Merge branch 'vendor/TNFTP'
[dragonfly.git] / contrib / binutils-2.20 / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS  MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate.  Here we just set
50 // the file size and hope that there is enough disk space.  FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56   return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78   return Output_data::default_alignment_for_size(
79       parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87   if (size == 32)
88     return 4;
89   else if (size == 64)
90     return 8;
91   else
92     gold_unreachable();
93 }
94
95 // Output_section_header methods.  This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99     const Layout* layout,
100     const Layout::Segment_list* segment_list,
101     const Layout::Section_list* section_list,
102     const Layout::Section_list* unattached_section_list,
103     const Stringpool* secnamepool,
104     const Output_section* shstrtab_section)
105   : layout_(layout),
106     segment_list_(segment_list),
107     section_list_(section_list),
108     unattached_section_list_(unattached_section_list),
109     secnamepool_(secnamepool),
110     shstrtab_section_(shstrtab_section)
111 {
112 }
113
114 // Compute the current data size.
115
116 off_t
117 Output_section_headers::do_size() const
118 {
119   // Count all the sections.  Start with 1 for the null section.
120   off_t count = 1;
121   if (!parameters->options().relocatable())
122     {
123       for (Layout::Segment_list::const_iterator p =
124              this->segment_list_->begin();
125            p != this->segment_list_->end();
126            ++p)
127         if ((*p)->type() == elfcpp::PT_LOAD)
128           count += (*p)->output_section_count();
129     }
130   else
131     {
132       for (Layout::Section_list::const_iterator p =
133              this->section_list_->begin();
134            p != this->section_list_->end();
135            ++p)
136         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137           ++count;
138     }
139   count += this->unattached_section_list_->size();
140
141   const int size = parameters->target().get_size();
142   int shdr_size;
143   if (size == 32)
144     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145   else if (size == 64)
146     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147   else
148     gold_unreachable();
149
150   return count * shdr_size;
151 }
152
153 // Write out the section headers.
154
155 void
156 Output_section_headers::do_write(Output_file* of)
157 {
158   switch (parameters->size_and_endianness())
159     {
160 #ifdef HAVE_TARGET_32_LITTLE
161     case Parameters::TARGET_32_LITTLE:
162       this->do_sized_write<32, false>(of);
163       break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166     case Parameters::TARGET_32_BIG:
167       this->do_sized_write<32, true>(of);
168       break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171     case Parameters::TARGET_64_LITTLE:
172       this->do_sized_write<64, false>(of);
173       break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176     case Parameters::TARGET_64_BIG:
177       this->do_sized_write<64, true>(of);
178       break;
179 #endif
180     default:
181       gold_unreachable();
182     }
183 }
184
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
188 {
189   off_t all_shdrs_size = this->data_size();
190   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193   unsigned char* v = view;
194
195   {
196     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197     oshdr.put_sh_name(0);
198     oshdr.put_sh_type(elfcpp::SHT_NULL);
199     oshdr.put_sh_flags(0);
200     oshdr.put_sh_addr(0);
201     oshdr.put_sh_offset(0);
202
203     size_t section_count = (this->data_size()
204                             / elfcpp::Elf_sizes<size>::shdr_size);
205     if (section_count < elfcpp::SHN_LORESERVE)
206       oshdr.put_sh_size(0);
207     else
208       oshdr.put_sh_size(section_count);
209
210     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211     if (shstrndx < elfcpp::SHN_LORESERVE)
212       oshdr.put_sh_link(0);
213     else
214       oshdr.put_sh_link(shstrndx);
215
216     oshdr.put_sh_info(0);
217     oshdr.put_sh_addralign(0);
218     oshdr.put_sh_entsize(0);
219   }
220
221   v += shdr_size;
222
223   unsigned int shndx = 1;
224   if (!parameters->options().relocatable())
225     {
226       for (Layout::Segment_list::const_iterator p =
227              this->segment_list_->begin();
228            p != this->segment_list_->end();
229            ++p)
230         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
231                                                           this->secnamepool_,
232                                                           v,
233                                                           &shndx);
234     }
235   else
236     {
237       for (Layout::Section_list::const_iterator p =
238              this->section_list_->begin();
239            p != this->section_list_->end();
240            ++p)
241         {
242           // We do unallocated sections below, except that group
243           // sections have to come first.
