Merge branch 'vendor/TNFTP'
[dragonfly.git] / contrib / binutils-2.20 / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
35
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
47 #include "reloc.h"
48 #include "descriptors.h"
49 #include "plugin.h"
50 #include "incremental.h"
51 #include "layout.h"
52
53 namespace gold
54 {
55
56 // Layout::Relaxation_debug_check methods.
57
58 // Check that sections and special data are in reset states.
59 // We do not save states for Output_sections and special Output_data.
60 // So we check that they have not assigned any addresses or offsets.
61 // clean_up_after_relaxation simply resets their addresses and offsets.
62 void
63 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
64     const Layout::Section_list& sections,
65     const Layout::Data_list& special_outputs)
66 {
67   for(Layout::Section_list::const_iterator p = sections.begin();
68       p != sections.end();
69       ++p)
70     gold_assert((*p)->address_and_file_offset_have_reset_values());
71
72   for(Layout::Data_list::const_iterator p = special_outputs.begin();
73       p != special_outputs.end();
74       ++p)
75     gold_assert((*p)->address_and_file_offset_have_reset_values());
76 }
77   
78 // Save information of SECTIONS for checking later.
79
80 void
81 Layout::Relaxation_debug_check::read_sections(
82     const Layout::Section_list& sections)
83 {
84   for(Layout::Section_list::const_iterator p = sections.begin();
85       p != sections.end();
86       ++p)
87     {
88       Output_section* os = *p;
89       Section_info info;
90       info.output_section = os;
91       info.address = os->is_address_valid() ? os->address() : 0;
92       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
93       info.offset = os->is_offset_valid()? os->offset() : -1 ;
94       this->section_infos_.push_back(info);
95     }
96 }
97
98 // Verify SECTIONS using previously recorded information.
99
100 void
101 Layout::Relaxation_debug_check::verify_sections(
102     const Layout::Section_list& sections)
103 {
104   size_t i = 0;
105   for(Layout::Section_list::const_iterator p = sections.begin();
106       p != sections.end();
107       ++p, ++i)
108     {
109       Output_section* os = *p;
110       uint64_t address = os->is_address_valid() ? os->address() : 0;
111       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
112       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
113
114       if (i >= this->section_infos_.size())
115         {
116           gold_fatal("Section_info of %s missing.\n", os->name());
117         }
118       const Section_info& info = this->section_infos_[i];
119       if (os != info.output_section)
120         gold_fatal("Section order changed.  Expecting %s but see %s\n",
121                    info.output_section->name(), os->name());
122       if (address != info.address
123           || data_size != info.data_size
124           || offset != info.offset)
125         gold_fatal("Section %s changed.\n", os->name());
126     }
127 }
128
129 // Layout_task_runner methods.
130
131 // Lay out the sections.  This is called after all the input objects
132 // have been read.
133
134 void
135 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
136 {
137   off_t file_size = this->layout_->finalize(this->input_objects_,
138                                             this->symtab_,
139                                             this->target_,
140                                             task);
141
142   // Now we know the final size of the output file and we know where
143   // each piece of information goes.
144
145   if (this->mapfile_ != NULL)
146     {
147       this->mapfile_->print_discarded_sections(this->input_objects_);
148       this->layout_->print_to_mapfile(this->mapfile_);
149     }
150
151   Output_file* of = new Output_file(parameters->options().output_file_name());
152   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
153     of->set_is_temporary();
154   of->open(file_size);
155
156   // Queue up the final set of tasks.
157   gold::queue_final_tasks(this->options_, this->input_objects_,
158                           this->symtab_, this->layout_, workqueue, of);
159 }
160
161 // Layout methods.
162
163 Layout::Layout(int number_of_input_files, Script_options* script_options)
164   : number_of_input_files_(number_of_input_files),
165     script_options_(script_options),
166     namepool_(),
167     sympool_(),
168     dynpool_(),
169     signatures_(),
170     section_name_map_(),
171     segment_list_(),
172     section_list_(),
173     unattached_section_list_(),
174     special_output_list_(),
175     section_headers_(NULL),
176     tls_segment_(NULL),
177     relro_segment_(NULL),
178     symtab_section_(NULL),
179     symtab_xindex_(NULL),
180     dynsym_section_(NULL),
181     dynsym_xindex_(NULL),
182     dynamic_section_(NULL),
183     dynamic_data_(NULL),
184     eh_frame_section_(NULL),
185     eh_frame_data_(NULL),
186     added_eh_frame_data_(false),
187     eh_frame_hdr_section_(NULL),
188     build_id_note_(NULL),
189     debug_abbrev_(NULL),
190     debug_info_(NULL),
191     group_signatures_(),
192     output_file_size_(-1),
193     sections_are_attached_(false),
194     input_requires_executable_stack_(false),
195     input_with_gnu_stack_note_(false),
196     input_without_gnu_stack_note_(false),
197     has_static_tls_(false),
198     any_postprocessing_sections_(false),
199     resized_signatures_(false),
200     have_stabstr_section_(false),
201     incremental_inputs_(NULL),
202     record_output_section_data_from_script_(false),
203     script_output_section_data_list_(),
204     segment_states_(NULL),
205     relaxation_debug_check_(NULL)
206 {
207   // Make space for more than enough segments for a typical file.
208   // This is just for efficiency--it's OK if we wind up needing more.
209   this->segment_list_.reserve(12);
210
211   // We expect two unattached Output_data objects: the file header and
212   // the segment headers.
213   this->special_output_list_.reserve(2);
214
215   // Initialize structure needed for an incremental build.
216   if (parameters->options().incremental())
217     this->incremental_inputs_ = new Incremental_inputs;
218
219   // The section name pool is worth optimizing in all cases, because
220   // it is small, but there are often overlaps due to .rel sections.
221   this->namepool_.set_optimize();
222 }
223
224 // Hash a key we use to look up an output section mapping.
225
226 size_t
227 Layout::Hash_key::operator()(const Layout::Key& k) const
228 {
229  return k.first + k.second.first + k.second.second;
230 }
231
232 // Returns whether the given section is in the list of
233 // debug-sections-used-by-some-version-of-gdb.  Currently,
234 // we've checked versions of gdb up to and including 6.7.1.
235
236 static const char* gdb_sections[] =
237 { ".debug_abbrev",
238   // ".debug_aranges",   // not used by gdb as of 6.7.1
239   ".debug_frame",
240   ".debug_info",
241   ".debug_line",
242   ".debug_loc",
243   ".debug_macinfo",
244   // ".debug_pubnames",  // not used by gdb as of 6.7.1
245   ".debug_ranges",
246   ".debug_str",
247 };
248
249 static const char* lines_only_debug_sections[] =
250 { ".debug_abbrev",
251   // ".debug_aranges",   // not used by gdb as of 6.7.1
252   // ".debug_frame",
253   ".debug_info",
254   ".debug_line",
255   // ".debug_loc",
256   // ".debug_macinfo",
257   // ".debug_pubnames",  // not used by gdb as of 6.7.1
258   // ".debug_ranges",
259   ".debug_str",
260 };
261
262 static inline bool
263 is_gdb_debug_section(const char* str)
264 {
265   // We can do this faster: binary search or a hashtable.  But why bother?
266   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
267     if (strcmp(str, gdb_sections[i]) == 0)
268       return true;
269   return false;
270 }
271
272 static inline bool
273 is_lines_only_debug_section(const char* str)
274 {
275   // We can do this faster: binary search or a hashtable.  But why bother?
276   for (size_t i = 0;
277        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
278        ++i)
279     if (strcmp(str, lines_only_debug_sections[i]) == 0)
280       return true;
281   return false;
282 }
283
284 // Whether to include this section in the link.
285
286 template<int size, bool big_endian>
287 bool
288 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
289                         const elfcpp::Shdr<size, big_endian>& shdr)
290 {
291   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
292     return false;
293
294   switch (shdr.get_sh_type())
295     {
296     case elfcpp::SHT_NULL:
297     case elfcpp::SHT_SYMTAB:
298     case elfcpp::SHT_DYNSYM:
299     case elfcpp::SHT_HASH:
300     case elfcpp::SHT_DYNAMIC:
301     case elfcpp::SHT_SYMTAB_SHNDX:
302       return false;
303
304     case elfcpp::SHT_STRTAB:
305       // Discard the sections which have special meanings in the ELF
306       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
307       // checking the sh_link fields of the appropriate sections.
308       return (strcmp(name, ".dynstr") != 0
309               && strcmp(name, ".strtab") != 0
310               && strcmp(name, ".shstrtab") != 0);
311
312     case elfcpp::SHT_RELA:
313     case elfcpp::SHT_REL:
314     case elfcpp::SHT_GROUP:
315       // If we are emitting relocations these should be handled
316       // elsewhere.
317       gold_assert(!parameters->options().relocatable()
318                   && !parameters->options().emit_relocs());
319       return false;
320
321     case elfcpp::SHT_PROGBITS:
322       if (parameters->options().strip_debug()
323           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
324         {
325           if (is_debug_info_section(name))
326             return false;
327         }
328       if (parameters->options().strip_debug_non_line()
329           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
330         {
331           // Debugging sections can only be recognized by name.
332           if (is_prefix_of(".debug", name)
333               && !is_lines_only_debug_section(name))
334             return false;
335         }
336       if (parameters->options().strip_debug_gdb()
337           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
338         {
339           // Debugging sections can only be recognized by name.
340           if (is_prefix_of(".debug", name)
341               && !is_gdb_debug_section(name))
342             return false;
343         }
344       if (parameters->options().strip_lto_sections()
345           && !parameters->options().relocatable()
346           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
347         {
348           // Ignore LTO sections containing intermediate code.
349           if (is_prefix_of(".gnu.lto_", name))
350             return false;
351         }
352       return true;
353
354     default:
355       return true;
356     }
357 }
358
359 // Return an output section named NAME, or NULL if there is none.
360
361 Output_section*
362 Layout::find_output_section(const char* name) const
363 {
364   for (Section_list::const_iterator p = this->section_list_.begin();
365        p != this->section_list_.end();
366        ++p)
367     if (strcmp((*p)->name(), name) == 0)
368       return *p;
369   return NULL;
370 }
371
372 // Return an output segment of type TYPE, with segment flags SET set
373 // and segment flags CLEAR clear.  Return NULL if there is none.
374
375 Output_segment*
376 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
377                             elfcpp::Elf_Word clear) const
378 {
379   for (Segment_list::const_iterator p = this->segment_list_.begin();
380        p != this->segment_list_.end();
381        ++p)
382     if (static_cast<elfcpp::PT>((*p)->type()) == type
383         && ((*p)->flags() & set) == set
384         && ((*p)->flags() & clear) == 0)
385       return *p;
386   return NULL;
387 }
388
389 // Return the output section to use for section NAME with type TYPE
390 // and section flags FLAGS.  NAME must be canonicalized in the string
391 // pool, and NAME_KEY is the key.
392
393 Output_section*
394 Layout::get_output_section(const char* name, Stringpool::Key name_key,
395                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
396 {
397   elfcpp::Elf_Xword lookup_flags = flags;
398
399   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
400   // read-write with read-only sections.  Some other ELF linkers do
401   // not do this.  FIXME: Perhaps there should be an option
402   // controlling this.
403   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
404
405   const Key key(name_key, std::make_pair(type, lookup_flags));
406   const std::pair<Key, Output_section*> v(key, NULL);
407   std::pair<Section_name_map::iterator, bool> ins(
408     this->section_name_map_.insert(v));
409
410   if (!ins.second)
411     return ins.first->second;
412   else
413     {
414       // This is the first time we've seen this name/type/flags
415       // combination.  For compatibility with the GNU linker, we
416       // combine sections with contents and zero flags with sections
417       // with non-zero flags.  This is a workaround for cases where
418       // assembler code forgets to set section flags.  FIXME: Perhaps
419       // there should be an option to control this.
420       Output_section* os = NULL;
421
422       if (type == elfcpp::SHT_PROGBITS)
423         {
424           if (flags == 0)
425             {
426               Output_section* same_name = this->find_output_section(name);
427               if (same_name != NULL
428                   && same_name->type() == elfcpp::SHT_PROGBITS
429                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
430                 os = same_name;
431             }
432           else if ((flags & elfcpp::SHF_TLS) == 0)
433             {
434               elfcpp::Elf_Xword zero_flags = 0;
435               const Key zero_key(name_key, std::make_pair(type, zero_flags));
436               Section_name_map::iterator p =
437                   this->section_name_map_.find(zero_key);
438               if (p != this->section_name_map_.end())
439                 os = p->second;
440             }
441         }
442
443       if (os == NULL)
444         os = this->make_output_section(name, type, flags);
445       ins.first->second = os;
446       return os;
447     }
448 }
449
450 // Pick the output section to use for section NAME, in input file
451 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
452 // linker created section.  IS_INPUT_SECTION is true if we are
453 // choosing an output section for an input section found in a input
454 // file.  This will return NULL if the input section should be
455 // discarded.
456
457 Output_section*
458 Layout::choose_output_section(const Relobj* relobj, const char* name,
459                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
460                               bool is_input_section)
461 {
462   // We should not see any input sections after we have attached
463   // sections to segments.
464   gold_assert(!is_input_section || !this->sections_are_attached_);
465
466   // Some flags in the input section should not be automatically
467   // copied to the output section.
468   flags &= ~ (elfcpp::SHF_INFO_LINK
469               | elfcpp::SHF_LINK_ORDER
470               | elfcpp::SHF_GROUP
471               | elfcpp::SHF_MERGE
472               | elfcpp::SHF_STRINGS);
473
474   if (this->script_options_->saw_sections_clause())
475     {
476       // We are using a SECTIONS clause, so the output section is
477       // chosen based only on the name.
478
479       Script_sections* ss = this->script_options_->script_sections();
480       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
481       Output_section** output_section_slot;
482       name = ss->output_section_name(file_name, name, &output_section_slot);
483       if (name == NULL)
484         {
485           // The SECTIONS clause says to discard this input section.
486           return NULL;
487         }
488
489       // If this is an orphan section--one not mentioned in the linker
490       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
491       // default processing below.
492
493       if (output_section_slot != NULL)
494         {
495           if (*output_section_slot != NULL)
496             {
497               (*output_section_slot)->update_flags_for_input_section(flags);
498               return *output_section_slot;
499             }
500
501           // We don't put sections found in the linker script into
502           // SECTION_NAME_MAP_.  That keeps us from getting confused
503           // if an orphan section is mapped to a section with the same
504           // name as one in the linker script.
505
506           name = this->namepool_.add(name, false, NULL);
507
508           Output_section* os = this->make_output_section(name, type, flags);
509           os->set_found_in_sections_clause();
510           *output_section_slot = os;
511           return os;
512         }
513     }
514
515   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
516
517   // Turn NAME from the name of the input section into the name of the
518   // output section.
519
520   size_t len = strlen(name);
521   if (is_input_section
522       && !this->script_options_->saw_sections_clause()
523       && !parameters->options().relocatable())
524     name = Layout::output_section_name(name, &len);
525
526   Stringpool::Key name_key;
527   name = this->namepool_.add_with_length(name, len, true, &name_key);
528
529   // Find or make the output section.  The output section is selected
530   // based on the section name, type, and flags.
531   return this->get_output_section(name, name_key, type, flags);
532 }
533
534 // Return the output section to use for input section SHNDX, with name
535 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
536 // index of a relocation section which applies to this section, or 0
537 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
538 // relocation section if there is one.  Set *OFF to the offset of this
539 // input section without the output section.  Return NULL if the
540 // section should be discarded.  Set *OFF to -1 if the section
541 // contents should not be written directly to the output file, but
542 // will instead receive special handling.
543
544 template<int size, bool big_endian>
545 Output_section*
546 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
547                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
548                unsigned int reloc_shndx, unsigned int, off_t* off)
549 {
550   *off = 0;
551
552   if (!this->include_section(object, name, shdr))
553     return NULL;
554
555   Output_section* os;
556
557   // In a relocatable link a grouped section must not be combined with
558   // any other sections.
