00c132d19352f08eb423af8c3c2c7dbad5c7257c
[dragonfly.git] / sys / vm / vm_pageout.c
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *      This product includes software developed by the University of
23  *      California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.2 2003/06/17 04:29:00 dillon Exp $
70  */
71
72 /*
73  *      The proverbial page-out daemon.
74  */
75
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98
99 /*
100  * System initialization
101  */
102
103 /* the kernel process "vm_pageout"*/
104 static void vm_pageout __P((void));
105 static int vm_pageout_clean __P((vm_page_t));
106 static void vm_pageout_scan __P((int pass));
107 static int vm_pageout_free_page_calc __P((vm_size_t count));
108 struct proc *pageproc;
109
110 static struct kproc_desc page_kp = {
111         "pagedaemon",
112         vm_pageout,
113         &pageproc
114 };
115 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
116
117 #if !defined(NO_SWAPPING)
118 /* the kernel process "vm_daemon"*/
119 static void vm_daemon __P((void));
120 static struct   proc *vmproc;
121
122 static struct kproc_desc vm_kp = {
123         "vmdaemon",
124         vm_daemon,
125         &vmproc
126 };
127 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
128 #endif
129
130
131 int vm_pages_needed=0;          /* Event on which pageout daemon sleeps */
132 int vm_pageout_deficit=0;       /* Estimated number of pages deficit */
133 int vm_pageout_pages_needed=0;  /* flag saying that the pageout daemon needs pages */
134
135 #if !defined(NO_SWAPPING)
136 static int vm_pageout_req_swapout;      /* XXX */
137 static int vm_daemon_needed;
138 #endif
139 extern int vm_swap_size;
140 static int vm_max_launder = 32;
141 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
142 static int vm_pageout_full_stats_interval = 0;
143 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
144 static int defer_swap_pageouts=0;
145 static int disable_swap_pageouts=0;
146
147 #if defined(NO_SWAPPING)
148 static int vm_swap_enabled=0;
149 static int vm_swap_idle_enabled=0;
150 #else
151 static int vm_swap_enabled=1;
152 static int vm_swap_idle_enabled=0;
153 #endif
154
155 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
156         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
157
158 SYSCTL_INT(_vm, OID_AUTO, max_launder,
159         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
160
161 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
162         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
163
164 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
165         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
166
167 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
168         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
169
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
171         CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
172
173 #if defined(NO_SWAPPING)
174 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
175         CTLFLAG_RD, &vm_swap_enabled, 0, "");
176 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
177         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
178 #else
179 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
180         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
181 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
182         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
183 #endif
184
185 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
186         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
187
188 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
189         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
190
191 static int pageout_lock_miss;
192 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
193         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
194
195 #define VM_PAGEOUT_PAGE_COUNT 16
196 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
197
198 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
199
200 #if !defined(NO_SWAPPING)
201 typedef void freeer_fcn_t __P((vm_map_t, vm_object_t, vm_pindex_t, int));
202 static void vm_pageout_map_deactivate_pages __P((vm_map_t, vm_pindex_t));
203 static freeer_fcn_t vm_pageout_object_deactivate_pages;
204 static void vm_req_vmdaemon __P((void));
205 #endif
206 static void vm_pageout_page_stats(void);
207
208 /*
209  * vm_pageout_clean:
210  *
211  * Clean the page and remove it from the laundry.
212  * 
213  * We set the busy bit to cause potential page faults on this page to
214  * block.  Note the careful timing, however, the busy bit isn't set till
215  * late and we cannot do anything that will mess with the page.
216  */
217
218 static int
219 vm_pageout_clean(m)
220         vm_page_t m;
221 {
222         register vm_object_t object;
223         vm_page_t mc[2*vm_pageout_page_count];
224         int pageout_count;
225         int ib, is, page_base;
226         vm_pindex_t pindex = m->pindex;
227
228         object = m->object;
229
230         /*
231          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
232          * with the new swapper, but we could have serious problems paging
233          * out other object types if there is insufficient memory.  
234          *
235          * Unfortunately, checking free memory here is far too late, so the
236          * check has been moved up a procedural level.
237          */
238
239         /*
240          * Don't mess with the page if it's busy, held, or special
241          */
242         if ((m->hold_count != 0) ||
243             ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
244                 return 0;
245         }
246
247         mc[vm_pageout_page_count] = m;
248         pageout_count = 1;
249         page_base = vm_pageout_page_count;
250         ib = 1;
251         is = 1;
252
253         /*
254          * Scan object for clusterable pages.
255          *
256          * We can cluster ONLY if: ->> the page is NOT
257          * clean, wired, busy, held, or mapped into a
258          * buffer, and one of the following:
259          * 1) The page is inactive, or a seldom used
260          *    active page.
261          * -or-
262          * 2) we force the issue.
263          *
264          * During heavy mmap/modification loads the pageout
265          * daemon can really fragment the underlying file
266          * due to flushing pages out of order and not trying
267          * align the clusters (which leave sporatic out-of-order
268          * holes).  To solve this problem we do the reverse scan
269          * first and attempt to align our cluster, then do a 
270          * forward scan if room remains.
