Merge branch 'vendor/TNFTP'
[dragonfly.git] / contrib / binutils-2.20 / gold / i386.cc
1 // i386.cc -- i386 target support for gold.
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "i386.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "copy-relocs.h"
36 #include "target.h"
37 #include "target-reloc.h"
38 #include "target-select.h"
39 #include "tls.h"
40 #include "freebsd.h"
41 #include "gc.h"
42
43 namespace
44 {
45
46 using namespace gold;
47
48 class Output_data_plt_i386;
49
50 // The i386 target class.
51 // TLS info comes from
52 //   http://people.redhat.com/drepper/tls.pdf
53 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
54
55 class Target_i386 : public Target_freebsd<32, false>
56 {
57  public:
58   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
59
60   Target_i386()
61     : Target_freebsd<32, false>(&i386_info),
62       got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
63       copy_relocs_(elfcpp::R_386_COPY), dynbss_(NULL),
64       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false)
65   { }
66
67   // Process the relocations to determine unreferenced sections for 
68   // garbage collection.
69   void
70   gc_process_relocs(const General_options& options,
71                     Symbol_table* symtab,
72                     Layout* layout,
73                     Sized_relobj<32, false>* object,
74                     unsigned int data_shndx,
75                     unsigned int sh_type,
76                     const unsigned char* prelocs,
77                     size_t reloc_count,
78                     Output_section* output_section,
79                     bool needs_special_offset_handling,
80                     size_t local_symbol_count,
81                     const unsigned char* plocal_symbols);
82
83   // Scan the relocations to look for symbol adjustments.
84   void
85   scan_relocs(const General_options& options,
86               Symbol_table* symtab,
87               Layout* layout,
88               Sized_relobj<32, false>* object,
89               unsigned int data_shndx,
90               unsigned int sh_type,
91               const unsigned char* prelocs,
92               size_t reloc_count,
93               Output_section* output_section,
94               bool needs_special_offset_handling,
95               size_t local_symbol_count,
96               const unsigned char* plocal_symbols);
97
98   // Finalize the sections.
99   void
100   do_finalize_sections(Layout*);
101
102   // Return the value to use for a dynamic which requires special
103   // treatment.
104   uint64_t
105   do_dynsym_value(const Symbol*) const;
106
107   // Relocate a section.
108   void
109   relocate_section(const Relocate_info<32, false>*,
110                    unsigned int sh_type,
111                    const unsigned char* prelocs,
112                    size_t reloc_count,
113                    Output_section* output_section,
114                    bool needs_special_offset_handling,
115                    unsigned char* view,
116                    elfcpp::Elf_types<32>::Elf_Addr view_address,
117                    section_size_type view_size,
118                    const Reloc_symbol_changes*);
119
120   // Scan the relocs during a relocatable link.
121   void
122   scan_relocatable_relocs(const General_options& options,
123                           Symbol_table* symtab,
124                           Layout* layout,
125                           Sized_relobj<32, false>* object,
126                           unsigned int data_shndx,
127                           unsigned int sh_type,
128                           const unsigned char* prelocs,
129                           size_t reloc_count,
130                           Output_section* output_section,
131                           bool needs_special_offset_handling,
132                           size_t local_symbol_count,
133                           const unsigned char* plocal_symbols,
134                           Relocatable_relocs*);
135
136   // Relocate a section during a relocatable link.
137   void
138   relocate_for_relocatable(const Relocate_info<32, false>*,
139                            unsigned int sh_type,
140                            const unsigned char* prelocs,
141                            size_t reloc_count,
142                            Output_section* output_section,
143                            off_t offset_in_output_section,
144                            const Relocatable_relocs*,
145                            unsigned char* view,
146                            elfcpp::Elf_types<32>::Elf_Addr view_address,
147                            section_size_type view_size,
148                            unsigned char* reloc_view,
149                            section_size_type reloc_view_size);
150
151   // Return a string used to fill a code section with nops.
152   std::string
153   do_code_fill(section_size_type length) const;
154
155   // Return whether SYM is defined by the ABI.
156   bool
157   do_is_defined_by_abi(const Symbol* sym) const
158   { return strcmp(sym->name(), "___tls_get_addr") == 0; }
159
160   // Return whether a symbol name implies a local label.  The UnixWare
161   // 2.1 cc generates temporary symbols that start with .X, so we
162   // recognize them here.  FIXME: do other SVR4 compilers also use .X?.
163   // If so, we should move the .X recognition into
164   // Target::do_is_local_label_name.
165   bool
166   do_is_local_label_name(const char* name) const
167   {
168     if (name[0] == '.' && name[1] == 'X')
169       return true;
170     return Target::do_is_local_label_name(name);
171   }
172
173   // Adjust -fstack-split code which calls non-stack-split code.
174   void
175   do_calls_non_split(Relobj* object, unsigned int shndx,
176                      section_offset_type fnoffset, section_size_type fnsize,
177                      unsigned char* view, section_size_type view_size,
178                      std::string* from, std::string* to) const;
179
180   // Return the size of the GOT section.
181   section_size_type
182   got_size()
183   {
184     gold_assert(this->got_ != NULL);
185     return this->got_->data_size();
186   }
187
188  private:
189   // The class which scans relocations.
190   struct Scan
191   {
192     inline void
193     local(const General_options& options, Symbol_table* symtab,
194           Layout* layout, Target_i386* target,
195           Sized_relobj<32, false>* object,
196           unsigned int data_shndx,
197           Output_section* output_section,
198           const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
199           const elfcpp::Sym<32, false>& lsym);
200
201     inline void
202     global(const General_options& options, Symbol_table* symtab,
203            Layout* layout, Target_i386* target,
204            Sized_relobj<32, false>* object,
205            unsigned int data_shndx,
206            Output_section* output_section,
207            const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
208            Symbol* gsym);
209
210     static void
211     unsupported_reloc_local(Sized_relobj<32, false>*, unsigned int r_type);
212
213     static void
214     unsupported_reloc_global(Sized_relobj<32, false>*, unsigned int r_type,
215                              Symbol*);
216   };
217
218   // The class which implements relocation.
219   class Relocate
220   {
221    public:
222     Relocate()
223       : skip_call_tls_get_addr_(false),
224         local_dynamic_type_(LOCAL_DYNAMIC_NONE)
225     { }
226
227     ~Relocate()
228     {
229       if (this->skip_call_tls_get_addr_)
230         {
231           // FIXME: This needs to specify the location somehow.
232           gold_error(_("missing expected TLS relocation"));
233         }
234     }
235
236     // Return whether the static relocation needs to be applied.
237     inline bool
238     should_apply_static_reloc(const Sized_symbol<32>* gsym,
239                               int ref_flags,
240                               bool is_32bit,
241                               Output_section* output_section);
242
243     // Do a relocation.  Return false if the caller should not issue
244     // any warnings about this relocation.
245     inline bool
246     relocate(const Relocate_info<32, false>*, Target_i386*, Output_section*,
247              size_t relnum, const elfcpp::Rel<32, false>&,
248              unsigned int r_type, const Sized_symbol<32>*,
249              const Symbol_value<32>*,
250              unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
251              section_size_type);
252
253    private:
254     // Do a TLS relocation.
255     inline void
256     relocate_tls(const Relocate_info<32, false>*, Target_i386* target,
257                  size_t relnum, const elfcpp::Rel<32, false>&,
258                  unsigned int r_type, const Sized_symbol<32>*,
259                  const Symbol_value<32>*,
260                  unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
261                  section_size_type);
262
263     // Do a TLS General-Dynamic to Initial-Exec transition.
264     inline void
265     tls_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
266                  Output_segment* tls_segment,
267                  const elfcpp::Rel<32, false>&, unsigned int r_type,
268                  elfcpp::Elf_types<32>::Elf_Addr value,
269                  unsigned char* view,
270                  section_size_type view_size);
271
272     // Do a TLS General-Dynamic to Local-Exec transition.
273     inline void
274     tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
275                  Output_segment* tls_segment,
276                  const elfcpp::Rel<32, false>&, unsigned int r_type,
277                  elfcpp::Elf_types<32>::Elf_Addr value,
278                  unsigned char* view,
279                  section_size_type view_size);
280
281     // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Initial-Exec
282     // transition.
283     inline void
284     tls_desc_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
285                       Output_segment* tls_segment,
286                       const elfcpp::Rel<32, false>&, unsigned int r_type,
287                       elfcpp::Elf_types<32>::Elf_Addr value,
288                       unsigned char* view,
289                       section_size_type view_size);
290
291     // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Local-Exec
292     // transition.
293     inline void
294     tls_desc_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
295                       Output_segment* tls_segment,
296                       const elfcpp::Rel<32, false>&, unsigned int r_type,
297                       elfcpp::Elf_types<32>::Elf_Addr value,
298                       unsigned char* view,
299                       section_size_type view_size);
300
301     // Do a TLS Local-Dynamic to Local-Exec transition.
302     inline void
303     tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
304                  Output_segment* tls_segment,
305                  const elfcpp::Rel<32, false>&, unsigned int r_type,
306                  elfcpp::Elf_types<32>::Elf_Addr value,
307                  unsigned char* view,
308                  section_size_type view_size);
309
310     // Do a TLS Initial-Exec to Local-Exec transition.
311     static inline void
312     tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
313                  Output_segment* tls_segment,
314                  const elfcpp::Rel<32, false>&, unsigned int r_type,
315                  elfcpp::Elf_types<32>::Elf_Addr value,
316                  unsigned char* view,
317                  section_size_type view_size);
318
319     // We need to keep track of which type of local dynamic relocation
320     // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
321     enum Local_dynamic_type
322     {
323       LOCAL_DYNAMIC_NONE,
324       LOCAL_DYNAMIC_SUN,
325       LOCAL_DYNAMIC_GNU
326     };
327
328     // This is set if we should skip the next reloc, which should be a
329     // PLT32 reloc against ___tls_get_addr.
330     bool skip_call_tls_get_addr_;
331     // The type of local dynamic relocation we have seen in the section
332     // being relocated, if any.
333     Local_dynamic_type local_dynamic_type_;
334   };
335
336   // A class which returns the size required for a relocation type,
337   // used while scanning relocs during a relocatable link.
338   class Relocatable_size_for_reloc
339   {
340    public:
341     unsigned int
342     get_size_for_reloc(unsigned int, Relobj*);
343   };
344
345   // Adjust TLS relocation type based on the options and whether this
346   // is a local symbol.
347   static tls::Tls_optimization
348   optimize_tls_reloc(bool is_final, int r_type);
349
350   // Get the GOT section, creating it if necessary.
351   Output_data_got<32, false>*
352   got_section(Symbol_table*, Layout*);
353
354   // Get the GOT PLT section.
355   Output_data_space*
356   got_plt_section() const
357   {
358     gold_assert(this->got_plt_ != NULL);
359     return this->got_plt_;
360   }
361
362   // Create a PLT entry for a global symbol.
363   void
364   make_plt_entry(Symbol_table*, Layout*, Symbol*);
365
366   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
367   void
368   define_tls_base_symbol(Symbol_table*, Layout*);
369
370   // Create a GOT entry for the TLS module index.
371   unsigned int
372   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
373                       Sized_relobj<32, false>* object);
374
375   // Get the PLT section.
376   const Output_data_plt_i386*
377   plt_section() const
378   {
379     gold_assert(this->plt_ != NULL);
380     return this->plt_;
381   }
382
383   // Get the dynamic reloc section, creating it if necessary.
384   Reloc_section*
385   rel_dyn_section(Layout*);
386
387   // Add a potential copy relocation.
