drm/i915: Reduce ring code differences with Linux
[dragonfly.git] / sys / dev / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  * $FreeBSD: head/sys/dev/drm2/i915/intel_ringbuffer.c 253709 2013-07-27 16:42:29Z kib $
29  */
30
31 #include <drm/drmP.h>
32 #include <drm/i915_drm.h>
33 #include "i915_drv.h"
34 #include "intel_drv.h"
35 #include "intel_ringbuffer.h"
36 #include <sys/sched.h>
37
38 /*
39  * 965+ support PIPE_CONTROL commands, which provide finer grained control
40  * over cache flushing.
41  */
42 struct pipe_control {
43         struct drm_i915_gem_object *obj;
44         volatile u32 *cpu_page;
45         u32 gtt_offset;
46 };
47
48 static inline int ring_space(struct intel_ring_buffer *ring)
49 {
50         int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
51         if (space < 0)
52                 space += ring->size;
53         return space;
54 }
55
56 static int
57 render_ring_flush(struct intel_ring_buffer *ring,
58                   uint32_t      invalidate_domains,
59                   uint32_t      flush_domains)
60 {
61         struct drm_device *dev = ring->dev;
62         uint32_t cmd;
63         int ret;
64
65         /*
66          * read/write caches:
67          *
68          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
69          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
70          * also flushed at 2d versus 3d pipeline switches.
71          *
72          * read-only caches:
73          *
74          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
75          * MI_READ_FLUSH is set, and is always flushed on 965.
76          *
77          * I915_GEM_DOMAIN_COMMAND may not exist?
78          *
79          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
80          * invalidated when MI_EXE_FLUSH is set.
81          *
82          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
83          * invalidated with every MI_FLUSH.
84          *
85          * TLBs:
86          *
87          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
88          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
89          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
90          * are flushed at any MI_FLUSH.
91          */
92
93         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
94         if ((invalidate_domains|flush_domains) &
95             I915_GEM_DOMAIN_RENDER)
96                 cmd &= ~MI_NO_WRITE_FLUSH;
97         if (INTEL_INFO(dev)->gen < 4) {
98                 /*
99                  * On the 965, the sampler cache always gets flushed
100                  * and this bit is reserved.
101                  */
102                 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
103                         cmd |= MI_READ_FLUSH;
104         }
105         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
106                 cmd |= MI_EXE_FLUSH;
107
108         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
109             (IS_G4X(dev) || IS_GEN5(dev)))
110                 cmd |= MI_INVALIDATE_ISP;
111
112         ret = intel_ring_begin(ring, 2);
113         if (ret)
114                 return ret;
115
116         intel_ring_emit(ring, cmd);
117         intel_ring_emit(ring, MI_NOOP);
118         intel_ring_advance(ring);
119
120         return 0;
121 }
122
123 /**
124  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
125  * implementing two workarounds on gen6.  From section 1.4.7.1
126  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
127  *
128  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
129  * produced by non-pipelined state commands), software needs to first
130  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
131  * 0.
132  *
133  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
134  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
135  *
136  * And the workaround for these two requires this workaround first:
137  *
138  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
139  * BEFORE the pipe-control with a post-sync op and no write-cache
140  * flushes.
141  *
142  * And this last workaround is tricky because of the requirements on
143  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
144  * volume 2 part 1:
145  *
146  *     "1 of the following must also be set:
147  *      - Render Target Cache Flush Enable ([12] of DW1)
148  *      - Depth Cache Flush Enable ([0] of DW1)
149  *      - Stall at Pixel Scoreboard ([1] of DW1)
150  *      - Depth Stall ([13] of DW1)
151  *      - Post-Sync Operation ([13] of DW1)
152  *      - Notify Enable ([8] of DW1)"
153  *
154  * The cache flushes require the workaround flush that triggered this
155  * one, so we can't use it.  Depth stall would trigger the same.
156  * Post-sync nonzero is what triggered this second workaround, so we
157  * can't use that one either.  Notify enable is IRQs, which aren't
158  * really our business.  That leaves only stall at scoreboard.
159  */
160 static int
161 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
162 {
163         struct pipe_control *pc = ring->private;
164         u32 scratch_addr = pc->gtt_offset + 128;
165         int ret;
166
167
168         ret = intel_ring_begin(ring, 6);
169         if (ret)
170                 return ret;
171
172         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
173         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
174                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
175         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
176         intel_ring_emit(ring, 0); /* low dword */
177         intel_ring_emit(ring, 0); /* high dword */
178         intel_ring_emit(ring, MI_NOOP);
179         intel_ring_advance(ring);
180
181         ret = intel_ring_begin(ring, 6);
182         if (ret)
183                 return ret;
184
185         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
186         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
187         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
188         intel_ring_emit(ring, 0);
189         intel_ring_emit(ring, 0);
190         intel_ring_emit(ring, MI_NOOP);
191         intel_ring_advance(ring);
192
193         return 0;
194 }
195
196 static int
197 gen6_render_ring_flush(struct intel_ring_buffer *ring,
198                          u32 invalidate_domains, u32 flush_domains)
199 {
200         u32 flags = 0;
201         struct pipe_control *pc = ring->private;
202         u32 scratch_addr = pc->gtt_offset + 128;
203         int ret;
204
205         /* Force SNB workarounds for PIPE_CONTROL flushes */
206         intel_emit_post_sync_nonzero_flush(ring);
207
208         /* Just flush everything.  Experiments have shown that reducing the
209          * number of bits based on the write domains has little performance
210          * impact.