271          */
272
273 more:
274         while (ib && pageout_count < vm_pageout_page_count) {
275                 vm_page_t p;
276
277                 if (ib > pindex) {
278                         ib = 0;
279                         break;
280                 }
281
282                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
283                         ib = 0;
284                         break;
285                 }
286                 if (((p->queue - p->pc) == PQ_CACHE) ||
287                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
288                         ib = 0;
289                         break;
290                 }
291                 vm_page_test_dirty(p);
292                 if ((p->dirty & p->valid) == 0 ||
293                     p->queue != PQ_INACTIVE ||
294                     p->wire_count != 0 ||       /* may be held by buf cache */
295                     p->hold_count != 0) {       /* may be undergoing I/O */
296                         ib = 0;
297                         break;
298                 }
299                 mc[--page_base] = p;
300                 ++pageout_count;
301                 ++ib;
302                 /*
303                  * alignment boundry, stop here and switch directions.  Do
304                  * not clear ib.
305                  */
306                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
307                         break;
308         }
309
310         while (pageout_count < vm_pageout_page_count && 
311             pindex + is < object->size) {
312                 vm_page_t p;
313
314                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
315                         break;
316                 if (((p->queue - p->pc) == PQ_CACHE) ||
317                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
318                         break;
319                 }
320                 vm_page_test_dirty(p);
321                 if ((p->dirty & p->valid) == 0 ||
322                     p->queue != PQ_INACTIVE ||
323                     p->wire_count != 0 ||       /* may be held by buf cache */
324                     p->hold_count != 0) {       /* may be undergoing I/O */
325                         break;
326                 }
327                 mc[page_base + pageout_count] = p;
328                 ++pageout_count;
329                 ++is;
330         }
331
332         /*
333          * If we exhausted our forward scan, continue with the reverse scan
334          * when possible, even past a page boundry.  This catches boundry
335          * conditions.
336          */
337         if (ib && pageout_count < vm_pageout_page_count)
338                 goto more;
339
340         /*
341          * we allow reads during pageouts...
342          */
343         return vm_pageout_flush(&mc[page_base], pageout_count, 0);
344 }
345
346 /*
347  * vm_pageout_flush() - launder the given pages
348  *
349  *      The given pages are laundered.  Note that we setup for the start of
350  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
351  *      reference count all in here rather then in the parent.  If we want
352  *      the parent to do more sophisticated things we may have to change
353  *      the ordering.
354  */
355
356 int
357 vm_pageout_flush(mc, count, flags)
358         vm_page_t *mc;
359         int count;
360         int flags;
361 {
362         register vm_object_t object;
363         int pageout_status[count];
364         int numpagedout = 0;
365         int i;
366
367         /*
368          * Initiate I/O.  Bump the vm_page_t->busy counter and
369          * mark the pages read-only.
370          *
371          * We do not have to fixup the clean/dirty bits here... we can
372          * allow the pager to do it after the I/O completes.
373          */
374
375         for (i = 0; i < count; i++) {
376                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
377                 vm_page_io_start(mc[i]);
378                 vm_page_protect(mc[i], VM_PROT_READ);
379         }
380
381         object = mc[0]->object;
382         vm_object_pip_add(object, count);
383
384         vm_pager_put_pages(object, mc, count,
385             (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
386             pageout_status);
387
388         for (i = 0; i < count; i++) {
389                 vm_page_t mt = mc[i];
390
391                 switch (pageout_status[i]) {
392                 case VM_PAGER_OK:
393                         numpagedout++;
394                         break;
395                 case VM_PAGER_PEND:
396                         numpagedout++;
397                         break;
398                 case VM_PAGER_BAD:
399                         /*
400                          * Page outside of range of object. Right now we
401                          * essentially lose the changes by pretending it
402                          * worked.
403                          */
404                         pmap_clear_modify(mt);
405                         vm_page_undirty(mt);
406                         break;
407                 case VM_PAGER_ERROR:
408                 case VM_PAGER_FAIL:
409                         /*
410                          * If page couldn't be paged out, then reactivate the
411                          * page so it doesn't clog the inactive list.  (We
412                          * will try paging out it again later).
413                          */
414                         vm_page_activate(mt);
415                         break;
416                 case VM_PAGER_AGAIN:
417                         break;
418                 }
419
420                 /*
421                  * If the operation is still going, leave the page busy to
422                  * block all other accesses. Also, leave the paging in
423                  * progress indicator set so that we don't attempt an object
424                  * collapse.
425                  */
426                 if (pageout_status[i] != VM_PAGER_PEND) {
427                         vm_object_pip_wakeup(object);
428                         vm_page_io_finish(mt);
429                         if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
430                                 vm_page_protect(mt, VM_PROT_READ);
431                 }
432         }
433         return numpagedout;
434 }
435
436 #if !defined(NO_SWAPPING)
437 /*
438  *      vm_pageout_object_deactivate_pages
439  *
440  *      deactivate enough pages to satisfy the inactive target
441  *      requirements or if vm_page_proc_limit is set, then
442  *      deactivate all of the pages in the object and its
443  *      backing_objects.
444  *
445  *      The object and map must be locked.