559   if (parameters->options().relocatable()
560       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
561     {
562       name = this->namepool_.add(name, true, NULL);
563       os = this->make_output_section(name, shdr.get_sh_type(),
564                                      shdr.get_sh_flags());
565     }
566   else
567     {
568       os = this->choose_output_section(object, name, shdr.get_sh_type(),
569                                        shdr.get_sh_flags(), true);
570       if (os == NULL)
571         return NULL;
572     }
573
574   // By default the GNU linker sorts input sections whose names match
575   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
576   // are sorted by name.  This is used to implement constructor
577   // priority ordering.  We are compatible.
578   if (!this->script_options_->saw_sections_clause()
579       && (is_prefix_of(".ctors.", name)
580           || is_prefix_of(".dtors.", name)
581           || is_prefix_of(".init_array.", name)
582           || is_prefix_of(".fini_array.", name)))
583     os->set_must_sort_attached_input_sections();
584
585   // FIXME: Handle SHF_LINK_ORDER somewhere.
586
587   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
588                                this->script_options_->saw_sections_clause());
589
590   return os;
591 }
592
593 // Handle a relocation section when doing a relocatable link.
594
595 template<int size, bool big_endian>
596 Output_section*
597 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
598                      unsigned int,
599                      const elfcpp::Shdr<size, big_endian>& shdr,
600                      Output_section* data_section,
601                      Relocatable_relocs* rr)
602 {
603   gold_assert(parameters->options().relocatable()
604               || parameters->options().emit_relocs());
605
606   int sh_type = shdr.get_sh_type();
607
608   std::string name;
609   if (sh_type == elfcpp::SHT_REL)
610     name = ".rel";
611   else if (sh_type == elfcpp::SHT_RELA)
612     name = ".rela";
613   else
614     gold_unreachable();
615   name += data_section->name();
616
617   Output_section* os = this->choose_output_section(object, name.c_str(),
618                                                    sh_type,
619                                                    shdr.get_sh_flags(),
620                                                    false);
621
622   os->set_should_link_to_symtab();
623   os->set_info_section(data_section);
624
625   Output_section_data* posd;
626   if (sh_type == elfcpp::SHT_REL)
627     {
628       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
629       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
630                                            size,
631                                            big_endian>(rr);
632     }
633   else if (sh_type == elfcpp::SHT_RELA)
634     {
635       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
636       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
637                                            size,
638                                            big_endian>(rr);
639     }
640   else
641     gold_unreachable();
642
643   os->add_output_section_data(posd);
644   rr->set_output_data(posd);
645
646   return os;
647 }
648
649 // Handle a group section when doing a relocatable link.
650
651 template<int size, bool big_endian>
652 void
653 Layout::layout_group(Symbol_table* symtab,
654                      Sized_relobj<size, big_endian>* object,
655                      unsigned int,
656                      const char* group_section_name,
657                      const char* signature,
658                      const elfcpp::Shdr<size, big_endian>& shdr,
659                      elfcpp::Elf_Word flags,
660                      std::vector<unsigned int>* shndxes)
661 {
662   gold_assert(parameters->options().relocatable());
663   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
664   group_section_name = this->namepool_.add(group_section_name, true, NULL);
665   Output_section* os = this->make_output_section(group_section_name,
666                                                  elfcpp::SHT_GROUP,
667                                                  shdr.get_sh_flags());
668
669   // We need to find a symbol with the signature in the symbol table.
670   // If we don't find one now, we need to look again later.
671   Symbol* sym = symtab->lookup(signature, NULL);
672   if (sym != NULL)
673     os->set_info_symndx(sym);
674   else
675     {
676       // Reserve some space to minimize reallocations.
677       if (this->group_signatures_.empty())
678         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
679
680       // We will wind up using a symbol whose name is the signature.
681       // So just put the signature in the symbol name pool to save it.
682       signature = symtab->canonicalize_name(signature);
683       this->group_signatures_.push_back(Group_signature(os, signature));
684     }
685
686   os->set_should_link_to_symtab();
687   os->set_entsize(4);
688
689   section_size_type entry_count =
690     convert_to_section_size_type(shdr.get_sh_size() / 4);
691   Output_section_data* posd =
692     new Output_data_group<size, big_endian>(object, entry_count, flags,
693                                             shndxes);
694   os->add_output_section_data(posd);
695 }
696
697 // Special GNU handling of sections name .eh_frame.  They will
698 // normally hold exception frame data as defined by the C++ ABI
699 // (http://codesourcery.com/cxx-abi/).
700
701 template<int size, bool big_endian>
702 Output_section*
703 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
704                         const unsigned char* symbols,
705                         off_t symbols_size,
706                         const unsigned char* symbol_names,
707                         off_t symbol_names_size,
708                         unsigned int shndx,
709                         const elfcpp::Shdr<size, big_endian>& shdr,
710                         unsigned int reloc_shndx, unsigned int reloc_type,
711                         off_t* off)
712 {
713   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
714   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
715
716   const char* const name = ".eh_frame";
717   Output_section* os = this->choose_output_section(object,
718                                                    name,
719                                                    elfcpp::SHT_PROGBITS,
720                                                    elfcpp::SHF_ALLOC,
721                                                    false);
722   if (os == NULL)
723     return NULL;
724
725   if (this->eh_frame_section_ == NULL)
726     {
727       this->eh_frame_section_ = os;
728       this->eh_frame_data_ = new Eh_frame();
729
730       if (parameters->options().eh_frame_hdr())
731         {
732           Output_section* hdr_os =
733             this->choose_output_section(NULL,
734                                         ".eh_frame_hdr",
735                                         elfcpp::SHT_PROGBITS,
736                                         elfcpp::SHF_ALLOC,
737                                         false);
738
739           if (hdr_os != NULL)
740             {
741               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
742                                                         this->eh_frame_data_);
743               hdr_os->add_output_section_data(hdr_posd);
744
745               hdr_os->set_after_input_sections();
746
747               if (!this->script_options_->saw_phdrs_clause())
748                 {
749                   Output_segment* hdr_oseg;
750                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
751                                                        elfcpp::PF_R);
752                   hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
753                 }
754
755               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
756             }
757         }
758     }
759
760   gold_assert(this->eh_frame_section_ == os);
761
762   if (this->eh_frame_data_->add_ehframe_input_section(object,
763                                                       symbols,
764                                                       symbols_size,
765                                                       symbol_names,
766                                                       symbol_names_size,
767                                                       shndx,
768                                                       reloc_shndx,
769                                                       reloc_type))
770     {
771       os->update_flags_for_input_section(shdr.get_sh_flags());
772
773       // We found a .eh_frame section we are going to optimize, so now
774       // we can add the set of optimized sections to the output
775       // section.  We need to postpone adding this until we've found a
776       // section we can optimize so that the .eh_frame section in
777       // crtbegin.o winds up at the start of the output section.
778       if (!this->added_eh_frame_data_)
779         {
780           os->add_output_section_data(this->eh_frame_data_);
781           this->added_eh_frame_data_ = true;
782         }
783       *off = -1;
784     }
785   else
786     {
787       // We couldn't handle this .eh_frame section for some reason.
788       // Add it as a normal section.
789       bool saw_sections_clause = this->script_options_->saw_sections_clause();
790       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
791                                    saw_sections_clause);
792     }
793
794   return os;
795 }
796
797 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
798 // the output section.
799
800 Output_section*
801 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
802                                 elfcpp::Elf_Xword flags,
803                                 Output_section_data* posd)
804 {
805   Output_section* os = this->choose_output_section(NULL, name, type, flags,
806                                                    false);
807   if (os != NULL)
808     os->add_output_section_data(posd);
809   return os;
810 }
811
812 // Map section flags to segment flags.
813
814 elfcpp::Elf_Word
815 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
816 {
817   elfcpp::Elf_Word ret = elfcpp::PF_R;
818   if ((flags & elfcpp::SHF_WRITE) != 0)
819     ret |= elfcpp::PF_W;
820   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
821     ret |= elfcpp::PF_X;
822   return ret;
823 }
824
825 // Sometimes we compress sections.  This is typically done for
826 // sections that are not part of normal program execution (such as
827 // .debug_* sections), and where the readers of these sections know
828 // how to deal with compressed sections.  This routine doesn't say for
829 // certain whether we'll compress -- it depends on commandline options
830 // as well -- just whether this section is a candidate for compression.
831 // (The Output_compressed_section class decides whether to compress
832 // a given section, and picks the name of the compressed section.)
833
834 static bool
835 is_compressible_debug_section(const char* secname)
836 {
837   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
838 }
839
840 // Make a new Output_section, and attach it to segments as
841 // appropriate.
842
843 Output_section*
844 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
845                             elfcpp::Elf_Xword flags)
846 {
847   Output_section* os;
848   if ((flags & elfcpp::SHF_ALLOC) == 0
849       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
850       && is_compressible_debug_section(name))
851     os = new Output_compressed_section(&parameters->options(), name, type,
852                                        flags);
853
854   else if ((flags & elfcpp::SHF_ALLOC) == 0
855            && parameters->options().strip_debug_non_line()
856            && strcmp(".debug_abbrev", name) == 0)
857     {
858       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
859           name, type, flags);
860       if (this->debug_info_)
861         this->debug_info_->set_abbreviations(this->debug_abbrev_);
862     }
863   else if ((flags & elfcpp::SHF_ALLOC) == 0
864            && parameters->options().strip_debug_non_line()
865            && strcmp(".debug_info", name) == 0)
866     {
867       os = this->debug_info_ = new Output_reduced_debug_info_section(
868           name, type, flags);
869       if (this->debug_abbrev_)
870         this->debug_info_->set_abbreviations(this->debug_abbrev_);
871     }
872  else
873     {
874       // FIXME: const_cast is ugly.
875       Target* target = const_cast<Target*>(&parameters->target());
876       os = target->make_output_section(name, type, flags);
877     }
878
879   parameters->target().new_output_section(os);
880
881   this->section_list_.push_back(os);
882
883   // The GNU linker by default sorts some sections by priority, so we
884   // do the same.  We need to know that this might happen before we
885   // attach any input sections.
886   if (!this->script_options_->saw_sections_clause()
887       && (strcmp(name, ".ctors") == 0
888           || strcmp(name, ".dtors") == 0
889           || strcmp(name, ".init_array") == 0
890           || strcmp(name, ".fini_array") == 0))
891     os->set_may_sort_attached_input_sections();
892
893   // With -z relro, we have to recognize the special sections by name.
894   // There is no other way.
895   if (!this->script_options_->saw_sections_clause()
896       && parameters->options().relro()
897       && type == elfcpp::SHT_PROGBITS
898       && (flags & elfcpp::SHF_ALLOC) != 0
899       && (flags & elfcpp::SHF_WRITE) != 0)
900     {
901       if (strcmp(name, ".data.rel.ro") == 0)
902         os->set_is_relro();
903       else if (strcmp(name, ".data.rel.ro.local") == 0)
904         {
905           os->set_is_relro();
906           os->set_is_relro_local();
907         }
908     }
909
910   // Check for .stab*str sections, as .stab* sections need to link to
911   // them.
912   if (type == elfcpp::SHT_STRTAB
913       && !this->have_stabstr_section_
914       && strncmp(name, ".stab", 5) == 0
915       && strcmp(name + strlen(name) - 3, "str") == 0)
916     this->have_stabstr_section_ = true;
917
918   // If we have already attached the sections to segments, then we
919   // need to attach this one now.  This happens for sections created
920   // directly by the linker.
921   if (this->sections_are_attached_)
922     this->attach_section_to_segment(os);
923
924   return os;
925 }
926
927 // Attach output sections to segments.  This is called after we have
928 // seen all the input sections.
929
930 void
931 Layout::attach_sections_to_segments()
932 {
933   for (Section_list::iterator p = this->section_list_.begin();
934        p != this->section_list_.end();
935        ++p)
936     this->attach_section_to_segment(*p);
937
938   this->sections_are_attached_ = true;
939 }
940
941 // Attach an output section to a segment.
942
943 void
944 Layout::attach_section_to_segment(Output_section* os)
945 {
946   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
947     this->unattached_section_list_.push_back(os);
948   else
949     this->attach_allocated_section_to_segment(os);
950 }
951
952 // Attach an allocated output section to a segment.
953
954 void
955 Layout::attach_allocated_section_to_segment(Output_section* os)
956 {
957   elfcpp::Elf_Xword flags = os->flags();
958   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
959
960   if (parameters->options().relocatable())
961     return;
962
963   // If we have a SECTIONS clause, we can't handle the attachment to
964   // segments until after we've seen all the sections.
965   if (this->script_options_->saw_sections_clause())
966     return;
967
968   gold_assert(!this->script_options_->saw_phdrs_clause());
969
970   // This output section goes into a PT_LOAD segment.
971
972   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
973
974   // In general the only thing we really care about for PT_LOAD
975   // segments is whether or not they are writable, so that is how we
976   // search for them.  Large data sections also go into their own
977   // PT_LOAD segment.  People who need segments sorted on some other
978   // basis will have to use a linker script.
979
980   Segment_list::const_iterator p;
981   for (p = this->segment_list_.begin();
982        p != this->segment_list_.end();
983        ++p)
984     {
985       if ((*p)->type() != elfcpp::PT_LOAD)
986         continue;
987       if (!parameters->options().omagic()
988           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
989         continue;
990       // If -Tbss was specified, we need to separate the data and BSS
991       // segments.
992       if (parameters->options().user_set_Tbss())
993         {
994           if ((os->type() == elfcpp::SHT_NOBITS)
995               == (*p)->has_any_data_sections())
996             continue;
997         }
998       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
999         continue;
1000
1001       (*p)->add_output_section(os, seg_flags);
1002       break;
1003     }
1004
1005   if (p == this->segment_list_.end())
1006     {
1007       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1008                                                        seg_flags);
1009       if (os->is_large_data_section())
1010         oseg->set_is_large_data_segment();
1011       oseg->add_output_section(os, seg_flags);
1012     }
1013
1014   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1015   // segment.
1016   if (os->type() == elfcpp::SHT_NOTE)
1017     {
1018       // See if we already have an equivalent PT_NOTE segment.
1019       for (p = this->segment_list_.begin();
1020            p != segment_list_.end();
1021            ++p)
1022         {
1023           if ((*p)->type() == elfcpp::PT_NOTE
1024               && (((*p)->flags() & elfcpp::PF_W)
1025                   == (seg_flags & elfcpp::PF_W)))
1026             {
1027               (*p)->add_output_section(os, seg_flags);
1028               break;
1029             }
1030         }
1031
1032       if (p == this->segment_list_.end())
1033         {
1034           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1035                                                            seg_flags);
1036           oseg->add_output_section(os, seg_flags);
1037         }
1038     }
1039
1040   // If we see a loadable SHF_TLS section, we create a PT_TLS
1041   // segment.  There can only be one such segment.
1042   if ((flags & elfcpp::SHF_TLS) != 0)
1043     {
1044       if (this->tls_segment_ == NULL)
1045         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1046       this->tls_segment_->add_output_section(os, seg_flags);
1047     }
1048
1049   // If -z relro is in effect, and we see a relro section, we create a
1050   // PT_GNU_RELRO segment.  There can only be one such segment.
1051   if (os->is_relro() && parameters->options().relro())
1052     {
1053       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1054       if (this->relro_segment_ == NULL)
1055         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1056       this->relro_segment_->add_output_section(os, seg_flags);
1057     }
1058 }
1059
1060 // Make an output section for a script.
1061
1062 Output_section*
1063 Layout::make_output_section_for_script(const char* name)
1064 {
1065   name = this->namepool_.add(name, false, NULL);
1066   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1067                                                  elfcpp::SHF_ALLOC);
1068   os->set_found_in_sections_clause();
1069   return os;
1070 }
1071
1072 // Return the number of segments we expect to see.