244           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
245               && (*p)->type() != elfcpp::SHT_GROUP)
246             continue;
247           gold_assert(shndx == (*p)->out_shndx());
248           elfcpp::Shdr_write<size, big_endian> oshdr(v);
249           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
250           v += shdr_size;
251           ++shndx;
252         }
253     }
254
255   for (Layout::Section_list::const_iterator p =
256          this->unattached_section_list_->begin();
257        p != this->unattached_section_list_->end();
258        ++p)
259     {
260       // For a relocatable link, we did unallocated group sections
261       // above, since they have to come first.
262       if ((*p)->type() == elfcpp::SHT_GROUP
263           && parameters->options().relocatable())
264         continue;
265       gold_assert(shndx == (*p)->out_shndx());
266       elfcpp::Shdr_write<size, big_endian> oshdr(v);
267       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
268       v += shdr_size;
269       ++shndx;
270     }
271
272   of->write_output_view(this->offset(), all_shdrs_size, view);
273 }
274
275 // Output_segment_header methods.
276
277 Output_segment_headers::Output_segment_headers(
278     const Layout::Segment_list& segment_list)
279   : segment_list_(segment_list)
280 {
281 }
282
283 void
284 Output_segment_headers::do_write(Output_file* of)
285 {
286   switch (parameters->size_and_endianness())
287     {
288 #ifdef HAVE_TARGET_32_LITTLE
289     case Parameters::TARGET_32_LITTLE:
290       this->do_sized_write<32, false>(of);
291       break;
292 #endif
293 #ifdef HAVE_TARGET_32_BIG
294     case Parameters::TARGET_32_BIG:
295       this->do_sized_write<32, true>(of);
296       break;
297 #endif
298 #ifdef HAVE_TARGET_64_LITTLE
299     case Parameters::TARGET_64_LITTLE:
300       this->do_sized_write<64, false>(of);
301       break;
302 #endif
303 #ifdef HAVE_TARGET_64_BIG
304     case Parameters::TARGET_64_BIG:
305       this->do_sized_write<64, true>(of);
306       break;
307 #endif
308     default:
309       gold_unreachable();
310     }
311 }
312
313 template<int size, bool big_endian>
314 void
315 Output_segment_headers::do_sized_write(Output_file* of)
316 {
317   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
318   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
319   gold_assert(all_phdrs_size == this->data_size());
320   unsigned char* view = of->get_output_view(this->offset(),
321                                             all_phdrs_size);
322   unsigned char* v = view;
323   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
324        p != this->segment_list_.end();
325        ++p)
326     {
327       elfcpp::Phdr_write<size, big_endian> ophdr(v);
328       (*p)->write_header(&ophdr);
329       v += phdr_size;
330     }
331
332   gold_assert(v - view == all_phdrs_size);
333
334   of->write_output_view(this->offset(), all_phdrs_size, view);
335 }
336
337 off_t
338 Output_segment_headers::do_size() const
339 {
340   const int size = parameters->target().get_size();
341   int phdr_size;
342   if (size == 32)
343     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
344   else if (size == 64)
345     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
346   else
347     gold_unreachable();
348
349   return this->segment_list_.size() * phdr_size;
350 }
351
352 // Output_file_header methods.
353
354 Output_file_header::Output_file_header(const Target* target,
355                                        const Symbol_table* symtab,
356                                        const Output_segment_headers* osh,
357                                        const char* entry)
358   : target_(target),
359     symtab_(symtab),
360     segment_header_(osh),
361     section_header_(NULL),
362     shstrtab_(NULL),
363     entry_(entry)
364 {
365   this->set_data_size(this->do_size());
366 }
367
368 // Set the section table information for a file header.
369
370 void
371 Output_file_header::set_section_info(const Output_section_headers* shdrs,
372                                      const Output_section* shstrtab)
373 {
374   this->section_header_ = shdrs;
375   this->shstrtab_ = shstrtab;
376 }
377
378 // Write out the file header.