446  */
447 static void
448 vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
449         vm_map_t map;
450         vm_object_t object;
451         vm_pindex_t desired;
452         int map_remove_only;
453 {
454         register vm_page_t p, next;
455         int rcount;
456         int remove_mode;
457         int s;
458
459         if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
460                 return;
461
462         while (object) {
463                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
464                         return;
465                 if (object->paging_in_progress)
466                         return;
467
468                 remove_mode = map_remove_only;
469                 if (object->shadow_count > 1)
470                         remove_mode = 1;
471         /*
472          * scan the objects entire memory queue
473          */
474                 rcount = object->resident_page_count;
475                 p = TAILQ_FIRST(&object->memq);
476                 while (p && (rcount-- > 0)) {
477                         int actcount;
478                         if (pmap_resident_count(vm_map_pmap(map)) <= desired)
479                                 return;
480                         next = TAILQ_NEXT(p, listq);
481                         cnt.v_pdpages++;
482                         if (p->wire_count != 0 ||
483                             p->hold_count != 0 ||
484                             p->busy != 0 ||
485                             (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
486                             !pmap_page_exists_quick(vm_map_pmap(map), p)) {
487                                 p = next;
488                                 continue;
489                         }
490
491                         actcount = pmap_ts_referenced(p);
492                         if (actcount) {
493                                 vm_page_flag_set(p, PG_REFERENCED);
494                         } else if (p->flags & PG_REFERENCED) {
495                                 actcount = 1;
496                         }
497
498                         if ((p->queue != PQ_ACTIVE) &&
499                                 (p->flags & PG_REFERENCED)) {
500                                 vm_page_activate(p);
501                                 p->act_count += actcount;
502                                 vm_page_flag_clear(p, PG_REFERENCED);
503                         } else if (p->queue == PQ_ACTIVE) {
504                                 if ((p->flags & PG_REFERENCED) == 0) {
505                                         p->act_count -= min(p->act_count, ACT_DECLINE);
506                                         if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
507                                                 vm_page_protect(p, VM_PROT_NONE);
508                                                 vm_page_deactivate(p);
509                                         } else {
510                                                 s = splvm();
511                                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
512                                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
513                                                 splx(s);
514                                         }
515                                 } else {
516                                         vm_page_activate(p);
517                                         vm_page_flag_clear(p, PG_REFERENCED);
518                                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
519                                                 p->act_count += ACT_ADVANCE;
520                                         s = splvm();
521                                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
522                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
523                                         splx(s);
524                                 }
525                         } else if (p->queue == PQ_INACTIVE) {
526                                 vm_page_protect(p, VM_PROT_NONE);
527                         }
528                         p = next;
529                 }
530                 object = object->backing_object;
531         }
532         return;
533 }
534
535 /*
536  * deactivate some number of pages in a map, try to do it fairly, but
537  * that is really hard to do.
538  */
539 static void
540 vm_pageout_map_deactivate_pages(map, desired)
541         vm_map_t map;
542         vm_pindex_t desired;
543 {
544         vm_map_entry_t tmpe;
545         vm_object_t obj, bigobj;
546         int nothingwired;
547
548         if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, (void *)0, curproc)) {
549                 return;
550         }
551
552         bigobj = NULL;
553         nothingwired = TRUE;
554
555         /*
556          * first, search out the biggest object, and try to free pages from
557          * that.
558          */
559         tmpe = map->header.next;
560         while (tmpe != &map->header) {
561                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
562                         obj = tmpe->object.vm_object;
563                         if ((obj != NULL) && (obj->shadow_count <= 1) &&
564                                 ((bigobj == NULL) ||
565                                  (bigobj->resident_page_count < obj->resident_page_count))) {
566                                 bigobj = obj;
567                         }
568                 }
569                 if (tmpe->wired_count > 0)
570                         nothingwired = FALSE;
571                 tmpe = tmpe->next;
572         }
573
574         if (bigobj)
575                 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
576
577         /*
578          * Next, hunt around for other pages to deactivate.  We actually
579          * do this search sort of wrong -- .text first is not the best idea.
580          */
581         tmpe = map->header.next;
582         while (tmpe != &map->header) {
583                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
584                         break;
585                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
586                         obj = tmpe->object.vm_object;
587                         if (obj)
588                                 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
589                 }
590                 tmpe = tmpe->next;
591         };
592
593         /*
594          * Remove all mappings if a process is swapped out, this will free page
595          * table pages.
596          */
597         if (desired == 0 && nothingwired)
598                 pmap_remove(vm_map_pmap(map),
599                         VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
600         vm_map_unlock(map);
601         return;
602 }
603 #endif
604
605 /*
606  * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
607  * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
608  * which we know can be trivially freed.
609  */
610
611 void
612 vm_pageout_page_free(vm_page_t m) {
613         vm_object_t object = m->object;
614         int type = object->type;
615
616         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
617                 vm_object_reference(object);
618         vm_page_busy(m);
619         vm_page_protect(m, VM_PROT_NONE);
620         vm_page_free(m);
621         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
622                 vm_object_deallocate(object);
623 }
624
625 /*
626  *      vm_pageout_scan does the dirty work for the pageout daemon.
627  */
628 static void
629 vm_pageout_scan(int pass)
630 {
631         vm_page_t m, next;
632         struct vm_page marker;
633         int page_shortage, maxscan, pcount;
634         int addl_page_shortage, addl_page_shortage_init;
635         struct proc *p, *bigproc;
636         vm_offset_t size, bigsize;
637         vm_object_t object;
638         int actcount;
639         int vnodes_skipped = 0;
640         int maxlaunder;
641         int s;
642
643         /*
644          * Do whatever cleanup that the pmap code can.