1073
1074 size_t
1075 Layout::expected_segment_count() const
1076 {
1077   size_t ret = this->segment_list_.size();
1078
1079   // If we didn't see a SECTIONS clause in a linker script, we should
1080   // already have the complete list of segments.  Otherwise we ask the
1081   // SECTIONS clause how many segments it expects, and add in the ones
1082   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1083
1084   if (!this->script_options_->saw_sections_clause())
1085     return ret;
1086   else
1087     {
1088       const Script_sections* ss = this->script_options_->script_sections();
1089       return ret + ss->expected_segment_count(this);
1090     }
1091 }
1092
1093 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1094 // is whether we saw a .note.GNU-stack section in the object file.
1095 // GNU_STACK_FLAGS is the section flags.  The flags give the
1096 // protection required for stack memory.  We record this in an
1097 // executable as a PT_GNU_STACK segment.  If an object file does not
1098 // have a .note.GNU-stack segment, we must assume that it is an old
1099 // object.  On some targets that will force an executable stack.
1100
1101 void
1102 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
1103 {
1104   if (!seen_gnu_stack)
1105     this->input_without_gnu_stack_note_ = true;
1106   else
1107     {
1108       this->input_with_gnu_stack_note_ = true;
1109       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1110         this->input_requires_executable_stack_ = true;
1111     }
1112 }
1113
1114 // Create automatic note sections.
1115
1116 void
1117 Layout::create_notes()
1118 {
1119   this->create_gold_note();
1120   this->create_executable_stack_info();
1121   this->create_build_id();
1122 }
1123
1124 // Create the dynamic sections which are needed before we read the
1125 // relocs.
1126
1127 void
1128 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1129 {
1130   if (parameters->doing_static_link())
1131     return;
1132
1133   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1134                                                        elfcpp::SHT_DYNAMIC,
1135                                                        (elfcpp::SHF_ALLOC
1136                                                         | elfcpp::SHF_WRITE),
1137                                                        false);
1138   this->dynamic_section_->set_is_relro();
1139
1140   symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
1141                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1142                                 elfcpp::STV_HIDDEN, 0, false, false);
1143
1144   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1145
1146   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1147 }
1148
1149 // For each output section whose name can be represented as C symbol,
1150 // define __start and __stop symbols for the section.  This is a GNU
1151 // extension.
1152
1153 void
1154 Layout::define_section_symbols(Symbol_table* symtab)
1155 {
1156   for (Section_list::const_iterator p = this->section_list_.begin();
1157        p != this->section_list_.end();
1158        ++p)
1159     {
1160       const char* const name = (*p)->name();
1161       if (name[strspn(name,
1162                       ("0123456789"
1163                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1164                        "abcdefghijklmnopqrstuvwxyz"
1165                        "_"))]
1166           == '\0')
1167         {
1168           const std::string name_string(name);
1169           const std::string start_name("__start_" + name_string);
1170           const std::string stop_name("__stop_" + name_string);
1171
1172           symtab->define_in_output_data(start_name.c_str(),
1173                                         NULL, // version
1174                                         *p,
1175                                         0, // value
1176                                         0, // symsize
1177                                         elfcpp::STT_NOTYPE,
1178                                         elfcpp::STB_GLOBAL,
1179                                         elfcpp::STV_DEFAULT,
1180                                         0, // nonvis
1181                                         false, // offset_is_from_end
1182                                         true); // only_if_ref
1183
1184           symtab->define_in_output_data(stop_name.c_str(),
1185                                         NULL, // version
1186                                         *p,
1187                                         0, // value
1188                                         0, // symsize
1189                                         elfcpp::STT_NOTYPE,
1190                                         elfcpp::STB_GLOBAL,
1191                                         elfcpp::STV_DEFAULT,
1192                                         0, // nonvis
1193                                         true, // offset_is_from_end
1194                                         true); // only_if_ref
1195         }
1196     }
1197 }
1198
1199 // Define symbols for group signatures.
1200
1201 void
1202 Layout::define_group_signatures(Symbol_table* symtab)
1203 {
1204   for (Group_signatures::iterator p = this->group_signatures_.begin();
1205        p != this->group_signatures_.end();
1206        ++p)
1207     {
1208       Symbol* sym = symtab->lookup(p->signature, NULL);
1209       if (sym != NULL)
1210         p->section->set_info_symndx(sym);
1211       else
1212         {
1213           // Force the name of the group section to the group
1214           // signature, and use the group's section symbol as the
1215           // signature symbol.
1216           if (strcmp(p->section->name(), p->signature) != 0)
1217             {
1218               const char* name = this->namepool_.add(p->signature,
1219                                                      true, NULL);
1220               p->section->set_name(name);
1221             }
1222           p->section->set_needs_symtab_index();
1223           p->section->set_info_section_symndx(p->section);
1224         }
1225     }
1226
1227   this->group_signatures_.clear();
1228 }
1229
1230 // Find the first read-only PT_LOAD segment, creating one if
1231 // necessary.
1232
1233 Output_segment*
1234 Layout::find_first_load_seg()
1235 {
1236   for (Segment_list::const_iterator p = this->segment_list_.begin();
1237        p != this->segment_list_.end();
1238        ++p)
1239     {
1240       if ((*p)->type() == elfcpp::PT_LOAD
1241           && ((*p)->flags() & elfcpp::PF_R) != 0
1242           && (parameters->options().omagic()
1243               || ((*p)->flags() & elfcpp::PF_W) == 0))
1244         return *p;
1245     }
1246
1247   gold_assert(!this->script_options_->saw_phdrs_clause());
1248
1249   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1250                                                        elfcpp::PF_R);
1251   return load_seg;
1252 }
1253
1254 // Save states of all current output segments.  Store saved states
1255 // in SEGMENT_STATES.
1256
1257 void
1258 Layout::save_segments(Segment_states* segment_states)
1259 {
1260   for (Segment_list::const_iterator p = this->segment_list_.begin();
1261        p != this->segment_list_.end();
1262        ++p)
1263     {
1264       Output_segment* segment = *p;
1265       // Shallow copy.
1266       Output_segment* copy = new Output_segment(*segment);
1267       (*segment_states)[segment] = copy;
1268     }
1269 }
1270
1271 // Restore states of output segments and delete any segment not found in
1272 // SEGMENT_STATES.
1273
1274 void
1275 Layout::restore_segments(const Segment_states* segment_states)
1276 {
1277   // Go through the segment list and remove any segment added in the
1278   // relaxation loop.
1279   this->tls_segment_ = NULL;
1280   this->relro_segment_ = NULL;
1281   Segment_list::iterator list_iter = this->segment_list_.begin();
1282   while (list_iter != this->segment_list_.end())
1283     {
1284       Output_segment* segment = *list_iter;
1285       Segment_states::const_iterator states_iter =
1286           segment_states->find(segment);
1287       if (states_iter != segment_states->end())
1288         {
1289           const Output_segment* copy = states_iter->second;
1290           // Shallow copy to restore states.
1291           *segment = *copy;
1292
1293           // Also fix up TLS and RELRO segment pointers as appropriate.
1294           if (segment->type() == elfcpp::PT_TLS)
1295             this->tls_segment_ = segment;
1296           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1297             this->relro_segment_ = segment;
1298
1299           ++list_iter;
1300         } 
1301       else
1302         {
1303           list_iter = this->segment_list_.erase(list_iter); 
1304           // This is a segment created during section layout.  It should be
1305           // safe to remove it since we should have removed all pointers to it.
1306           delete segment;
1307         }
1308     }
1309 }
1310
1311 // Clean up after relaxation so that sections can be laid out again.
1312
1313 void
1314 Layout::clean_up_after_relaxation()
1315 {
1316   // Restore the segments to point state just prior to the relaxation loop.
1317   Script_sections* script_section = this->script_options_->script_sections();
1318   script_section->release_segments();
1319   this->restore_segments(this->segment_states_);
1320
1321   // Reset section addresses and file offsets
1322   for (Section_list::iterator p = this->section_list_.begin();
1323        p != this->section_list_.end();
1324        ++p)
1325     {
1326       (*p)->reset_address_and_file_offset();
1327       (*p)->restore_states();
1328     }
1329   
1330   // Reset special output object address and file offsets.
1331   for (Data_list::iterator p = this->special_output_list_.begin();
1332        p != this->special_output_list_.end();
1333        ++p)
1334     (*p)->reset_address_and_file_offset();
1335
1336   // A linker script may have created some output section data objects.
1337   // They are useless now.
1338   for (Output_section_data_list::const_iterator p =
1339          this->script_output_section_data_list_.begin();
1340        p != this->script_output_section_data_list_.end();
1341        ++p)
1342     delete *p;
1343   this->script_output_section_data_list_.clear(); 
1344 }
1345
1346 // Prepare for relaxation.
1347
1348 void
1349 Layout::prepare_for_relaxation()
1350 {
1351   // Create an relaxation debug check if in debugging mode.
1352   if (is_debugging_enabled(DEBUG_RELAXATION))
1353     this->relaxation_debug_check_ = new Relaxation_debug_check();
1354
1355   // Save segment states.
1356   this->segment_states_ = new Segment_states();
1357   this->save_segments(this->segment_states_);
1358
1359   for(Section_list::const_iterator p = this->section_list_.begin();
1360       p != this->section_list_.end();
1361       ++p)
1362     (*p)->save_states();
1363
1364   if (is_debugging_enabled(DEBUG_RELAXATION))
1365     this->relaxation_debug_check_->check_output_data_for_reset_values(
1366         this->section_list_, this->special_output_list_);
1367
1368   // Also enable recording of output section data from scripts.
1369   this->record_output_section_data_from_script_ = true;
1370 }
1371
1372 // Relaxation loop body:  If target has no relaxation, this runs only once
1373 // Otherwise, the target relaxation hook is called at the end of
1374 // each iteration.  If the hook returns true, it means re-layout of
1375 // section is required.  
1376 //
1377 // The number of segments created by a linking script without a PHDRS
1378 // clause may be affected by section sizes and alignments.  There is
1379 // a remote chance that relaxation causes different number of PT_LOAD
1380 // segments are created and sections are attached to different segments.
1381 // Therefore, we always throw away all segments created during section
1382 // layout.  In order to be able to restart the section layout, we keep
1383 // a copy of the segment list right before the relaxation loop and use
1384 // that to restore the segments.
1385 // 
1386 // PASS is the current relaxation pass number. 
1387 // SYMTAB is a symbol table.
1388 // PLOAD_SEG is the address of a pointer for the load segment.
1389 // PHDR_SEG is a pointer to the PHDR segment.
1390 // SEGMENT_HEADERS points to the output segment header.
1391 // FILE_HEADER points to the output file header.
1392 // PSHNDX is the address to store the output section index.
1393
1394 off_t inline
1395 Layout::relaxation_loop_body(
1396     int pass,
1397     Target* target,
1398     Symbol_table* symtab,
1399     Output_segment** pload_seg,
1400     Output_segment* phdr_seg,
1401     Output_segment_headers* segment_headers,
1402     Output_file_header* file_header,
1403     unsigned int* pshndx)
1404 {
1405   // If this is not the first iteration, we need to clean up after
1406   // relaxation so that we can lay out the sections again.
1407   if (pass != 0)
1408     this->clean_up_after_relaxation();
1409
1410   // If there is a SECTIONS clause, put all the input sections into
1411   // the required order.
1412   Output_segment* load_seg;
1413   if (this->script_options_->saw_sections_clause())
1414     load_seg = this->set_section_addresses_from_script(symtab);
1415   else if (parameters->options().relocatable())
1416     load_seg = NULL;
1417   else
1418     load_seg = this->find_first_load_seg();
1419
1420   if (parameters->options().oformat_enum()
1421       != General_options::OBJECT_FORMAT_ELF)
1422     load_seg = NULL;
1423
1424   gold_assert(phdr_seg == NULL
1425               || load_seg != NULL
1426               || this->script_options_->saw_sections_clause());
1427
1428   // Lay out the segment headers.
1429   if (!parameters->options().relocatable())
1430     {
1431       gold_assert(segment_headers != NULL);
1432       if (load_seg != NULL)
1433         load_seg->add_initial_output_data(segment_headers);
1434       if (phdr_seg != NULL)
1435         phdr_seg->add_initial_output_data(segment_headers);
1436     }
1437
1438   // Lay out the file header.
1439   if (load_seg != NULL)
1440     load_seg->add_initial_output_data(file_header);
1441
1442   if (this->script_options_->saw_phdrs_clause()
1443       && !parameters->options().relocatable())
1444     {
1445       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1446       // clause in a linker script.
1447       Script_sections* ss = this->script_options_->script_sections();
1448       ss->put_headers_in_phdrs(file_header, segment_headers);
1449     }
1450
1451   // We set the output section indexes in set_segment_offsets and
1452   // set_section_indexes.
1453   *pshndx = 1;
1454
1455   // Set the file offsets of all the segments, and all the sections
1456   // they contain.
1457   off_t off;
1458   if (!parameters->options().relocatable())
1459     off = this->set_segment_offsets(target, load_seg, pshndx);
1460   else
1461     off = this->set_relocatable_section_offsets(file_header, pshndx);
1462
1463    // Verify that the dummy relaxation does not change anything.
1464   if (is_debugging_enabled(DEBUG_RELAXATION))
1465     {
1466       if (pass == 0)
1467         this->relaxation_debug_check_->read_sections(this->section_list_);
1468       else
1469         this->relaxation_debug_check_->verify_sections(this->section_list_);
1470     }
1471
1472   *pload_seg = load_seg;
1473   return off;
1474 }
1475
1476 // Finalize the layout.  When this is called, we have created all the
1477 // output sections and all the output segments which are based on
1478 // input sections.  We have several things to do, and we have to do
1479 // them in the right order, so that we get the right results correctly
1480 // and efficiently.
1481
1482 // 1) Finalize the list of output segments and create the segment
1483 // table header.
1484
1485 // 2) Finalize the dynamic symbol table and associated sections.
1486
1487 // 3) Determine the final file offset of all the output segments.
1488
1489 // 4) Determine the final file offset of all the SHF_ALLOC output
1490 // sections.
1491
1492 // 5) Create the symbol table sections and the section name table
1493 // section.
1494
1495 // 6) Finalize the symbol table: set symbol values to their final
1496 // value and make a final determination of which symbols are going
1497 // into the output symbol table.
1498
1499 // 7) Create the section table header.
1500
1501 // 8) Determine the final file offset of all the output sections which
1502 // are not SHF_ALLOC, including the section table header.
1503
1504 // 9) Finalize the ELF file header.
1505
1506 // This function returns the size of the output file.
1507
1508 off_t
1509 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1510                  Target* target, const Task* task)
1511 {
1512   target->finalize_sections(this);
1513
1514   this->count_local_symbols(task, input_objects);
1515
1516   this->link_stabs_sections();
1517
1518   Output_segment* phdr_seg = NULL;
1519   if (!parameters->options().relocatable() && !parameters->doing_static_link())
1520     {
1521       // There was a dynamic object in the link.  We need to create
1522       // some information for the dynamic linker.
1523
1524       // Create the PT_PHDR segment which will hold the program
1525       // headers.
1526       if (!this->script_options_->saw_phdrs_clause())
1527         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1528
1529       // Create the dynamic symbol table, including the hash table.
1530       Output_section* dynstr;
1531       std::vector<Symbol*> dynamic_symbols;
1532       unsigned int local_dynamic_count;
1533       Versions versions(*this->script_options()->version_script_info(),
1534                         &this->dynpool_);
1535       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1536                                   &local_dynamic_count, &dynamic_symbols,
1537                                   &versions);
1538
1539       // Create the .interp section to hold the name of the
1540       // interpreter, and put it in a PT_INTERP segment.
1541       if (!parameters->options().shared())
1542         this->create_interp(target);
1543
1544       // Finish the .dynamic section to hold the dynamic data, and put
1545       // it in a PT_DYNAMIC segment.