211          */
212         flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
213         flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
214         flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
215         flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
216         flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
217         flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
218         flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
219
220         ret = intel_ring_begin(ring, 6);
221         if (ret)
222                 return ret;
223
224         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
225         intel_ring_emit(ring, flags);
226         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
227         intel_ring_emit(ring, 0); /* lower dword */
228         intel_ring_emit(ring, 0); /* uppwer dword */
229         intel_ring_emit(ring, MI_NOOP);
230         intel_ring_advance(ring);
231
232         return 0;
233 }
234
235 static void ring_write_tail(struct intel_ring_buffer *ring,
236                             uint32_t value)
237 {
238         drm_i915_private_t *dev_priv = ring->dev->dev_private;
239         I915_WRITE_TAIL(ring, value);
240 }
241
242 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
243 {
244         drm_i915_private_t *dev_priv = ring->dev->dev_private;
245         uint32_t acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
246                         RING_ACTHD(ring->mmio_base) : ACTHD;
247
248         return I915_READ(acthd_reg);
249 }
250
251 static int init_ring_common(struct intel_ring_buffer *ring)
252 {
253         drm_i915_private_t *dev_priv = ring->dev->dev_private;
254         struct drm_i915_gem_object *obj = ring->obj;
255         uint32_t head;
256
257         /* Stop the ring if it's running. */
258         I915_WRITE_CTL(ring, 0);
259         I915_WRITE_HEAD(ring, 0);
260         ring->write_tail(ring, 0);
261
262         /* Initialize the ring. */
263         I915_WRITE_START(ring, obj->gtt_offset);
264         head = I915_READ_HEAD(ring) & HEAD_ADDR;
265
266         /* G45 ring initialization fails to reset head to zero */
267         if (head != 0) {
268                 DRM_DEBUG("%s head not reset to zero "
269                               "ctl %08x head %08x tail %08x start %08x\n",
270                               ring->name,
271                               I915_READ_CTL(ring),
272                               I915_READ_HEAD(ring),
273                               I915_READ_TAIL(ring),
274                               I915_READ_START(ring));
275
276                 I915_WRITE_HEAD(ring, 0);
277
278                 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
279                         DRM_ERROR("failed to set %s head to zero "
280                                   "ctl %08x head %08x tail %08x start %08x\n",
281                                   ring->name,
282                                   I915_READ_CTL(ring),
283                                   I915_READ_HEAD(ring),
284                                   I915_READ_TAIL(ring),
285                                   I915_READ_START(ring));
286                 }
287         }
288
289         I915_WRITE_CTL(ring,
290                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
291                         | RING_VALID);
292
293         /* If the head is still not zero, the ring is dead */
294         if (_intel_wait_for(ring->dev,
295             (I915_READ_CTL(ring) & RING_VALID) != 0 &&
296              I915_READ_START(ring) == obj->gtt_offset &&
297              (I915_READ_HEAD(ring) & HEAD_ADDR) == 0,
298             50, 1, "915rii")) {
299                 DRM_ERROR("%s initialization failed "
300                                 "ctl %08x head %08x tail %08x start %08x\n",
301                                 ring->name,
302                                 I915_READ_CTL(ring),
303                                 I915_READ_HEAD(ring),
304                                 I915_READ_TAIL(ring),
305                                 I915_READ_START(ring));
306                 return -EIO;
307         }
308
309         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
310                 i915_kernel_lost_context(ring->dev);
311         else {
312                 ring->head = I915_READ_HEAD(ring);
313                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
314                 ring->space = ring_space(ring);
315         }
316
317         return 0;
318 }
319
320 static int
321 init_pipe_control(struct intel_ring_buffer *ring)
322 {
323         struct pipe_control *pc;
324         struct drm_i915_gem_object *obj;
325         int ret;
326
327         if (ring->private)
328                 return 0;
329
330         pc = kmalloc(sizeof(*pc), DRM_I915_GEM, M_WAITOK);
331         if (!pc)
332                 return -ENOMEM;
333
334         obj = i915_gem_alloc_object(ring->dev, 4096);
335         if (obj == NULL) {
336                 DRM_ERROR("Failed to allocate seqno page\n");
337                 ret = -ENOMEM;
338                 goto err;
339         }
340
341         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
342
343         ret = i915_gem_object_pin(obj, 4096, true);
344         if (ret)
345                 goto err_unref;
346
347         pc->gtt_offset = obj->gtt_offset;
348         pc->cpu_page = (uint32_t *)kmem_alloc_nofault(&kernel_map, PAGE_SIZE, PAGE_SIZE);
349         if (pc->cpu_page == NULL)
350                 goto err_unpin;
351         pmap_qenter((uintptr_t)pc->cpu_page, &obj->pages[0], 1);
352         pmap_invalidate_cache_range((vm_offset_t)pc->cpu_page,
353             (vm_offset_t)pc->cpu_page + PAGE_SIZE);
354
355         pc->obj = obj;
356         ring->private = pc;
357         return 0;
358
359 err_unpin:
360         i915_gem_object_unpin(obj);
361 err_unref:
362         drm_gem_object_unreference(&obj->base);
363 err:
364         drm_free(pc, DRM_I915_GEM);
365         return ret;
366 }
367
368 static void
369 cleanup_pipe_control(struct intel_ring_buffer *ring)
370 {
371         struct pipe_control *pc = ring->private;
372         struct drm_i915_gem_object *obj;
373
374         if (!ring->private)
375                 return;
376
377         obj = pc->obj;
378         pmap_qremove((vm_offset_t)pc->cpu_page, 1);
379         kmem_free(&kernel_map, (uintptr_t)pc->cpu_page, PAGE_SIZE);
380         i915_gem_object_unpin(obj);
381         drm_gem_object_unreference(&obj->base);
382
383         drm_free(pc, DRM_I915_GEM);
384         ring->private = NULL;
385 }
386
387 static int init_render_ring(struct intel_ring_buffer *ring)
388 {
389         struct drm_device *dev = ring->dev;
390         struct drm_i915_private *dev_priv = dev->dev_private;
391         int ret = init_ring_common(ring);
392
393         if (INTEL_INFO(dev)->gen > 3)
394                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
395
396         /* We need to disable the AsyncFlip performance optimisations in order
397          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
398          * programmed to '1' on all products.
399          */
400         if (INTEL_INFO(dev)->gen >= 6)
401                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
402
403         /* Required for the hardware to program scanline values for waiting */
404         if (INTEL_INFO(dev)->gen == 6)
405                 I915_WRITE(GFX_MODE,
406                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
407
408         if (IS_GEN7(dev))
409                 I915_WRITE(GFX_MODE_GEN7,
410                            _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
411                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
412
413         if (INTEL_INFO(dev)->gen >= 5) {
414                 ret = init_pipe_control(ring);
415                 if (ret)
416                         return ret;
417         }
418
419         if (IS_GEN6(dev)) {
420                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
421                  * "If this bit is set, STCunit will have LRA as replacement
422                  *  policy. [...] This bit must be reset.  LRA replacement
423                  *  policy is not supported."