645          */
646         pmap_collect();
647
648         addl_page_shortage_init = vm_pageout_deficit;
649         vm_pageout_deficit = 0;
650
651         /*
652          * Calculate the number of pages we want to either free or move
653          * to the cache.
654          */
655         page_shortage = vm_paging_target() + addl_page_shortage_init;
656
657         /*
658          * Initialize our marker
659          */
660         bzero(&marker, sizeof(marker));
661         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
662         marker.queue = PQ_INACTIVE;
663         marker.wire_count = 1;
664
665         /*
666          * Start scanning the inactive queue for pages we can move to the
667          * cache or free.  The scan will stop when the target is reached or
668          * we have scanned the entire inactive queue.  Note that m->act_count
669          * is not used to form decisions for the inactive queue, only for the
670          * active queue.
671          *
672          * maxlaunder limits the number of dirty pages we flush per scan.
673          * For most systems a smaller value (16 or 32) is more robust under
674          * extreme memory and disk pressure because any unnecessary writes
675          * to disk can result in extreme performance degredation.  However,
676          * systems with excessive dirty pages (especially when MAP_NOSYNC is
677          * used) will die horribly with limited laundering.  If the pageout
678          * daemon cannot clean enough pages in the first pass, we let it go
679          * all out in succeeding passes.
680          */
681         if ((maxlaunder = vm_max_launder) <= 1)
682                 maxlaunder = 1;
683         if (pass)
684                 maxlaunder = 10000;
685
686 rescan0:
687         addl_page_shortage = addl_page_shortage_init;
688         maxscan = cnt.v_inactive_count;
689         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
690              m != NULL && maxscan-- > 0 && page_shortage > 0;
691              m = next) {
692
693                 cnt.v_pdpages++;
694
695                 if (m->queue != PQ_INACTIVE) {
696                         goto rescan0;
697                 }
698
699                 next = TAILQ_NEXT(m, pageq);
700
701                 /*
702                  * skip marker pages
703                  */
704                 if (m->flags & PG_MARKER)
705                         continue;
706
707                 /*
708                  * A held page may be undergoing I/O, so skip it.
709                  */
710                 if (m->hold_count) {
711                         s = splvm();
712                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
713                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
714                         splx(s);
715                         addl_page_shortage++;
716                         continue;
717                 }
718                 /*
719                  * Dont mess with busy pages, keep in the front of the
720                  * queue, most likely are being paged out.
721                  */
722                 if (m->busy || (m->flags & PG_BUSY)) {
723                         addl_page_shortage++;
724                         continue;
725                 }
726
727                 /*
728                  * If the object is not being used, we ignore previous 
729                  * references.
730                  */
731                 if (m->object->ref_count == 0) {
732                         vm_page_flag_clear(m, PG_REFERENCED);
733                         pmap_clear_reference(m);
734
735                 /*
736                  * Otherwise, if the page has been referenced while in the 
737                  * inactive queue, we bump the "activation count" upwards, 
738                  * making it less likely that the page will be added back to 
739                  * the inactive queue prematurely again.  Here we check the 
740                  * page tables (or emulated bits, if any), given the upper 
741                  * level VM system not knowing anything about existing 
742                  * references.
743                  */
744                 } else if (((m->flags & PG_REFERENCED) == 0) &&
745                         (actcount = pmap_ts_referenced(m))) {
746                         vm_page_activate(m);
747                         m->act_count += (actcount + ACT_ADVANCE);
748                         continue;
749                 }
750
751                 /*
752                  * If the upper level VM system knows about any page 
753                  * references, we activate the page.  We also set the 
754                  * "activation count" higher than normal so that we will less 
755                  * likely place pages back onto the inactive queue again.
756                  */
757                 if ((m->flags & PG_REFERENCED) != 0) {
758                         vm_page_flag_clear(m, PG_REFERENCED);
759                         actcount = pmap_ts_referenced(m);
760                         vm_page_activate(m);
761                         m->act_count += (actcount + ACT_ADVANCE + 1);
762                         continue;
763                 }
764
765                 /*
766                  * If the upper level VM system doesn't know anything about 
767                  * the page being dirty, we have to check for it again.  As 
768                  * far as the VM code knows, any partially dirty pages are 
769                  * fully dirty.
770                  */
771                 if (m->dirty == 0) {
772                         vm_page_test_dirty(m);
773                 } else {
774                         vm_page_dirty(m);
775                 }
776
777                 /*
778                  * Invalid pages can be easily freed
779                  */
780                 if (m->valid == 0) {
781                         vm_pageout_page_free(m);
782                         cnt.v_dfree++;
783                         --page_shortage;
784
785                 /*
786                  * Clean pages can be placed onto the cache queue.  This
787                  * effectively frees them.
788                  */
789                 } else if (m->dirty == 0) {
790                         /*
791                          * Clean pages can be immediately freed to the cache.
792                          */
793                         vm_page_cache(m);
794                         --page_shortage;
795                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
796                         /*
797                          * Dirty pages need to be paged out, but flushing
798                          * a page is extremely expensive verses freeing
799                          * a clean page.  Rather then artificially limiting
800                          * the number of pages we can flush, we instead give
801                          * dirty pages extra priority on the inactive queue
802                          * by forcing them to be cycled through the queue
803                          * twice before being flushed, after which the 
804                          * (now clean) page will cycle through once more
805                          * before being freed.  This significantly extends
806                          * the thrash point for a heavily loaded machine.