1546       this->finish_dynamic_section(input_objects, symtab);
1547
1548       // We should have added everything we need to the dynamic string
1549       // table.
1550       this->dynpool_.set_string_offsets();
1551
1552       // Create the version sections.  We can't do this until the
1553       // dynamic string table is complete.
1554       this->create_version_sections(&versions, symtab, local_dynamic_count,
1555                                     dynamic_symbols, dynstr);
1556     }
1557   
1558   if (this->incremental_inputs_)
1559     {
1560       this->incremental_inputs_->finalize();
1561       this->create_incremental_info_sections();
1562     }
1563
1564   // Create segment headers.
1565   Output_segment_headers* segment_headers =
1566     (parameters->options().relocatable()
1567      ? NULL
1568      : new Output_segment_headers(this->segment_list_));
1569
1570   // Lay out the file header.
1571   Output_file_header* file_header
1572     = new Output_file_header(target, symtab, segment_headers,
1573                              parameters->options().entry());
1574
1575   this->special_output_list_.push_back(file_header);
1576   if (segment_headers != NULL)
1577     this->special_output_list_.push_back(segment_headers);
1578
1579   // Find approriate places for orphan output sections if we are using
1580   // a linker script.
1581   if (this->script_options_->saw_sections_clause())
1582     this->place_orphan_sections_in_script();
1583   
1584   Output_segment* load_seg;
1585   off_t off;
1586   unsigned int shndx;
1587   int pass = 0;
1588
1589   // Take a snapshot of the section layout as needed.
1590   if (target->may_relax())
1591     this->prepare_for_relaxation();
1592   
1593   // Run the relaxation loop to lay out sections.
1594   do
1595     {
1596       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
1597                                        phdr_seg, segment_headers, file_header,
1598                                        &shndx);
1599       pass++;
1600     }
1601   while (target->may_relax()
1602          && target->relax(pass, input_objects, symtab, this));
1603
1604   // Set the file offsets of all the non-data sections we've seen so
1605   // far which don't have to wait for the input sections.  We need
1606   // this in order to finalize local symbols in non-allocated
1607   // sections.
1608   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1609
1610   // Set the section indexes of all unallocated sections seen so far,
1611   // in case any of them are somehow referenced by a symbol.
1612   shndx = this->set_section_indexes(shndx);
1613
1614   // Create the symbol table sections.
1615   this->create_symtab_sections(input_objects, symtab, shndx, &off);
1616   if (!parameters->doing_static_link())
1617     this->assign_local_dynsym_offsets(input_objects);
1618
1619   // Process any symbol assignments from a linker script.  This must
1620   // be called after the symbol table has been finalized.
1621   this->script_options_->finalize_symbols(symtab, this);
1622
1623   // Create the .shstrtab section.
1624   Output_section* shstrtab_section = this->create_shstrtab();
1625
1626   // Set the file offsets of the rest of the non-data sections which
1627   // don't have to wait for the input sections.
1628   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1629
1630   // Now that all sections have been created, set the section indexes
1631   // for any sections which haven't been done yet.
1632   shndx = this->set_section_indexes(shndx);
1633
1634   // Create the section table header.
1635   this->create_shdrs(shstrtab_section, &off);
1636
1637   // If there are no sections which require postprocessing, we can
1638   // handle the section names now, and avoid a resize later.
1639   if (!this->any_postprocessing_sections_)
1640     off = this->set_section_offsets(off,
1641                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1642
1643   file_header->set_section_info(this->section_headers_, shstrtab_section);
1644
1645   // Now we know exactly where everything goes in the output file
1646   // (except for non-allocated sections which require postprocessing).
1647   Output_data::layout_complete();
1648
1649   this->output_file_size_ = off;
1650
1651   return off;
1652 }
1653
1654 // Create a note header following the format defined in the ELF ABI.
1655 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1656 // of the section to create, DESCSZ is the size of the descriptor.
1657 // ALLOCATE is true if the section should be allocated in memory.
1658 // This returns the new note section.  It sets *TRAILING_PADDING to
1659 // the number of trailing zero bytes required.
1660
1661 Output_section*
1662 Layout::create_note(const char* name, int note_type,
1663                     const char* section_name, size_t descsz,
1664                     bool allocate, size_t* trailing_padding)
1665 {
1666   // Authorities all agree that the values in a .note field should
1667   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1668   // they differ on what the alignment is for 64-bit binaries.
1669   // The GABI says unambiguously they take 8-byte alignment:
1670   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1671   // Other documentation says alignment should always be 4 bytes:
1672   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1673   // GNU ld and GNU readelf both support the latter (at least as of
1674   // version 2.16.91), and glibc always generates the latter for
1675   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1676   // here.
1677 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1678   const int size = parameters->target().get_size();
1679 #else
1680   const int size = 32;
1681 #endif
1682
1683   // The contents of the .note section.
1684   size_t namesz = strlen(name) + 1;
1685   size_t aligned_namesz = align_address(namesz, size / 8);
1686   size_t aligned_descsz = align_address(descsz, size / 8);
1687
1688   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1689
1690   unsigned char* buffer = new unsigned char[notehdrsz];
1691   memset(buffer, 0, notehdrsz);
1692
1693   bool is_big_endian = parameters->target().is_big_endian();
1694
1695   if (size == 32)
1696     {
1697       if (!is_big_endian)
1698         {
1699           elfcpp::Swap<32, false>::writeval(buffer, namesz);
1700           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1701           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1702         }
1703       else
1704         {
1705           elfcpp::Swap<32, true>::writeval(buffer, namesz);
1706           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1707           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1708         }
1709     }
1710   else if (size == 64)
1711     {
1712       if (!is_big_endian)
1713         {
1714           elfcpp::Swap<64, false>::writeval(buffer, namesz);
1715           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1716           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1717         }
1718       else
1719         {
1720           elfcpp::Swap<64, true>::writeval(buffer, namesz);
1721           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1722           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1723         }
1724     }
1725   else
1726     gold_unreachable();
1727
1728   memcpy(buffer + 3 * (size / 8), name, namesz);
1729
1730   elfcpp::Elf_Xword flags = 0;
1731   if (allocate)
1732     flags = elfcpp::SHF_ALLOC;
1733   Output_section* os = this->choose_output_section(NULL, section_name,
1734                                                    elfcpp::SHT_NOTE,
1735                                                    flags, false);
1736   if (os == NULL)
1737     return NULL;
1738
1739   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1740                                                            size / 8,
1741                                                            "** note header");
1742   os->add_output_section_data(posd);
1743
1744   *trailing_padding = aligned_descsz - descsz;
1745
1746   return os;
1747 }
1748
1749 // For an executable or shared library, create a note to record the
1750 // version of gold used to create the binary.
1751
1752 void
1753 Layout::create_gold_note()
1754 {
1755   if (parameters->options().relocatable())
1756     return;
1757
1758   std::string desc = std::string("gold ") + gold::get_version_string();
1759
1760   size_t trailing_padding;
1761   Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1762                                          ".note.gnu.gold-version", desc.size(),
1763                                          false, &trailing_padding);
1764   if (os == NULL)
1765     return;
1766
1767   Output_section_data* posd = new Output_data_const(desc, 4);
1768   os->add_output_section_data(posd);
1769
1770   if (trailing_padding > 0)
1771     {
1772       posd = new Output_data_zero_fill(trailing_padding, 0);
1773       os->add_output_section_data(posd);
1774     }
1775 }
1776
1777 // Record whether the stack should be executable.  This can be set
1778 // from the command line using the -z execstack or -z noexecstack
1779 // options.  Otherwise, if any input file has a .note.GNU-stack
1780 // section with the SHF_EXECINSTR flag set, the stack should be
1781 // executable.  Otherwise, if at least one input file a
1782 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1783 // section, we use the target default for whether the stack should be
1784 // executable.  Otherwise, we don't generate a stack note.  When
1785 // generating a object file, we create a .note.GNU-stack section with
1786 // the appropriate marking.  When generating an executable or shared
1787 // library, we create a PT_GNU_STACK segment.
1788
1789 void
1790 Layout::create_executable_stack_info()
1791 {
1792   bool is_stack_executable;
1793   if (parameters->options().is_execstack_set())
1794     is_stack_executable = parameters->options().is_stack_executable();
1795   else if (!this->input_with_gnu_stack_note_)
1796     return;
1797   else
1798     {
1799       if (this->input_requires_executable_stack_)
1800         is_stack_executable = true;
1801       else if (this->input_without_gnu_stack_note_)
1802         is_stack_executable =
1803           parameters->target().is_default_stack_executable();
1804       else
1805         is_stack_executable = false;
1806     }
1807
1808   if (parameters->options().relocatable())
1809     {
1810       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1811       elfcpp::Elf_Xword flags = 0;
1812       if (is_stack_executable)
1813         flags |= elfcpp::SHF_EXECINSTR;
1814       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1815     }
1816   else
1817     {
1818       if (this->script_options_->saw_phdrs_clause())
1819         return;
1820       int flags = elfcpp::PF_R | elfcpp::PF_W;
1821       if (is_stack_executable)
1822         flags |= elfcpp::PF_X;
1823       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1824     }
1825 }
1826
1827 // If --build-id was used, set up the build ID note.
1828
1829 void
1830 Layout::create_build_id()
1831 {
1832   if (!parameters->options().user_set_build_id())
1833     return;
1834
1835   const char* style = parameters->options().build_id();
1836   if (strcmp(style, "none") == 0)
1837     return;
1838
1839   // Set DESCSZ to the size of the note descriptor.  When possible,
1840   // set DESC to the note descriptor contents.
1841   size_t descsz;
1842   std::string desc;
1843   if (strcmp(style, "md5") == 0)
1844     descsz = 128 / 8;
1845   else if (strcmp(style, "sha1") == 0)
1846     descsz = 160 / 8;
1847   else if (strcmp(style, "uuid") == 0)
1848     {
1849       const size_t uuidsz = 128 / 8;
1850
1851       char buffer[uuidsz];
1852       memset(buffer, 0, uuidsz);
1853
1854       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
1855       if (descriptor < 0)
1856         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1857                    strerror(errno));
1858       else
1859         {
1860           ssize_t got = ::read(descriptor, buffer, uuidsz);
1861           release_descriptor(descriptor, true);
1862           if (got < 0)
1863             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1864           else if (static_cast<size_t>(got) != uuidsz)
1865             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1866                        uuidsz, got);
1867         }
1868
1869       desc.assign(buffer, uuidsz);
1870       descsz = uuidsz;
1871     }
1872   else if (strncmp(style, "0x", 2) == 0)
1873     {
1874       hex_init();
1875       const char* p = style + 2;
1876       while (*p != '\0')
1877         {
1878           if (hex_p(p[0]) && hex_p(p[1]))
1879             {
1880               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1881               desc += c;
1882               p += 2;
1883             }
1884           else if (*p == '-' || *p == ':')
1885             ++p;
1886           else
1887             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1888                        style);
1889         }
1890       descsz = desc.size();
1891     }
1892   else
1893     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1894
1895   // Create the note.
1896   size_t trailing_padding;
1897   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1898                                          ".note.gnu.build-id", descsz, true,
1899                                          &trailing_padding);
1900   if (os == NULL)
1901     return;
1902
1903   if (!desc.empty())
1904     {
1905       // We know the value already, so we fill it in now.
1906       gold_assert(desc.size() == descsz);
1907
1908       Output_section_data* posd = new Output_data_const(desc, 4);
1909       os->add_output_section_data(posd);
1910
1911       if (trailing_padding != 0)
1912         {
1913           posd = new Output_data_zero_fill(trailing_padding, 0);
1914           os->add_output_section_data(posd);
1915         }
1916     }
1917   else
1918     {
1919       // We need to compute a checksum after we have completed the
1920       // link.
1921       gold_assert(trailing_padding == 0);
1922       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
1923       os->add_output_section_data(this->build_id_note_);
1924     }
1925 }
1926
1927 // If we have both .stabXX and .stabXXstr sections, then the sh_link
1928 // field of the former should point to the latter.  I'm not sure who
1929 // started this, but the GNU linker does it, and some tools depend
1930 // upon it.
1931
1932 void
1933 Layout::link_stabs_sections()
1934 {
1935   if (!this->have_stabstr_section_)
1936     return;
1937
1938   for (Section_list::iterator p = this->section_list_.begin();
1939        p != this->section_list_.end();
1940        ++p)
1941     {
1942       if ((*p)->type() != elfcpp::SHT_STRTAB)
1943         continue;
1944
1945       const char* name = (*p)->name();
1946       if (strncmp(name, ".stab", 5) != 0)
1947         continue;
1948
1949       size_t len = strlen(name);
1950       if (strcmp(name + len - 3, "str") != 0)
1951         continue;
1952
1953       std::string stab_name(name, len - 3);
1954       Output_section* stab_sec;
1955       stab_sec = this->find_output_section(stab_name.c_str());
1956       if (stab_sec != NULL)
1957         stab_sec->set_link_section(*p);
1958     }
1959 }
1960
1961 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
1962 // for the next run of incremental linking to check what has changed.
1963
1964 void
1965 Layout::create_incremental_info_sections()
1966 {
1967   gold_assert(this->incremental_inputs_ != NULL);
1968
1969   // Add the .gnu_incremental_inputs section.
1970   const char *incremental_inputs_name =
1971     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
1972   Output_section* inputs_os =
1973     this->make_output_section(incremental_inputs_name,
1974                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0);
1975   Output_section_data* posd =
1976       this->incremental_inputs_->create_incremental_inputs_section_data();
1977   inputs_os->add_output_section_data(posd);
1978   
1979   // Add the .gnu_incremental_strtab section.
1980   const char *incremental_strtab_name =
1981     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
1982   Output_section* strtab_os = this->make_output_section(incremental_strtab_name,
1983                                                         elfcpp::SHT_STRTAB,
1984                                                         0);
1985   Output_data_strtab* strtab_data =
1986     new Output_data_strtab(this->incremental_inputs_->get_stringpool());
1987   strtab_os->add_output_section_data(strtab_data);
1988   
1989   inputs_os->set_link_section(strtab_data);
1990 }
1991
1992 // Return whether SEG1 should be before SEG2 in the output file.  This
1993 // is based entirely on the segment type and flags.  When this is
1994 // called the segment addresses has normally not yet been set.
1995
1996 bool
1997 Layout::segment_precedes(const Output_segment* seg1,
1998                          const Output_segment* seg2)
1999 {
2000   elfcpp::Elf_Word type1 = seg1->type();
2001   elfcpp::Elf_Word type2 = seg2->type();
2002
2003   // The single PT_PHDR segment is required to precede any loadable
2004   // segment.  We simply make it always first.
2005   if (type1 == elfcpp::PT_PHDR)
2006     {
2007       gold_assert(type2 != elfcpp::PT_PHDR);
2008       return true;
2009     }
2010   if (type2 == elfcpp::PT_PHDR)
2011     return false;
2012
2013   // The single PT_INTERP segment is required to precede any loadable
2014   // segment.  We simply make it always second.
2015   if (type1 == elfcpp::PT_INTERP)
2016     {
2017       gold_assert(type2 != elfcpp::PT_INTERP);
2018       return true;
2019     }
2020   if (type2 == elfcpp::PT_INTERP)
2021     return false;
2022
2023   // We then put PT_LOAD segments before any other segments.
2024   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2025     return true;
2026   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2027     return false;
2028
2029   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2030   // segment, because that is where the dynamic linker expects to find
2031   // it (this is just for efficiency; other positions would also work
2032   // correctly).
2033   if (type1 == elfcpp::PT_TLS
2034       && type2 != elfcpp::PT_TLS
2035       && type2 != elfcpp::PT_GNU_RELRO)
2036     return false;
2037   if (type2 == elfcpp::PT_TLS
2038       && type1 != elfcpp::PT_TLS
2039       && type1 != elfcpp::PT_GNU_RELRO)
2040     return true;
2041
2042   // We put the PT_GNU_RELRO segment last, because that is where the
2043   // dynamic linker expects to find it (as with PT_TLS, this is just
2044   // for efficiency).