379
380 void
381 Output_file_header::do_write(Output_file* of)
382 {
383   gold_assert(this->offset() == 0);
384
385   switch (parameters->size_and_endianness())
386     {
387 #ifdef HAVE_TARGET_32_LITTLE
388     case Parameters::TARGET_32_LITTLE:
389       this->do_sized_write<32, false>(of);
390       break;
391 #endif
392 #ifdef HAVE_TARGET_32_BIG
393     case Parameters::TARGET_32_BIG:
394       this->do_sized_write<32, true>(of);
395       break;
396 #endif
397 #ifdef HAVE_TARGET_64_LITTLE
398     case Parameters::TARGET_64_LITTLE:
399       this->do_sized_write<64, false>(of);
400       break;
401 #endif
402 #ifdef HAVE_TARGET_64_BIG
403     case Parameters::TARGET_64_BIG:
404       this->do_sized_write<64, true>(of);
405       break;
406 #endif
407     default:
408       gold_unreachable();
409     }
410 }
411
412 // Write out the file header with appropriate size and endianess.
413
414 template<int size, bool big_endian>
415 void
416 Output_file_header::do_sized_write(Output_file* of)
417 {
418   gold_assert(this->offset() == 0);
419
420   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
421   unsigned char* view = of->get_output_view(0, ehdr_size);
422   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
423
424   unsigned char e_ident[elfcpp::EI_NIDENT];
425   memset(e_ident, 0, elfcpp::EI_NIDENT);
426   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
427   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
428   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
429   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
430   if (size == 32)
431     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
432   else if (size == 64)
433     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
434   else
435     gold_unreachable();
436   e_ident[elfcpp::EI_DATA] = (big_endian
437                               ? elfcpp::ELFDATA2MSB
438                               : elfcpp::ELFDATA2LSB);
439   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
440   oehdr.put_e_ident(e_ident);
441
442   elfcpp::ET e_type;
443   if (parameters->options().relocatable())
444     e_type = elfcpp::ET_REL;
445   else if (parameters->options().output_is_position_independent())
446     e_type = elfcpp::ET_DYN;
447   else
448     e_type = elfcpp::ET_EXEC;
449   oehdr.put_e_type(e_type);
450
451   oehdr.put_e_machine(this->target_->machine_code());
452   oehdr.put_e_version(elfcpp::EV_CURRENT);
453
454   oehdr.put_e_entry(this->entry<size>());
455
456   if (this->segment_header_ == NULL)
457     oehdr.put_e_phoff(0);
458   else
459     oehdr.put_e_phoff(this->segment_header_->offset());
460
461   oehdr.put_e_shoff(this->section_header_->offset());
462
463   // FIXME: The target needs to set the flags.
464   oehdr.put_e_flags(0);
465
466   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
467
468   if (this->segment_header_ == NULL)
469     {
470       oehdr.put_e_phentsize(0);
471       oehdr.put_e_phnum(0);
472     }
473   else
474     {
475       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
476       oehdr.put_e_phnum(this->segment_header_->data_size()
477                         / elfcpp::Elf_sizes<size>::phdr_size);
478     }
479
480   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
481   size_t section_count = (this->section_header_->data_size()
482                           / elfcpp::Elf_sizes<size>::shdr_size);
483
484   if (section_count < elfcpp::SHN_LORESERVE)
485     oehdr.put_e_shnum(this->section_header_->data_size()
486                       / elfcpp::Elf_sizes<size>::shdr_size);
487   else
488     oehdr.put_e_shnum(0);
489
490   unsigned int shstrndx = this->shstrtab_->out_shndx();
491   if (shstrndx < elfcpp::SHN_LORESERVE)
492     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
493   else
494     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
495
496   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
497   // the e_ident field.
498   parameters->target().adjust_elf_header(view, ehdr_size);
499
500   of->write_output_view(0, ehdr_size, view);
501 }
502
503 // Return the value to use for the entry address.  THIS->ENTRY_ is the
504 // symbol specified on the command line, if any.
505
506 template<int size>
507 typename elfcpp::Elf_types<size>::Elf_Addr
508 Output_file_header::entry()
509 {
510   const bool should_issue_warning = (this->entry_ != NULL
511                                      && !parameters->options().relocatable()
512                                      && !parameters->options().shared());
513
514   // FIXME: Need to support target specific entry symbol.
515   const char* entry = this->entry_;
516   if (entry == NULL)
517     entry = "_start";
518
519   Symbol* sym = this->symtab_->lookup(entry);
520
521   typename Sized_symbol<size>::Value_type v;
522   if (sym != NULL)
523     {
524       Sized_symbol<size>* ssym;
525       ssym = this->symtab_->get_sized_symbol<size>(sym);
526       if (!ssym->is_defined() && should_issue_warning)
527         gold_warning("entry symbol '%s' exists but is not defined", entry);
528       v = ssym->value();
529     }
530   else
531     {
532       // We couldn't find the entry symbol.  See if we can parse it as
533       // a number.  This supports, e.g., -e 0x1000.