807                          */
808                         s = splvm();
809                         vm_page_flag_set(m, PG_WINATCFLS);
810                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
811                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
812                         splx(s);
813                 } else if (maxlaunder > 0) {
814                         /*
815                          * We always want to try to flush some dirty pages if
816                          * we encounter them, to keep the system stable.
817                          * Normally this number is small, but under extreme
818                          * pressure where there are insufficient clean pages
819                          * on the inactive queue, we may have to go all out.
820                          */
821                         int swap_pageouts_ok;
822                         struct vnode *vp = NULL;
823
824                         object = m->object;
825
826                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
827                                 swap_pageouts_ok = 1;
828                         } else {
829                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
830                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
831                                 vm_page_count_min());
832                                                                                 
833                         }
834
835                         /*
836                          * We don't bother paging objects that are "dead".  
837                          * Those objects are in a "rundown" state.
838                          */
839                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
840                                 s = splvm();
841                                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
842                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
843                                 splx(s);
844                                 continue;
845                         }
846
847                         /*
848                          * The object is already known NOT to be dead.   It
849                          * is possible for the vget() to block the whole
850                          * pageout daemon, but the new low-memory handling
851                          * code should prevent it.
852                          *
853                          * The previous code skipped locked vnodes and, worse,
854                          * reordered pages in the queue.  This results in
855                          * completely non-deterministic operation because,
856                          * quite often, a vm_fault has initiated an I/O and
857                          * is holding a locked vnode at just the point where
858                          * the pageout daemon is woken up.
859                          *
860                          * We can't wait forever for the vnode lock, we might
861                          * deadlock due to a vn_read() getting stuck in
862                          * vm_wait while holding this vnode.  We skip the 
863                          * vnode if we can't get it in a reasonable amount
864                          * of time.
865                          */
866
867                         if (object->type == OBJT_VNODE) {
868                                 vp = object->handle;
869
870                                 if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK, curproc)) {
871                                         ++pageout_lock_miss;
872                                         if (object->flags & OBJ_MIGHTBEDIRTY)
873                                                     vnodes_skipped++;
874                                         continue;
875                                 }
876
877                                 /*
878                                  * The page might have been moved to another
879                                  * queue during potential blocking in vget()
880                                  * above.  The page might have been freed and
881                                  * reused for another vnode.  The object might
882                                  * have been reused for another vnode.
883                                  */
884                                 if (m->queue != PQ_INACTIVE ||
885                                     m->object != object ||
886                                     object->handle != vp) {
887                                         if (object->flags & OBJ_MIGHTBEDIRTY)
888                                                 vnodes_skipped++;
889                                         vput(vp);
890                                         continue;
891                                 }
892         
893                                 /*
894                                  * The page may have been busied during the
895                                  * blocking in vput();  We don't move the
896                                  * page back onto the end of the queue so that
897                                  * statistics are more correct if we don't.
898                                  */
899                                 if (m->busy || (m->flags & PG_BUSY)) {
900                                         vput(vp);
901                                         continue;
902                                 }
903
904                                 /*
905                                  * If the page has become held it might
906                                  * be undergoing I/O, so skip it
907                                  */
908                                 if (m->hold_count) {
909                                         s = splvm();
910                                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
911                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
912                                         splx(s);
913                                         if (object->flags & OBJ_MIGHTBEDIRTY)
914                                                 vnodes_skipped++;
915                                         vput(vp);
916                                         continue;
917                                 }
918                         }
919
920                         /*
921                          * If a page is dirty, then it is either being washed
922                          * (but not yet cleaned) or it is still in the
923                          * laundry.  If it is still in the laundry, then we
924                          * start the cleaning operation. 
925                          *
926                          * This operation may cluster, invalidating the 'next'
927                          * pointer.  To prevent an inordinate number of
928                          * restarts we use our marker to remember our place.
929                          *
930                          * decrement page_shortage on success to account for
931                          * the (future) cleaned page.  Otherwise we could wind
932                          * up laundering or cleaning too many pages.
933                          */
934                         s = splvm();
935                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
936                         splx(s);
937                         if (vm_pageout_clean(m) != 0) {
938                                 --page_shortage;
939                                 --maxlaunder;
940                         } 
941                         s = splvm();
942                         next = TAILQ_NEXT(&marker, pageq);
943                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
944                         splx(s);
945                         if (vp != NULL)
946                                 vput(vp);
947                 }
948         }
949
950         /*
951          * Compute the number of pages we want to try to move from the
952          * active queue to the inactive queue.
953          */
954         page_shortage = vm_paging_target() +
955             cnt.v_inactive_target - cnt.v_inactive_count;
956         page_shortage += addl_page_shortage;
957
958         /*
959          * Scan the active queue for things we can deactivate. We nominally
960          * track the per-page activity counter and use it to locate 
961          * deactivation candidates.
962          */
963
964         pcount = cnt.v_active_count;
965         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
966
967         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
968
969                 /*
970                  * This is a consistency check, and should likely be a panic
971                  * or warning.
972                  */
973                 if (m->queue != PQ_ACTIVE) {
974                         break;
975                 }
976
977                 next = TAILQ_NEXT(m, pageq);
978                 /*
979                  * Don't deactivate pages that are busy.