424                  */
425                 I915_WRITE(CACHE_MODE_0,
426                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
427         }
428
429         if (INTEL_INFO(dev)->gen >= 6)
430                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
431
432         if (HAS_L3_GPU_CACHE(dev))
433                 I915_WRITE_IMR(ring, ~GEN6_RENDER_L3_PARITY_ERROR);
434
435         return ret;
436 }
437
438 static void render_ring_cleanup(struct intel_ring_buffer *ring)
439 {
440         if (!ring->private)
441                 return;
442
443         cleanup_pipe_control(ring);
444 }
445
446 static void
447 update_mboxes(struct intel_ring_buffer *ring,
448             u32 seqno,
449             u32 mmio_offset)
450 {
451         intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
452                               MI_SEMAPHORE_GLOBAL_GTT |
453                               MI_SEMAPHORE_REGISTER |
454                               MI_SEMAPHORE_UPDATE);
455         intel_ring_emit(ring, seqno);
456         intel_ring_emit(ring, mmio_offset);
457 }
458
459 /**
460  * gen6_add_request - Update the semaphore mailbox registers
461  * 
462  * @ring - ring that is adding a request
463  * @seqno - return seqno stuck into the ring
464  *
465  * Update the mailbox registers in the *other* rings with the current seqno.
466  * This acts like a signal in the canonical semaphore.
467  */
468 static int
469 gen6_add_request(struct intel_ring_buffer *ring,
470                  u32 *seqno)
471 {
472         u32 mbox1_reg;
473         u32 mbox2_reg;
474         int ret;
475
476         ret = intel_ring_begin(ring, 10);
477         if (ret)
478                 return ret;
479
480         mbox1_reg = ring->signal_mbox[0];
481         mbox2_reg = ring->signal_mbox[1];
482
483         *seqno = i915_gem_next_request_seqno(ring);
484
485         update_mboxes(ring, *seqno, mbox1_reg);
486         update_mboxes(ring, *seqno, mbox2_reg);
487         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
488         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
489         intel_ring_emit(ring, *seqno);
490         intel_ring_emit(ring, MI_USER_INTERRUPT);
491         intel_ring_advance(ring);
492
493         return 0;
494 }
495
496 /**
497  * intel_ring_sync - sync the waiter to the signaller on seqno
498  *
499  * @waiter - ring that is waiting
500  * @signaller - ring which has, or will signal
501  * @seqno - seqno which the waiter will block on
502  */
503 static int
504 intel_ring_sync(struct intel_ring_buffer *waiter,
505                 struct intel_ring_buffer *signaller,
506                 int ring,
507                 u32 seqno)
508 {
509         int ret;
510         u32 dw1 = MI_SEMAPHORE_MBOX |
511                   MI_SEMAPHORE_COMPARE |
512                   MI_SEMAPHORE_REGISTER;
513
514         ret = intel_ring_begin(waiter, 4);
515         if (ret)
516                 return ret;
517
518         intel_ring_emit(waiter, dw1 | signaller->semaphore_register[ring]);
519         intel_ring_emit(waiter, seqno);
520         intel_ring_emit(waiter, 0);
521         intel_ring_emit(waiter, MI_NOOP);
522         intel_ring_advance(waiter);
523
524         return 0;
525 }
526
527 int render_ring_sync_to(struct intel_ring_buffer *waiter,
528     struct intel_ring_buffer *signaller, u32 seqno);
529 int gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
530     struct intel_ring_buffer *signaller, u32 seqno);
531 int gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
532     struct intel_ring_buffer *signaller, u32 seqno);
533
534 /* VCS->RCS (RVSYNC) or BCS->RCS (RBSYNC) */
535 int
536 render_ring_sync_to(struct intel_ring_buffer *waiter,
537                     struct intel_ring_buffer *signaller,
538                     u32 seqno)
539 {
540         KASSERT(signaller->semaphore_register[RCS] != MI_SEMAPHORE_SYNC_INVALID,
541             ("valid RCS semaphore"));
542         return intel_ring_sync(waiter,
543                                signaller,
544                                RCS,
545                                seqno);
546 }
547
548 /* RCS->VCS (VRSYNC) or BCS->VCS (VBSYNC) */
549 int
550 gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
551                       struct intel_ring_buffer *signaller,
552                       u32 seqno)
553 {
554         KASSERT(signaller->semaphore_register[VCS] != MI_SEMAPHORE_SYNC_INVALID,
555             ("Valid VCS semaphore"));
556         return intel_ring_sync(waiter,
557                                signaller,
558                                VCS,
559                                seqno);
560 }
561
562 /* RCS->BCS (BRSYNC) or VCS->BCS (BVSYNC) */
563 int
564 gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
565                       struct intel_ring_buffer *signaller,
566                       u32 seqno)
567 {
568         KASSERT(signaller->semaphore_register[BCS] != MI_SEMAPHORE_SYNC_INVALID,
569             ("Valid BCS semaphore"));
570         return intel_ring_sync(waiter,
571                                signaller,
572                                BCS,
573                                seqno);
574 }
575
576 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
577 do {                                                                    \
578         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
579                  PIPE_CONTROL_DEPTH_STALL);                             \
580         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
581         intel_ring_emit(ring__, 0);                                                     \
582         intel_ring_emit(ring__, 0);                                                     \
583 } while (0)
584
585 static int
586 pc_render_add_request(struct intel_ring_buffer *ring,
587                       uint32_t *result)
588 {
589         u32 seqno = i915_gem_next_request_seqno(ring);
590         struct pipe_control *pc = ring->private;
591         u32 scratch_addr = pc->gtt_offset + 128;
592         int ret;
593
594         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
595          * incoherent with writes to memory, i.e. completely fubar,
596          * so we need to use PIPE_NOTIFY instead.
597          *
598          * However, we also need to workaround the qword write
599          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
600          * memory before requesting an interrupt.