388   void
389   copy_reloc(Symbol_table* symtab, Layout* layout,
390              Sized_relobj<32, false>* object,
391              unsigned int shndx, Output_section* output_section,
392              Symbol* sym, const elfcpp::Rel<32, false>& reloc)
393   {
394     this->copy_relocs_.copy_reloc(symtab, layout,
395                                   symtab->get_sized_symbol<32>(sym),
396                                   object, shndx, output_section, reloc,
397                                   this->rel_dyn_section(layout));
398   }
399
400   // Information about this specific target which we pass to the
401   // general Target structure.
402   static const Target::Target_info i386_info;
403
404   // The types of GOT entries needed for this platform.
405   enum Got_type
406   {
407     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
408     GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
409     GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
410     GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
411     GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
412   };
413
414   // The GOT section.
415   Output_data_got<32, false>* got_;
416   // The PLT section.
417   Output_data_plt_i386* plt_;
418   // The GOT PLT section.
419   Output_data_space* got_plt_;
420   // The dynamic reloc section.
421   Reloc_section* rel_dyn_;
422   // Relocs saved to avoid a COPY reloc.
423   Copy_relocs<elfcpp::SHT_REL, 32, false> copy_relocs_;
424   // Space for variables copied with a COPY reloc.
425   Output_data_space* dynbss_;
426   // Offset of the GOT entry for the TLS module index.
427   unsigned int got_mod_index_offset_;
428   // True if the _TLS_MODULE_BASE_ symbol has been defined.
429   bool tls_base_symbol_defined_;
430 };
431
432 const Target::Target_info Target_i386::i386_info =
433 {
434   32,                   // size
435   false,                // is_big_endian
436   elfcpp::EM_386,       // machine_code
437   false,                // has_make_symbol
438   false,                // has_resolve
439   true,                 // has_code_fill
440   true,                 // is_default_stack_executable
441   '\0',                 // wrap_char
442   "/usr/lib/libc.so.1", // dynamic_linker
443   0x08048000,           // default_text_segment_address
444   0x1000,               // abi_pagesize (overridable by -z max-page-size)
445   0x1000,               // common_pagesize (overridable by -z common-page-size)
446   elfcpp::SHN_UNDEF,    // small_common_shndx
447   elfcpp::SHN_UNDEF,    // large_common_shndx
448   0,                    // small_common_section_flags
449   0                     // large_common_section_flags
450 };
451
452 // Get the GOT section, creating it if necessary.
453
454 Output_data_got<32, false>*
455 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
456 {
457   if (this->got_ == NULL)
458     {
459       gold_assert(symtab != NULL && layout != NULL);
460
461       this->got_ = new Output_data_got<32, false>();
462
463       Output_section* os;
464       os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
465                                            (elfcpp::SHF_ALLOC
466                                             | elfcpp::SHF_WRITE),
467                                            this->got_);
468       os->set_is_relro();
469
470       // The old GNU linker creates a .got.plt section.  We just
471       // create another set of data in the .got section.  Note that we
472       // always create a PLT if we create a GOT, although the PLT
473       // might be empty.
474       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
475       os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
476                                            (elfcpp::SHF_ALLOC
477                                             | elfcpp::SHF_WRITE),
478                                            this->got_plt_);
479       os->set_is_relro();
480
481       // The first three entries are reserved.
482       this->got_plt_->set_current_data_size(3 * 4);
483
484       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
485       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
486                                     this->got_plt_,
487                                     0, 0, elfcpp::STT_OBJECT,
488                                     elfcpp::STB_LOCAL,
489                                     elfcpp::STV_HIDDEN, 0,
490                                     false, false);
491     }
492
493   return this->got_;
494 }
495
496 // Get the dynamic reloc section, creating it if necessary.
497
498 Target_i386::Reloc_section*
499 Target_i386::rel_dyn_section(Layout* layout)
500 {
501   if (this->rel_dyn_ == NULL)
502     {
503       gold_assert(layout != NULL);
504       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
505       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
506                                       elfcpp::SHF_ALLOC, this->rel_dyn_);
507     }
508   return this->rel_dyn_;
509 }
510
511 // A class to handle the PLT data.
512
513 class Output_data_plt_i386 : public Output_section_data
514 {
515  public:
516   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
517
518   Output_data_plt_i386(Layout*, Output_data_space*);
519
520   // Add an entry to the PLT.
521   void
522   add_entry(Symbol* gsym);
523
524   // Return the .rel.plt section data.
525   const Reloc_section*
526   rel_plt() const
527   { return this->rel_; }
528
529  protected:
530   void
531   do_adjust_output_section(Output_section* os);
532
533   // Write to a map file.
534   void
535   do_print_to_mapfile(Mapfile* mapfile) const
536   { mapfile->print_output_data(this, _("** PLT")); }
537
538  private:
539   // The size of an entry in the PLT.
540   static const int plt_entry_size = 16;
541
542   // The first entry in the PLT for an executable.
543   static unsigned char exec_first_plt_entry[plt_entry_size];
544
545   // The first entry in the PLT for a shared object.
546   static unsigned char dyn_first_plt_entry[plt_entry_size];
547
548   // Other entries in the PLT for an executable.
549   static unsigned char exec_plt_entry[plt_entry_size];
550
551   // Other entries in the PLT for a shared object.
552   static unsigned char dyn_plt_entry[plt_entry_size];
553
554   // Set the final size.
555   void
556   set_final_data_size()
557   { this->set_data_size((this->count_ + 1) * plt_entry_size); }
558
559   // Write out the PLT data.
560   void
561   do_write(Output_file*);
562
563   // The reloc section.
564   Reloc_section* rel_;
565   // The .got.plt section.
566   Output_data_space* got_plt_;
567   // The number of PLT entries.
568   unsigned int count_;
569 };
570
571 // Create the PLT section.  The ordinary .got section is an argument,
572 // since we need to refer to the start.  We also create our own .got
573 // section just for PLT entries.
574
575 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
576                                            Output_data_space* got_plt)
577   : Output_section_data(4), got_plt_(got_plt), count_(0)
578 {
579   this->rel_ = new Reloc_section(false);
580   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
581                                   elfcpp::SHF_ALLOC, this->rel_);
582 }
583
584 void
585 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
586 {
587   // UnixWare sets the entsize of .plt to 4, and so does the old GNU
588   // linker, and so do we.
589   os->set_entsize(4);
590 }
591
592 // Add an entry to the PLT.
593
594 void
595 Output_data_plt_i386::add_entry(Symbol* gsym)
596 {
597   gold_assert(!gsym->has_plt_offset());
598
599   // Note that when setting the PLT offset we skip the initial
600   // reserved PLT entry.
601   gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
602
603   ++this->count_;
604
605   section_offset_type got_offset = this->got_plt_->current_data_size();
606
607   // Every PLT entry needs a GOT entry which points back to the PLT
608   // entry (this will be changed by the dynamic linker, normally
609   // lazily when the function is called).
610   this->got_plt_->set_current_data_size(got_offset + 4);
611
612   // Every PLT entry needs a reloc.
613   gsym->set_needs_dynsym_entry();
614   this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
615                          got_offset);
616
617   // Note that we don't need to save the symbol.  The contents of the
618   // PLT are independent of which symbols are used.  The symbols only
619   // appear in the relocations.
620 }
621
622 // The first entry in the PLT for an executable.
623
624 unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
625 {
626   0xff, 0x35,   // pushl contents of memory address
627   0, 0, 0, 0,   // replaced with address of .got + 4
628   0xff, 0x25,   // jmp indirect
629   0, 0, 0, 0,   // replaced with address of .got + 8
630   0, 0, 0, 0    // unused
631 };
632
633 // The first entry in the PLT for a shared object.
634
635 unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
636 {
637   0xff, 0xb3, 4, 0, 0, 0,       // pushl 4(%ebx)
638   0xff, 0xa3, 8, 0, 0, 0,       // jmp *8(%ebx)
639   0, 0, 0, 0                    // unused
640 };
641
642 // Subsequent entries in the PLT for an executable.
643
644 unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
645 {
646   0xff, 0x25,   // jmp indirect
647   0, 0, 0, 0,   // replaced with address of symbol in .got
648   0x68,         // pushl immediate
649   0, 0, 0, 0,   // replaced with offset into relocation table
650   0xe9,         // jmp relative
651   0, 0, 0, 0    // replaced with offset to start of .plt
652 };
653
654 // Subsequent entries in the PLT for a shared object.
655
656 unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
657 {
658   0xff, 0xa3,   // jmp *offset(%ebx)
659   0, 0, 0, 0,   // replaced with offset of symbol in .got
660   0x68,         // pushl immediate
661   0, 0, 0, 0,   // replaced with offset into relocation table
662   0xe9,         // jmp relative
663   0, 0, 0, 0    // replaced with offset to start of .plt
664 };
665
666 // Write out the PLT.  This uses the hand-coded instructions above,
667 // and adjusts them as needed.  This is all specified by the i386 ELF
668 // Processor Supplement.
669
670 void
671 Output_data_plt_i386::do_write(Output_file* of)
672 {
673   const off_t offset = this->offset();
674   const section_size_type oview_size =
675     convert_to_section_size_type(this->data_size());
676   unsigned char* const oview = of->get_output_view(offset, oview_size);
677
678   const off_t got_file_offset = this->got_plt_->offset();
679   const section_size_type got_size =
680     convert_to_section_size_type(this->got_plt_->data_size());
681   unsigned char* const got_view = of->get_output_view(got_file_offset,
682                                                       got_size);
683
684   unsigned char* pov = oview;
685
686   elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
687   elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
688
689   if (parameters->options().output_is_position_independent())
690     memcpy(pov, dyn_first_plt_entry, plt_entry_size);
691   else
692     {
693       memcpy(pov, exec_first_plt_entry, plt_entry_size);
694       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
695       elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
696     }
697   pov += plt_entry_size;
698
699   unsigned char* got_pov = got_view;
700
701   memset(got_pov, 0, 12);
702   got_pov += 12;
703
704   const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
705
706   unsigned int plt_offset = plt_entry_size;
707   unsigned int plt_rel_offset = 0;
708   unsigned int got_offset = 12;
709   const unsigned int count = this->count_;
710   for (unsigned int i = 0;
711        i < count;
712        ++i,
713          pov += plt_entry_size,
714          got_pov += 4,
715          plt_offset += plt_entry_size,
716          plt_rel_offset += rel_size,
717          got_offset += 4)
718     {
719       // Set and adjust the PLT entry itself.
720
721       if (parameters->options().output_is_position_independent())
722         {
723           memcpy(pov, dyn_plt_entry, plt_entry_size);
724           elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
725         }
726       else
727         {
728           memcpy(pov, exec_plt_entry, plt_entry_size);
729           elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
730                                                       (got_address
731                                                        + got_offset));
732         }
733
734       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
735       elfcpp::Swap<32, false>::writeval(pov + 12,
736                                         - (plt_offset + plt_entry_size));
737
738       // Set the entry in the GOT.
739       elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
740     }
741
742   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
743   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
744
745   of->write_output_view(offset, oview_size, oview);
746   of->write_output_view(got_file_offset, got_size, got_view);
747 }
748
749 // Create a PLT entry for a global symbol.
750
751 void
752 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
753 {
754   if (gsym->has_plt_offset())
755     return;
756
757   if (this->plt_ == NULL)
758     {
759       // Create the GOT sections first.
760       this->got_section(symtab, layout);
761
762       this->plt_ = new Output_data_plt_i386(layout, this->got_plt_);
763       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
764                                       (elfcpp::SHF_ALLOC
765                                        | elfcpp::SHF_EXECINSTR),
766                                       this->plt_);
767     }
768
769   this->plt_->add_entry(gsym);
770 }
771
772 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
773
774 void
775 Target_i386::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
776 {
777   if (this->tls_base_symbol_defined_)
778     return;
779
780   Output_segment* tls_segment = layout->tls_segment();
781   if (tls_segment != NULL)
782     {
783       bool is_exec = parameters->options().output_is_executable();
784       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
785                                        tls_segment, 0, 0,
786                                        elfcpp::STT_TLS,
787                                        elfcpp::STB_LOCAL,
788                                        elfcpp::STV_HIDDEN, 0,
789                                        (is_exec
790                                         ? Symbol::SEGMENT_END
791                                         : Symbol::SEGMENT_START),
792                                        true);
793     }
794   this->tls_base_symbol_defined_ = true;
795 }
796
797 // Create a GOT entry for the TLS module index.