980                  */
981                 if ((m->busy != 0) ||
982                     (m->flags & PG_BUSY) ||
983                     (m->hold_count != 0)) {
984                         s = splvm();
985                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
986                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
987                         splx(s);
988                         m = next;
989                         continue;
990                 }
991
992                 /*
993                  * The count for pagedaemon pages is done after checking the
994                  * page for eligibility...
995                  */
996                 cnt.v_pdpages++;
997
998                 /*
999                  * Check to see "how much" the page has been used.
1000                  */
1001                 actcount = 0;
1002                 if (m->object->ref_count != 0) {
1003                         if (m->flags & PG_REFERENCED) {
1004                                 actcount += 1;
1005                         }
1006                         actcount += pmap_ts_referenced(m);
1007                         if (actcount) {
1008                                 m->act_count += ACT_ADVANCE + actcount;
1009                                 if (m->act_count > ACT_MAX)
1010                                         m->act_count = ACT_MAX;
1011                         }
1012                 }
1013
1014                 /*
1015                  * Since we have "tested" this bit, we need to clear it now.
1016                  */
1017                 vm_page_flag_clear(m, PG_REFERENCED);
1018
1019                 /*
1020                  * Only if an object is currently being used, do we use the
1021                  * page activation count stats.
1022                  */
1023                 if (actcount && (m->object->ref_count != 0)) {
1024                         s = splvm();
1025                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1026                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1027                         splx(s);
1028                 } else {
1029                         m->act_count -= min(m->act_count, ACT_DECLINE);
1030                         if (vm_pageout_algorithm ||
1031                             m->object->ref_count == 0 ||
1032                             m->act_count == 0) {
1033                                 page_shortage--;
1034                                 if (m->object->ref_count == 0) {
1035                                         vm_page_protect(m, VM_PROT_NONE);
1036                                         if (m->dirty == 0)
1037                                                 vm_page_cache(m);
1038                                         else
1039                                                 vm_page_deactivate(m);
1040                                 } else {
1041                                         vm_page_deactivate(m);
1042                                 }
1043                         } else {
1044                                 s = splvm();
1045                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1046                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1047                                 splx(s);
1048                         }
1049                 }
1050                 m = next;
1051         }
1052
1053         s = splvm();
1054
1055         /*
1056          * We try to maintain some *really* free pages, this allows interrupt
1057          * code to be guaranteed space.  Since both cache and free queues 
1058          * are considered basically 'free', moving pages from cache to free
1059          * does not effect other calculations.
1060          */
1061
1062         while (cnt.v_free_count < cnt.v_free_reserved) {
1063                 static int cache_rover = 0;
1064                 m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1065                 if (!m)
1066                         break;
1067                 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || 
1068                     m->busy || 
1069                     m->hold_count || 
1070                     m->wire_count) {
1071 #ifdef INVARIANTS
1072                         printf("Warning: busy page %p found in cache\n", m);
1073 #endif
1074                         vm_page_deactivate(m);
1075                         continue;
1076                 }
1077                 cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1078                 vm_pageout_page_free(m);
1079                 cnt.v_dfree++;
1080         }
1081         splx(s);
1082
1083 #if !defined(NO_SWAPPING)
1084         /*
1085          * Idle process swapout -- run once per second.
1086          */
1087         if (vm_swap_idle_enabled) {
1088                 static long lsec;
1089                 if (time_second != lsec) {
1090                         vm_pageout_req_swapout |= VM_SWAP_IDLE;
1091                         vm_req_vmdaemon();
1092                         lsec = time_second;
1093                 }
1094         }
1095 #endif
1096                 
1097         /*
1098          * If we didn't get enough free pages, and we have skipped a vnode
1099          * in a writeable object, wakeup the sync daemon.  And kick swapout
1100          * if we did not get enough free pages.
1101          */
1102         if (vm_paging_target() > 0) {
1103                 if (vnodes_skipped && vm_page_count_min())
1104                         (void) speedup_syncer();
1105 #if !defined(NO_SWAPPING)
1106                 if (vm_swap_enabled && vm_page_count_target()) {
1107                         vm_req_vmdaemon();
1108                         vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1109                 }
1110 #endif
1111         }
1112
1113         /*
1114          * If we are out of swap and were not able to reach our paging
1115          * target, kill the largest process.
1116          */
1117         if ((vm_swap_size < 64 && vm_page_count_min()) ||
1118             (swap_pager_full && vm_paging_target() > 0)) {
1119 #if 0
1120         if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1121 #endif
1122                 bigproc = NULL;
1123                 bigsize = 0;
1124                 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1125                         /*
1126                          * if this is a system process, skip it
1127                          */
1128                         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1129                             ((p->p_pid < 48) && (vm_swap_size != 0))) {
1130                                 continue;
1131                         }
1132                         /*
1133                          * if the process is in a non-running type state,
1134                          * don't touch it.
1135                          */
1136                         if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1137                                 continue;
1138                         }
1139                         /*
1140                          * get the process size
1141                          */
1142                         size = vmspace_resident_count(p->p_vmspace) +
1143                                 vmspace_swap_count(p->p_vmspace);
1144                         /*
1145                          * if the this process is bigger than the biggest one
1146                          * remember it.