534       char* endptr;
535       v = strtoull(entry, &endptr, 0);
536       if (*endptr != '\0')
537         {
538           if (should_issue_warning)
539             gold_warning("cannot find entry symbol '%s'", entry);
540           v = 0;
541         }
542     }
543
544   return v;
545 }
546
547 // Compute the current data size.
548
549 off_t
550 Output_file_header::do_size() const
551 {
552   const int size = parameters->target().get_size();
553   if (size == 32)
554     return elfcpp::Elf_sizes<32>::ehdr_size;
555   else if (size == 64)
556     return elfcpp::Elf_sizes<64>::ehdr_size;
557   else
558     gold_unreachable();
559 }
560
561 // Output_data_const methods.
562
563 void
564 Output_data_const::do_write(Output_file* of)
565 {
566   of->write(this->offset(), this->data_.data(), this->data_.size());
567 }
568
569 // Output_data_const_buffer methods.
570
571 void
572 Output_data_const_buffer::do_write(Output_file* of)
573 {
574   of->write(this->offset(), this->p_, this->data_size());
575 }
576
577 // Output_section_data methods.
578
579 // Record the output section, and set the entry size and such.
580
581 void
582 Output_section_data::set_output_section(Output_section* os)
583 {
584   gold_assert(this->output_section_ == NULL);
585   this->output_section_ = os;
586   this->do_adjust_output_section(os);
587 }
588
589 // Return the section index of the output section.
590
591 unsigned int
592 Output_section_data::do_out_shndx() const
593 {
594   gold_assert(this->output_section_ != NULL);
595   return this->output_section_->out_shndx();
596 }
597
598 // Set the alignment, which means we may need to update the alignment
599 // of the output section.
600
601 void
602 Output_section_data::set_addralign(uint64_t addralign)
603 {
604   this->addralign_ = addralign;
605   if (this->output_section_ != NULL
606       && this->output_section_->addralign() < addralign)
607     this->output_section_->set_addralign(addralign);
608 }
609
610 // Output_data_strtab methods.
611
612 // Set the final data size.
613
614 void
615 Output_data_strtab::set_final_data_size()
616 {
617   this->strtab_->set_string_offsets();
618   this->set_data_size(this->strtab_->get_strtab_size());
619 }
620
621 // Write out a string table.
622
623 void
624 Output_data_strtab::do_write(Output_file* of)
625 {
626   this->strtab_->write(of, this->offset());
627 }
628
629 // Output_reloc methods.
630
631 // A reloc against a global symbol.
632
633 template<bool dynamic, int size, bool big_endian>
634 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
635     Symbol* gsym,
636     unsigned int type,
637     Output_data* od,
638     Address address,
639     bool is_relative)
640   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
641     is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
642 {
643   // this->type_ is a bitfield; make sure TYPE fits.
644   gold_assert(this->type_ == type);
645   this->u1_.gsym = gsym;
646   this->u2_.od = od;
647   if (dynamic)
648     this->set_needs_dynsym_index();
649 }
650
651 template<bool dynamic, int size, bool big_endian>
652 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
653     Symbol* gsym,
654     unsigned int type,
655     Sized_relobj<size, big_endian>* relobj,
656     unsigned int shndx,
657     Address address,
658     bool is_relative)
659   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
660     is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
661 {
662   gold_assert(shndx != INVALID_CODE);
663   // this->type_ is a bitfield; make sure TYPE fits.
664   gold_assert(this->type_ == type);
665   this->u1_.gsym = gsym;
666   this->u2_.relobj = relobj;
667   if (dynamic)
668     this->set_needs_dynsym_index();
669 }
670
671 // A reloc against a local symbol.
672
673 template<bool dynamic, int size, bool big_endian>
674 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
675     Sized_relobj<size, big_endian>* relobj,
676     unsigned int local_sym_index,
677     unsigned int type,
678     Output_data* od,
679     Address address,
680     bool is_relative,
681     bool is_section_symbol)
682   : address_(address), local_sym_index_(local_sym_index), type_(type),
683     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
684     shndx_(INVALID_CODE)
685 {
686   gold_assert(local_sym_index != GSYM_CODE
687               && local_sym_index != INVALID_CODE);
688   // this->type_ is a bitfield; make sure TYPE fits.