798
799 unsigned int
800 Target_i386::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
801                                  Sized_relobj<32, false>* object)
802 {
803   if (this->got_mod_index_offset_ == -1U)
804     {
805       gold_assert(symtab != NULL && layout != NULL && object != NULL);
806       Reloc_section* rel_dyn = this->rel_dyn_section(layout);
807       Output_data_got<32, false>* got = this->got_section(symtab, layout);
808       unsigned int got_offset = got->add_constant(0);
809       rel_dyn->add_local(object, 0, elfcpp::R_386_TLS_DTPMOD32, got,
810                          got_offset);
811       got->add_constant(0);
812       this->got_mod_index_offset_ = got_offset;
813     }
814   return this->got_mod_index_offset_;
815 }
816
817 // Optimize the TLS relocation type based on what we know about the
818 // symbol.  IS_FINAL is true if the final address of this symbol is
819 // known at link time.
820
821 tls::Tls_optimization
822 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
823 {
824   // If we are generating a shared library, then we can't do anything
825   // in the linker.
826   if (parameters->options().shared())
827     return tls::TLSOPT_NONE;
828
829   switch (r_type)
830     {
831     case elfcpp::R_386_TLS_GD:
832     case elfcpp::R_386_TLS_GOTDESC:
833     case elfcpp::R_386_TLS_DESC_CALL:
834       // These are General-Dynamic which permits fully general TLS
835       // access.  Since we know that we are generating an executable,
836       // we can convert this to Initial-Exec.  If we also know that
837       // this is a local symbol, we can further switch to Local-Exec.
838       if (is_final)
839         return tls::TLSOPT_TO_LE;
840       return tls::TLSOPT_TO_IE;
841
842     case elfcpp::R_386_TLS_LDM:
843       // This is Local-Dynamic, which refers to a local symbol in the
844       // dynamic TLS block.  Since we know that we generating an
845       // executable, we can switch to Local-Exec.
846       return tls::TLSOPT_TO_LE;
847
848     case elfcpp::R_386_TLS_LDO_32:
849       // Another type of Local-Dynamic relocation.
850       return tls::TLSOPT_TO_LE;
851
852     case elfcpp::R_386_TLS_IE:
853     case elfcpp::R_386_TLS_GOTIE:
854     case elfcpp::R_386_TLS_IE_32:
855       // These are Initial-Exec relocs which get the thread offset
856       // from the GOT.  If we know that we are linking against the
857       // local symbol, we can switch to Local-Exec, which links the
858       // thread offset into the instruction.
859       if (is_final)
860         return tls::TLSOPT_TO_LE;
861       return tls::TLSOPT_NONE;
862
863     case elfcpp::R_386_TLS_LE:
864     case elfcpp::R_386_TLS_LE_32:
865       // When we already have Local-Exec, there is nothing further we
866       // can do.
867       return tls::TLSOPT_NONE;
868
869     default:
870       gold_unreachable();
871     }
872 }
873
874 // Report an unsupported relocation against a local symbol.
875
876 void
877 Target_i386::Scan::unsupported_reloc_local(Sized_relobj<32, false>* object,
878                                            unsigned int r_type)
879 {
880   gold_error(_("%s: unsupported reloc %u against local symbol"),
881              object->name().c_str(), r_type);
882 }
883
884 // Scan a relocation for a local symbol.
885
886 inline void
887 Target_i386::Scan::local(const General_options&,
888                          Symbol_table* symtab,
889                          Layout* layout,
890                          Target_i386* target,
891                          Sized_relobj<32, false>* object,
892                          unsigned int data_shndx,
893                          Output_section* output_section,
894                          const elfcpp::Rel<32, false>& reloc,
895                          unsigned int r_type,
896                          const elfcpp::Sym<32, false>& lsym)
897 {
898   switch (r_type)
899     {
900     case elfcpp::R_386_NONE:
901     case elfcpp::R_386_GNU_VTINHERIT:
902     case elfcpp::R_386_GNU_VTENTRY:
903       break;
904
905     case elfcpp::R_386_32:
906       // If building a shared library (or a position-independent
907       // executable), we need to create a dynamic relocation for
908       // this location. The relocation applied at link time will
909       // apply the link-time value, so we flag the location with
910       // an R_386_RELATIVE relocation so the dynamic loader can
911       // relocate it easily.
912       if (parameters->options().output_is_position_independent())
913         {
914           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
915           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
916           rel_dyn->add_local_relative(object, r_sym, elfcpp::R_386_RELATIVE,
917                                       output_section, data_shndx,
918                                       reloc.get_r_offset());
919         }
920       break;
921
922     case elfcpp::R_386_16:
923     case elfcpp::R_386_8:
924       // If building a shared library (or a position-independent
925       // executable), we need to create a dynamic relocation for
926       // this location. Because the addend needs to remain in the
927       // data section, we need to be careful not to apply this
928       // relocation statically.
929       if (parameters->options().output_is_position_independent())
930         {
931           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
932           unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
933           if (lsym.get_st_type() != elfcpp::STT_SECTION)
934             rel_dyn->add_local(object, r_sym, r_type, output_section,
935                                data_shndx, reloc.get_r_offset());
936           else
937             {
938               gold_assert(lsym.get_st_value() == 0);
939               unsigned int shndx = lsym.get_st_shndx();
940               bool is_ordinary;
941               shndx = object->adjust_sym_shndx(r_sym, shndx,
942                                                &is_ordinary);
943               if (!is_ordinary)
944                 object->error(_("section symbol %u has bad shndx %u"),
945                               r_sym, shndx);
946               else
947                 rel_dyn->add_local_section(object, shndx,
948                                            r_type, output_section,
949                                            data_shndx, reloc.get_r_offset());
950             }
951         }
952       break;
953
954     case elfcpp::R_386_PC32:
955     case elfcpp::R_386_PC16:
956     case elfcpp::R_386_PC8:
957       break;
958
959     case elfcpp::R_386_PLT32:
960       // Since we know this is a local symbol, we can handle this as a
961       // PC32 reloc.
962       break;
963
964     case elfcpp::R_386_GOTOFF:
965     case elfcpp::R_386_GOTPC:
966       // We need a GOT section.
967       target->got_section(symtab, layout);
968       break;
969
970     case elfcpp::R_386_GOT32:
971       {
972         // The symbol requires a GOT entry.
973         Output_data_got<32, false>* got = target->got_section(symtab, layout);
974         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
975         if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
976           {
977             // If we are generating a shared object, we need to add a
978             // dynamic RELATIVE relocation for this symbol's GOT entry.
979             if (parameters->options().output_is_position_independent())
980               {
981                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
982                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
983                 rel_dyn->add_local_relative(
984                     object, r_sym, elfcpp::R_386_RELATIVE, got,
985                     object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
986               }
987           }
988       }
989       break;
990
991       // These are relocations which should only be seen by the
992       // dynamic linker, and should never be seen here.
993     case elfcpp::R_386_COPY:
994     case elfcpp::R_386_GLOB_DAT:
995     case elfcpp::R_386_JUMP_SLOT:
996     case elfcpp::R_386_RELATIVE:
997     case elfcpp::R_386_TLS_TPOFF:
998     case elfcpp::R_386_TLS_DTPMOD32:
999     case elfcpp::R_386_TLS_DTPOFF32:
1000     case elfcpp::R_386_TLS_TPOFF32:
1001     case elfcpp::R_386_TLS_DESC:
1002       gold_error(_("%s: unexpected reloc %u in object file"),
1003                  object->name().c_str(), r_type);
1004       break;
1005
1006       // These are initial TLS relocs, which are expected when
1007       // linking.
1008     case elfcpp::R_386_TLS_GD:            // Global-dynamic
1009     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
1010     case elfcpp::R_386_TLS_DESC_CALL:
1011     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
1012     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
1013     case elfcpp::R_386_TLS_IE:            // Initial-exec
1014     case elfcpp::R_386_TLS_IE_32:
1015     case elfcpp::R_386_TLS_GOTIE:
1016     case elfcpp::R_386_TLS_LE:            // Local-exec
1017     case elfcpp::R_386_TLS_LE_32:
1018       {
1019         bool output_is_shared = parameters->options().shared();
1020         const tls::Tls_optimization optimized_type
1021             = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
1022         switch (r_type)
1023           {
1024           case elfcpp::R_386_TLS_GD:          // Global-dynamic
1025             if (optimized_type == tls::TLSOPT_NONE)
1026               {
1027                 // Create a pair of GOT entries for the module index and
1028                 // dtv-relative offset.
1029                 Output_data_got<32, false>* got
1030                     = target->got_section(symtab, layout);
1031                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1032                 unsigned int shndx = lsym.get_st_shndx();
1033                 bool is_ordinary;
1034                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1035                 if (!is_ordinary)
1036                   object->error(_("local symbol %u has bad shndx %u"),
1037                               r_sym, shndx);
1038                 else
1039                   got->add_local_pair_with_rel(object, r_sym, shndx,
1040                                                GOT_TYPE_TLS_PAIR,
1041                                                target->rel_dyn_section(layout),
1042                                                elfcpp::R_386_TLS_DTPMOD32, 0);
1043               }
1044             else if (optimized_type != tls::TLSOPT_TO_LE)
1045               unsupported_reloc_local(object, r_type);
1046             break;
1047
1048           case elfcpp::R_386_TLS_GOTDESC:     // Global-dynamic (from ~oliva)
1049             target->define_tls_base_symbol(symtab, layout);
1050             if (optimized_type == tls::TLSOPT_NONE)
1051               {
1052                 // Create a double GOT entry with an R_386_TLS_DESC reloc.
1053                 Output_data_got<32, false>* got
1054                     = target->got_section(symtab, layout);
1055                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1056                 unsigned int shndx = lsym.get_st_shndx();
1057                 bool is_ordinary;
1058                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1059                 if (!is_ordinary)
1060                   object->error(_("local symbol %u has bad shndx %u"),
1061                               r_sym, shndx);
1062                 else
1063                   got->add_local_pair_with_rel(object, r_sym, shndx,
1064                                                GOT_TYPE_TLS_DESC,
1065                                                target->rel_dyn_section(layout),
1066                                                elfcpp::R_386_TLS_DESC, 0);
1067               }
1068             else if (optimized_type != tls::TLSOPT_TO_LE)
1069               unsupported_reloc_local(object, r_type);
1070             break;
1071
1072           case elfcpp::R_386_TLS_DESC_CALL:
1073             break;
1074
1075           case elfcpp::R_386_TLS_LDM:         // Local-dynamic
1076             if (optimized_type == tls::TLSOPT_NONE)
1077               {
1078                 // Create a GOT entry for the module index.
1079                 target->got_mod_index_entry(symtab, layout, object);
1080               }
1081             else if (optimized_type != tls::TLSOPT_TO_LE)
1082               unsupported_reloc_local(object, r_type);
1083             break;
1084
1085           case elfcpp::R_386_TLS_LDO_32:      // Alternate local-dynamic
1086             break;
1087
1088           case elfcpp::R_386_TLS_IE:          // Initial-exec
1089           case elfcpp::R_386_TLS_IE_32:
1090           case elfcpp::R_386_TLS_GOTIE:
1091             layout->set_has_static_tls();
1092             if (optimized_type == tls::TLSOPT_NONE)
1093               {
1094                 // For the R_386_TLS_IE relocation, we need to create a
1095                 // dynamic relocation when building a shared library.