1147                          */
1148                         if (size > bigsize) {
1149                                 bigproc = p;
1150                                 bigsize = size;
1151                         }
1152                 }
1153                 if (bigproc != NULL) {
1154                         killproc(bigproc, "out of swap space");
1155                         bigproc->p_estcpu = 0;
1156                         bigproc->p_nice = PRIO_MIN;
1157                         resetpriority(bigproc);
1158                         wakeup(&cnt.v_free_count);
1159                 }
1160         }
1161 }
1162
1163 /*
1164  * This routine tries to maintain the pseudo LRU active queue,
1165  * so that during long periods of time where there is no paging,
1166  * that some statistic accumulation still occurs.  This code
1167  * helps the situation where paging just starts to occur.
1168  */
1169 static void
1170 vm_pageout_page_stats()
1171 {
1172         int s;
1173         vm_page_t m,next;
1174         int pcount,tpcount;             /* Number of pages to check */
1175         static int fullintervalcount = 0;
1176         int page_shortage;
1177         int s0;
1178
1179         page_shortage = 
1180             (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1181             (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1182
1183         if (page_shortage <= 0)
1184                 return;
1185
1186         s0 = splvm();
1187
1188         pcount = cnt.v_active_count;
1189         fullintervalcount += vm_pageout_stats_interval;
1190         if (fullintervalcount < vm_pageout_full_stats_interval) {
1191                 tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1192                 if (pcount > tpcount)
1193                         pcount = tpcount;
1194         } else {
1195                 fullintervalcount = 0;
1196         }
1197
1198         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1199         while ((m != NULL) && (pcount-- > 0)) {
1200                 int actcount;
1201
1202                 if (m->queue != PQ_ACTIVE) {
1203                         break;
1204                 }
1205
1206                 next = TAILQ_NEXT(m, pageq);
1207                 /*
1208                  * Don't deactivate pages that are busy.
1209                  */
1210                 if ((m->busy != 0) ||
1211                     (m->flags & PG_BUSY) ||
1212                     (m->hold_count != 0)) {
1213                         s = splvm();
1214                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1215                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1216                         splx(s);
1217                         m = next;
1218                         continue;
1219                 }
1220
1221                 actcount = 0;
1222                 if (m->flags & PG_REFERENCED) {
1223                         vm_page_flag_clear(m, PG_REFERENCED);
1224                         actcount += 1;
1225                 }
1226
1227                 actcount += pmap_ts_referenced(m);
1228                 if (actcount) {
1229                         m->act_count += ACT_ADVANCE + actcount;
1230                         if (m->act_count > ACT_MAX)
1231                                 m->act_count = ACT_MAX;
1232                         s = splvm();
1233                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1234                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1235                         splx(s);
1236                 } else {
1237                         if (m->act_count == 0) {
1238                                 /*
1239                                  * We turn off page access, so that we have
1240                                  * more accurate RSS stats.  We don't do this
1241                                  * in the normal page deactivation when the
1242                                  * system is loaded VM wise, because the
1243                                  * cost of the large number of page protect
1244                                  * operations would be higher than the value
1245                                  * of doing the operation.
1246                                  */
1247                                 vm_page_protect(m, VM_PROT_NONE);
1248                                 vm_page_deactivate(m);
1249                         } else {
1250                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1251                                 s = splvm();
1252                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1253                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1254                                 splx(s);
1255                         }
1256                 }
1257
1258                 m = next;
1259         }
1260         splx(s0);
1261 }
1262
1263 static int
1264 vm_pageout_free_page_calc(count)
1265 vm_size_t count;
1266 {
1267         if (count < cnt.v_page_count)
1268                  return 0;
1269         /*
1270          * free_reserved needs to include enough for the largest swap pager
1271          * structures plus enough for any pv_entry structs when paging.
1272          */
1273         if (cnt.v_page_count > 1024)
1274                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1275         else
1276                 cnt.v_free_min = 4;
1277         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1278                 cnt.v_interrupt_free_min;
1279         cnt.v_free_reserved = vm_pageout_page_count +
1280                 cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1281         cnt.v_free_severe = cnt.v_free_min / 2;
1282         cnt.v_free_min += cnt.v_free_reserved;
1283         cnt.v_free_severe += cnt.v_free_reserved;
1284         return 1;
1285 }
1286
1287
1288 /*
1289  *      vm_pageout is the high level pageout daemon.
1290  */
1291 static void
1292 vm_pageout()
1293 {
1294         int pass;
1295
1296         /*
1297          * Initialize some paging parameters.
1298          */
1299
1300         cnt.v_interrupt_free_min = 2;
1301         if (cnt.v_page_count < 2000)
1302                 vm_pageout_page_count = 8;
1303
1304         vm_pageout_free_page_calc(cnt.v_page_count);
1305         /*
1306          * v_free_target and v_cache_min control pageout hysteresis.  Note
1307          * that these are more a measure of the VM cache queue hysteresis
1308          * then the VM free queue.  Specifically, v_free_target is the
1309          * high water mark (free+cache pages).
1310          *
1311          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1312          * low water mark, while v_free_min is the stop.  v_cache_min must
1313          * be big enough to handle memory needs while the pageout daemon
1314          * is signalled and run to free more pages.
