
464 return(ip->ip_windex);
465}
466
467/*
468 * Called from IPI interrupt (like a fast interrupt), which has placed
469 * us in a critical section. The MP lock may or may not be held.
470 * May also be called from doreti or splz, or be reentrantly called
471 * indirectly through the ip_func[] we run.
472 *
473 * There are two versions, one where no interrupt frame is available (when
474 * called from the send code and from splz, and one where an interrupt
475 * frame is available.
476 *
477 * When the current cpu is mastering a cpusync we do NOT internally loop
478 * on the cpusyncq poll. We also do not re-flag a pending ipi due to
479 * the cpusyncq poll because this can cause doreti/splz to loop internally.
480 * The cpusync master's own loop must be allowed to run to avoid a deadlock.
481 */
482void
483lwkt_process_ipiq(void)
484{
485 globaldata_t gd = mycpu;
486 globaldata_t sgd;
487 lwkt_ipiq_t ip;
488 int n;
489
490 ++gd->gd_processing_ipiq;
491again:
492 for (n = 0; n < ncpus; ++n) {
493 if (n != gd->gd_cpuid) {
494 sgd = globaldata_find(n);
495 ip = sgd->gd_ipiq;
496 if (ip != NULL) {
497 while (lwkt_process_ipiq_core(sgd, &ip[gd->gd_cpuid], NULL))
498 ;
499 }
500 }
501 }
502 if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, NULL)) {
503 if (gd->gd_curthread->td_cscount == 0)
504 goto again;
505 /* need_ipiq(); do not reflag */
506 }
507 --gd->gd_processing_ipiq;
508}
509
510void
511lwkt_process_ipiq_frame(struct intrframe *frame)
512{
513 globaldata_t gd = mycpu;
514 globaldata_t sgd;
515 lwkt_ipiq_t ip;
516 int n;
517
518again:
519 for (n = 0; n < ncpus; ++n) {
520 if (n != gd->gd_cpuid) {
521 sgd = globaldata_find(n);
522 ip = sgd->gd_ipiq;
523 if (ip != NULL) {
524 while (lwkt_process_ipiq_core(sgd, &ip[gd->gd_cpuid], frame))
525 ;
526 }
527 }
528 }
529 if (gd->gd_cpusyncq.ip_rindex != gd->gd_cpusyncq.ip_windex) {
530 if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, frame)) {
531 if (gd->gd_curthread->td_cscount == 0)
532 goto again;
533 /* need_ipiq(); do not reflag */
534 }
535 }
536}
537
538#if 0
539static int iqticks[SMP_MAXCPU];
540static int iqcount[SMP_MAXCPU];
541#endif
542#if 0
543static int iqterm[SMP_MAXCPU];
544#endif
545
546static int
547lwkt_process_ipiq_core(globaldata_t sgd, lwkt_ipiq_t ip,
548 struct intrframe *frame)
549{
550 globaldata_t mygd = mycpu;
551 int ri;
552 int wi;
553 ipifunc3_t copy_func;
554 void *copy_arg1;
555 int copy_arg2;
556
557#if 0
558 if (iqticks[mygd->gd_cpuid] != ticks) {
559 iqticks[mygd->gd_cpuid] = ticks;
560 iqcount[mygd->gd_cpuid] = 0;
561 }
562 if (++iqcount[mygd->gd_cpuid] > 3000000) {
563 kprintf("cpu %d ipiq maxed cscount %d spin %d\n",
564 mygd->gd_cpuid,
565 mygd->gd_curthread->td_cscount,
566 mygd->gd_spinlocks_wr);
567 iqcount[mygd->gd_cpuid] = 0;
568#if 0
569 if (++iqterm[mygd->gd_cpuid] > 10)
570 panic("cpu %d ipiq maxed", mygd->gd_cpuid);
571#endif
572 int i;
573 for (i = 0; i < ncpus; ++i) {
574 if (globaldata_find(i)->gd_infomsg)
575 kprintf(" %s", globaldata_find(i)->gd_infomsg);
576 }
577 kprintf("\n");
578 }
579#endif
580
581 /*
582 * Obtain the current write index, which is modified by a remote cpu.
583 * Issue a load fence to prevent speculative reads of e.g. data written
584 * by the other cpu prior to it updating the index.
585 */
586 KKASSERT(curthread->td_critcount);
587 wi = ip->ip_windex;
588 cpu_lfence();
589 ++mygd->gd_intr_nesting_level;
590
591 /*
592 * NOTE: xindex is only updated after we are sure the function has
593 * finished execution. Beware lwkt_process_ipiq() reentrancy!
594 * The function may send an IPI which may block/drain.