689   gold_assert(this->type_ == type);
690   this->u1_.relobj = relobj;
691   this->u2_.od = od;
692   if (dynamic)
693     this->set_needs_dynsym_index();
694 }
695
696 template<bool dynamic, int size, bool big_endian>
697 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
698     Sized_relobj<size, big_endian>* relobj,
699     unsigned int local_sym_index,
700     unsigned int type,
701     unsigned int shndx,
702     Address address,
703     bool is_relative,
704     bool is_section_symbol)
705   : address_(address), local_sym_index_(local_sym_index), type_(type),
706     is_relative_(is_relative), is_section_symbol_(is_section_symbol),
707     shndx_(shndx)
708 {
709   gold_assert(local_sym_index != GSYM_CODE
710               && local_sym_index != INVALID_CODE);
711   gold_assert(shndx != INVALID_CODE);
712   // this->type_ is a bitfield; make sure TYPE fits.
713   gold_assert(this->type_ == type);
714   this->u1_.relobj = relobj;
715   this->u2_.relobj = relobj;
716   if (dynamic)
717     this->set_needs_dynsym_index();
718 }
719
720 // A reloc against the STT_SECTION symbol of an output section.
721
722 template<bool dynamic, int size, bool big_endian>
723 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
724     Output_section* os,
725     unsigned int type,
726     Output_data* od,
727     Address address)
728   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
729     is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
730 {
731   // this->type_ is a bitfield; make sure TYPE fits.
732   gold_assert(this->type_ == type);
733   this->u1_.os = os;
734   this->u2_.od = od;
735   if (dynamic)
736     this->set_needs_dynsym_index();
737   else
738     os->set_needs_symtab_index();
739 }
740
741 template<bool dynamic, int size, bool big_endian>
742 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
743     Output_section* os,
744     unsigned int type,
745     Sized_relobj<size, big_endian>* relobj,
746     unsigned int shndx,
747     Address address)
748   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
749     is_relative_(false), is_section_symbol_(true), shndx_(shndx)
750 {
751   gold_assert(shndx != INVALID_CODE);
752   // this->type_ is a bitfield; make sure TYPE fits.
753   gold_assert(this->type_ == type);
754   this->u1_.os = os;
755   this->u2_.relobj = relobj;
756   if (dynamic)
757     this->set_needs_dynsym_index();
758   else
759     os->set_needs_symtab_index();
760 }
761
762 // Record that we need a dynamic symbol index for this relocation.
763
764 template<bool dynamic, int size, bool big_endian>
765 void
766 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
767 set_needs_dynsym_index()
768 {
769   if (this->is_relative_)
770     return;
771   switch (this->local_sym_index_)
772     {
773     case INVALID_CODE:
774       gold_unreachable();
775
776     case GSYM_CODE:
777       this->u1_.gsym->set_needs_dynsym_entry();
778       break;
779
780     case SECTION_CODE:
781       this->u1_.os->set_needs_dynsym_index();
782       break;
783
784     case 0:
785       break;
786
787     default:
788       {
789         const unsigned int lsi = this->local_sym_index_;
790         if (!this->is_section_symbol_)
791           this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
792         else
793           this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
794       }
795       break;
796     }
797 }
798
799 // Get the symbol index of a relocation.
800
801 template<bool dynamic, int size, bool big_endian>
802 unsigned int
803 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
804   const
805 {
806   unsigned int index;
807   switch (this->local_sym_index_)
808     {
809     case INVALID_CODE:
810       gold_unreachable();
811
812     case GSYM_CODE:
813       if (this->u1_.gsym == NULL)
814         index = 0;
815       else if (dynamic)
816         index = this->u1_.gsym->dynsym_index();
817       else
818         index = this->u1_.gsym->symtab_index();
819       break;
820
821     case SECTION_CODE:
822       if (dynamic)
823         index = this->u1_.os->dynsym_index();
824       else
825         index = this->u1_.os->symtab_index();
826       break;
827
828     case 0:
829       // Relocations without symbols use a symbol index of 0.