1096                 if (r_type == elfcpp::R_386_TLS_IE
1097                     && parameters->options().shared())
1098                   {
1099                     Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1100                     unsigned int r_sym
1101                         = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1102                     rel_dyn->add_local_relative(object, r_sym,
1103                                                 elfcpp::R_386_RELATIVE,
1104                                                 output_section, data_shndx,
1105                                                 reloc.get_r_offset());
1106                   }
1107                 // Create a GOT entry for the tp-relative offset.
1108                 Output_data_got<32, false>* got
1109                     = target->got_section(symtab, layout);
1110                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1111                 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
1112                                            ? elfcpp::R_386_TLS_TPOFF32
1113                                            : elfcpp::R_386_TLS_TPOFF);
1114                 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
1115                                          ? GOT_TYPE_TLS_OFFSET
1116                                          : GOT_TYPE_TLS_NOFFSET);
1117                 got->add_local_with_rel(object, r_sym, got_type,
1118                                         target->rel_dyn_section(layout),
1119                                         dyn_r_type);
1120               }
1121             else if (optimized_type != tls::TLSOPT_TO_LE)
1122               unsupported_reloc_local(object, r_type);
1123             break;
1124
1125           case elfcpp::R_386_TLS_LE:          // Local-exec
1126           case elfcpp::R_386_TLS_LE_32:
1127             layout->set_has_static_tls();
1128             if (output_is_shared)
1129               {
1130                 // We need to create a dynamic relocation.
1131                 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
1132                 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1133                 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
1134                                            ? elfcpp::R_386_TLS_TPOFF32
1135                                            : elfcpp::R_386_TLS_TPOFF);
1136                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1137                 rel_dyn->add_local(object, r_sym, dyn_r_type, output_section,
1138                                    data_shndx, reloc.get_r_offset());
1139               }
1140             break;
1141
1142           default:
1143             gold_unreachable();
1144           }
1145       }
1146       break;
1147
1148     case elfcpp::R_386_32PLT:
1149     case elfcpp::R_386_TLS_GD_32:
1150     case elfcpp::R_386_TLS_GD_PUSH:
1151     case elfcpp::R_386_TLS_GD_CALL:
1152     case elfcpp::R_386_TLS_GD_POP:
1153     case elfcpp::R_386_TLS_LDM_32:
1154     case elfcpp::R_386_TLS_LDM_PUSH:
1155     case elfcpp::R_386_TLS_LDM_CALL:
1156     case elfcpp::R_386_TLS_LDM_POP:
1157     case elfcpp::R_386_USED_BY_INTEL_200:
1158     default:
1159       unsupported_reloc_local(object, r_type);
1160       break;
1161     }
1162 }
1163
1164 // Report an unsupported relocation against a global symbol.
1165
1166 void
1167 Target_i386::Scan::unsupported_reloc_global(Sized_relobj<32, false>* object,
1168                                             unsigned int r_type,
1169                                             Symbol* gsym)
1170 {
1171   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1172              object->name().c_str(), r_type, gsym->demangled_name().c_str());
1173 }
1174
1175 // Scan a relocation for a global symbol.
1176
1177 inline void
1178 Target_i386::Scan::global(const General_options&,
1179                           Symbol_table* symtab,
1180                           Layout* layout,
1181                           Target_i386* target,
1182                           Sized_relobj<32, false>* object,
1183                           unsigned int data_shndx,
1184                           Output_section* output_section,
1185                           const elfcpp::Rel<32, false>& reloc,
1186                           unsigned int r_type,
1187                           Symbol* gsym)
1188 {
1189   switch (r_type)
1190     {
1191     case elfcpp::R_386_NONE:
1192     case elfcpp::R_386_GNU_VTINHERIT:
1193     case elfcpp::R_386_GNU_VTENTRY:
1194       break;
1195
1196     case elfcpp::R_386_32:
1197     case elfcpp::R_386_16:
1198     case elfcpp::R_386_8:
1199       {
1200         // Make a PLT entry if necessary.
1201         if (gsym->needs_plt_entry())
1202           {
1203             target->make_plt_entry(symtab, layout, gsym);
1204             // Since this is not a PC-relative relocation, we may be
1205             // taking the address of a function. In that case we need to
1206             // set the entry in the dynamic symbol table to the address of
1207             // the PLT entry.
1208             if (gsym->is_from_dynobj() && !parameters->options().shared())
1209               gsym->set_needs_dynsym_value();
1210           }
1211         // Make a dynamic relocation if necessary.
1212         if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
1213           {
1214             if (gsym->may_need_copy_reloc())
1215               {
1216                 target->copy_reloc(symtab, layout, object,
1217                                    data_shndx, output_section, gsym, reloc);
1218               }
1219             else if (r_type == elfcpp::R_386_32
1220                      && gsym->can_use_relative_reloc(false))
1221               {
1222                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1223                 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1224                                              output_section, object,
1225                                              data_shndx, reloc.get_r_offset());
1226               }
1227             else
1228               {
1229                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1230                 rel_dyn->add_global(gsym, r_type, output_section, object,
1231                                     data_shndx, reloc.get_r_offset());
1232               }
1233           }
1234       }
1235       break;
1236
1237     case elfcpp::R_386_PC32:
1238     case elfcpp::R_386_PC16:
1239     case elfcpp::R_386_PC8:
1240       {
1241         // Make a PLT entry if necessary.
1242         if (gsym->needs_plt_entry())
1243           {
1244             // These relocations are used for function calls only in
1245             // non-PIC code.  For a 32-bit relocation in a shared library,
1246             // we'll need a text relocation anyway, so we can skip the
1247             // PLT entry and let the dynamic linker bind the call directly
1248             // to the target.  For smaller relocations, we should use a
1249             // PLT entry to ensure that the call can reach.
1250             if (!parameters->options().shared()
1251                 || r_type != elfcpp::R_386_PC32)
1252               target->make_plt_entry(symtab, layout, gsym);
1253           }
1254         // Make a dynamic relocation if necessary.
1255         int flags = Symbol::NON_PIC_REF;
1256         if (gsym->type() == elfcpp::STT_FUNC)
1257           flags |= Symbol::FUNCTION_CALL;
1258         if (gsym->needs_dynamic_reloc(flags))
1259           {
1260             if (gsym->may_need_copy_reloc())
1261               {
1262                 target->copy_reloc(symtab, layout, object,
1263                                    data_shndx, output_section, gsym, reloc);
1264               }
1265             else
1266               {
1267                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1268                 rel_dyn->add_global(gsym, r_type, output_section, object,
1269                                     data_shndx, reloc.get_r_offset());
1270               }
1271           }
1272       }
1273       break;
1274
1275     case elfcpp::R_386_GOT32:
1276       {
1277         // The symbol requires a GOT entry.
1278         Output_data_got<32, false>* got = target->got_section(symtab, layout);
1279         if (gsym->final_value_is_known())
1280           got->add_global(gsym, GOT_TYPE_STANDARD);
1281         else
1282           {
1283             // If this symbol is not fully resolved, we need to add a
1284             // GOT entry with a dynamic relocation.
1285             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1286             if (gsym->is_from_dynobj()
1287                 || gsym->is_undefined()
1288                 || gsym->is_preemptible())
1289               got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
1290                                        rel_dyn, elfcpp::R_386_GLOB_DAT);
1291             else
1292               {
1293                 if (got->add_global(gsym, GOT_TYPE_STANDARD))
1294                   rel_dyn->add_global_relative(
1295                       gsym, elfcpp::R_386_RELATIVE, got,
1296                       gsym->got_offset(GOT_TYPE_STANDARD));
1297               }
1298           }
1299       }
1300       break;
1301
1302     case elfcpp::R_386_PLT32:
1303       // If the symbol is fully resolved, this is just a PC32 reloc.
1304       // Otherwise we need a PLT entry.
1305       if (gsym->final_value_is_known())
1306         break;
1307       // If building a shared library, we can also skip the PLT entry
1308       // if the symbol is defined in the output file and is protected
1309       // or hidden.
1310       if (gsym->is_defined()
1311           && !gsym->is_from_dynobj()
1312           && !gsym->is_preemptible())
1313         break;
1314       target->make_plt_entry(symtab, layout, gsym);
1315       break;
1316
1317     case elfcpp::R_386_GOTOFF:
1318     case elfcpp::R_386_GOTPC:
1319       // We need a GOT section.
1320       target->got_section(symtab, layout);
1321       break;
1322
1323       // These are relocations which should only be seen by the
1324       // dynamic linker, and should never be seen here.
1325     case elfcpp::R_386_COPY:
1326     case elfcpp::R_386_GLOB_DAT:
1327     case elfcpp::R_386_JUMP_SLOT:
1328     case elfcpp::R_386_RELATIVE:
1329     case elfcpp::R_386_TLS_TPOFF:
1330     case elfcpp::R_386_TLS_DTPMOD32:
1331     case elfcpp::R_386_TLS_DTPOFF32:
1332     case elfcpp::R_386_TLS_TPOFF32:
1333     case elfcpp::R_386_TLS_DESC:
1334       gold_error(_("%s: unexpected reloc %u in object file"),
1335                  object->name().c_str(), r_type);
1336       break;
1337
1338       // These are initial tls relocs, which are expected when
1339       // linking.
1340     case elfcpp::R_386_TLS_GD:            // Global-dynamic
1341     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
1342     case elfcpp::R_386_TLS_DESC_CALL:
1343     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
1344     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
1345     case elfcpp::R_386_TLS_IE:            // Initial-exec
1346     case elfcpp::R_386_TLS_IE_32:
1347     case elfcpp::R_386_TLS_GOTIE:
1348     case elfcpp::R_386_TLS_LE:            // Local-exec
1349     case elfcpp::R_386_TLS_LE_32:
1350       {
1351         const bool is_final = gsym->final_value_is_known();
1352         const tls::Tls_optimization optimized_type
1353             = Target_i386::optimize_tls_reloc(is_final, r_type);
1354         switch (r_type)
1355           {
1356           case elfcpp::R_386_TLS_GD:          // Global-dynamic
1357             if (optimized_type == tls::TLSOPT_NONE)
1358               {
1359                 // Create a pair of GOT entries for the module index and
1360                 // dtv-relative offset.
1361                 Output_data_got<32, false>* got
1362                     = target->got_section(symtab, layout);
1363                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
1364                                              target->rel_dyn_section(layout),
1365                                              elfcpp::R_386_TLS_DTPMOD32,
1366                                              elfcpp::R_386_TLS_DTPOFF32);
1367               }
1368             else if (optimized_type == tls::TLSOPT_TO_IE)
1369               {
1370                 // Create a GOT entry for the tp-relative offset.
1371                 Output_data_got<32, false>* got
1372                     = target->got_section(symtab, layout);
1373                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
1374                                          target->rel_dyn_section(layout),
1375                                          elfcpp::R_386_TLS_TPOFF);
1376               }
1377             else if (optimized_type != tls::TLSOPT_TO_LE)
1378               unsupported_reloc_global(object, r_type, gsym);
1379             break;
1380
1381           case elfcpp::R_386_TLS_GOTDESC:     // Global-dynamic (~oliva url)
1382             target->define_tls_base_symbol(symtab, layout);
1383             if (optimized_type == tls::TLSOPT_NONE)
1384               {
1385                 // Create a double GOT entry with an R_386_TLS_DESC reloc.
1386                 Output_data_got<32, false>* got
1387                     = target->got_section(symtab, layout);
1388                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC,
1389                                              target->rel_dyn_section(layout),
1390                                              elfcpp::R_386_TLS_DESC, 0);
1391               }
1392             else if (optimized_type == tls::TLSOPT_TO_IE)
1393               {
1394                 // Create a GOT entry for the tp-relative offset.