601          */
602         ret = intel_ring_begin(ring, 32);
603         if (ret)
604                 return ret;
605
606         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
607                         PIPE_CONTROL_WRITE_FLUSH |
608                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
609         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
610         intel_ring_emit(ring, seqno);
611         intel_ring_emit(ring, 0);
612         PIPE_CONTROL_FLUSH(ring, scratch_addr);
613         scratch_addr += 128; /* write to separate cachelines */
614         PIPE_CONTROL_FLUSH(ring, scratch_addr);
615         scratch_addr += 128;
616         PIPE_CONTROL_FLUSH(ring, scratch_addr);
617         scratch_addr += 128;
618         PIPE_CONTROL_FLUSH(ring, scratch_addr);
619         scratch_addr += 128;
620         PIPE_CONTROL_FLUSH(ring, scratch_addr);
621         scratch_addr += 128;
622         PIPE_CONTROL_FLUSH(ring, scratch_addr);
623         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
624                         PIPE_CONTROL_WRITE_FLUSH |
625                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
626                         PIPE_CONTROL_NOTIFY);
627         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
628         intel_ring_emit(ring, seqno);
629         intel_ring_emit(ring, 0);
630         intel_ring_advance(ring);
631
632         *result = seqno;
633         return 0;
634 }
635
636 static int
637 render_ring_add_request(struct intel_ring_buffer *ring,
638                         uint32_t *result)
639 {
640         u32 seqno = i915_gem_next_request_seqno(ring);
641         int ret;
642
643         ret = intel_ring_begin(ring, 4);
644         if (ret)
645                 return ret;
646
647         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
648         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
649         intel_ring_emit(ring, seqno);
650         intel_ring_emit(ring, MI_USER_INTERRUPT);
651         intel_ring_advance(ring);
652
653         *result = seqno;
654         return 0;
655 }
656
657 static u32
658 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
659 {
660         /* Workaround to force correct ordering between irq and seqno writes on
661          * ivb (and maybe also on snb) by reading from a CS register (like
662          * ACTHD) before reading the status page. */
663         if (!lazy_coherency)
664                 intel_ring_get_active_head(ring);
665         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
666 }
667
668 static u32
669 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
670 {
671         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
672 }
673
674 static u32
675 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
676 {
677         struct pipe_control *pc = ring->private;
678         return pc->cpu_page[0];
679 }
680
681 static void
682 ironlake_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
683 {
684         dev_priv->gt_irq_mask &= ~mask;
685         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
686         POSTING_READ(GTIMR);
687 }
688
689 static void
690 ironlake_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
691 {
692         dev_priv->gt_irq_mask |= mask;
693         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
694         POSTING_READ(GTIMR);
695 }
696
697 static void
698 i915_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
699 {
700         dev_priv->irq_mask &= ~mask;
701         I915_WRITE(IMR, dev_priv->irq_mask);
702         POSTING_READ(IMR);
703 }
704
705 static void
706 i915_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
707 {
708         dev_priv->irq_mask |= mask;
709         I915_WRITE(IMR, dev_priv->irq_mask);
710         POSTING_READ(IMR);
711 }
712
713 static bool
714 render_ring_get_irq(struct intel_ring_buffer *ring)
715 {
716         struct drm_device *dev = ring->dev;
717         drm_i915_private_t *dev_priv = dev->dev_private;
718
719         if (!dev->irq_enabled)
720                 return false;
721
722         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
723         if (ring->irq_refcount++ == 0) {
724                 if (HAS_PCH_SPLIT(dev))
725                         ironlake_enable_irq(dev_priv,
726                                             GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
727                 else
728                         i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
729         }
730         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
731
732         return true;
733 }
734
735 static void
736 render_ring_put_irq(struct intel_ring_buffer *ring)
737 {
738         struct drm_device *dev = ring->dev;
739         drm_i915_private_t *dev_priv = dev->dev_private;
740
741         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
742         if (--ring->irq_refcount == 0) {
743                 if (HAS_PCH_SPLIT(dev))
744                         ironlake_disable_irq(dev_priv,
745                                              GT_USER_INTERRUPT |
746                                              GT_PIPE_NOTIFY);
747                 else
748                         i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
749         }
750         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
751 }
752
753 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
754 {
755         struct drm_device *dev = ring->dev;
756         drm_i915_private_t *dev_priv = dev->dev_private;
757         uint32_t mmio = 0;
758
759         /* The ring status page addresses are no longer next to the rest of
760          * the ring registers as of gen7.
761          */
762         if (IS_GEN7(dev)) {
763                 switch (ring->id) {
764                 case RCS:
765                         mmio = RENDER_HWS_PGA_GEN7;
766                         break;
767                 case BCS:
768                         mmio = BLT_HWS_PGA_GEN7;
769                         break;
770                 case VCS:
771                         mmio = BSD_HWS_PGA_GEN7;
772                         break;
773                 }
774         } else if (IS_GEN6(dev)) {
775                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
776         } else {
777                 mmio = RING_HWS_PGA(ring->mmio_base);
778         }
779
780         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
781         POSTING_READ(mmio);
782 }
783
784 static int
785 bsd_ring_flush(struct intel_ring_buffer *ring,
786                uint32_t     invalidate_domains,
787                uint32_t     flush_domains)
788 {
789         int ret;
790
791         ret = intel_ring_begin(ring, 2);
792         if (ret)
793                 return ret;
794
795         intel_ring_emit(ring, MI_FLUSH);
796         intel_ring_emit(ring, MI_NOOP);
797         intel_ring_advance(ring);
798         return 0;
799 }
800
801 static int
802 ring_add_request(struct intel_ring_buffer *ring,
803                  uint32_t *result)
804 {
805         uint32_t seqno;
806         int ret;
807
808         ret = intel_ring_begin(ring, 4);
809         if (ret)
810                 return ret;
811
812         seqno = i915_gem_next_request_seqno(ring);
813
814         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
815         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
816         intel_ring_emit(ring, seqno);
817         intel_ring_emit(ring, MI_USER_INTERRUPT);
818         intel_ring_advance(ring);
819
820         *result = seqno;
821         return 0;
822 }
823
824 static bool
825 gen6_ring_get_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag)
826 {
827         struct drm_device *dev = ring->dev;
828         drm_i915_private_t *dev_priv = dev->dev_private;
829
830         if (!dev->irq_enabled)
831                return false;
832
833         gen6_gt_force_wake_get(dev_priv);
834
835         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
836         if (ring->irq_refcount++ == 0) {
837                 ring->irq_mask &= ~rflag;
838                 I915_WRITE_IMR(ring, ring->irq_mask);
839                 ironlake_enable_irq(dev_priv, gflag);
840         }
841         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
842
843         return true;
844 }
845
846 static void