595 *
596 * NOTE: Due to additional IPI operations that the callback function
597 * may make, it is possible for both rindex and windex to advance and
598 * thus for rindex to advance passed our cached windex.
599 *
600 * NOTE: A load fence is required to prevent speculative loads prior
601 * to the loading of ip_rindex. Even though stores might be
602 * ordered, loads are probably not. A memory fence is required
603 * to prevent reordering of the loads after the ip_rindex update.
604 */
605 while (wi - (ri = ip->ip_rindex) > 0) {
606 ri &= MAXCPUFIFO_MASK;
607 cpu_lfence();
608 copy_func = ip->ip_func[ri];
609 copy_arg1 = ip->ip_arg1[ri];
610 copy_arg2 = ip->ip_arg2[ri];
611 cpu_mfence();
612 ++ip->ip_rindex;
613 KKASSERT((ip->ip_rindex & MAXCPUFIFO_MASK) ==
614 ((ri + 1) & MAXCPUFIFO_MASK));
615 logipiq(receive, copy_func, copy_arg1, copy_arg2, sgd, mycpu);
616#ifdef INVARIANTS
617 if (ipiq_debug && (ip->ip_rindex & 0xFFFFFF) == 0) {
618 kprintf("cpu %d ipifunc %p %p %d (frame %p)\n",
619 mycpu->gd_cpuid,
620 copy_func, copy_arg1, copy_arg2,
621#if defined(__i386__)
622 (frame ? (void *)frame->if_eip : NULL));
623#elif defined(__amd64__)
624 (frame ? (void *)frame->if_rip : NULL));
625#else
626 NULL);
627#endif
628 }
629#endif
630 copy_func(copy_arg1, copy_arg2, frame);
631 cpu_sfence();
632 ip->ip_xindex = ip->ip_rindex;
633
634#ifdef PANIC_DEBUG
635 /*
636 * Simulate panics during the processing of an IPI
637 */
638 if (mycpu->gd_cpuid == panic_ipiq_cpu && panic_ipiq_count) {
639 if (--panic_ipiq_count == 0) {
640#ifdef DDB
641 Debugger("PANIC_DEBUG");
642#else
643 panic("PANIC_DEBUG");
644#endif
645 }
646 }
647#endif
648 }
649 --mygd->gd_intr_nesting_level;
650
651 /*
652 * If the queue is empty release ip_npoll to enable the other cpu to
653 * send us an IPI interrupt again.
654 *
655 * Return non-zero if there is still more in the queue. Note that we
656 * must re-check the indexes after potentially releasing ip_npoll. The
657 * caller must loop or otherwise ensure that a loop will occur prior to
658 * blocking.
659 */
660 if (ip->ip_rindex == ip->ip_windex)
661 atomic_poll_release_int(&ip->ip_npoll);
662 cpu_lfence();
663 return (ip->ip_rindex != ip->ip_windex);
664}
665
666static void
667lwkt_sync_ipiq(void *arg)
668{
669 volatile cpumask_t *cpumask = arg;
670
671 atomic_clear_cpumask(cpumask, mycpu->gd_cpumask);
672 if (*cpumask == 0)
673 wakeup(cpumask);
674}
675
676void
677lwkt_synchronize_ipiqs(const char *wmesg)
678{
679 volatile cpumask_t other_cpumask;
680
681 other_cpumask = mycpu->gd_other_cpus & smp_active_mask;
682 lwkt_send_ipiq_mask(other_cpumask, lwkt_sync_ipiq,
683 __DEVOLATILE(void *, &other_cpumask));
684
685 while (other_cpumask != 0) {
686 tsleep_interlock(&other_cpumask, 0);
687 if (other_cpumask != 0)
688 tsleep(&other_cpumask, PINTERLOCKED, wmesg, 0);
689 }
690}
691
692#endif
693
694/*
695 * CPU Synchronization Support
696 *
697 * lwkt_cpusync_interlock() - Place specified cpus in a quiescent state.
698 * The current cpu is placed in a hard critical
699 * section.
700 *
701 * lwkt_cpusync_deinterlock() - Execute cs_func on specified cpus, including
702 * current cpu if specified, then return.
703 */
704void
705lwkt_cpusync_simple(cpumask_t mask, cpusync_func_t func, void *arg)
706{
707 struct lwkt_cpusync cs;
708
709 lwkt_cpusync_init(&cs, mask, func, arg);
710 lwkt_cpusync_interlock(&cs);
711 lwkt_cpusync_deinterlock(&cs);
712}
713
714
715void
716lwkt_cpusync_interlock(lwkt_cpusync_t cs)
717{
718#ifdef SMP
719 globaldata_t gd = mycpu;
720 cpumask_t mask;
721
722 /*
723 * mask acknowledge (cs_mack): 0->mask for stage 1
724 *
725 * mack does not include the current cpu.