830       index = 0;
831       break;
832
833     default:
834       {
835         const unsigned int lsi = this->local_sym_index_;
836         if (!this->is_section_symbol_)
837           {
838             if (dynamic)
839               index = this->u1_.relobj->dynsym_index(lsi);
840             else
841               index = this->u1_.relobj->symtab_index(lsi);
842           }
843         else
844           {
845             Output_section* os = this->u1_.relobj->output_section(lsi);
846             gold_assert(os != NULL);
847             if (dynamic)
848               index = os->dynsym_index();
849             else
850               index = os->symtab_index();
851           }
852       }
853       break;
854     }
855   gold_assert(index != -1U);
856   return index;
857 }
858
859 // For a local section symbol, get the address of the offset ADDEND
860 // within the input section.
861
862 template<bool dynamic, int size, bool big_endian>
863 typename elfcpp::Elf_types<size>::Elf_Addr
864 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
865   local_section_offset(Addend addend) const
866 {
867   gold_assert(this->local_sym_index_ != GSYM_CODE
868               && this->local_sym_index_ != SECTION_CODE
869               && this->local_sym_index_ != INVALID_CODE
870               && this->is_section_symbol_);
871   const unsigned int lsi = this->local_sym_index_;
872   Output_section* os = this->u1_.relobj->output_section(lsi);
873   gold_assert(os != NULL);
874   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
875   if (offset != invalid_address)
876     return offset + addend;
877   // This is a merge section.
878   offset = os->output_address(this->u1_.relobj, lsi, addend);
879   gold_assert(offset != invalid_address);
880   return offset;
881 }
882
883 // Get the output address of a relocation.
884
885 template<bool dynamic, int size, bool big_endian>
886 typename elfcpp::Elf_types<size>::Elf_Addr
887 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
888 {
889   Address address = this->address_;
890   if (this->shndx_ != INVALID_CODE)
891     {
892       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
893       gold_assert(os != NULL);
894       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
895       if (off != invalid_address)
896         address += os->address() + off;
897       else
898         {
899           address = os->output_address(this->u2_.relobj, this->shndx_,
900                                        address);
901           gold_assert(address != invalid_address);
902         }
903     }
904   else if (this->u2_.od != NULL)
905     address += this->u2_.od->address();
906   return address;
907 }
908
909 // Write out the offset and info fields of a Rel or Rela relocation
910 // entry.
911
912 template<bool dynamic, int size, bool big_endian>
913 template<typename Write_rel>
914 void
915 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
916     Write_rel* wr) const
917 {
918   wr->put_r_offset(this->get_address());
919   unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
920   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
921 }
922
923 // Write out a Rel relocation.
924
925 template<bool dynamic, int size, bool big_endian>
926 void
927 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
928     unsigned char* pov) const
929 {
930   elfcpp::Rel_write<size, big_endian> orel(pov);
931   this->write_rel(&orel);
932 }
933
934 // Get the value of the symbol referred to by a Rel relocation.
935
936 template<bool dynamic, int size, bool big_endian>
937 typename elfcpp::Elf_types<size>::Elf_Addr
938 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
939     Addend addend) const
940 {
941   if (this->local_sym_index_ == GSYM_CODE)
942     {
943       const Sized_symbol<size>* sym;
944       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
945       return sym->value() + addend;
946     }
947   gold_assert(this->local_sym_index_ != SECTION_CODE
948               && this->local_sym_index_ != INVALID_CODE
949               && !this->is_section_symbol_);
950   const unsigned int lsi = this->local_sym_index_;
951   const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
952   return symval->value(this->u1_.relobj, addend);
953 }
954
955 // Reloc comparison.  This function sorts the dynamic relocs for the
956 // benefit of the dynamic linker.  First we sort all relative relocs
957 // to the front.  Among relative relocs, we sort by output address.
958 // Among non-relative relocs, we sort by symbol index, then by output
959 // address.
960
961 template<bool dynamic, int size, bool big_endian>
962 int
963 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
964   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
965     const
966 {
967   if (this->is_relative_)
968     {
969       if (!r2.is_relative_)
970         return -1;
971       // Otherwise sort by reloc address below.
972     }
973   else if (r2.is_relative_)
974     return 1;
975   else
976     {
977       unsigned int sym1 = this->get_symbol_index();
978       unsigned int sym2 = r2.get_symbol_index();
979       if (sym1 < sym2)
980         return -1;
981       else if (sym1 > sym2)
982         return 1;
983       // Otherwise sort by reloc address.
984     }
985
986   section_offset_type addr1 = this->get_address();
987   section_offset_type addr2 = r2.get_address();
988   if (addr1 < addr2)
989     return -1;
990   else if (addr1 > addr2)
991     return 1;
992
993   // Final tie breaker, in order to generate the same output on any
994   // host: reloc type.