2045   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2046     return false;
2047   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2048     return true;
2049
2050   const elfcpp::Elf_Word flags1 = seg1->flags();
2051   const elfcpp::Elf_Word flags2 = seg2->flags();
2052
2053   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2054   // by the numeric segment type and flags values.  There should not
2055   // be more than one segment with the same type and flags.
2056   if (type1 != elfcpp::PT_LOAD)
2057     {
2058       if (type1 != type2)
2059         return type1 < type2;
2060       gold_assert(flags1 != flags2);
2061       return flags1 < flags2;
2062     }
2063
2064   // If the addresses are set already, sort by load address.
2065   if (seg1->are_addresses_set())
2066     {
2067       if (!seg2->are_addresses_set())
2068         return true;
2069
2070       unsigned int section_count1 = seg1->output_section_count();
2071       unsigned int section_count2 = seg2->output_section_count();
2072       if (section_count1 == 0 && section_count2 > 0)
2073         return true;
2074       if (section_count1 > 0 && section_count2 == 0)
2075         return false;
2076
2077       uint64_t paddr1 = seg1->first_section_load_address();
2078       uint64_t paddr2 = seg2->first_section_load_address();
2079       if (paddr1 != paddr2)
2080         return paddr1 < paddr2;
2081     }
2082   else if (seg2->are_addresses_set())
2083     return false;
2084
2085   // A segment which holds large data comes after a segment which does
2086   // not hold large data.
2087   if (seg1->is_large_data_segment())
2088     {
2089       if (!seg2->is_large_data_segment())
2090         return false;
2091     }
2092   else if (seg2->is_large_data_segment())
2093     return true;
2094
2095   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2096   // segments come before writable segments.  Then writable segments
2097   // with data come before writable segments without data.  Then
2098   // executable segments come before non-executable segments.  Then
2099   // the unlikely case of a non-readable segment comes before the
2100   // normal case of a readable segment.  If there are multiple
2101   // segments with the same type and flags, we require that the
2102   // address be set, and we sort by virtual address and then physical
2103   // address.
2104   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2105     return (flags1 & elfcpp::PF_W) == 0;
2106   if ((flags1 & elfcpp::PF_W) != 0
2107       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2108     return seg1->has_any_data_sections();
2109   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2110     return (flags1 & elfcpp::PF_X) != 0;
2111   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2112     return (flags1 & elfcpp::PF_R) == 0;
2113
2114   // We shouldn't get here--we shouldn't create segments which we
2115   // can't distinguish.
2116   gold_unreachable();
2117 }
2118
2119 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2120
2121 static off_t
2122 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2123 {
2124   uint64_t unsigned_off = off;
2125   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2126                           | (addr & (abi_pagesize - 1)));
2127   if (aligned_off < unsigned_off)
2128     aligned_off += abi_pagesize;
2129   return aligned_off;
2130 }
2131
2132 // Set the file offsets of all the segments, and all the sections they
2133 // contain.  They have all been created.  LOAD_SEG must be be laid out
2134 // first.  Return the offset of the data to follow.
2135
2136 off_t
2137 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2138                             unsigned int *pshndx)
2139 {
2140   // Sort them into the final order.
2141   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2142             Layout::Compare_segments());
2143
2144   // Find the PT_LOAD segments, and set their addresses and offsets
2145   // and their section's addresses and offsets.
2146   uint64_t addr;
2147   if (parameters->options().user_set_Ttext())
2148     addr = parameters->options().Ttext();
2149   else if (parameters->options().output_is_position_independent())
2150     addr = 0;
2151   else
2152     addr = target->default_text_segment_address();
2153   off_t off = 0;
2154
2155   // If LOAD_SEG is NULL, then the file header and segment headers
2156   // will not be loadable.  But they still need to be at offset 0 in
2157   // the file.  Set their offsets now.
2158   if (load_seg == NULL)
2159     {
2160       for (Data_list::iterator p = this->special_output_list_.begin();
2161            p != this->special_output_list_.end();
2162            ++p)
2163         {
2164           off = align_address(off, (*p)->addralign());
2165           (*p)->set_address_and_file_offset(0, off);
2166           off += (*p)->data_size();
2167         }
2168     }
2169
2170   const bool check_sections = parameters->options().check_sections();
2171   Output_segment* last_load_segment = NULL;
2172
2173   bool was_readonly = false;
2174   for (Segment_list::iterator p = this->segment_list_.begin();
2175        p != this->segment_list_.end();
2176        ++p)
2177     {
2178       if ((*p)->type() == elfcpp::PT_LOAD)
2179         {
2180           if (load_seg != NULL && load_seg != *p)
2181             gold_unreachable();
2182           load_seg = NULL;
2183
2184           bool are_addresses_set = (*p)->are_addresses_set();
2185           if (are_addresses_set)
2186             {
2187               // When it comes to setting file offsets, we care about
2188               // the physical address.
2189               addr = (*p)->paddr();
2190             }
2191           else if (parameters->options().user_set_Tdata()
2192                    && ((*p)->flags() & elfcpp::PF_W) != 0
2193                    && (!parameters->options().user_set_Tbss()
2194                        || (*p)->has_any_data_sections()))
2195             {
2196               addr = parameters->options().Tdata();
2197               are_addresses_set = true;
2198             }
2199           else if (parameters->options().user_set_Tbss()
2200                    && ((*p)->flags() & elfcpp::PF_W) != 0
2201                    && !(*p)->has_any_data_sections())
2202             {
2203               addr = parameters->options().Tbss();
2204               are_addresses_set = true;
2205             }
2206
2207           uint64_t orig_addr = addr;
2208           uint64_t orig_off = off;
2209
2210           uint64_t aligned_addr = 0;
2211           uint64_t abi_pagesize = target->abi_pagesize();
2212           uint64_t common_pagesize = target->common_pagesize();
2213
2214           if (!parameters->options().nmagic()
2215               && !parameters->options().omagic())
2216             (*p)->set_minimum_p_align(common_pagesize);
2217
2218           if (!are_addresses_set)
2219             {
2220               // If the last segment was readonly, and this one is
2221               // not, then skip the address forward one page,
2222               // maintaining the same position within the page.  This
2223               // lets us store both segments overlapping on a single
2224               // page in the file, but the loader will put them on
2225               // different pages in memory.
2226
2227               addr = align_address(addr, (*p)->maximum_alignment());
2228               aligned_addr = addr;
2229
2230               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
2231                 {
2232                   if ((addr & (abi_pagesize - 1)) != 0)
2233                     addr = addr + abi_pagesize;
2234                 }
2235
2236               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2237             }
2238
2239           if (!parameters->options().nmagic()
2240               && !parameters->options().omagic())
2241             off = align_file_offset(off, addr, abi_pagesize);
2242           else if (load_seg == NULL)
2243             {
2244               // This is -N or -n with a section script which prevents
2245               // us from using a load segment.  We need to ensure that
2246               // the file offset is aligned to the alignment of the
2247               // segment.  This is because the linker script
2248               // implicitly assumed a zero offset.  If we don't align
2249               // here, then the alignment of the sections in the
2250               // linker script may not match the alignment of the
2251               // sections in the set_section_addresses call below,
2252               // causing an error about dot moving backward.
2253               off = align_address(off, (*p)->maximum_alignment());
2254             }
2255
2256           unsigned int shndx_hold = *pshndx;
2257           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2258                                                           &off, pshndx);
2259
2260           // Now that we know the size of this segment, we may be able
2261           // to save a page in memory, at the cost of wasting some
2262           // file space, by instead aligning to the start of a new
2263           // page.  Here we use the real machine page size rather than
2264           // the ABI mandated page size.
2265
2266           if (!are_addresses_set && aligned_addr != addr)
2267             {
2268               uint64_t first_off = (common_pagesize
2269                                     - (aligned_addr
2270                                        & (common_pagesize - 1)));
2271               uint64_t last_off = new_addr & (common_pagesize - 1);
2272               if (first_off > 0
2273                   && last_off > 0
2274                   && ((aligned_addr & ~ (common_pagesize - 1))
2275                       != (new_addr & ~ (common_pagesize - 1)))
2276                   && first_off + last_off <= common_pagesize)
2277                 {
2278                   *pshndx = shndx_hold;
2279                   addr = align_address(aligned_addr, common_pagesize);
2280                   addr = align_address(addr, (*p)->maximum_alignment());
2281                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2282                   off = align_file_offset(off, addr, abi_pagesize);
2283                   new_addr = (*p)->set_section_addresses(this, true, addr,
2284                                                          &off, pshndx);
2285                 }
2286             }
2287
2288           addr = new_addr;
2289
2290           if (((*p)->flags() & elfcpp::PF_W) == 0)
2291             was_readonly = true;
2292
2293           // Implement --check-sections.  We know that the segments
2294           // are sorted by LMA.
2295           if (check_sections && last_load_segment != NULL)
2296             {
2297               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2298               if (last_load_segment->paddr() + last_load_segment->memsz()
2299                   > (*p)->paddr())
2300                 {
2301                   unsigned long long lb1 = last_load_segment->paddr();
2302                   unsigned long long le1 = lb1 + last_load_segment->memsz();
2303                   unsigned long long lb2 = (*p)->paddr();
2304                   unsigned long long le2 = lb2 + (*p)->memsz();
2305                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2306                                "[0x%llx -> 0x%llx]"),
2307                              lb1, le1, lb2, le2);
2308                 }
2309             }
2310           last_load_segment = *p;
2311         }
2312     }
2313
2314   // Handle the non-PT_LOAD segments, setting their offsets from their
2315   // section's offsets.
2316   for (Segment_list::iterator p = this->segment_list_.begin();
2317        p != this->segment_list_.end();
2318        ++p)
2319     {
2320       if ((*p)->type() != elfcpp::PT_LOAD)
2321         (*p)->set_offset();
2322     }
2323
2324   // Set the TLS offsets for each section in the PT_TLS segment.
2325   if (this->tls_segment_ != NULL)
2326     this->tls_segment_->set_tls_offsets();
2327
2328   return off;
2329 }
2330
2331 // Set the offsets of all the allocated sections when doing a
2332 // relocatable link.  This does the same jobs as set_segment_offsets,
2333 // only for a relocatable link.
2334
2335 off_t
2336 Layout::set_relocatable_section_offsets(Output_data* file_header,
2337                                         unsigned int *pshndx)
2338 {
2339   off_t off = 0;
2340
2341   file_header->set_address_and_file_offset(0, 0);
2342   off += file_header->data_size();
2343
2344   for (Section_list::iterator p = this->section_list_.begin();
2345        p != this->section_list_.end();
2346        ++p)
2347     {
2348       // We skip unallocated sections here, except that group sections
2349       // have to come first.
2350       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
2351           && (*p)->type() != elfcpp::SHT_GROUP)
2352         continue;
2353
2354       off = align_address(off, (*p)->addralign());
2355
2356       // The linker script might have set the address.
2357       if (!(*p)->is_address_valid())
2358         (*p)->set_address(0);
2359       (*p)->set_file_offset(off);
2360       (*p)->finalize_data_size();
2361       off += (*p)->data_size();
2362
2363       (*p)->set_out_shndx(*pshndx);
2364       ++*pshndx;
2365     }
2366
2367   return off;
2368 }
2369
2370 // Set the file offset of all the sections not associated with a
2371 // segment.
2372
2373 off_t
2374 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
2375 {
2376   for (Section_list::iterator p = this->unattached_section_list_.begin();
2377        p != this->unattached_section_list_.end();
2378        ++p)
2379     {
2380       // The symtab section is handled in create_symtab_sections.
2381       if (*p == this->symtab_section_)
2382         continue;
2383
2384       // If we've already set the data size, don't set it again.
2385       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
2386         continue;
2387
2388       if (pass == BEFORE_INPUT_SECTIONS_PASS
2389           && (*p)->requires_postprocessing())
2390         {
2391           (*p)->create_postprocessing_buffer();
2392           this->any_postprocessing_sections_ = true;
2393         }
2394
2395       if (pass == BEFORE_INPUT_SECTIONS_PASS
2396           && (*p)->after_input_sections())
2397         continue;
2398       else if (pass == POSTPROCESSING_SECTIONS_PASS
2399                && (!(*p)->after_input_sections()
2400                    || (*p)->type() == elfcpp::SHT_STRTAB))
2401         continue;
2402       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2403                && (!(*p)->after_input_sections()
2404                    || (*p)->type() != elfcpp::SHT_STRTAB))
2405         continue;
2406
2407       off = align_address(off, (*p)->addralign());
2408       (*p)->set_file_offset(off);
2409       (*p)->finalize_data_size();
2410       off += (*p)->data_size();
2411
2412       // At this point the name must be set.
2413       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
2414         this->namepool_.add((*p)->name(), false, NULL);
2415     }
2416   return off;
2417 }
2418
2419 // Set the section indexes of all the sections not associated with a
2420 // segment.
2421
2422 unsigned int
2423 Layout::set_section_indexes(unsigned int shndx)
2424 {
2425   for (Section_list::iterator p = this->unattached_section_list_.begin();
2426        p != this->unattached_section_list_.end();
2427        ++p)
2428     {
2429       if (!(*p)->has_out_shndx())
2430         {
2431           (*p)->set_out_shndx(shndx);
2432           ++shndx;
2433         }
2434     }
2435   return shndx;
2436 }
2437
2438 // Set the section addresses according to the linker script.  This is
2439 // only called when we see a SECTIONS clause.  This returns the
2440 // program segment which should hold the file header and segment
2441 // headers, if any.  It will return NULL if they should not be in a
2442 // segment.
2443
2444 Output_segment*
2445 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2446 {
2447   Script_sections* ss = this->script_options_->script_sections();
2448   gold_assert(ss->saw_sections_clause());
2449   return this->script_options_->set_section_addresses(symtab, this);
2450 }
2451
2452 // Place the orphan sections in the linker script.
2453
2454 void
2455 Layout::place_orphan_sections_in_script()
2456 {
2457   Script_sections* ss = this->script_options_->script_sections();
2458   gold_assert(ss->saw_sections_clause());
2459
2460   // Place each orphaned output section in the script.
2461   for (Section_list::iterator p = this->section_list_.begin();
2462        p != this->section_list_.end();
2463        ++p)
2464     {
2465       if (!(*p)->found_in_sections_clause())
2466         ss->place_orphan(*p);
2467     }
2468 }
2469
2470 // Count the local symbols in the regular symbol table and the dynamic
2471 // symbol table, and build the respective string pools.
2472
2473 void
2474 Layout::count_local_symbols(const Task* task,
2475                             const Input_objects* input_objects)
2476 {
2477   // First, figure out an upper bound on the number of symbols we'll
2478   // be inserting into each pool.  This helps us create the pools with
2479   // the right size, to avoid unnecessary hashtable resizing.
2480   unsigned int symbol_count = 0;
2481   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2482        p != input_objects->relobj_end();
2483        ++p)
2484     symbol_count += (*p)->local_symbol_count();
2485
2486   // Go from "upper bound" to "estimate."  We overcount for two
2487   // reasons: we double-count symbols that occur in more than one
2488   // object file, and we count symbols that are dropped from the
2489   // output.  Add it all together and assume we overcount by 100%.
2490   symbol_count /= 2;
2491
2492   // We assume all symbols will go into both the sympool and dynpool.
2493   this->sympool_.reserve(symbol_count);
2494   this->dynpool_.reserve(symbol_count);
2495
2496   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2497        p != input_objects->relobj_end();
2498        ++p)
2499     {
2500       Task_lock_obj<Object> tlo(task, *p);
2501       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2502     }
2503 }
2504
2505 // Create the symbol table sections.  Here we also set the final
2506 // values of the symbols.  At this point all the loadable sections are
2507 // fully laid out.  SHNUM is the number of sections so far.