1395                 Output_data_got<32, false>* got
1396                     = target->got_section(symtab, layout);
1397                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
1398                                          target->rel_dyn_section(layout),
1399                                          elfcpp::R_386_TLS_TPOFF);
1400               }
1401             else if (optimized_type != tls::TLSOPT_TO_LE)
1402               unsupported_reloc_global(object, r_type, gsym);
1403             break;
1404
1405           case elfcpp::R_386_TLS_DESC_CALL:
1406             break;
1407
1408           case elfcpp::R_386_TLS_LDM:         // Local-dynamic
1409             if (optimized_type == tls::TLSOPT_NONE)
1410               {
1411                 // Create a GOT entry for the module index.
1412                 target->got_mod_index_entry(symtab, layout, object);
1413               }
1414             else if (optimized_type != tls::TLSOPT_TO_LE)
1415               unsupported_reloc_global(object, r_type, gsym);
1416             break;
1417
1418           case elfcpp::R_386_TLS_LDO_32:      // Alternate local-dynamic
1419             break;
1420
1421           case elfcpp::R_386_TLS_IE:          // Initial-exec
1422           case elfcpp::R_386_TLS_IE_32:
1423           case elfcpp::R_386_TLS_GOTIE:
1424             layout->set_has_static_tls();
1425             if (optimized_type == tls::TLSOPT_NONE)
1426               {
1427                 // For the R_386_TLS_IE relocation, we need to create a
1428                 // dynamic relocation when building a shared library.
1429                 if (r_type == elfcpp::R_386_TLS_IE
1430                     && parameters->options().shared())
1431                   {
1432                     Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1433                     rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1434                                                  output_section, object,
1435                                                  data_shndx,
1436                                                  reloc.get_r_offset());
1437                   }
1438                 // Create a GOT entry for the tp-relative offset.
1439                 Output_data_got<32, false>* got
1440                     = target->got_section(symtab, layout);
1441                 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
1442                                            ? elfcpp::R_386_TLS_TPOFF32
1443                                            : elfcpp::R_386_TLS_TPOFF);
1444                 unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
1445                                          ? GOT_TYPE_TLS_OFFSET
1446                                          : GOT_TYPE_TLS_NOFFSET);
1447                 got->add_global_with_rel(gsym, got_type,
1448                                          target->rel_dyn_section(layout),
1449                                          dyn_r_type);
1450               }
1451             else if (optimized_type != tls::TLSOPT_TO_LE)
1452               unsupported_reloc_global(object, r_type, gsym);
1453             break;
1454
1455           case elfcpp::R_386_TLS_LE:          // Local-exec
1456           case elfcpp::R_386_TLS_LE_32:
1457             layout->set_has_static_tls();
1458             if (parameters->options().shared())
1459               {
1460                 // We need to create a dynamic relocation.
1461                 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
1462                                            ? elfcpp::R_386_TLS_TPOFF32
1463                                            : elfcpp::R_386_TLS_TPOFF);
1464                 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1465                 rel_dyn->add_global(gsym, dyn_r_type, output_section, object,
1466                                     data_shndx, reloc.get_r_offset());
1467               }
1468             break;
1469
1470           default:
1471             gold_unreachable();
1472           }
1473       }
1474       break;
1475
1476     case elfcpp::R_386_32PLT:
1477     case elfcpp::R_386_TLS_GD_32:
1478     case elfcpp::R_386_TLS_GD_PUSH:
1479     case elfcpp::R_386_TLS_GD_CALL:
1480     case elfcpp::R_386_TLS_GD_POP:
1481     case elfcpp::R_386_TLS_LDM_32:
1482     case elfcpp::R_386_TLS_LDM_PUSH:
1483     case elfcpp::R_386_TLS_LDM_CALL:
1484     case elfcpp::R_386_TLS_LDM_POP:
1485     case elfcpp::R_386_USED_BY_INTEL_200:
1486     default:
1487       unsupported_reloc_global(object, r_type, gsym);
1488       break;
1489     }
1490 }
1491
1492 // Process relocations for gc.
1493
1494 void
1495 Target_i386::gc_process_relocs(const General_options& options,
1496                                Symbol_table* symtab,
1497                                Layout* layout,
1498                                Sized_relobj<32, false>* object,
1499                                unsigned int data_shndx,
1500                                unsigned int,
1501                                const unsigned char* prelocs,
1502                                size_t reloc_count,
1503                                Output_section* output_section,
1504                                bool needs_special_offset_handling,
1505                                size_t local_symbol_count,
1506                                const unsigned char* plocal_symbols)
1507 {
1508   gold::gc_process_relocs<32, false, Target_i386, elfcpp::SHT_REL,
1509                           Target_i386::Scan>(
1510     options,
1511     symtab,
1512     layout,
1513     this,
1514     object,
1515     data_shndx,
1516     prelocs,
1517     reloc_count,
1518     output_section,
1519     needs_special_offset_handling,
1520     local_symbol_count,
1521     plocal_symbols);
1522 }
1523
1524 // Scan relocations for a section.
1525
1526 void
1527 Target_i386::scan_relocs(const General_options& options,
1528                          Symbol_table* symtab,
1529                          Layout* layout,
1530                          Sized_relobj<32, false>* object,
1531                          unsigned int data_shndx,
1532                          unsigned int sh_type,
1533                          const unsigned char* prelocs,
1534                          size_t reloc_count,
1535                          Output_section* output_section,
1536                          bool needs_special_offset_handling,
1537                          size_t local_symbol_count,
1538                          const unsigned char* plocal_symbols)
1539 {
1540   if (sh_type == elfcpp::SHT_RELA)
1541     {
1542       gold_error(_("%s: unsupported RELA reloc section"),
1543                  object->name().c_str());
1544       return;
1545     }
1546
1547   gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
1548                     Target_i386::Scan>(
1549     options,
1550     symtab,
1551     layout,
1552     this,
1553     object,
1554     data_shndx,
1555     prelocs,
1556     reloc_count,
1557     output_section,
1558     needs_special_offset_handling,
1559     local_symbol_count,
1560     plocal_symbols);
1561 }
1562
1563 // Finalize the sections.
1564
1565 void
1566 Target_i386::do_finalize_sections(Layout* layout)
1567 {
1568   // Fill in some more dynamic tags.
1569   Output_data_dynamic* const odyn = layout->dynamic_data();
1570   if (odyn != NULL)
1571     {
1572       if (this->got_plt_ != NULL)
1573         odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1574
1575       if (this->plt_ != NULL)
1576         {
1577           const Output_data* od = this->plt_->rel_plt();
1578           odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1579           odyn->add_section_address(elfcpp::DT_JMPREL, od);
1580           odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
1581         }
1582
1583       if (this->rel_dyn_ != NULL)
1584         {
1585           const Output_data* od = this->rel_dyn_;
1586           odyn->add_section_address(elfcpp::DT_REL, od);
1587           odyn->add_section_size(elfcpp::DT_RELSZ, od);
1588           odyn->add_constant(elfcpp::DT_RELENT,
1589                              elfcpp::Elf_sizes<32>::rel_size);
1590         }
1591
1592       if (!parameters->options().shared())
1593         {
1594           // The value of the DT_DEBUG tag is filled in by the dynamic
1595           // linker at run time, and used by the debugger.
1596           odyn->add_constant(elfcpp::DT_DEBUG, 0);
1597         }
1598     }
1599
1600   // Emit any relocs we saved in an attempt to avoid generating COPY
1601   // relocs.
1602   if (this->copy_relocs_.any_saved_relocs())
1603     this->copy_relocs_.emit(this->rel_dyn_section(layout));
1604 }
1605
1606 // Return whether a direct absolute static relocation needs to be applied.
1607 // In cases where Scan::local() or Scan::global() has created
1608 // a dynamic relocation other than R_386_RELATIVE, the addend
1609 // of the relocation is carried in the data, and we must not
1610 // apply the static relocation.
1611
1612 inline bool
1613 Target_i386::Relocate::should_apply_static_reloc(const Sized_symbol<32>* gsym,
1614                                                  int ref_flags,
1615                                                  bool is_32bit,
1616                                                  Output_section* output_section)
1617 {
1618   // If the output section is not allocated, then we didn't call
1619   // scan_relocs, we didn't create a dynamic reloc, and we must apply
1620   // the reloc here.
1621   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
1622     return true;
1623
1624   // For local symbols, we will have created a non-RELATIVE dynamic
1625   // relocation only if (a) the output is position independent,
1626   // (b) the relocation is absolute (not pc- or segment-relative), and
1627   // (c) the relocation is not 32 bits wide.
1628   if (gsym == NULL)
1629     return !(parameters->options().output_is_position_independent()
1630              && (ref_flags & Symbol::ABSOLUTE_REF)
1631              && !is_32bit);
1632
1633   // For global symbols, we use the same helper routines used in the
1634   // scan pass.  If we did not create a dynamic relocation, or if we
1635   // created a RELATIVE dynamic relocation, we should apply the static
1636   // relocation.
1637   bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
1638   bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
1639                 && gsym->can_use_relative_reloc(ref_flags
1640                                                 & Symbol::FUNCTION_CALL);
1641   return !has_dyn || is_rel;
1642 }
1643
1644 // Perform a relocation.
1645
1646 inline bool
1647 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
1648                                 Target_i386* target,
1649                                 Output_section *output_section,
1650                                 size_t relnum,
1651                                 const elfcpp::Rel<32, false>& rel,
1652                                 unsigned int r_type,
1653                                 const Sized_symbol<32>* gsym,
1654                                 const Symbol_value<32>* psymval,
1655                                 unsigned char* view,
1656                                 elfcpp::Elf_types<32>::Elf_Addr address,
1657                                 section_size_type view_size)
1658 {
1659   if (this->skip_call_tls_get_addr_)
1660     {
1661       if ((r_type != elfcpp::R_386_PLT32
1662            && r_type != elfcpp::R_386_PC32)
1663           || gsym == NULL
1664           || strcmp(gsym->name(), "___tls_get_addr") != 0)
1665         gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1666                                _("missing expected TLS relocation"));
1667       else
1668         {
1669           this->skip_call_tls_get_addr_ = false;
1670           return false;
1671         }
1672     }
1673
1674   // Pick the value to use for symbols defined in shared objects.
1675   Symbol_value<32> symval;
1676   if (gsym != NULL
1677       && gsym->use_plt_offset(r_type == elfcpp::R_386_PC8
1678                               || r_type == elfcpp::R_386_PC16
1679                               || r_type == elfcpp::R_386_PC32))
1680     {
1681       symval.set_output_value(target->plt_section()->address()
1682                               + gsym->plt_offset());
1683       psymval = &symval;
1684     }
1685
1686   const Sized_relobj<32, false>* object = relinfo->object;
1687
1688   // Get the GOT offset if needed.
1689   // The GOT pointer points to the end of the GOT section.
1690   // We need to subtract the size of the GOT section to get
1691   // the actual offset to use in the relocation.