847 gen6_ring_put_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag)
848 {
849         struct drm_device *dev = ring->dev;
850         drm_i915_private_t *dev_priv = dev->dev_private;
851
852         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
853         if (--ring->irq_refcount == 0) {
854                 ring->irq_mask |= rflag;
855                 I915_WRITE_IMR(ring, ring->irq_mask);
856                 ironlake_disable_irq(dev_priv, gflag);
857         }
858         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
859
860         gen6_gt_force_wake_put(dev_priv);
861 }
862
863 static bool
864 bsd_ring_get_irq(struct intel_ring_buffer *ring)
865 {
866         struct drm_device *dev = ring->dev;
867         drm_i915_private_t *dev_priv = dev->dev_private;
868
869         if (!dev->irq_enabled)
870                 return false;
871
872         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
873         if (ring->irq_refcount++ == 0) {
874                 if (IS_G4X(dev))
875                         i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
876                 else
877                         ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
878         }
879         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
880
881         return true;
882 }
883 static void
884 bsd_ring_put_irq(struct intel_ring_buffer *ring)
885 {
886         struct drm_device *dev = ring->dev;
887         drm_i915_private_t *dev_priv = dev->dev_private;
888
889         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
890         if (--ring->irq_refcount == 0) {
891                 if (IS_G4X(dev))
892                         i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
893                 else
894                         ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
895         }
896         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
897 }
898
899 static int
900 ring_dispatch_execbuffer(struct intel_ring_buffer *ring, uint32_t offset,
901     uint32_t length)
902 {
903         int ret;
904
905         ret = intel_ring_begin(ring, 2);
906         if (ret)
907                 return ret;
908
909         intel_ring_emit(ring,
910                         MI_BATCH_BUFFER_START | (2 << 6) |
911                         MI_BATCH_NON_SECURE_I965);
912         intel_ring_emit(ring, offset);
913         intel_ring_advance(ring);
914
915         return 0;
916 }
917
918 static int
919 render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
920                                 uint32_t offset, uint32_t len)
921 {
922         struct drm_device *dev = ring->dev;
923         int ret;
924
925         if (IS_I830(dev) || IS_845G(dev)) {
926                 ret = intel_ring_begin(ring, 4);
927                 if (ret)
928                         return ret;
929
930                 intel_ring_emit(ring, MI_BATCH_BUFFER);
931                 intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
932                 intel_ring_emit(ring, offset + len - 8);
933                 intel_ring_emit(ring, 0);
934         } else {
935                 ret = intel_ring_begin(ring, 2);
936                 if (ret)
937                         return ret;
938
939                 if (INTEL_INFO(dev)->gen >= 4) {
940                         intel_ring_emit(ring,
941                                         MI_BATCH_BUFFER_START | (2 << 6) |
942                                         MI_BATCH_NON_SECURE_I965);
943                         intel_ring_emit(ring, offset);
944                 } else {
945                         intel_ring_emit(ring,
946                                         MI_BATCH_BUFFER_START | (2 << 6));
947                         intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
948                 }
949         }
950         intel_ring_advance(ring);
951
952         return 0;
953 }
954
955 static void cleanup_status_page(struct intel_ring_buffer *ring)
956 {
957         drm_i915_private_t *dev_priv = ring->dev->dev_private;
958         struct drm_i915_gem_object *obj;
959
960         obj = ring->status_page.obj;
961         if (obj == NULL)
962                 return;
963
964         pmap_qremove((vm_offset_t)ring->status_page.page_addr, 1);
965         kmem_free(&kernel_map, (vm_offset_t)ring->status_page.page_addr,
966             PAGE_SIZE);
967         i915_gem_object_unpin(obj);
968         drm_gem_object_unreference(&obj->base);
969         ring->status_page.obj = NULL;
970
971         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
972 }
973
974 static int init_status_page(struct intel_ring_buffer *ring)
975 {
976         struct drm_device *dev = ring->dev;
977         drm_i915_private_t *dev_priv = dev->dev_private;
978         struct drm_i915_gem_object *obj;
979         int ret;
980
981         obj = i915_gem_alloc_object(dev, 4096);
982         if (obj == NULL) {
983                 DRM_ERROR("Failed to allocate status page\n");
984                 ret = -ENOMEM;
985                 goto err;
986         }
987
988         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
989
990         ret = i915_gem_object_pin(obj, 4096, true);
991         if (ret != 0) {
992                 goto err_unref;
993         }
994
995         ring->status_page.gfx_addr = obj->gtt_offset;
996         ring->status_page.page_addr = (void *)kmem_alloc_nofault(&kernel_map,
997             PAGE_SIZE, PAGE_SIZE);
998         if (ring->status_page.page_addr == NULL) {
999                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
1000                 goto err_unpin;
1001         }
1002         pmap_qenter((vm_offset_t)ring->status_page.page_addr, &obj->pages[0],
1003             1);
1004         pmap_invalidate_cache_range((vm_offset_t)ring->status_page.page_addr,
1005             (vm_offset_t)ring->status_page.page_addr + PAGE_SIZE);
1006         ring->status_page.obj = obj;
1007         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1008
1009         intel_ring_setup_status_page(ring);
1010         DRM_DEBUG("i915: init_status_page %s hws offset: 0x%08x\n",
1011                         ring->name, ring->status_page.gfx_addr);
1012
1013         return 0;
1014
1015 err_unpin:
1016         i915_gem_object_unpin(obj);
1017 err_unref:
1018         drm_gem_object_unreference(&obj->base);
1019 err:
1020         return ret;
1021 }
1022
1023 static int intel_init_ring_buffer(struct drm_device *dev,
1024                                   struct intel_ring_buffer *ring)
1025 {
1026         struct drm_i915_gem_object *obj;
1027         int ret;
1028
1029         ring->dev = dev;
1030         INIT_LIST_HEAD(&ring->active_list);
1031         INIT_LIST_HEAD(&ring->request_list);
1032         INIT_LIST_HEAD(&ring->gpu_write_list);
1033
1034         lockinit(&ring->irq_lock, "ringb", 0, LK_CANRECURSE);
1035         ring->irq_mask = ~0;
1036
1037         init_waitqueue_head(&ring->irq_queue);
1038
1039         if (I915_NEED_GFX_HWS(dev)) {
1040                 ret = init_status_page(ring);
1041                 if (ret)
1042                         return ret;
1043         }
1044
1045         obj = i915_gem_alloc_object(dev, ring->size);
1046         if (obj == NULL) {
1047                 DRM_ERROR("Failed to allocate ringbuffer\n");
1048                 ret = -ENOMEM;
1049                 goto err_hws;
1050         }
1051
1052         ring->obj = obj;
1053
1054         ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
1055         if (ret)
1056                 goto err_unref;
1057
1058         ring->map.size = ring->size;
1059         ring->map.offset = dev->agp->base + obj->gtt_offset;
1060         ring->map.type = 0;
1061         ring->map.flags = 0;
1062         ring->map.mtrr = 0;
1063
1064         drm_core_ioremap_wc(&ring->map, dev);
1065         if (ring->map.virtual == NULL) {
1066                 DRM_ERROR("Failed to map ringbuffer.\n");
1067                 ret = -EINVAL;
1068                 goto err_unpin;
1069         }
1070
1071         ring->virtual_start = ring->map.virtual;
1072         ret = ring->init(ring);
1073         if (ret)
1074                 goto err_unmap;
1075
1076         /* Workaround an erratum on the i830 which causes a hang if
1077          * the TAIL pointer points to within the last 2 cachelines
1078          * of the buffer.