726 */
727 mask = cs->cs_mask & gd->gd_other_cpus & smp_active_mask;
728 cs->cs_mack = 0;
729 crit_enter_id("cpusync");
730 if (mask) {
731 DEBUG_PUSH_INFO("cpusync_interlock");
732 ++ipiq_cscount;
733 ++gd->gd_curthread->td_cscount;
734 lwkt_send_ipiq_mask(mask, (ipifunc1_t)lwkt_cpusync_remote1, cs);
735 logipiq2(sync_start, mask);
736 while (cs->cs_mack != mask) {
737 lwkt_process_ipiq();
738 cpu_pause();
739 }
740 DEBUG_POP_INFO();
741 }
742#else
743 cs->cs_mack = 0;
744#endif
745}
746
747/*
748 * Interlocked cpus have executed remote1 and are polling in remote2.
749 * To deinterlock we clear cs_mack and wait for the cpus to execute
750 * the func and set their bit in cs_mack again.
751 *
752 */
753void
754lwkt_cpusync_deinterlock(lwkt_cpusync_t cs)
755{
756 globaldata_t gd = mycpu;
757#ifdef SMP
758 cpumask_t mask;
759
760 /*
761 * mask acknowledge (cs_mack): mack->0->mack for stage 2
762 *
763 * Clearing cpu bits for polling cpus in cs_mack will cause them to
764 * execute stage 2, which executes the cs_func(cs_data) and then sets
765 * their bit in cs_mack again.
766 *
767 * mack does not include the current cpu.
768 */
769 mask = cs->cs_mack;
770 cpu_ccfence();
771 cs->cs_mack = 0;
772 if (cs->cs_func && (cs->cs_mask & gd->gd_cpumask))
773 cs->cs_func(cs->cs_data);
774 if (mask) {
775 DEBUG_PUSH_INFO("cpusync_deinterlock");
776 while (cs->cs_mack != mask) {
777 lwkt_process_ipiq();
778 cpu_pause();
779 }
780 DEBUG_POP_INFO();
781 /*
782 * cpusyncq ipis may be left queued without the RQF flag set due to
783 * a non-zero td_cscount, so be sure to process any laggards after
784 * decrementing td_cscount.
785 */
786 --gd->gd_curthread->td_cscount;
787 lwkt_process_ipiq();
788 logipiq2(sync_end, mask);
789 }
790 crit_exit_id("cpusync");
791#else
792 if (cs->cs_func && (cs->cs_mask & gd->gd_cpumask))
793 cs->cs_func(cs->cs_data);
794#endif
795}
796
797#ifdef SMP
798
799/*
800 * helper IPI remote messaging function.
801 *
802 * Called on remote cpu when a new cpu synchronization request has been
803 * sent to us. Execute the run function and adjust cs_count, then requeue
804 * the request so we spin on it.
805 */
806static void
807lwkt_cpusync_remote1(lwkt_cpusync_t cs)
808{
809 globaldata_t gd = mycpu;
810
811 atomic_set_cpumask(&cs->cs_mack, gd->gd_cpumask);
812 lwkt_cpusync_remote2(cs);
813}
814
815/*
816 * helper IPI remote messaging function.
817 *
818 * Poll for the originator telling us to finish. If it hasn't, requeue
819 * our request so we spin on it.
820 */
821static void
822lwkt_cpusync_remote2(lwkt_cpusync_t cs)
823{
824 globaldata_t gd = mycpu;
825
826 if ((cs->cs_mack & gd->gd_cpumask) == 0) {
827 if (cs->cs_func)
828 cs->cs_func(cs->cs_data);
829 atomic_set_cpumask(&cs->cs_mack, gd->gd_cpumask);
830 } else {
831 lwkt_ipiq_t ip;
832 int wi;
833
834 ip = &gd->gd_cpusyncq;
835 wi = ip->ip_windex & MAXCPUFIFO_MASK;
836 ip->ip_func[wi] = (ipifunc3_t)(ipifunc1_t)lwkt_cpusync_remote2;
837 ip->ip_arg1[wi] = cs;
838 ip->ip_arg2[wi] = 0;
839 cpu_sfence();
840 ++ip->ip_windex;
841 if (ipiq_debug && (ip->ip_windex & 0xFFFFFF) == 0) {
842 kprintf("cpu %d cm=%016jx %016jx f=%p\n",
843 gd->gd_cpuid,
844 (intmax_t)cs->cs_mask, (intmax_t)cs->cs_mack,
845 cs->cs_func);
846 }
847 }
848}
849
850#endif