995   unsigned int type1 = this->type_;
996   unsigned int type2 = r2.type_;
997   if (type1 < type2)
998     return -1;
999   else if (type1 > type2)
1000     return 1;
1001
1002   // These relocs appear to be exactly the same.
1003   return 0;
1004 }
1005
1006 // Write out a Rela relocation.
1007
1008 template<bool dynamic, int size, bool big_endian>
1009 void
1010 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1011     unsigned char* pov) const
1012 {
1013   elfcpp::Rela_write<size, big_endian> orel(pov);
1014   this->rel_.write_rel(&orel);
1015   Addend addend = this->addend_;
1016   if (this->rel_.is_relative())
1017     addend = this->rel_.symbol_value(addend);
1018   else if (this->rel_.is_local_section_symbol())
1019     addend = this->rel_.local_section_offset(addend);
1020   orel.put_r_addend(addend);
1021 }
1022
1023 // Output_data_reloc_base methods.
1024
1025 // Adjust the output section.
1026
1027 template<int sh_type, bool dynamic, int size, bool big_endian>
1028 void
1029 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1030     ::do_adjust_output_section(Output_section* os)
1031 {
1032   if (sh_type == elfcpp::SHT_REL)
1033     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1034   else if (sh_type == elfcpp::SHT_RELA)
1035     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1036   else
1037     gold_unreachable();
1038   if (dynamic)
1039     os->set_should_link_to_dynsym();
1040   else
1041     os->set_should_link_to_symtab();
1042 }
1043
1044 // Write out relocation data.
1045
1046 template<int sh_type, bool dynamic, int size, bool big_endian>
1047 void
1048 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1049     Output_file* of)
1050 {
1051   const off_t off = this->offset();
1052   const off_t oview_size = this->data_size();
1053   unsigned char* const oview = of->get_output_view(off, oview_size);
1054
1055   if (this->sort_relocs_)
1056     {
1057       gold_assert(dynamic);
1058       std::sort(this->relocs_.begin(), this->relocs_.end(),
1059                 Sort_relocs_comparison());
1060     }
1061
1062   unsigned char* pov = oview;
1063   for (typename Relocs::const_iterator p = this->relocs_.begin();
1064        p != this->relocs_.end();
1065        ++p)
1066     {
1067       p->write(pov);
1068       pov += reloc_size;
1069     }
1070
1071   gold_assert(pov - oview == oview_size);
1072
1073   of->write_output_view(off, oview_size, oview);
1074
1075   // We no longer need the relocation entries.
1076   this->relocs_.clear();
1077 }
1078
1079 // Class Output_relocatable_relocs.
1080
1081 template<int sh_type, int size, bool big_endian>
1082 void
1083 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1084 {
1085   this->set_data_size(this->rr_->output_reloc_count()
1086                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1087 }
1088
1089 // class Output_data_group.
1090
1091 template<int size, bool big_endian>
1092 Output_data_group<size, big_endian>::Output_data_group(
1093     Sized_relobj<size, big_endian>* relobj,
1094     section_size_type entry_count,
1095     elfcpp::Elf_Word flags,
1096     std::vector<unsigned int>* input_shndxes)
1097   : Output_section_data(entry_count * 4, 4, false),
1098     relobj_(relobj),
1099     flags_(flags)
1100 {
1101   this->input_shndxes_.swap(*input_shndxes);
1102 }
1103
1104 // Write out the section group, which means translating the section
1105 // indexes to apply to the output file.
1106
1107 template<int size, bool big_endian>
1108 void
1109 Output_data_group<size, big_endian>::do_write(Output_file* of)
1110 {
1111   const off_t off = this->offset();
1112   const section_size_type oview_size =
1113     convert_to_section_size_type(this->data_size());
1114   unsigned char* const oview = of->get_output_view(off, oview_size);
1115
1116   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1117   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1118   ++contents;
1119
1120   for (std::vector<unsigned int>::const_iterator p =
1121          this->input_shndxes_.begin();
1122        p != this->input_shndxes_.end();
1123        ++p, ++contents)
1124     {
1125       Output_section* os = this->relobj_->output_section(*p);
1126
1127       unsigned int output_shndx;
1128       if (os != NULL)
1129         output_shndx = os->out_shndx();
1130       else
1131         {
1132           this->relobj_->error(_("section group retained but "
1133                                  "group element discarded"));
1134           output_shndx = 0;
1135         }
1136
1137       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1138     }
1139
1140   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1141   gold_assert(wrote == oview_size);
1142
1143   of->write_output_view(off, oview_size, oview);
1144
1145   // We no longer need this information.