1079          */
1080         ring->effective_size = ring->size;
1081         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1082                 ring->effective_size -= 128;
1083
1084         return 0;
1085
1086 err_unmap:
1087         drm_core_ioremapfree(&ring->map, dev);
1088 err_unpin:
1089         i915_gem_object_unpin(obj);
1090 err_unref:
1091         drm_gem_object_unreference(&obj->base);
1092         ring->obj = NULL;
1093 err_hws:
1094         cleanup_status_page(ring);
1095         return ret;
1096 }
1097
1098 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1099 {
1100         struct drm_i915_private *dev_priv;
1101         int ret;
1102
1103         if (ring->obj == NULL)
1104                 return;
1105
1106         /* Disable the ring buffer. The ring must be idle at this point */
1107         dev_priv = ring->dev->dev_private;
1108         ret = intel_ring_idle(ring);
1109         if (ret)
1110                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1111                           ring->name, ret);
1112
1113         I915_WRITE_CTL(ring, 0);
1114
1115         drm_core_ioremapfree(&ring->map, ring->dev);
1116
1117         i915_gem_object_unpin(ring->obj);
1118         drm_gem_object_unreference(&ring->obj->base);
1119         ring->obj = NULL;
1120
1121         if (ring->cleanup)
1122                 ring->cleanup(ring);
1123
1124         cleanup_status_page(ring);
1125 }
1126
1127 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1128 {
1129         int ret;
1130
1131         ret = i915_wait_seqno(ring, seqno);
1132         if (!ret)
1133                 i915_gem_retire_requests_ring(ring);
1134
1135         return ret;
1136 }
1137
1138 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1139 {
1140         struct drm_i915_gem_request *request;
1141         u32 seqno = 0;
1142         int ret;
1143
1144         i915_gem_retire_requests_ring(ring);
1145
1146         if (ring->last_retired_head != -1) {
1147                 ring->head = ring->last_retired_head;
1148                 ring->last_retired_head = -1;
1149                 ring->space = ring_space(ring);
1150                 if (ring->space >= n)
1151                         return 0;
1152         }
1153
1154         list_for_each_entry(request, &ring->request_list, list) {
1155                 int space;
1156
1157                 if (request->tail == -1)
1158                         continue;
1159
1160                 space = request->tail - (ring->tail + 8);
1161                 if (space < 0)
1162                         space += ring->size;
1163                 if (space >= n) {
1164                         seqno = request->seqno;
1165                         break;
1166                 }
1167
1168                 /* Consume this request in case we need more space than
1169                  * is available and so need to prevent a race between
1170                  * updating last_retired_head and direct reads of
1171                  * I915_RING_HEAD. It also provides a nice sanity check.
1172                  */
1173                 request->tail = -1;
1174         }
1175
1176         if (seqno == 0)
1177                 return -ENOSPC;
1178
1179         ret = intel_ring_wait_seqno(ring, seqno);
1180         if (ret)
1181                 return ret;
1182
1183         if (ring->last_retired_head == -1)
1184                 return -ENOSPC;
1185
1186         ring->head = ring->last_retired_head;
1187         ring->last_retired_head = -1;
1188         ring->space = ring_space(ring);
1189         if (ring->space < n)
1190                 return -ENOSPC;
1191
1192         return 0;
1193 }
1194
1195 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1196 {
1197         struct drm_device *dev = ring->dev;
1198         struct drm_i915_private *dev_priv = dev->dev_private;
1199         unsigned long end;
1200         int ret;
1201
1202         ret = intel_ring_wait_request(ring, n);
1203         if (ret != -ENOSPC)
1204                 return ret;
1205
1206         /* With GEM the hangcheck timer should kick us out of the loop,
1207          * leaving it early runs the risk of corrupting GEM state (due
1208          * to running on almost untested codepaths). But on resume
1209          * timers don't work yet, so prevent a complete hang in that
1210          * case by choosing an insanely large timeout. */
1211         end = ticks + 60 * hz;
1212
1213         do {
1214                 ring->head = I915_READ_HEAD(ring);
1215                 ring->space = ring_space(ring);
1216                 if (ring->space >= n) {
1217                         return 0;
1218                 }
1219
1220 #if 0
1221                 if (dev->primary->master) {
1222                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1223                         if (master_priv->sarea_priv)
1224                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1225                 }
1226 #else
1227                 if (dev_priv->sarea_priv)
1228                         dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1229 #endif
1230
1231                 DELAY(1000);
1232
1233                 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
1234                 if (ret)
1235                         return ret;
1236         } while (!time_after(ticks, end));
1237         return -EBUSY;
1238 }
1239
1240 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1241 {
1242         uint32_t __iomem *virt;
1243         int rem = ring->size - ring->tail;
1244
1245         if (ring->space < rem) {
1246                 int ret = ring_wait_for_space(ring, rem);
1247                 if (ret)
1248                         return ret;
1249         }
1250
1251         virt = (unsigned int *)((char *)ring->virtual_start + ring->tail);
1252         rem /= 4;
1253         while (rem--)
1254                 *virt++ = MI_NOOP;
1255
1256         ring->tail = 0;
1257         ring->space = ring_space(ring);
1258
1259         return 0;
1260 }
1261
1262 int intel_ring_idle(struct intel_ring_buffer *ring)
1263 {
1264         return ring_wait_for_space(ring, ring->size - 8);
1265 }
1266
1267 int intel_ring_begin(struct intel_ring_buffer *ring,
1268                      int num_dwords)
1269 {
1270         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1271         int n = 4*num_dwords;
1272         int ret;
1273
1274         ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
1275         if (ret)
1276                 return ret;
1277
1278         if (unlikely(ring->tail + n > ring->effective_size)) {
1279                 ret = intel_wrap_ring_buffer(ring);
1280                 if (unlikely(ret))
1281                         return ret;
1282         }
1283
1284         if (unlikely(ring->space < n)) {
1285                 ret = ring_wait_for_space(ring, n);