1692   bool have_got_offset = false;
1693   unsigned int got_offset = 0;
1694   switch (r_type)
1695     {
1696     case elfcpp::R_386_GOT32:
1697       if (gsym != NULL)
1698         {
1699           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
1700           got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
1701                         - target->got_size());
1702         }
1703       else
1704         {
1705           unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1706           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
1707           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
1708                         - target->got_size());
1709         }
1710       have_got_offset = true;
1711       break;
1712
1713     default:
1714       break;
1715     }
1716
1717   switch (r_type)
1718     {
1719     case elfcpp::R_386_NONE:
1720     case elfcpp::R_386_GNU_VTINHERIT:
1721     case elfcpp::R_386_GNU_VTENTRY:
1722       break;
1723
1724     case elfcpp::R_386_32:
1725       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
1726                                     output_section))
1727         Relocate_functions<32, false>::rel32(view, object, psymval);
1728       break;
1729
1730     case elfcpp::R_386_PC32:
1731       {
1732         int ref_flags = Symbol::NON_PIC_REF;
1733         if (gsym != NULL && gsym->type() == elfcpp::STT_FUNC)
1734           ref_flags |= Symbol::FUNCTION_CALL;
1735         if (should_apply_static_reloc(gsym, ref_flags, true, output_section))
1736           Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1737       }
1738       break;
1739
1740     case elfcpp::R_386_16:
1741       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
1742                                     output_section))
1743         Relocate_functions<32, false>::rel16(view, object, psymval);
1744       break;
1745
1746     case elfcpp::R_386_PC16:
1747       {
1748         int ref_flags = Symbol::NON_PIC_REF;
1749         if (gsym != NULL && gsym->type() == elfcpp::STT_FUNC)
1750           ref_flags |= Symbol::FUNCTION_CALL;
1751         if (should_apply_static_reloc(gsym, ref_flags, false, output_section))
1752           Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
1753       }
1754       break;
1755
1756     case elfcpp::R_386_8:
1757       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
1758                                     output_section))
1759         Relocate_functions<32, false>::rel8(view, object, psymval);
1760       break;
1761
1762     case elfcpp::R_386_PC8:
1763       {
1764         int ref_flags = Symbol::NON_PIC_REF;
1765         if (gsym != NULL && gsym->type() == elfcpp::STT_FUNC)
1766           ref_flags |= Symbol::FUNCTION_CALL;
1767         if (should_apply_static_reloc(gsym, ref_flags, false,
1768                                       output_section))
1769           Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
1770       }
1771       break;
1772
1773     case elfcpp::R_386_PLT32:
1774       gold_assert(gsym == NULL
1775                   || gsym->has_plt_offset()
1776                   || gsym->final_value_is_known()
1777                   || (gsym->is_defined()
1778                       && !gsym->is_from_dynobj()
1779                       && !gsym->is_preemptible()));
1780       Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1781       break;
1782
1783     case elfcpp::R_386_GOT32:
1784       gold_assert(have_got_offset);
1785       Relocate_functions<32, false>::rel32(view, got_offset);
1786       break;
1787
1788     case elfcpp::R_386_GOTOFF:
1789       {
1790         elfcpp::Elf_types<32>::Elf_Addr value;
1791         value = (psymval->value(object, 0)
1792                  - target->got_plt_section()->address());
1793         Relocate_functions<32, false>::rel32(view, value);
1794       }
1795       break;
1796
1797     case elfcpp::R_386_GOTPC:
1798       {
1799         elfcpp::Elf_types<32>::Elf_Addr value;
1800         value = target->got_plt_section()->address();
1801         Relocate_functions<32, false>::pcrel32(view, value, address);
1802       }
1803       break;
1804
1805     case elfcpp::R_386_COPY:
1806     case elfcpp::R_386_GLOB_DAT:
1807     case elfcpp::R_386_JUMP_SLOT:
1808     case elfcpp::R_386_RELATIVE:
1809       // These are outstanding tls relocs, which are unexpected when
1810       // linking.
1811     case elfcpp::R_386_TLS_TPOFF:
1812     case elfcpp::R_386_TLS_DTPMOD32:
1813     case elfcpp::R_386_TLS_DTPOFF32:
1814     case elfcpp::R_386_TLS_TPOFF32:
1815     case elfcpp::R_386_TLS_DESC:
1816       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1817                              _("unexpected reloc %u in object file"),
1818                              r_type);
1819       break;
1820
1821       // These are initial tls relocs, which are expected when
1822       // linking.
1823     case elfcpp::R_386_TLS_GD:             // Global-dynamic
1824     case elfcpp::R_386_TLS_GOTDESC:        // Global-dynamic (from ~oliva url)
1825     case elfcpp::R_386_TLS_DESC_CALL:
1826     case elfcpp::R_386_TLS_LDM:            // Local-dynamic
1827     case elfcpp::R_386_TLS_LDO_32:         // Alternate local-dynamic
1828     case elfcpp::R_386_TLS_IE:             // Initial-exec
1829     case elfcpp::R_386_TLS_IE_32:
1830     case elfcpp::R_386_TLS_GOTIE:
1831     case elfcpp::R_386_TLS_LE:             // Local-exec
1832     case elfcpp::R_386_TLS_LE_32:
1833       this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
1834                          view, address, view_size);
1835       break;
1836
1837     case elfcpp::R_386_32PLT:
1838     case elfcpp::R_386_TLS_GD_32:
1839     case elfcpp::R_386_TLS_GD_PUSH:
1840     case elfcpp::R_386_TLS_GD_CALL:
1841     case elfcpp::R_386_TLS_GD_POP:
1842     case elfcpp::R_386_TLS_LDM_32:
1843     case elfcpp::R_386_TLS_LDM_PUSH:
1844     case elfcpp::R_386_TLS_LDM_CALL:
1845     case elfcpp::R_386_TLS_LDM_POP:
1846     case elfcpp::R_386_USED_BY_INTEL_200:
1847     default:
1848       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1849                              _("unsupported reloc %u"),
1850                              r_type);
1851       break;
1852     }
1853
1854   return true;
1855 }
1856
1857 // Perform a TLS relocation.
1858
1859 inline void
1860 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
1861                                     Target_i386* target,
1862                                     size_t relnum,
1863                                     const elfcpp::Rel<32, false>& rel,
1864                                     unsigned int r_type,
1865                                     const Sized_symbol<32>* gsym,
1866                                     const Symbol_value<32>* psymval,
1867                                     unsigned char* view,
1868                                     elfcpp::Elf_types<32>::Elf_Addr,
1869                                     section_size_type view_size)
1870 {
1871   Output_segment* tls_segment = relinfo->layout->tls_segment();
1872
1873   const Sized_relobj<32, false>* object = relinfo->object;
1874
1875   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
1876
1877   const bool is_final =
1878     (gsym == NULL
1879      ? !parameters->options().output_is_position_independent()
1880      : gsym->final_value_is_known());
1881   const tls::Tls_optimization optimized_type
1882       = Target_i386::optimize_tls_reloc(is_final, r_type);
1883   switch (r_type)
1884     {
1885     case elfcpp::R_386_TLS_GD:           // Global-dynamic
1886       if (optimized_type == tls::TLSOPT_TO_LE)
1887         {
1888           gold_assert(tls_segment != NULL);
1889           this->tls_gd_to_le(relinfo, relnum, tls_segment,
1890                              rel, r_type, value, view,
1891                              view_size);
1892           break;
1893         }
1894       else
1895         {
1896           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
1897                                    ? GOT_TYPE_TLS_NOFFSET
1898                                    : GOT_TYPE_TLS_PAIR);
1899           unsigned int got_offset;
1900           if (gsym != NULL)
1901             {
1902               gold_assert(gsym->has_got_offset(got_type));
1903               got_offset = gsym->got_offset(got_type) - target->got_size();
1904             }
1905           else
1906             {
1907               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1908               gold_assert(object->local_has_got_offset(r_sym, got_type));
1909               got_offset = (object->local_got_offset(r_sym, got_type)
1910                             - target->got_size());
1911             }
1912           if (optimized_type == tls::TLSOPT_TO_IE)
1913             {
1914               gold_assert(tls_segment != NULL);
1915               this->tls_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
1916                                  got_offset, view, view_size);
1917               break;
1918             }
1919           else if (optimized_type == tls::TLSOPT_NONE)
1920             {
1921               // Relocate the field with the offset of the pair of GOT
1922               // entries.
1923               Relocate_functions<32, false>::rel32(view, got_offset);
1924               break;
1925             }
1926         }
1927       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1928                              _("unsupported reloc %u"),
1929                              r_type);
1930       break;
1931
1932     case elfcpp::R_386_TLS_GOTDESC:      // Global-dynamic (from ~oliva url)
1933     case elfcpp::R_386_TLS_DESC_CALL:
1934       this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
1935       if (optimized_type == tls::TLSOPT_TO_LE)
1936         {
1937           gold_assert(tls_segment != NULL);
1938           this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
1939                                   rel, r_type, value, view,
1940                                   view_size);
1941           break;
1942         }
1943       else
1944         {
1945           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
1946                                    ? GOT_TYPE_TLS_NOFFSET
1947                                    : GOT_TYPE_TLS_DESC);
1948           unsigned int got_offset;
1949           if (gsym != NULL)
1950             {
1951               gold_assert(gsym->has_got_offset(got_type));
1952               got_offset = gsym->got_offset(got_type) - target->got_size();
1953             }
1954           else
1955             {
1956               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1957               gold_assert(object->local_has_got_offset(r_sym, got_type));
1958               got_offset = (object->local_got_offset(r_sym, got_type)
1959                             - target->got_size());
1960             }
1961           if (optimized_type == tls::TLSOPT_TO_IE)
1962             {
1963               gold_assert(tls_segment != NULL);
1964               this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
1965                                       got_offset, view, view_size);
1966               break;
1967             }
1968           else if (optimized_type == tls::TLSOPT_NONE)
1969             {
1970               if (r_type == elfcpp::R_386_TLS_GOTDESC)
1971                 {
1972                   // Relocate the field with the offset of the pair of GOT
1973                   // entries.
1974                   Relocate_functions<32, false>::rel32(view, got_offset);
1975                 }
1976               break;
1977             }
1978         }
1979       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1980                              _("unsupported reloc %u"),
1981                              r_type);
1982       break;
1983
1984     case elfcpp::R_386_TLS_LDM:          // Local-dynamic
1985       if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
1986         {
1987           gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1988                                  _("both SUN and GNU model "
1989                                    "TLS relocations"));
1990           break;
1991         }
1992       this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
1993       if (optimized_type == tls::TLSOPT_TO_LE)
1994         {
1995           gold_assert(tls_segment != NULL);
1996           this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
1997                              value, view, view_size);
1998           break;
1999         }
2000       else if (optimized_type == tls::TLSOPT_NONE)
2001         {
2002           // Relocate the field with the offset of the GOT entry for
2003           // the module index.
2004           unsigned int got_offset;
2005           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
2006                         - target->got_size());
2007           Relocate_functions<32, false>::rel32(view, got_offset);
2008           break;
2009         }
2010       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2011                              _("unsupported reloc %u"),
2012                              r_type);
2013       break;
2014
2015     case elfcpp::R_386_TLS_LDO_32:       // Alternate local-dynamic
2016       if (optimized_type == tls::TLSOPT_TO_LE)
2017         {
2018           // This reloc can appear in debugging sections, in which
2019           // case we must not convert to local-exec.  We decide what
2020           // to do based on whether the section is marked as
2021           // containing executable code.  That is what the GNU linker
2022           // does as well.
2023           elfcpp::Shdr<32, false> shdr(relinfo->data_shdr);
2024           if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
2025             {
2026               gold_assert(tls_segment != NULL);
2027               value -= tls_segment->memsz();
2028             }
2029         }
2030       Relocate_functions<32, false>::rel32(view, value);
2031       break;
2032
2033     case elfcpp::R_386_TLS_IE:           // Initial-exec
2034     case elfcpp::R_386_TLS_GOTIE:
2035     case elfcpp::R_386_TLS_IE_32:
2036       if (optimized_type == tls::TLSOPT_TO_LE)
2037         {
2038           gold_assert(tls_segment != NULL);
2039           Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
2040                                               rel, r_type, value, view,
2041                                               view_size);
2042           break;
2043         }
2044       else if (optimized_type == tls::TLSOPT_NONE)
2045         {
2046           // Relocate the field with the offset of the GOT entry for
2047           // the tp-relative offset of the symbol.