2508
2509 void
2510 Layout::create_symtab_sections(const Input_objects* input_objects,
2511                                Symbol_table* symtab,
2512                                unsigned int shnum,
2513                                off_t* poff)
2514 {
2515   int symsize;
2516   unsigned int align;
2517   if (parameters->target().get_size() == 32)
2518     {
2519       symsize = elfcpp::Elf_sizes<32>::sym_size;
2520       align = 4;
2521     }
2522   else if (parameters->target().get_size() == 64)
2523     {
2524       symsize = elfcpp::Elf_sizes<64>::sym_size;
2525       align = 8;
2526     }
2527   else
2528     gold_unreachable();
2529
2530   off_t off = *poff;
2531   off = align_address(off, align);
2532   off_t startoff = off;
2533
2534   // Save space for the dummy symbol at the start of the section.  We
2535   // never bother to write this out--it will just be left as zero.
2536   off += symsize;
2537   unsigned int local_symbol_index = 1;
2538
2539   // Add STT_SECTION symbols for each Output section which needs one.
2540   for (Section_list::iterator p = this->section_list_.begin();
2541        p != this->section_list_.end();
2542        ++p)
2543     {
2544       if (!(*p)->needs_symtab_index())
2545         (*p)->set_symtab_index(-1U);
2546       else
2547         {
2548           (*p)->set_symtab_index(local_symbol_index);
2549           ++local_symbol_index;
2550           off += symsize;
2551         }
2552     }
2553
2554   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2555        p != input_objects->relobj_end();
2556        ++p)
2557     {
2558       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2559                                                         off, symtab);
2560       off += (index - local_symbol_index) * symsize;
2561       local_symbol_index = index;
2562     }
2563
2564   unsigned int local_symcount = local_symbol_index;
2565   gold_assert(static_cast<off_t>(local_symcount * symsize) == off - startoff);
2566
2567   off_t dynoff;
2568   size_t dyn_global_index;
2569   size_t dyncount;
2570   if (this->dynsym_section_ == NULL)
2571     {
2572       dynoff = 0;
2573       dyn_global_index = 0;
2574       dyncount = 0;
2575     }
2576   else
2577     {
2578       dyn_global_index = this->dynsym_section_->info();
2579       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2580       dynoff = this->dynsym_section_->offset() + locsize;
2581       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2582       gold_assert(static_cast<off_t>(dyncount * symsize)
2583                   == this->dynsym_section_->data_size() - locsize);
2584     }
2585
2586   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2587                          &this->sympool_, &local_symcount);
2588
2589   if (!parameters->options().strip_all())
2590     {
2591       this->sympool_.set_string_offsets();
2592
2593       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2594       Output_section* osymtab = this->make_output_section(symtab_name,
2595                                                           elfcpp::SHT_SYMTAB,
2596                                                           0);
2597       this->symtab_section_ = osymtab;
2598
2599       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2600                                                              align,
2601                                                              "** symtab");
2602       osymtab->add_output_section_data(pos);
2603
2604       // We generate a .symtab_shndx section if we have more than
2605       // SHN_LORESERVE sections.  Technically it is possible that we
2606       // don't need one, because it is possible that there are no
2607       // symbols in any of sections with indexes larger than
2608       // SHN_LORESERVE.  That is probably unusual, though, and it is
2609       // easier to always create one than to compute section indexes
2610       // twice (once here, once when writing out the symbols).
2611       if (shnum >= elfcpp::SHN_LORESERVE)
2612         {
2613           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2614                                                                false, NULL);
2615           Output_section* osymtab_xindex =
2616             this->make_output_section(symtab_xindex_name,
2617                                       elfcpp::SHT_SYMTAB_SHNDX, 0);
2618
2619           size_t symcount = (off - startoff) / symsize;
2620           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2621
2622           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2623
2624           osymtab_xindex->set_link_section(osymtab);
2625           osymtab_xindex->set_addralign(4);
2626           osymtab_xindex->set_entsize(4);
2627
2628           osymtab_xindex->set_after_input_sections();
2629
2630           // This tells the driver code to wait until the symbol table
2631           // has written out before writing out the postprocessing
2632           // sections, including the .symtab_shndx section.
2633           this->any_postprocessing_sections_ = true;
2634         }
2635
2636       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2637       Output_section* ostrtab = this->make_output_section(strtab_name,
2638                                                           elfcpp::SHT_STRTAB,
2639                                                           0);
2640
2641       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2642       ostrtab->add_output_section_data(pstr);
2643
2644       osymtab->set_file_offset(startoff);
2645       osymtab->finalize_data_size();
2646       osymtab->set_link_section(ostrtab);
2647       osymtab->set_info(local_symcount);
2648       osymtab->set_entsize(symsize);
2649
2650       *poff = off;
2651     }
2652 }
2653
2654 // Create the .shstrtab section, which holds the names of the
2655 // sections.  At the time this is called, we have created all the
2656 // output sections except .shstrtab itself.
2657
2658 Output_section*
2659 Layout::create_shstrtab()
2660 {
2661   // FIXME: We don't need to create a .shstrtab section if we are
2662   // stripping everything.
2663
2664   const char* name = this->namepool_.add(".shstrtab", false, NULL);
2665
2666   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
2667
2668   // We can't write out this section until we've set all the section
2669   // names, and we don't set the names of compressed output sections
2670   // until relocations are complete.
2671   os->set_after_input_sections();
2672
2673   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2674   os->add_output_section_data(posd);
2675
2676   return os;
2677 }
2678
2679 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
2680 // offset.
2681
2682 void
2683 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2684 {
2685   Output_section_headers* oshdrs;
2686   oshdrs = new Output_section_headers(this,
2687                                       &this->segment_list_,
2688                                       &this->section_list_,
2689                                       &this->unattached_section_list_,
2690                                       &this->namepool_,
2691                                       shstrtab_section);
2692   off_t off = align_address(*poff, oshdrs->addralign());
2693   oshdrs->set_address_and_file_offset(0, off);
2694   off += oshdrs->data_size();
2695   *poff = off;
2696   this->section_headers_ = oshdrs;
2697 }
2698
2699 // Count the allocated sections.
2700
2701 size_t
2702 Layout::allocated_output_section_count() const
2703 {
2704   size_t section_count = 0;
2705   for (Segment_list::const_iterator p = this->segment_list_.begin();
2706        p != this->segment_list_.end();
2707        ++p)
2708     section_count += (*p)->output_section_count();
2709   return section_count;
2710 }
2711
2712 // Create the dynamic symbol table.
2713
2714 void
2715 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2716                               Symbol_table* symtab,
2717                               Output_section **pdynstr,
2718                               unsigned int* plocal_dynamic_count,
2719                               std::vector<Symbol*>* pdynamic_symbols,
2720                               Versions* pversions)
2721 {
2722   // Count all the symbols in the dynamic symbol table, and set the
2723   // dynamic symbol indexes.
2724
2725   // Skip symbol 0, which is always all zeroes.
2726   unsigned int index = 1;
2727
2728   // Add STT_SECTION symbols for each Output section which needs one.
2729   for (Section_list::iterator p = this->section_list_.begin();
2730        p != this->section_list_.end();
2731        ++p)
2732     {
2733       if (!(*p)->needs_dynsym_index())
2734         (*p)->set_dynsym_index(-1U);
2735       else
2736         {
2737           (*p)->set_dynsym_index(index);
2738           ++index;
2739         }
2740     }
2741
2742   // Count the local symbols that need to go in the dynamic symbol table,
2743   // and set the dynamic symbol indexes.
2744   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2745        p != input_objects->relobj_end();
2746        ++p)
2747     {
2748       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2749       index = new_index;
2750     }
2751
2752   unsigned int local_symcount = index;
2753   *plocal_dynamic_count = local_symcount;
2754
2755   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2756                                      &this->dynpool_, pversions);
2757
2758   int symsize;
2759   unsigned int align;
2760   const int size = parameters->target().get_size();
2761   if (size == 32)
2762     {
2763       symsize = elfcpp::Elf_sizes<32>::sym_size;
2764       align = 4;
2765     }
2766   else if (size == 64)
2767     {
2768       symsize = elfcpp::Elf_sizes<64>::sym_size;
2769       align = 8;
2770     }
2771   else
2772     gold_unreachable();
2773
2774   // Create the dynamic symbol table section.
2775
2776   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2777                                                        elfcpp::SHT_DYNSYM,
2778                                                        elfcpp::SHF_ALLOC,
2779                                                        false);
2780
2781   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2782                                                            align,
2783                                                            "** dynsym");
2784   dynsym->add_output_section_data(odata);
2785
2786   dynsym->set_info(local_symcount);
2787   dynsym->set_entsize(symsize);
2788   dynsym->set_addralign(align);
2789
2790   this->dynsym_section_ = dynsym;
2791
2792   Output_data_dynamic* const odyn = this->dynamic_data_;
2793   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2794   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2795
2796   // If there are more than SHN_LORESERVE allocated sections, we
2797   // create a .dynsym_shndx section.  It is possible that we don't
2798   // need one, because it is possible that there are no dynamic
2799   // symbols in any of the sections with indexes larger than
2800   // SHN_LORESERVE.  This is probably unusual, though, and at this
2801   // time we don't know the actual section indexes so it is
2802   // inconvenient to check.
2803   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2804     {
2805       Output_section* dynsym_xindex =
2806         this->choose_output_section(NULL, ".dynsym_shndx",
2807                                     elfcpp::SHT_SYMTAB_SHNDX,
2808                                     elfcpp::SHF_ALLOC,
2809                                     false);
2810
2811       this->dynsym_xindex_ = new Output_symtab_xindex(index);
2812
2813       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2814
2815       dynsym_xindex->set_link_section(dynsym);
2816       dynsym_xindex->set_addralign(4);
2817       dynsym_xindex->set_entsize(4);
2818
2819       dynsym_xindex->set_after_input_sections();
2820
2821       // This tells the driver code to wait until the symbol table has
2822       // written out before writing out the postprocessing sections,
2823       // including the .dynsym_shndx section.
2824       this->any_postprocessing_sections_ = true;
2825     }
2826
2827   // Create the dynamic string table section.
2828
2829   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2830                                                        elfcpp::SHT_STRTAB,
2831                                                        elfcpp::SHF_ALLOC,
2832                                                        false);
2833
2834   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2835   dynstr->add_output_section_data(strdata);
2836
2837   dynsym->set_link_section(dynstr);
2838   this->dynamic_section_->set_link_section(dynstr);
2839
2840   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2841   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2842
2843   *pdynstr = dynstr;
2844
2845   // Create the hash tables.
2846
2847   if (strcmp(parameters->options().hash_style(), "sysv") == 0
2848       || strcmp(parameters->options().hash_style(), "both") == 0)
2849     {
2850       unsigned char* phash;
2851       unsigned int hashlen;
2852       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2853                                     &phash, &hashlen);
2854
2855       Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2856                                                             elfcpp::SHT_HASH,
2857                                                             elfcpp::SHF_ALLOC,
2858                                                             false);
2859
2860       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2861                                                                    hashlen,
2862                                                                    align,
2863                                                                    "** hash");
2864       hashsec->add_output_section_data(hashdata);
2865
2866       hashsec->set_link_section(dynsym);
2867       hashsec->set_entsize(4);
2868
2869       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2870     }
2871
2872   if (strcmp(parameters->options().hash_style(), "gnu") == 0
2873       || strcmp(parameters->options().hash_style(), "both") == 0)
2874     {
2875       unsigned char* phash;
2876       unsigned int hashlen;
2877       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2878                                     &phash, &hashlen);
2879
2880       Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2881                                                             elfcpp::SHT_GNU_HASH,
2882                                                             elfcpp::SHF_ALLOC,
2883                                                             false);
2884
2885       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2886                                                                    hashlen,
2887                                                                    align,
2888                                                                    "** hash");
2889       hashsec->add_output_section_data(hashdata);
2890
2891       hashsec->set_link_section(dynsym);
2892       hashsec->set_entsize(4);
2893
2894       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2895     }
2896 }
2897
2898 // Assign offsets to each local portion of the dynamic symbol table.
2899
2900 void
2901 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2902 {
2903   Output_section* dynsym = this->dynsym_section_;
2904   gold_assert(dynsym != NULL);
2905
2906   off_t off = dynsym->offset();
2907
2908   // Skip the dummy symbol at the start of the section.
2909   off += dynsym->entsize();
2910
2911   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2912        p != input_objects->relobj_end();
2913        ++p)
2914     {
2915       unsigned int count = (*p)->set_local_dynsym_offset(off);
2916       off += count * dynsym->entsize();
2917     }
2918 }
2919
2920 // Create the version sections.
2921
2922 void
2923 Layout::create_version_sections(const Versions* versions,
2924                                 const Symbol_table* symtab,
2925                                 unsigned int local_symcount,
2926                                 const std::vector<Symbol*>& dynamic_symbols,
2927                                 const Output_section* dynstr)
2928 {
2929   if (!versions->any_defs() && !versions->any_needs())
2930     return;
2931
2932   switch (parameters->size_and_endianness())
2933     {
2934 #ifdef HAVE_TARGET_32_LITTLE
2935     case Parameters::TARGET_32_LITTLE:
2936       this->sized_create_version_sections<32, false>(versions, symtab,
2937                                                      local_symcount,
2938                                                      dynamic_symbols, dynstr);
2939       break;
2940 #endif
2941 #ifdef HAVE_TARGET_32_BIG
2942     case Parameters::TARGET_32_BIG:
2943       this->sized_create_version_sections<32, true>(versions, symtab,
2944                                                     local_symcount,
2945                                                     dynamic_symbols, dynstr);
2946       break;
2947 #endif
2948 #ifdef HAVE_TARGET_64_LITTLE
2949     case Parameters::TARGET_64_LITTLE:
2950       this->sized_create_version_sections<64, false>(versions, symtab,
2951                                                      local_symcount,
2952                                                      dynamic_symbols, dynstr);
2953       break;
2954 #endif
2955 #ifdef HAVE_TARGET_64_BIG
2956     case Parameters::TARGET_64_BIG:
2957       this->sized_create_version_sections<64, true>(versions, symtab,
2958                                                     local_symcount,
2959                                                     dynamic_symbols, dynstr);
2960       break;
2961 #endif
2962     default:
2963       gold_unreachable();
2964     }
2965 }
2966
2967 // Create the version sections, sized version.
2968
2969 template<int size, bool big_endian>
2970 void
2971 Layout::sized_create_version_sections(
2972     const Versions* versions,
2973     const Symbol_table* symtab,
2974     unsigned int local_symcount,
2975     const std::vector<Symbol*>& dynamic_symbols,
2976     const Output_section* dynstr)
2977 {
2978   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2979                                                      elfcpp::SHT_GNU_versym,
2980                                                      elfcpp::SHF_ALLOC,
2981                                                      false);
2982
2983   unsigned char* vbuf;
2984   unsigned int vsize;
2985   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
2986                                                       local_symcount,
2987                                                       dynamic_symbols,
2988                                                       &vbuf, &vsize);
2989
2990   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
2991                                                             "** versions");
2992
2993   vsec->add_output_section_data(vdata);
2994   vsec->set_entsize(2);
2995   vsec->set_link_section(this->dynsym_section_);
2996
2997   Output_data_dynamic* const odyn = this->dynamic_data_;
2998   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2999
3000   if (versions->any_defs())
3001     {
3002       Output_section* vdsec;
3003       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3004                                          elfcpp::SHT_GNU_verdef,
3005                                          elfcpp::SHF_ALLOC,
3006                                          false);
3007
3008       unsigned char* vdbuf;
3009       unsigned int vdsize;
3010       unsigned int vdentries;
3011       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3012                                                        &vdsize, &vdentries);
3013
3014       Output_section_data* vddata =
3015         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3016
3017       vdsec->add_output_section_data(vddata);
3018       vdsec->set_link_section(dynstr);
3019       vdsec->set_info(vdentries);
3020
3021       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3022       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3023     }
3024
3025   if (versions->any_needs())
3026     {
3027       Output_section* vnsec;
3028       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3029                                           elfcpp::SHT_GNU_verneed,
3030                                           elfcpp::SHF_ALLOC,
3031                                           false);
3032
3033       unsigned char* vnbuf;
3034       unsigned int vnsize;
3035       unsigned int vnentries;
3036       versions->need_section_contents<size, big_endian>(&this->dynpool_,
3037                                                         &vnbuf, &vnsize,
3038                                                         &vnentries);
3039
3040       Output_section_data* vndata =
3041         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3042
3043       vnsec->add_output_section_data(vndata);
3044       vnsec->set_link_section(dynstr);
3045       vnsec->set_info(vnentries);
3046
3047       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3048       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3049     }
3050 }
3051
3052 // Create the .interp section and PT_INTERP segment.