1286                 if (unlikely(ret))
1287                         return ret;
1288         }
1289
1290         ring->space -= n;
1291         return 0;
1292 }
1293
1294 void intel_ring_advance(struct intel_ring_buffer *ring)
1295 {
1296         ring->tail &= ring->size - 1;
1297         ring->write_tail(ring, ring->tail);
1298 }
1299
1300 static const struct intel_ring_buffer render_ring = {
1301         .name                   = "render ring",
1302         .id                     = RCS,
1303         .mmio_base              = RENDER_RING_BASE,
1304         .size                   = 32 * PAGE_SIZE,
1305         .init                   = init_render_ring,
1306         .write_tail             = ring_write_tail,
1307         .flush                  = render_ring_flush,
1308         .add_request            = render_ring_add_request,
1309         .get_seqno              = ring_get_seqno,
1310         .irq_get                = render_ring_get_irq,
1311         .irq_put                = render_ring_put_irq,
1312         .dispatch_execbuffer    = render_ring_dispatch_execbuffer,
1313         .cleanup                = render_ring_cleanup,
1314         .sync_to                = render_ring_sync_to,
1315         .semaphore_register     = {MI_SEMAPHORE_SYNC_INVALID,
1316                                    MI_SEMAPHORE_SYNC_RV,
1317                                    MI_SEMAPHORE_SYNC_RB},
1318         .signal_mbox            = {GEN6_VRSYNC, GEN6_BRSYNC},
1319 };
1320
1321 /* ring buffer for bit-stream decoder */
1322
1323 static const struct intel_ring_buffer bsd_ring = {
1324         .name                   = "bsd ring",
1325         .id                     = VCS,
1326         .mmio_base              = BSD_RING_BASE,
1327         .size                   = 32 * PAGE_SIZE,
1328         .init                   = init_ring_common,
1329         .write_tail             = ring_write_tail,
1330         .flush                  = bsd_ring_flush,
1331         .add_request            = ring_add_request,
1332         .get_seqno              = ring_get_seqno,
1333         .irq_get                = bsd_ring_get_irq,
1334         .irq_put                = bsd_ring_put_irq,
1335         .dispatch_execbuffer    = ring_dispatch_execbuffer,
1336 };
1337
1338
1339 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1340                                      u32 value)
1341 {
1342         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1343
1344        /* Every tail move must follow the sequence below */
1345
1346         /* Disable notification that the ring is IDLE. The GT
1347          * will then assume that it is busy and bring it out of rc6.
1348          */
1349         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1350                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1351
1352         /* Clear the context id. Here be magic! */
1353         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1354
1355         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1356         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1357                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1358                      50))
1359                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1360
1361         /* Now that the ring is fully powered up, update the tail */
1362         I915_WRITE_TAIL(ring, value);
1363         POSTING_READ(RING_TAIL(ring->mmio_base));
1364
1365         /* Let the ring send IDLE messages to the GT again,
1366          * and so let it sleep to conserve power when idle.
1367          */
1368         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1369                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1370 }
1371
1372 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1373                            uint32_t invalidate, uint32_t flush)
1374 {
1375         uint32_t cmd;
1376         int ret;
1377
1378         ret = intel_ring_begin(ring, 4);
1379         if (ret)
1380                 return ret;
1381
1382         cmd = MI_FLUSH_DW;
1383         if (invalidate & I915_GEM_GPU_DOMAINS)
1384                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1385         intel_ring_emit(ring, cmd);
1386         intel_ring_emit(ring, 0);
1387         intel_ring_emit(ring, 0);
1388         intel_ring_emit(ring, MI_NOOP);
1389         intel_ring_advance(ring);
1390         return 0;
1391 }
1392
1393 static int
1394 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1395                               uint32_t offset, uint32_t len)
1396 {
1397         int ret;
1398
1399         ret = intel_ring_begin(ring, 2);
1400         if (ret)
1401                 return ret;
1402
1403         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
1404         /* bit0-7 is the length on GEN6+ */
1405         intel_ring_emit(ring, offset);
1406         intel_ring_advance(ring);
1407
1408         return 0;
1409 }
1410
1411 static bool
1412 gen6_render_ring_get_irq(struct intel_ring_buffer *ring)
1413 {
1414         return gen6_ring_get_irq(ring,
1415                                  GT_USER_INTERRUPT,
1416                                  GEN6_RENDER_USER_INTERRUPT);
1417 }
1418
1419 static void
1420 gen6_render_ring_put_irq(struct intel_ring_buffer *ring)
1421 {
1422         return gen6_ring_put_irq(ring,
1423                                  GT_USER_INTERRUPT,
1424                                  GEN6_RENDER_USER_INTERRUPT);
1425 }
1426
1427 static bool
1428 gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring)
1429 {
1430         return gen6_ring_get_irq(ring,
1431                                  GT_GEN6_BSD_USER_INTERRUPT,
1432                                  GEN6_BSD_USER_INTERRUPT);
1433 }
1434
1435 static void
1436 gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring)
1437 {
1438         return gen6_ring_put_irq(ring,
1439                                  GT_GEN6_BSD_USER_INTERRUPT,
1440                                  GEN6_BSD_USER_INTERRUPT);
1441 }
1442
1443 /* ring buffer for Video Codec for Gen6+ */
1444 static const struct intel_ring_buffer gen6_bsd_ring = {
1445         .name                   = "gen6 bsd ring",
1446         .id                     = VCS,
1447         .mmio_base              = GEN6_BSD_RING_BASE,
1448         .size                   = 32 * PAGE_SIZE,
1449         .init                   = init_ring_common,
1450         .write_tail             = gen6_bsd_ring_write_tail,
1451         .flush                  = gen6_ring_flush,
1452         .add_request            = gen6_add_request,
1453         .get_seqno              = gen6_ring_get_seqno,
1454         .irq_get                = gen6_bsd_ring_get_irq,
1455         .irq_put                = gen6_bsd_ring_put_irq,
1456         .dispatch_execbuffer    = gen6_ring_dispatch_execbuffer,