2048           unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
2049                                    ? GOT_TYPE_TLS_OFFSET
2050                                    : GOT_TYPE_TLS_NOFFSET);
2051           unsigned int got_offset;
2052           if (gsym != NULL)
2053             {
2054               gold_assert(gsym->has_got_offset(got_type));
2055               got_offset = gsym->got_offset(got_type);
2056             }
2057           else
2058             {
2059               unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
2060               gold_assert(object->local_has_got_offset(r_sym, got_type));
2061               got_offset = object->local_got_offset(r_sym, got_type);
2062             }
2063           // For the R_386_TLS_IE relocation, we need to apply the
2064           // absolute address of the GOT entry.
2065           if (r_type == elfcpp::R_386_TLS_IE)
2066             got_offset += target->got_plt_section()->address();
2067           // All GOT offsets are relative to the end of the GOT.
2068           got_offset -= target->got_size();
2069           Relocate_functions<32, false>::rel32(view, got_offset);
2070           break;
2071         }
2072       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
2073                              _("unsupported reloc %u"),
2074                              r_type);
2075       break;
2076
2077     case elfcpp::R_386_TLS_LE:           // Local-exec
2078       // If we're creating a shared library, a dynamic relocation will
2079       // have been created for this location, so do not apply it now.
2080       if (!parameters->options().shared())
2081         {
2082           gold_assert(tls_segment != NULL);
2083           value -= tls_segment->memsz();
2084           Relocate_functions<32, false>::rel32(view, value);
2085         }
2086       break;
2087
2088     case elfcpp::R_386_TLS_LE_32:
2089       // If we're creating a shared library, a dynamic relocation will
2090       // have been created for this location, so do not apply it now.
2091       if (!parameters->options().shared())
2092         {
2093           gold_assert(tls_segment != NULL);
2094           value = tls_segment->memsz() - value;
2095           Relocate_functions<32, false>::rel32(view, value);
2096         }
2097       break;
2098     }
2099 }
2100
2101 // Do a relocation in which we convert a TLS General-Dynamic to a
2102 // Local-Exec.
2103
2104 inline void
2105 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
2106                                     size_t relnum,
2107                                     Output_segment* tls_segment,
2108                                     const elfcpp::Rel<32, false>& rel,
2109                                     unsigned int,
2110                                     elfcpp::Elf_types<32>::Elf_Addr value,
2111                                     unsigned char* view,
2112                                     section_size_type view_size)
2113 {
2114   // leal foo(,%reg,1),%eax; call ___tls_get_addr
2115   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
2116   // leal foo(%reg),%eax; call ___tls_get_addr
2117   //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
2118
2119   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2120   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
2121
2122   unsigned char op1 = view[-1];
2123   unsigned char op2 = view[-2];
2124
2125   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2126                  op2 == 0x8d || op2 == 0x04);
2127   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
2128
2129   int roff = 5;
2130
2131   if (op2 == 0x04)
2132     {
2133       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
2134       tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
2135       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2136                      ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
2137       memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2138     }
2139   else
2140     {
2141       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2142                      (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
2143       if (rel.get_r_offset() + 9 < view_size
2144           && view[9] == 0x90)
2145         {
2146           // There is a trailing nop.  Use the size byte subl.
2147           memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2148           roff = 6;
2149         }
2150       else
2151         {
2152           // Use the five byte subl.
2153           memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
2154         }
2155     }
2156
2157   value = tls_segment->memsz() - value;
2158   Relocate_functions<32, false>::rel32(view + roff, value);
2159
2160   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2161   // We can skip it.
2162   this->skip_call_tls_get_addr_ = true;
2163 }
2164
2165 // Do a relocation in which we convert a TLS General-Dynamic to an
2166 // Initial-Exec.
2167
2168 inline void
2169 Target_i386::Relocate::tls_gd_to_ie(const Relocate_info<32, false>* relinfo,
2170                                     size_t relnum,
2171                                     Output_segment*,
2172                                     const elfcpp::Rel<32, false>& rel,
2173                                     unsigned int,
2174                                     elfcpp::Elf_types<32>::Elf_Addr value,
2175                                     unsigned char* view,
2176                                     section_size_type view_size)
2177 {
2178   // leal foo(,%ebx,1),%eax; call ___tls_get_addr
2179   //  ==> movl %gs:0,%eax; addl foo@gotntpoff(%ebx),%eax
2180
2181   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2182   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
2183
2184   unsigned char op1 = view[-1];
2185   unsigned char op2 = view[-2];
2186
2187   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2188                  op2 == 0x8d || op2 == 0x04);
2189   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
2190
2191   int roff = 5;
2192
2193   // FIXME: For now, support only the first (SIB) form.
2194   tls::check_tls(relinfo, relnum, rel.get_r_offset(), op2 == 0x04);
2195
2196   if (op2 == 0x04)
2197     {
2198       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
2199       tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
2200       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2201                      ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
2202       memcpy(view - 3, "\x65\xa1\0\0\0\0\x03\x83\0\0\0", 12);
2203     }
2204   else
2205     {
2206       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2207                      (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
2208       if (rel.get_r_offset() + 9 < view_size
2209           && view[9] == 0x90)
2210         {
2211           // FIXME: This is not the right instruction sequence.
2212           // There is a trailing nop.  Use the size byte subl.
2213           memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2214           roff = 6;
2215         }
2216       else
2217         {
2218           // FIXME: This is not the right instruction sequence.
2219           // Use the five byte subl.
2220           memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
2221         }
2222     }
2223
2224   Relocate_functions<32, false>::rel32(view + roff, value);
2225
2226   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2227   // We can skip it.
2228   this->skip_call_tls_get_addr_ = true;
2229 }
2230
2231 // Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
2232 // General-Dynamic to a Local-Exec.
2233
2234 inline void
2235 Target_i386::Relocate::tls_desc_gd_to_le(
2236     const Relocate_info<32, false>* relinfo,
2237     size_t relnum,
2238     Output_segment* tls_segment,
2239     const elfcpp::Rel<32, false>& rel,
2240     unsigned int r_type,
2241     elfcpp::Elf_types<32>::Elf_Addr value,
2242     unsigned char* view,
2243     section_size_type view_size)
2244 {
2245   if (r_type == elfcpp::R_386_TLS_GOTDESC)
2246     {
2247       // leal foo@TLSDESC(%ebx), %eax
2248       // ==> leal foo@NTPOFF, %eax
2249       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2250       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2251       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2252                      view[-2] == 0x8d && view[-1] == 0x83);
2253       view[-1] = 0x05;
2254       value -= tls_segment->memsz();
2255       Relocate_functions<32, false>::rel32(view, value);
2256     }
2257   else
2258     {
2259       // call *foo@TLSCALL(%eax)
2260       // ==> nop; nop
2261       gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
2262       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
2263       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2264                      view[0] == 0xff && view[1] == 0x10);
2265       view[0] = 0x66;
2266       view[1] = 0x90;
2267     }
2268 }
2269
2270 // Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
2271 // General-Dynamic to an Initial-Exec.
2272
2273 inline void
2274 Target_i386::Relocate::tls_desc_gd_to_ie(
2275     const Relocate_info<32, false>* relinfo,
2276     size_t relnum,
2277     Output_segment*,
2278     const elfcpp::Rel<32, false>& rel,
2279     unsigned int r_type,
2280     elfcpp::Elf_types<32>::Elf_Addr value,
2281     unsigned char* view,
2282     section_size_type view_size)
2283 {
2284   if (r_type == elfcpp::R_386_TLS_GOTDESC)
2285     {
2286       // leal foo@TLSDESC(%ebx), %eax
2287       // ==> movl foo@GOTNTPOFF(%ebx), %eax
2288       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2289       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2290       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2291                      view[-2] == 0x8d && view[-1] == 0x83);
2292       view[-2] = 0x8b;
2293       Relocate_functions<32, false>::rel32(view, value);
2294     }
2295   else
2296     {
2297       // call *foo@TLSCALL(%eax)
2298       // ==> nop; nop
2299       gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
2300       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
2301       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2302                      view[0] == 0xff && view[1] == 0x10);
2303       view[0] = 0x66;
2304       view[1] = 0x90;
2305     }
2306 }
2307
2308 // Do a relocation in which we convert a TLS Local-Dynamic to a
2309 // Local-Exec.
2310
2311 inline void
2312 Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
2313                                     size_t relnum,
2314                                     Output_segment*,
2315                                     const elfcpp::Rel<32, false>& rel,
2316                                     unsigned int,
2317                                     elfcpp::Elf_types<32>::Elf_Addr,
2318                                     unsigned char* view,
2319                                     section_size_type view_size)
2320 {
2321   // leal foo(%reg), %eax; call ___tls_get_addr
2322   // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
2323
2324   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2325   tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
2326
2327   // FIXME: Does this test really always pass?
2328   tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2329                  view[-2] == 0x8d && view[-1] == 0x83);
2330
2331   tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
2332
2333   memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
2334
2335   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2336   // We can skip it.
2337   this->skip_call_tls_get_addr_ = true;
2338 }
2339
2340 // Do a relocation in which we convert a TLS Initial-Exec to a
2341 // Local-Exec.
2342
2343 inline void
2344 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
2345                                     size_t relnum,
2346                                     Output_segment* tls_segment,
2347                                     const elfcpp::Rel<32, false>& rel,
2348                                     unsigned int r_type,
2349                                     elfcpp::Elf_types<32>::Elf_Addr value,
2350                                     unsigned char* view,
2351                                     section_size_type view_size)
2352 {
2353   // We have to actually change the instructions, which means that we
2354   // need to examine the opcodes to figure out which instruction we
2355   // are looking at.
2356   if (r_type == elfcpp::R_386_TLS_IE)
2357     {
2358       // movl %gs:XX,%eax  ==>  movl $YY,%eax
2359       // movl %gs:XX,%reg  ==>  movl $YY,%reg
2360       // addl %gs:XX,%reg  ==>  addl $YY,%reg
2361       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
2362       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2363
2364       unsigned char op1 = view[-1];
2365       if (op1 == 0xa1)
2366         {
2367           // movl XX,%eax  ==>  movl $YY,%eax
2368           view[-1] = 0xb8;
2369         }
2370       else
2371         {
2372           tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2373
2374           unsigned char op2 = view[-2];
2375           if (op2 == 0x8b)
2376             {
2377               // movl XX,%reg  ==>  movl $YY,%reg
2378               tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2379                              (op1 & 0xc7) == 0x05);
2380               view[-2] = 0xc7;
2381               view[-1] = 0xc0 | ((op1 >> 3) & 7);
2382             }
2383           else if (op2 == 0x03)
2384             {
2385               // addl XX,%reg  ==>  addl $YY,%reg
2386               tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2387                              (op1 & 0xc7) == 0x05);
2388               view[-2] = 0x81;
2389               view[-1] = 0xc0 | ((op1 >> 3) & 7);
2390             }
2391           else
2392             tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
2393         }
2394     }
2395   else
2396     {
2397       // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
2398       // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
2399       // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
2400       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2401       tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2402
2403       unsigned char op1 = view[-1];
2404       unsigned char op2 = view[-2];
2405       tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2406                      (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
2407       if (op2 == 0x8b)
2408         {
2409           // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
2410           view[-2] = 0xc7;
2411           view[-1] = 0xc0 | ((op1 >> 3) & 7);
2412         }
2413       else if (op2 == 0x2b)
2414         {
2415           // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
2416           view[-2] = 0x81;
2417           view[-1] = 0xe8 | ((op1 >> 3) & 7);
2418         }
2419       else if (op2 == 0x03)
2420         {
2421           // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
2422           view[-2] = 0x81;
2423           view[-1] = 0xc0 | ((op1 >> 3) & 7);
2424         }
2425       else
2426         tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
2427     }
2428
2429   value = tls_segment->memsz() - value;
2430   if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
2431     value = - value;
2432
2433   Relocate_functions<32, false>::rel32(view, value);
2434 }
2435
2436 // Relocate section data.