3053
3054 void
3055 Layout::create_interp(const Target* target)
3056 {
3057   const char* interp = parameters->options().dynamic_linker();
3058   if (interp == NULL)
3059     {
3060       interp = target->dynamic_linker();
3061       gold_assert(interp != NULL);
3062     }
3063
3064   size_t len = strlen(interp) + 1;
3065
3066   Output_section_data* odata = new Output_data_const(interp, len, 1);
3067
3068   Output_section* osec = this->choose_output_section(NULL, ".interp",
3069                                                      elfcpp::SHT_PROGBITS,
3070                                                      elfcpp::SHF_ALLOC,
3071                                                      false);
3072   osec->add_output_section_data(odata);
3073
3074   if (!this->script_options_->saw_phdrs_clause())
3075     {
3076       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3077                                                        elfcpp::PF_R);
3078       oseg->add_output_section(osec, elfcpp::PF_R);
3079     }
3080 }
3081
3082 // Finish the .dynamic section and PT_DYNAMIC segment.
3083
3084 void
3085 Layout::finish_dynamic_section(const Input_objects* input_objects,
3086                                const Symbol_table* symtab)
3087 {
3088   if (!this->script_options_->saw_phdrs_clause())
3089     {
3090       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
3091                                                        (elfcpp::PF_R
3092                                                         | elfcpp::PF_W));
3093       oseg->add_output_section(this->dynamic_section_,
3094                                elfcpp::PF_R | elfcpp::PF_W);
3095     }
3096
3097   Output_data_dynamic* const odyn = this->dynamic_data_;
3098
3099   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
3100        p != input_objects->dynobj_end();
3101        ++p)
3102     {
3103       // FIXME: Handle --as-needed.
3104       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
3105     }
3106
3107   if (parameters->options().shared())
3108     {
3109       const char* soname = parameters->options().soname();
3110       if (soname != NULL)
3111         odyn->add_string(elfcpp::DT_SONAME, soname);
3112     }
3113
3114   Symbol* sym = symtab->lookup(parameters->options().init());
3115   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3116     odyn->add_symbol(elfcpp::DT_INIT, sym);
3117
3118   sym = symtab->lookup(parameters->options().fini());
3119   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3120     odyn->add_symbol(elfcpp::DT_FINI, sym);
3121
3122   // Look for .init_array, .preinit_array and .fini_array by checking
3123   // section types.
3124   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
3125       p != this->section_list_.end();
3126       ++p)
3127     switch((*p)->type())
3128       {
3129       case elfcpp::SHT_FINI_ARRAY:
3130         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
3131         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
3132         break;
3133       case elfcpp::SHT_INIT_ARRAY:
3134         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
3135         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
3136         break;
3137       case elfcpp::SHT_PREINIT_ARRAY:
3138         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
3139         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
3140         break;
3141       default:
3142         break;
3143       }
3144   
3145   // Add a DT_RPATH entry if needed.
3146   const General_options::Dir_list& rpath(parameters->options().rpath());
3147   if (!rpath.empty())
3148     {
3149       std::string rpath_val;
3150       for (General_options::Dir_list::const_iterator p = rpath.begin();
3151            p != rpath.end();
3152            ++p)
3153         {
3154           if (rpath_val.empty())
3155             rpath_val = p->name();
3156           else
3157             {
3158               // Eliminate duplicates.
3159               General_options::Dir_list::const_iterator q;
3160               for (q = rpath.begin(); q != p; ++q)
3161                 if (q->name() == p->name())
3162                   break;
3163               if (q == p)
3164                 {
3165                   rpath_val += ':';
3166                   rpath_val += p->name();
3167                 }
3168             }
3169         }
3170
3171       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
3172       if (parameters->options().enable_new_dtags())
3173         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
3174     }
3175
3176   // Look for text segments that have dynamic relocations.
3177   bool have_textrel = false;
3178   if (!this->script_options_->saw_sections_clause())
3179     {
3180       for (Segment_list::const_iterator p = this->segment_list_.begin();
3181            p != this->segment_list_.end();
3182            ++p)
3183         {
3184           if (((*p)->flags() & elfcpp::PF_W) == 0
3185               && (*p)->dynamic_reloc_count() > 0)
3186             {
3187               have_textrel = true;
3188               break;
3189             }
3190         }
3191     }
3192   else
3193     {
3194       // We don't know the section -> segment mapping, so we are
3195       // conservative and just look for readonly sections with
3196       // relocations.  If those sections wind up in writable segments,
3197       // then we have created an unnecessary DT_TEXTREL entry.
3198       for (Section_list::const_iterator p = this->section_list_.begin();
3199            p != this->section_list_.end();
3200            ++p)
3201         {
3202           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
3203               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
3204               && ((*p)->dynamic_reloc_count() > 0))
3205             {
3206               have_textrel = true;
3207               break;
3208             }
3209         }
3210     }
3211
3212   // Add a DT_FLAGS entry. We add it even if no flags are set so that
3213   // post-link tools can easily modify these flags if desired.
3214   unsigned int flags = 0;
3215   if (have_textrel)
3216     {
3217       // Add a DT_TEXTREL for compatibility with older loaders.
3218       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
3219       flags |= elfcpp::DF_TEXTREL;
3220     }
3221   if (parameters->options().shared() && this->has_static_tls())
3222     flags |= elfcpp::DF_STATIC_TLS;
3223   if (parameters->options().origin())
3224     flags |= elfcpp::DF_ORIGIN;
3225   if (parameters->options().Bsymbolic())
3226     {
3227       flags |= elfcpp::DF_SYMBOLIC;
3228       // Add DT_SYMBOLIC for compatibility with older loaders.
3229       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
3230     }
3231   if (parameters->options().now())
3232     flags |= elfcpp::DF_BIND_NOW;
3233   odyn->add_constant(elfcpp::DT_FLAGS, flags);
3234
3235   flags = 0;
3236   if (parameters->options().initfirst())
3237     flags |= elfcpp::DF_1_INITFIRST;
3238   if (parameters->options().interpose())
3239     flags |= elfcpp::DF_1_INTERPOSE;
3240   if (parameters->options().loadfltr())
3241     flags |= elfcpp::DF_1_LOADFLTR;
3242   if (parameters->options().nodefaultlib())
3243     flags |= elfcpp::DF_1_NODEFLIB;
3244   if (parameters->options().nodelete())
3245     flags |= elfcpp::DF_1_NODELETE;
3246   if (parameters->options().nodlopen())
3247     flags |= elfcpp::DF_1_NOOPEN;
3248   if (parameters->options().nodump())
3249     flags |= elfcpp::DF_1_NODUMP;
3250   if (!parameters->options().shared())
3251     flags &= ~(elfcpp::DF_1_INITFIRST
3252                | elfcpp::DF_1_NODELETE
3253                | elfcpp::DF_1_NOOPEN);
3254   if (parameters->options().origin())
3255     flags |= elfcpp::DF_1_ORIGIN;
3256   if (parameters->options().now())
3257     flags |= elfcpp::DF_1_NOW;
3258   if (flags)
3259     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
3260 }
3261
3262 // The mapping of input section name prefixes to output section names.
3263 // In some cases one prefix is itself a prefix of another prefix; in
3264 // such a case the longer prefix must come first.  These prefixes are
3265 // based on the GNU linker default ELF linker script.
3266
3267 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3268 const Layout::Section_name_mapping Layout::section_name_mapping[] =
3269 {
3270   MAPPING_INIT(".text.", ".text"),
3271   MAPPING_INIT(".ctors.", ".ctors"),
3272   MAPPING_INIT(".dtors.", ".dtors"),
3273   MAPPING_INIT(".rodata.", ".rodata"),
3274   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3275   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3276   MAPPING_INIT(".data.", ".data"),
3277   MAPPING_INIT(".bss.", ".bss"),
3278   MAPPING_INIT(".tdata.", ".tdata"),
3279   MAPPING_INIT(".tbss.", ".tbss"),
3280   MAPPING_INIT(".init_array.", ".init_array"),
3281   MAPPING_INIT(".fini_array.", ".fini_array"),
3282   MAPPING_INIT(".sdata.", ".sdata"),
3283   MAPPING_INIT(".sbss.", ".sbss"),
3284   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3285   // differently depending on whether it is creating a shared library.
3286   MAPPING_INIT(".sdata2.", ".sdata"),
3287   MAPPING_INIT(".sbss2.", ".sbss"),
3288   MAPPING_INIT(".lrodata.", ".lrodata"),
3289   MAPPING_INIT(".ldata.", ".ldata"),
3290   MAPPING_INIT(".lbss.", ".lbss"),
3291   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3292   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3293   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3294   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3295   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3296   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3297   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3298   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3299   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3300   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3301   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3302   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3303   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3304   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3305   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3306   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3307   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3308   MAPPING_INIT(".ARM.extab.", ".ARM.extab"),
3309   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3310   MAPPING_INIT(".ARM.exidx.", ".ARM.exidx"),
3311   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3312 };
3313 #undef MAPPING_INIT
3314
3315 const int Layout::section_name_mapping_count =
3316   (sizeof(Layout::section_name_mapping)
3317    / sizeof(Layout::section_name_mapping[0]));
3318
3319 // Choose the output section name to use given an input section name.
3320 // Set *PLEN to the length of the name.  *PLEN is initialized to the
3321 // length of NAME.
3322
3323 const char*
3324 Layout::output_section_name(const char* name, size_t* plen)
3325 {
3326   // gcc 4.3 generates the following sorts of section names when it
3327   // needs a section name specific to a function:
3328   //   .text.FN
3329   //   .rodata.FN
3330   //   .sdata2.FN
3331   //   .data.FN
3332   //   .data.rel.FN
3333   //   .data.rel.local.FN
3334   //   .data.rel.ro.FN
3335   //   .data.rel.ro.local.FN
3336   //   .sdata.FN
3337   //   .bss.FN
3338   //   .sbss.FN
3339   //   .tdata.FN
3340   //   .tbss.FN
3341
3342   // The GNU linker maps all of those to the part before the .FN,
3343   // except that .data.rel.local.FN is mapped to .data, and
3344   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
3345   // beginning with .data.rel.ro.local are grouped together.
3346
3347   // For an anonymous namespace, the string FN can contain a '.'.
3348
3349   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3350   // GNU linker maps to .rodata.
3351
3352   // The .data.rel.ro sections are used with -z relro.  The sections
3353   // are recognized by name.  We use the same names that the GNU
3354   // linker does for these sections.
3355
3356   // It is hard to handle this in a principled way, so we don't even
3357   // try.  We use a table of mappings.  If the input section name is
3358   // not found in the table, we simply use it as the output section
3359   // name.
3360
3361   const Section_name_mapping* psnm = section_name_mapping;
3362   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
3363     {
3364       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
3365         {
3366           *plen = psnm->tolen;
3367           return psnm->to;
3368         }
3369     }
3370
3371   return name;
3372 }
3373
3374 // Check if a comdat group or .gnu.linkonce section with the given
3375 // NAME is selected for the link.  If there is already a section,
3376 // *KEPT_SECTION is set to point to the existing section and the
3377 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3378 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3379 // *KEPT_SECTION is set to the internal copy and the function returns
3380 // true.
3381
3382 bool
3383 Layout::find_or_add_kept_section(const std::string& name,
3384                                  Relobj* object,
3385                                  unsigned int shndx,
3386                                  bool is_comdat,
3387                                  bool is_group_name,
3388                                  Kept_section** kept_section)
3389 {
3390   // It's normal to see a couple of entries here, for the x86 thunk
3391   // sections.  If we see more than a few, we're linking a C++
3392   // program, and we resize to get more space to minimize rehashing.
3393   if (this->signatures_.size() > 4
3394       && !this->resized_signatures_)
3395     {
3396       reserve_unordered_map(&this->signatures_,
3397                             this->number_of_input_files_ * 64);
3398       this->resized_signatures_ = true;
3399     }
3400
3401   Kept_section candidate;
3402   std::pair<Signatures::iterator, bool> ins =
3403     this->signatures_.insert(std::make_pair(name, candidate));
3404
3405   if (kept_section != NULL)
3406     *kept_section = &ins.first->second;
3407   if (ins.second)
3408     {
3409       // This is the first time we've seen this signature.
3410       ins.first->second.set_object(object);
3411       ins.first->second.set_shndx(shndx);
3412       if (is_comdat)
3413         ins.first->second.set_is_comdat();
3414       if (is_group_name)
3415         ins.first->second.set_is_group_name();
3416       return true;
3417     }
3418
3419   // We have already seen this signature.
3420
3421   if (ins.first->second.is_group_name())
3422     {
3423       // We've already seen a real section group with this signature.
3424       // If the kept group is from a plugin object, and we're in the
3425       // replacement phase, accept the new one as a replacement.
3426       if (ins.first->second.object() == NULL
3427           && parameters->options().plugins()->in_replacement_phase())
3428         {
3429           ins.first->second.set_object(object);
3430           ins.first->second.set_shndx(shndx);
3431           return true;
3432         }
3433       return false;
3434     }
3435   else if (is_group_name)
3436     {
3437       // This is a real section group, and we've already seen a
3438       // linkonce section with this signature.  Record that we've seen
3439       // a section group, and don't include this section group.
3440       ins.first->second.set_is_group_name();
3441       return false;
3442     }
3443   else
3444     {
3445       // We've already seen a linkonce section and this is a linkonce
3446       // section.  These don't block each other--this may be the same
3447       // symbol name with different section types.
3448       return true;
3449     }
3450 }
3451
3452 // Store the allocated sections into the section list.
3453
3454 void
3455 Layout::get_allocated_sections(Section_list* section_list) const
3456 {
3457   for (Section_list::const_iterator p = this->section_list_.begin();
3458        p != this->section_list_.end();
3459        ++p)
3460     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3461       section_list->push_back(*p);
3462 }
3463
3464 // Create an output segment.
3465
3466 Output_segment*
3467 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3468 {
3469   gold_assert(!parameters->options().relocatable());
3470   Output_segment* oseg = new Output_segment(type, flags);
3471   this->segment_list_.push_back(oseg);
3472
3473   if (type == elfcpp::PT_TLS)
3474     this->tls_segment_ = oseg;
3475   else if (type == elfcpp::PT_GNU_RELRO)
3476     this->relro_segment_ = oseg;
3477
3478   return oseg;
3479 }
3480
3481 // Write out the Output_sections.  Most won't have anything to write,
3482 // since most of the data will come from input sections which are
3483 // handled elsewhere.  But some Output_sections do have Output_data.
3484
3485 void
3486 Layout::write_output_sections(Output_file* of) const
3487 {
3488   for (Section_list::const_iterator p = this->section_list_.begin();
3489        p != this->section_list_.end();
3490        ++p)
3491     {
3492       if (!(*p)->after_input_sections())
3493         (*p)->write(of);
3494     }
3495 }
3496
3497 // Write out data not associated with a section or the symbol table.