1315          */
1316         if (cnt.v_free_count > 6144)
1317                 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1318         else
1319                 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1320
1321         if (cnt.v_free_count > 2048) {
1322                 cnt.v_cache_min = cnt.v_free_target;
1323                 cnt.v_cache_max = 2 * cnt.v_cache_min;
1324                 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1325         } else {
1326                 cnt.v_cache_min = 0;
1327                 cnt.v_cache_max = 0;
1328                 cnt.v_inactive_target = cnt.v_free_count / 4;
1329         }
1330         if (cnt.v_inactive_target > cnt.v_free_count / 3)
1331                 cnt.v_inactive_target = cnt.v_free_count / 3;
1332
1333         /* XXX does not really belong here */
1334         if (vm_page_max_wired == 0)
1335                 vm_page_max_wired = cnt.v_free_count / 3;
1336
1337         if (vm_pageout_stats_max == 0)
1338                 vm_pageout_stats_max = cnt.v_free_target;
1339
1340         /*
1341          * Set interval in seconds for stats scan.
1342          */
1343         if (vm_pageout_stats_interval == 0)
1344                 vm_pageout_stats_interval = 5;
1345         if (vm_pageout_full_stats_interval == 0)
1346                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1347         
1348
1349         /*
1350          * Set maximum free per pass
1351          */
1352         if (vm_pageout_stats_free_max == 0)
1353                 vm_pageout_stats_free_max = 5;
1354
1355         swap_pager_swap_init();
1356         pass = 0;
1357         /*
1358          * The pageout daemon is never done, so loop forever.
1359          */
1360         while (TRUE) {
1361                 int error;
1362                 int s = splvm();
1363
1364                 /*
1365                  * If we have enough free memory, wakeup waiters.  Do
1366                  * not clear vm_pages_needed until we reach our target,
1367                  * otherwise we may be woken up over and over again and
1368                  * waste a lot of cpu.
1369                  */
1370                 if (vm_pages_needed && !vm_page_count_min()) {
1371                         if (vm_paging_needed() <= 0)
1372                                 vm_pages_needed = 0;
1373                         wakeup(&cnt.v_free_count);
1374                 }
1375                 if (vm_pages_needed) {
1376                         /*
1377                          * Still not done, take a second pass without waiting
1378                          * (unlimited dirty cleaning), otherwise sleep a bit
1379                          * and try again.
1380                          */
1381                         ++pass;
1382                         if (pass > 1)
1383                                 tsleep(&vm_pages_needed, PVM, "psleep", hz/2);
1384                 } else {
1385                         /*
1386                          * Good enough, sleep & handle stats.  Prime the pass
1387                          * for the next run.
1388                          */
1389                         if (pass > 1)
1390                                 pass = 1;
1391                         else
1392                                 pass = 0;
1393                         error = tsleep(&vm_pages_needed,
1394                                 PVM, "psleep", vm_pageout_stats_interval * hz);
1395                         if (error && !vm_pages_needed) {
1396                                 splx(s);
1397                                 pass = 0;
1398                                 vm_pageout_page_stats();
1399                                 continue;
1400                         }
1401                 }
1402
1403                 if (vm_pages_needed)
1404                         cnt.v_pdwakeups++;
1405                 splx(s);
1406                 vm_pageout_scan(pass);
1407                 vm_pageout_deficit = 0;
1408         }
1409 }
1410
1411 void
1412 pagedaemon_wakeup()
1413 {
1414         if (!vm_pages_needed && curproc != pageproc) {
1415                 vm_pages_needed++;
1416                 wakeup(&vm_pages_needed);
1417         }
1418 }
1419
1420 #if !defined(NO_SWAPPING)
1421 static void
1422 vm_req_vmdaemon()
1423 {
1424         static int lastrun = 0;
1425
1426         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1427                 wakeup(&vm_daemon_needed);
1428                 lastrun = ticks;
1429         }
1430 }
1431
1432 static void
1433 vm_daemon()
1434 {
1435         struct proc *p;
1436
1437         while (TRUE) {
1438                 tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1439                 if (vm_pageout_req_swapout) {
1440                         swapout_procs(vm_pageout_req_swapout);
1441                         vm_pageout_req_swapout = 0;
1442                 }
1443                 /*
1444                  * scan the processes for exceeding their rlimits or if
1445                  * process is swapped out -- deactivate pages
1446                  */
1447
1448                 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1449                         vm_pindex_t limit, size;
1450
1451                         /*
1452                          * if this is a system process or if we have already
1453                          * looked at this process, skip it.
1454                          */
1455                         if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1456                                 continue;
1457                         }
1458                         /*
1459                          * if the process is in a non-running type state,
1460                          * don't touch it.
1461                          */
1462                         if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1463                                 continue;
1464                         }
1465                         /*
1466                          * get a limit
1467                          */
1468                         limit = OFF_TO_IDX(
1469                             qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1470                                 p->p_rlimit[RLIMIT_RSS].rlim_max));
1471
1472                         /*
1473                          * let processes that are swapped out really be
1474                          * swapped out set the limit to nothing (will force a
1475                          * swap-out.)
1476                          */
1477                         if ((p->p_flag & P_INMEM) == 0)
1478                                 limit = 0;      /* XXX */
1479
1480                         size = vmspace_resident_count(p->p_vmspace);
1481                         if (limit >= 0 && size >= limit) {
1482                                 vm_pageout_map_deactivate_pages(
1483                                     &p->p_vmspace->vm_map, limit);
1484                         }
1485                 }
1486         }
1487 }
1488 #endif