2437
2438 void
2439 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
2440                               unsigned int sh_type,
2441                               const unsigned char* prelocs,
2442                               size_t reloc_count,
2443                               Output_section* output_section,
2444                               bool needs_special_offset_handling,
2445                               unsigned char* view,
2446                               elfcpp::Elf_types<32>::Elf_Addr address,
2447                               section_size_type view_size,
2448                               const Reloc_symbol_changes* reloc_symbol_changes)
2449 {
2450   gold_assert(sh_type == elfcpp::SHT_REL);
2451
2452   gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
2453                          Target_i386::Relocate>(
2454     relinfo,
2455     this,
2456     prelocs,
2457     reloc_count,
2458     output_section,
2459     needs_special_offset_handling,
2460     view,
2461     address,
2462     view_size,
2463     reloc_symbol_changes);
2464 }
2465
2466 // Return the size of a relocation while scanning during a relocatable
2467 // link.
2468
2469 unsigned int
2470 Target_i386::Relocatable_size_for_reloc::get_size_for_reloc(
2471     unsigned int r_type,
2472     Relobj* object)
2473 {
2474   switch (r_type)
2475     {
2476     case elfcpp::R_386_NONE:
2477     case elfcpp::R_386_GNU_VTINHERIT:
2478     case elfcpp::R_386_GNU_VTENTRY:
2479     case elfcpp::R_386_TLS_GD:            // Global-dynamic
2480     case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
2481     case elfcpp::R_386_TLS_DESC_CALL:
2482     case elfcpp::R_386_TLS_LDM:           // Local-dynamic
2483     case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
2484     case elfcpp::R_386_TLS_IE:            // Initial-exec
2485     case elfcpp::R_386_TLS_IE_32:
2486     case elfcpp::R_386_TLS_GOTIE:
2487     case elfcpp::R_386_TLS_LE:            // Local-exec
2488     case elfcpp::R_386_TLS_LE_32:
2489       return 0;
2490
2491     case elfcpp::R_386_32:
2492     case elfcpp::R_386_PC32:
2493     case elfcpp::R_386_GOT32:
2494     case elfcpp::R_386_PLT32:
2495     case elfcpp::R_386_GOTOFF:
2496     case elfcpp::R_386_GOTPC:
2497      return 4;
2498
2499     case elfcpp::R_386_16:
2500     case elfcpp::R_386_PC16:
2501       return 2;
2502
2503     case elfcpp::R_386_8:
2504     case elfcpp::R_386_PC8:
2505       return 1;
2506
2507       // These are relocations which should only be seen by the
2508       // dynamic linker, and should never be seen here.
2509     case elfcpp::R_386_COPY:
2510     case elfcpp::R_386_GLOB_DAT:
2511     case elfcpp::R_386_JUMP_SLOT:
2512     case elfcpp::R_386_RELATIVE:
2513     case elfcpp::R_386_TLS_TPOFF:
2514     case elfcpp::R_386_TLS_DTPMOD32:
2515     case elfcpp::R_386_TLS_DTPOFF32:
2516     case elfcpp::R_386_TLS_TPOFF32:
2517     case elfcpp::R_386_TLS_DESC:
2518       object->error(_("unexpected reloc %u in object file"), r_type);
2519       return 0;
2520
2521     case elfcpp::R_386_32PLT:
2522     case elfcpp::R_386_TLS_GD_32:
2523     case elfcpp::R_386_TLS_GD_PUSH:
2524     case elfcpp::R_386_TLS_GD_CALL:
2525     case elfcpp::R_386_TLS_GD_POP:
2526     case elfcpp::R_386_TLS_LDM_32:
2527     case elfcpp::R_386_TLS_LDM_PUSH:
2528     case elfcpp::R_386_TLS_LDM_CALL:
2529     case elfcpp::R_386_TLS_LDM_POP:
2530     case elfcpp::R_386_USED_BY_INTEL_200:
2531     default:
2532       object->error(_("unsupported reloc %u in object file"), r_type);
2533       return 0;
2534     }
2535 }
2536
2537 // Scan the relocs during a relocatable link.
2538
2539 void
2540 Target_i386::scan_relocatable_relocs(const General_options& options,
2541                                      Symbol_table* symtab,
2542                                      Layout* layout,
2543                                      Sized_relobj<32, false>* object,
2544                                      unsigned int data_shndx,
2545                                      unsigned int sh_type,
2546                                      const unsigned char* prelocs,
2547                                      size_t reloc_count,
2548                                      Output_section* output_section,
2549                                      bool needs_special_offset_handling,
2550                                      size_t local_symbol_count,
2551                                      const unsigned char* plocal_symbols,
2552                                      Relocatable_relocs* rr)
2553 {
2554   gold_assert(sh_type == elfcpp::SHT_REL);
2555
2556   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
2557     Relocatable_size_for_reloc> Scan_relocatable_relocs;
2558
2559   gold::scan_relocatable_relocs<32, false, elfcpp::SHT_REL,
2560       Scan_relocatable_relocs>(
2561     options,
2562     symtab,
2563     layout,
2564     object,
2565     data_shndx,
2566     prelocs,
2567     reloc_count,
2568     output_section,
2569     needs_special_offset_handling,
2570     local_symbol_count,
2571     plocal_symbols,
2572     rr);
2573 }
2574
2575 // Relocate a section during a relocatable link.
2576
2577 void
2578 Target_i386::relocate_for_relocatable(
2579     const Relocate_info<32, false>* relinfo,
2580     unsigned int sh_type,
2581     const unsigned char* prelocs,
2582     size_t reloc_count,
2583     Output_section* output_section,
2584     off_t offset_in_output_section,
2585     const Relocatable_relocs* rr,
2586     unsigned char* view,
2587     elfcpp::Elf_types<32>::Elf_Addr view_address,
2588     section_size_type view_size,
2589     unsigned char* reloc_view,
2590     section_size_type reloc_view_size)
2591 {
2592   gold_assert(sh_type == elfcpp::SHT_REL);
2593
2594   gold::relocate_for_relocatable<32, false, elfcpp::SHT_REL>(
2595     relinfo,
2596     prelocs,
2597     reloc_count,
2598     output_section,
2599     offset_in_output_section,
2600     rr,
2601     view,
2602     view_address,
2603     view_size,
2604     reloc_view,
2605     reloc_view_size);
2606 }
2607
2608 // Return the value to use for a dynamic which requires special
2609 // treatment.  This is how we support equality comparisons of function
2610 // pointers across shared library boundaries, as described in the
2611 // processor specific ABI supplement.
2612
2613 uint64_t
2614 Target_i386::do_dynsym_value(const Symbol* gsym) const
2615 {
2616   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
2617   return this->plt_section()->address() + gsym->plt_offset();
2618 }
2619
2620 // Return a string used to fill a code section with nops to take up
2621 // the specified length.
2622
2623 std::string
2624 Target_i386::do_code_fill(section_size_type length) const
2625 {
2626   if (length >= 16)
2627     {
2628       // Build a jmp instruction to skip over the bytes.
2629       unsigned char jmp[5];
2630       jmp[0] = 0xe9;
2631       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
2632       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
2633               + std::string(length - 5, '\0'));
2634     }
2635
2636   // Nop sequences of various lengths.
2637   const char nop1[1] = { 0x90 };                   // nop
2638   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
2639   const char nop3[3] = { 0x8d, 0x76, 0x00 };       // leal 0(%esi),%esi
2640   const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00};  // leal 0(%esi,1),%esi
2641   const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26,   // nop
2642                          0x00 };                   // leal 0(%esi,1),%esi
2643   const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00,   // leal 0L(%esi),%esi
2644                          0x00, 0x00 };
2645   const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00,   // leal 0L(%esi,1),%esi
2646                          0x00, 0x00, 0x00 };
2647   const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26,   // nop
2648                          0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
2649   const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc,   // movl %esi,%esi
2650                          0x27, 0x00, 0x00, 0x00,   // leal 0L(%edi,1),%edi
2651                          0x00 };
2652   const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
2653                            0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
2654                            0x00, 0x00 };
2655   const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
2656                            0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
2657                            0x00, 0x00, 0x00 };
2658   const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2659                            0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
2660                            0x00, 0x00, 0x00, 0x00 };
2661   const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2662                            0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
2663                            0x27, 0x00, 0x00, 0x00,
2664                            0x00 };
2665   const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
2666                            0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
2667                            0xbc, 0x27, 0x00, 0x00,
2668                            0x00, 0x00 };
2669   const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
2670                            0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
2671                            0x90, 0x90, 0x90, 0x90,
2672                            0x90, 0x90, 0x90 };
2673
2674   const char* nops[16] = {
2675     NULL,
2676     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
2677     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
2678   };
2679
2680   return std::string(nops[length], length);
2681 }
2682
2683 // FNOFFSET in section SHNDX in OBJECT is the start of a function
2684 // compiled with -fstack-split.  The function calls non-stack-split
2685 // code.  We have to change the function so that it always ensures
2686 // that it has enough stack space to run some random function.
2687
2688 void
2689 Target_i386::do_calls_non_split(Relobj* object, unsigned int shndx,
2690                                 section_offset_type fnoffset,
2691                                 section_size_type fnsize,
2692                                 unsigned char* view,
2693                                 section_size_type view_size,
2694                                 std::string* from,
2695                                 std::string* to) const
2696 {
2697   // The function starts with a comparison of the stack pointer and a
2698   // field in the TCB.  This is followed by a jump.
2699
2700   // cmp %gs:NN,%esp
2701   if (this->match_view(view, view_size, fnoffset, "\x65\x3b\x25", 3)
2702       && fnsize > 7)
2703     {
2704       // We will call __morestack if the carry flag is set after this
2705       // comparison.  We turn the comparison into an stc instruction
2706       // and some nops.
2707       view[fnoffset] = '\xf9';
2708       this->set_view_to_nop(view, view_size, fnoffset + 1, 6);
2709     }
2710   // lea NN(%esp),%ecx
2711   else if (this->match_view(view, view_size, fnoffset, "\x8d\x8c\x24", 3)
2712            && fnsize > 7)
2713     {
2714       // This is loading an offset from the stack pointer for a
2715       // comparison.  The offset is negative, so we decrease the
2716       // offset by the amount of space we need for the stack.  This
2717       // means we will avoid calling __morestack if there happens to
2718       // be plenty of space on the stack already.
2719       unsigned char* pval = view + fnoffset + 3;
2720       uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
2721       val -= parameters->options().split_stack_adjust_size();
2722       elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
2723     }
2724   else
2725     {
2726       if (!object->has_no_split_stack())
2727         object->error(_("failed to match split-stack sequence at "
2728                         "section %u offset %0zx"),
2729                       shndx, fnoffset);
2730       return;
2731     }
2732
2733   // We have to change the function so that it calls
2734   // __morestack_non_split instead of __morestack.  The former will
2735   // allocate additional stack space.
2736   *from = "__morestack";
2737   *to = "__morestack_non_split";
2738 }
2739
2740 // The selector for i386 object files.
2741
2742 class Target_selector_i386 : public Target_selector_freebsd
2743 {
2744 public:
2745   Target_selector_i386()
2746     : Target_selector_freebsd(elfcpp::EM_386, 32, false,
2747                               "elf32-i386", "elf32-i386-freebsd")
2748   { }
2749
2750   Target*
2751   do_instantiate_target()
2752   { return new Target_i386(); }
2753 };
2754
2755 Target_selector_i386 target_selector_i386;
2756
2757 } // End anonymous namespace.