3498
3499 void
3500 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3501 {
3502   if (!parameters->options().strip_all())
3503     {
3504       const Output_section* symtab_section = this->symtab_section_;
3505       for (Section_list::const_iterator p = this->section_list_.begin();
3506            p != this->section_list_.end();
3507            ++p)
3508         {
3509           if ((*p)->needs_symtab_index())
3510             {
3511               gold_assert(symtab_section != NULL);
3512               unsigned int index = (*p)->symtab_index();
3513               gold_assert(index > 0 && index != -1U);
3514               off_t off = (symtab_section->offset()
3515                            + index * symtab_section->entsize());
3516               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3517             }
3518         }
3519     }
3520
3521   const Output_section* dynsym_section = this->dynsym_section_;
3522   for (Section_list::const_iterator p = this->section_list_.begin();
3523        p != this->section_list_.end();
3524        ++p)
3525     {
3526       if ((*p)->needs_dynsym_index())
3527         {
3528           gold_assert(dynsym_section != NULL);
3529           unsigned int index = (*p)->dynsym_index();
3530           gold_assert(index > 0 && index != -1U);
3531           off_t off = (dynsym_section->offset()
3532                        + index * dynsym_section->entsize());
3533           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3534         }
3535     }
3536
3537   // Write out the Output_data which are not in an Output_section.
3538   for (Data_list::const_iterator p = this->special_output_list_.begin();
3539        p != this->special_output_list_.end();
3540        ++p)
3541     (*p)->write(of);
3542 }
3543
3544 // Write out the Output_sections which can only be written after the
3545 // input sections are complete.
3546
3547 void
3548 Layout::write_sections_after_input_sections(Output_file* of)
3549 {
3550   // Determine the final section offsets, and thus the final output
3551   // file size.  Note we finalize the .shstrab last, to allow the
3552   // after_input_section sections to modify their section-names before
3553   // writing.
3554   if (this->any_postprocessing_sections_)
3555     {
3556       off_t off = this->output_file_size_;
3557       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3558
3559       // Now that we've finalized the names, we can finalize the shstrab.
3560       off =
3561         this->set_section_offsets(off,
3562                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3563
3564       if (off > this->output_file_size_)
3565         {
3566           of->resize(off);
3567           this->output_file_size_ = off;
3568         }
3569     }
3570
3571   for (Section_list::const_iterator p = this->section_list_.begin();
3572        p != this->section_list_.end();
3573        ++p)
3574     {
3575       if ((*p)->after_input_sections())
3576         (*p)->write(of);
3577     }
3578
3579   this->section_headers_->write(of);
3580 }
3581
3582 // If the build ID requires computing a checksum, do so here, and
3583 // write it out.  We compute a checksum over the entire file because
3584 // that is simplest.
3585
3586 void
3587 Layout::write_build_id(Output_file* of) const
3588 {
3589   if (this->build_id_note_ == NULL)
3590     return;
3591
3592   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3593
3594   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3595                                           this->build_id_note_->data_size());
3596
3597   const char* style = parameters->options().build_id();
3598   if (strcmp(style, "sha1") == 0)
3599     {
3600       sha1_ctx ctx;
3601       sha1_init_ctx(&ctx);
3602       sha1_process_bytes(iv, this->output_file_size_, &ctx);
3603       sha1_finish_ctx(&ctx, ov);
3604     }
3605   else if (strcmp(style, "md5") == 0)
3606     {
3607       md5_ctx ctx;
3608       md5_init_ctx(&ctx);
3609       md5_process_bytes(iv, this->output_file_size_, &ctx);
3610       md5_finish_ctx(&ctx, ov);
3611     }
3612   else
3613     gold_unreachable();
3614
3615   of->write_output_view(this->build_id_note_->offset(),
3616                         this->build_id_note_->data_size(),
3617                         ov);
3618
3619   of->free_input_view(0, this->output_file_size_, iv);
3620 }
3621
3622 // Write out a binary file.  This is called after the link is
3623 // complete.  IN is the temporary output file we used to generate the
3624 // ELF code.  We simply walk through the segments, read them from
3625 // their file offset in IN, and write them to their load address in
3626 // the output file.  FIXME: with a bit more work, we could support
3627 // S-records and/or Intel hex format here.
3628
3629 void
3630 Layout::write_binary(Output_file* in) const
3631 {
3632   gold_assert(parameters->options().oformat_enum()
3633               == General_options::OBJECT_FORMAT_BINARY);
3634
3635   // Get the size of the binary file.
3636   uint64_t max_load_address = 0;
3637   for (Segment_list::const_iterator p = this->segment_list_.begin();
3638        p != this->segment_list_.end();
3639        ++p)
3640     {
3641       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3642         {
3643           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3644           if (max_paddr > max_load_address)
3645             max_load_address = max_paddr;
3646         }
3647     }
3648
3649   Output_file out(parameters->options().output_file_name());
3650   out.open(max_load_address);
3651
3652   for (Segment_list::const_iterator p = this->segment_list_.begin();
3653        p != this->segment_list_.end();
3654        ++p)
3655     {
3656       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3657         {
3658           const unsigned char* vin = in->get_input_view((*p)->offset(),
3659                                                         (*p)->filesz());
3660           unsigned char* vout = out.get_output_view((*p)->paddr(),
3661                                                     (*p)->filesz());
3662           memcpy(vout, vin, (*p)->filesz());
3663           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3664           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3665         }
3666     }
3667
3668   out.close();
3669 }
3670
3671 // Print the output sections to the map file.
3672
3673 void
3674 Layout::print_to_mapfile(Mapfile* mapfile) const
3675 {
3676   for (Segment_list::const_iterator p = this->segment_list_.begin();
3677        p != this->segment_list_.end();
3678        ++p)
3679     (*p)->print_sections_to_mapfile(mapfile);
3680 }
3681
3682 // Print statistical information to stderr.  This is used for --stats.
3683
3684 void
3685 Layout::print_stats() const
3686 {
3687   this->namepool_.print_stats("section name pool");
3688   this->sympool_.print_stats("output symbol name pool");
3689   this->dynpool_.print_stats("dynamic name pool");
3690
3691   for (Section_list::const_iterator p = this->section_list_.begin();
3692        p != this->section_list_.end();
3693        ++p)
3694     (*p)->print_merge_stats();
3695 }
3696
3697 // Write_sections_task methods.
3698
3699 // We can always run this task.
3700
3701 Task_token*
3702 Write_sections_task::is_runnable()
3703 {
3704   return NULL;
3705 }
3706
3707 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3708 // when finished.
3709
3710 void
3711 Write_sections_task::locks(Task_locker* tl)
3712 {
3713   tl->add(this, this->output_sections_blocker_);
3714   tl->add(this, this->final_blocker_);
3715 }
3716
3717 // Run the task--write out the data.
3718
3719 void
3720 Write_sections_task::run(Workqueue*)
3721 {
3722   this->layout_->write_output_sections(this->of_);
3723 }
3724
3725 // Write_data_task methods.
3726
3727 // We can always run this task.
3728
3729 Task_token*
3730 Write_data_task::is_runnable()
3731 {
3732   return NULL;
3733 }
3734
3735 // We need to unlock FINAL_BLOCKER when finished.
3736
3737 void
3738 Write_data_task::locks(Task_locker* tl)
3739 {
3740   tl->add(this, this->final_blocker_);
3741 }
3742
3743 // Run the task--write out the data.
3744
3745 void
3746 Write_data_task::run(Workqueue*)
3747 {
3748   this->layout_->write_data(this->symtab_, this->of_);
3749 }
3750
3751 // Write_symbols_task methods.
3752
3753 // We can always run this task.
3754
3755 Task_token*
3756 Write_symbols_task::is_runnable()
3757 {
3758   return NULL;
3759 }
3760
3761 // We need to unlock FINAL_BLOCKER when finished.
3762
3763 void
3764 Write_symbols_task::locks(Task_locker* tl)
3765 {
3766   tl->add(this, this->final_blocker_);
3767 }
3768
3769 // Run the task--write out the symbols.
3770
3771 void
3772 Write_symbols_task::run(Workqueue*)
3773 {
3774   this->symtab_->write_globals(this->sympool_, this->dynpool_,
3775                                this->layout_->symtab_xindex(),
3776                                this->layout_->dynsym_xindex(), this->of_);
3777 }
3778
3779 // Write_after_input_sections_task methods.
3780
3781 // We can only run this task after the input sections have completed.
3782
3783 Task_token*
3784 Write_after_input_sections_task::is_runnable()
3785 {
3786   if (this->input_sections_blocker_->is_blocked())
3787     return this->input_sections_blocker_;
3788   return NULL;
3789 }
3790
3791 // We need to unlock FINAL_BLOCKER when finished.
3792
3793 void
3794 Write_after_input_sections_task::locks(Task_locker* tl)
3795 {
3796   tl->add(this, this->final_blocker_);
3797 }
3798
3799 // Run the task.
3800
3801 void
3802 Write_after_input_sections_task::run(Workqueue*)
3803 {
3804   this->layout_->write_sections_after_input_sections(this->of_);
3805 }
3806
3807 // Close_task_runner methods.
3808
3809 // Run the task--close the file.
3810
3811 void
3812 Close_task_runner::run(Workqueue*, const Task*)
3813 {
3814   // If we need to compute a checksum for the BUILD if, we do so here.
3815   this->layout_->write_build_id(this->of_);
3816
3817   // If we've been asked to create a binary file, we do so here.
3818   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3819     this->layout_->write_binary(this->of_);
3820
3821   this->of_->close();
3822 }
3823
3824 // Instantiate the templates we need.  We could use the configure
3825 // script to restrict this to only the ones for implemented targets.
3826
3827 #ifdef HAVE_TARGET_32_LITTLE
3828 template
3829 Output_section*
3830 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3831                           const char* name,
3832                           const elfcpp::Shdr<32, false>& shdr,
3833                           unsigned int, unsigned int, off_t*);
3834 #endif
3835
3836 #ifdef HAVE_TARGET_32_BIG
3837 template
3838 Output_section*
3839 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3840                          const char* name,
3841                          const elfcpp::Shdr<32, true>& shdr,
3842                          unsigned int, unsigned int, off_t*);
3843 #endif
3844
3845 #ifdef HAVE_TARGET_64_LITTLE
3846 template
3847 Output_section*
3848 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3849                           const char* name,
3850                           const elfcpp::Shdr<64, false>& shdr,
3851                           unsigned int, unsigned int, off_t*);
3852 #endif
3853
3854 #ifdef HAVE_TARGET_64_BIG
3855 template
3856 Output_section*
3857 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3858                          const char* name,
3859                          const elfcpp::Shdr<64, true>& shdr,
3860                          unsigned int, unsigned int, off_t*);
3861 #endif
3862
3863 #ifdef HAVE_TARGET_32_LITTLE
3864 template
3865 Output_section*
3866 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3867                                 unsigned int reloc_shndx,
3868                                 const elfcpp::Shdr<32, false>& shdr,
3869                                 Output_section* data_section,
3870                                 Relocatable_relocs* rr);
3871 #endif
3872
3873 #ifdef HAVE_TARGET_32_BIG
3874 template
3875 Output_section*
3876 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
3877                                unsigned int reloc_shndx,
3878                                const elfcpp::Shdr<32, true>& shdr,
3879                                Output_section* data_section,
3880                                Relocatable_relocs* rr);
3881 #endif
3882
3883 #ifdef HAVE_TARGET_64_LITTLE
3884 template
3885 Output_section*
3886 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
3887                                 unsigned int reloc_shndx,
3888                                 const elfcpp::Shdr<64, false>& shdr,
3889                                 Output_section* data_section,
3890                                 Relocatable_relocs* rr);
3891 #endif
3892
3893 #ifdef HAVE_TARGET_64_BIG
3894 template
3895 Output_section*
3896 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
3897                                unsigned int reloc_shndx,
3898                                const elfcpp::Shdr<64, true>& shdr,
3899                                Output_section* data_section,
3900                                Relocatable_relocs* rr);
3901 #endif
3902
3903 #ifdef HAVE_TARGET_32_LITTLE
3904 template
3905 void
3906 Layout::layout_group<32, false>(Symbol_table* symtab,
3907                                 Sized_relobj<32, false>* object,
3908                                 unsigned int,
3909                                 const char* group_section_name,
3910                                 const char* signature,
3911                                 const elfcpp::Shdr<32, false>& shdr,
3912                                 elfcpp::Elf_Word flags,
3913                                 std::vector<unsigned int>* shndxes);
3914 #endif
3915
3916 #ifdef HAVE_TARGET_32_BIG
3917 template
3918 void
3919 Layout::layout_group<32, true>(Symbol_table* symtab,
3920                                Sized_relobj<32, true>* object,
3921                                unsigned int,
3922                                const char* group_section_name,
3923                                const char* signature,
3924                                const elfcpp::Shdr<32, true>& shdr,
3925                                elfcpp::Elf_Word flags,
3926                                std::vector<unsigned int>* shndxes);
3927 #endif
3928
3929 #ifdef HAVE_TARGET_64_LITTLE
3930 template
3931 void
3932 Layout::layout_group<64, false>(Symbol_table* symtab,
3933                                 Sized_relobj<64, false>* object,
3934                                 unsigned int,
3935                                 const char* group_section_name,
3936                                 const char* signature,
3937                                 const elfcpp::Shdr<64, false>& shdr,
3938                                 elfcpp::Elf_Word flags,
3939                                 std::vector<unsigned int>* shndxes);
3940 #endif
3941
3942 #ifdef HAVE_TARGET_64_BIG
3943 template
3944 void
3945 Layout::layout_group<64, true>(Symbol_table* symtab,
3946                                Sized_relobj<64, true>* object,
3947                                unsigned int,
3948                                const char* group_section_name,
3949                                const char* signature,
3950                                const elfcpp::Shdr<64, true>& shdr,
3951                                elfcpp::Elf_Word flags,
3952                                std::vector<unsigned int>* shndxes);
3953 #endif
3954
3955 #ifdef HAVE_TARGET_32_LITTLE
3956 template
3957 Output_section*
3958 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
3959                                    const unsigned char* symbols,
3960                                    off_t symbols_size,
3961                                    const unsigned char* symbol_names,
3962                                    off_t symbol_names_size,
3963                                    unsigned int shndx,
3964                                    const elfcpp::Shdr<32, false>& shdr,
3965                                    unsigned int reloc_shndx,
3966                                    unsigned int reloc_type,
3967                                    off_t* off);
3968 #endif
3969
3970 #ifdef HAVE_TARGET_32_BIG
3971 template
3972 Output_section*
3973 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
3974                                    const unsigned char* symbols,
3975                                    off_t symbols_size,
3976                                   const unsigned char* symbol_names,
3977                                   off_t symbol_names_size,
3978                                   unsigned int shndx,
3979                                   const elfcpp::Shdr<32, true>& shdr,
3980                                   unsigned int reloc_shndx,
3981                                   unsigned int reloc_type,
3982                                   off_t* off);
3983 #endif
3984
3985 #ifdef HAVE_TARGET_64_LITTLE
3986 template
3987 Output_section*
3988 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
3989                                    const unsigned char* symbols,
3990                                    off_t symbols_size,
3991                                    const unsigned char* symbol_names,
3992                                    off_t symbol_names_size,
3993                                    unsigned int shndx,
3994                                    const elfcpp::Shdr<64, false>& shdr,
3995                                    unsigned int reloc_shndx,
3996                                    unsigned int reloc_type,
3997                                    off_t* off);
3998 #endif
3999
4000 #ifdef HAVE_TARGET_64_BIG
4001 template
4002 Output_section*
4003 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
4004                                    const unsigned char* symbols,
4005                                    off_t symbols_size,
4006                                   const unsigned char* symbol_names,
4007                                   off_t symbol_names_size,
4008                                   unsigned int shndx,
4009                                   const elfcpp::Shdr<64, true>& shdr,
4010                                   unsigned int reloc_shndx,
4011                                   unsigned int reloc_type,
4012                                   off_t* off);
4013 #endif
4014
4015 } // End namespace gold.