1457         .sync_to                = gen6_bsd_ring_sync_to,
1458         .semaphore_register     = {MI_SEMAPHORE_SYNC_VR,
1459                                    MI_SEMAPHORE_SYNC_INVALID,
1460                                    MI_SEMAPHORE_SYNC_VB},
1461         .signal_mbox            = {GEN6_RVSYNC, GEN6_BVSYNC},
1462 };
1463
1464 /* Blitter support (SandyBridge+) */
1465
1466 static bool
1467 blt_ring_get_irq(struct intel_ring_buffer *ring)
1468 {
1469         return gen6_ring_get_irq(ring,
1470                                  GT_GEN6_BLT_USER_INTERRUPT,
1471                                  GEN6_BLITTER_USER_INTERRUPT);
1472 }
1473
1474 static void
1475 blt_ring_put_irq(struct intel_ring_buffer *ring)
1476 {
1477         gen6_ring_put_irq(ring,
1478                           GT_GEN6_BLT_USER_INTERRUPT,
1479                           GEN6_BLITTER_USER_INTERRUPT);
1480 }
1481
1482 static int blt_ring_flush(struct intel_ring_buffer *ring,
1483                           uint32_t invalidate, uint32_t flush)
1484 {
1485         uint32_t cmd;
1486         int ret;
1487
1488         ret = intel_ring_begin(ring, 4);
1489         if (ret)
1490                 return ret;
1491
1492         cmd = MI_FLUSH_DW;
1493         if (invalidate & I915_GEM_DOMAIN_RENDER)
1494                 cmd |= MI_INVALIDATE_TLB;
1495         intel_ring_emit(ring, cmd);
1496         intel_ring_emit(ring, 0);
1497         intel_ring_emit(ring, 0);
1498         intel_ring_emit(ring, MI_NOOP);
1499         intel_ring_advance(ring);
1500         return 0;
1501 }
1502
1503 static const struct intel_ring_buffer gen6_blt_ring = {
1504         .name                   = "blt ring",
1505         .id                     = BCS,
1506         .mmio_base              = BLT_RING_BASE,
1507         .size                   = 32 * PAGE_SIZE,
1508         .init                   = init_ring_common,
1509         .write_tail             = ring_write_tail,
1510         .flush                  = blt_ring_flush,
1511         .add_request            = gen6_add_request,
1512         .get_seqno              = gen6_ring_get_seqno,
1513         .irq_get                = blt_ring_get_irq,
1514         .irq_put                = blt_ring_put_irq,
1515         .dispatch_execbuffer    = gen6_ring_dispatch_execbuffer,
1516         .sync_to                = gen6_blt_ring_sync_to,
1517         .semaphore_register     = {MI_SEMAPHORE_SYNC_BR,
1518                                    MI_SEMAPHORE_SYNC_BV,
1519                                    MI_SEMAPHORE_SYNC_INVALID},
1520         .signal_mbox            = {GEN6_RBSYNC, GEN6_VBSYNC},
1521 };
1522
1523 int intel_init_render_ring_buffer(struct drm_device *dev)
1524 {
1525         drm_i915_private_t *dev_priv = dev->dev_private;
1526         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1527
1528         *ring = render_ring;
1529         if (INTEL_INFO(dev)->gen >= 6) {
1530                 ring->add_request = gen6_add_request;
1531                 ring->flush = gen6_render_ring_flush;
1532                 ring->irq_get = gen6_render_ring_get_irq;
1533                 ring->irq_put = gen6_render_ring_put_irq;
1534                 ring->get_seqno = gen6_ring_get_seqno;
1535         } else if (IS_GEN5(dev)) {
1536                 ring->add_request = pc_render_add_request;
1537                 ring->get_seqno = pc_render_get_seqno;
1538         }
1539
1540         if (!I915_NEED_GFX_HWS(dev)) {
1541                 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1542                 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1543         }
1544
1545         return intel_init_ring_buffer(dev, ring);
1546 }
1547
1548 int intel_render_ring_init_dri(struct drm_device *dev, uint64_t start,
1549     uint32_t size)
1550 {
1551         drm_i915_private_t *dev_priv = dev->dev_private;
1552         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1553
1554         *ring = render_ring;
1555         if (INTEL_INFO(dev)->gen >= 6) {
1556                 ring->add_request = gen6_add_request;
1557                 ring->irq_get = gen6_render_ring_get_irq;
1558                 ring->irq_put = gen6_render_ring_put_irq;
1559         } else if (IS_GEN5(dev)) {
1560                 ring->add_request = pc_render_add_request;
1561                 ring->get_seqno = pc_render_get_seqno;
1562         }
1563
1564         ring->dev = dev;
1565         INIT_LIST_HEAD(&ring->active_list);
1566         INIT_LIST_HEAD(&ring->request_list);
1567         INIT_LIST_HEAD(&ring->gpu_write_list);
1568
1569         ring->size = size;
1570         ring->effective_size = ring->size;
1571         if (IS_I830(ring->dev))
1572                 ring->effective_size -= 128;
1573
1574         ring->map.offset = start;
1575         ring->map.size = size;
1576         ring->map.type = 0;
1577         ring->map.flags = 0;
1578         ring->map.mtrr = 0;
1579
1580         drm_core_ioremap_wc(&ring->map, dev);
1581         if (ring->map.virtual == NULL) {
1582                 DRM_ERROR("can not ioremap virtual address for"
1583                           " ring buffer\n");
1584                 return -ENOMEM;
1585         }
1586
1587         ring->virtual_start = (void *)ring->map.virtual;
1588         return 0;
1589 }
1590
1591 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1592 {
1593         drm_i915_private_t *dev_priv = dev->dev_private;
1594         struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1595
1596         if (IS_GEN6(dev) || IS_GEN7(dev))
1597                 *ring = gen6_bsd_ring;
1598         else
1599                 *ring = bsd_ring;
1600
1601         return intel_init_ring_buffer(dev, ring);
1602 }
1603
1604 int intel_init_blt_ring_buffer(struct drm_device *dev)
1605 {
1606         drm_i915_private_t *dev_priv = dev->dev_private;
1607         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1608
1609         *ring = gen6_blt_ring;
1610
1611         return intel_init_ring_buffer(dev, ring);
1612 }
1613
1614 int
1615 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
1616 {
1617         int ret;
1618
1619         if (!ring->gpu_caches_dirty)
1620                 return 0;
1621
1622         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
1623         if (ret)
1624                 return ret;
1625
1626         ring->gpu_caches_dirty = false;
1627         return 0;
1628 }
1629
1630 int
1631 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
1632 {
1633         uint32_t flush_domains;
1634         int ret;
1635
1636         flush_domains = 0;
1637         if (ring->gpu_caches_dirty)
1638                 flush_domains = I915_GEM_GPU_DOMAINS;
1639
1640         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
1641         if (ret)
1642                 return ret;
1643
1644         ring->gpu_caches_dirty = false;
1645         return 0;
1646 }