1146   this->input_shndxes_.clear();
1147 }
1148
1149 // Output_data_got::Got_entry methods.
1150
1151 // Write out the entry.
1152
1153 template<int size, bool big_endian>
1154 void
1155 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1156 {
1157   Valtype val = 0;
1158
1159   switch (this->local_sym_index_)
1160     {
1161     case GSYM_CODE:
1162       {
1163         // If the symbol is resolved locally, we need to write out the
1164         // link-time value, which will be relocated dynamically by a
1165         // RELATIVE relocation.
1166         Symbol* gsym = this->u_.gsym;
1167         Sized_symbol<size>* sgsym;
1168         // This cast is a bit ugly.  We don't want to put a
1169         // virtual method in Symbol, because we want Symbol to be
1170         // as small as possible.
1171         sgsym = static_cast<Sized_symbol<size>*>(gsym);
1172         val = sgsym->value();
1173       }
1174       break;
1175
1176     case CONSTANT_CODE:
1177       val = this->u_.constant;
1178       break;
1179
1180     default:
1181       {
1182         const unsigned int lsi = this->local_sym_index_;
1183         const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1184         val = symval->value(this->u_.object, 0);
1185       }
1186       break;
1187     }
1188
1189   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1190 }
1191
1192 // Output_data_got methods.
1193
1194 // Add an entry for a global symbol to the GOT.  This returns true if
1195 // this is a new GOT entry, false if the symbol already had a GOT
1196 // entry.
1197
1198 template<int size, bool big_endian>
1199 bool
1200 Output_data_got<size, big_endian>::add_global(
1201     Symbol* gsym,
1202     unsigned int got_type)
1203 {
1204   if (gsym->has_got_offset(got_type))
1205     return false;
1206
1207   this->entries_.push_back(Got_entry(gsym));
1208   this->set_got_size();
1209   gsym->set_got_offset(got_type, this->last_got_offset());
1210   return true;
1211 }
1212
1213 // Add an entry for a global symbol to the GOT, and add a dynamic
1214 // relocation of type R_TYPE for the GOT entry.
1215 template<int size, bool big_endian>
1216 void
1217 Output_data_got<size, big_endian>::add_global_with_rel(
1218     Symbol* gsym,
1219     unsigned int got_type,
1220     Rel_dyn* rel_dyn,
1221     unsigned int r_type)
1222 {
1223   if (gsym->has_got_offset(got_type))
1224     return;
1225
1226   this->entries_.push_back(Got_entry());
1227   this->set_got_size();
1228   unsigned int got_offset = this->last_got_offset();
1229   gsym->set_got_offset(got_type, got_offset);
1230   rel_dyn->add_global(gsym, r_type, this, got_offset);
1231 }
1232
1233 template<int size, bool big_endian>
1234 void
1235 Output_data_got<size, big_endian>::add_global_with_rela(
1236     Symbol* gsym,
1237     unsigned int got_type,
1238     Rela_dyn* rela_dyn,
1239     unsigned int r_type)
1240 {
1241   if (gsym->has_got_offset(got_type))
1242     return;
1243
1244   this->entries_.push_back(Got_entry());
1245   this->set_got_size();
1246   unsigned int got_offset = this->last_got_offset();
1247   gsym->set_got_offset(got_type, got_offset);
1248   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1249 }
1250
1251 // Add a pair of entries for a global symbol to the GOT, and add
1252 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1253 // If R_TYPE_2 == 0, add the second entry with no relocation.
1254 template<int size, bool big_endian>
1255 void
1256 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1257     Symbol* gsym,
1258     unsigned int got_type,
1259     Rel_dyn* rel_dyn,
1260     unsigned int r_type_1,
1261     unsigned int r_type_2)
1262 {
1263   if (gsym->has_got_offset(got_type))
1264     return;
1265
1266   this->entries_.push_back(Got_entry());
1267   unsigned int got_offset = this->last_got_offset();
1268   gsym->set_got_offset(got_type, got_offset);
1269   rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1270
1271   this->entries_.push_back(Got_entry());
1272   if (r_type_2 != 0)
1273     {
1274       got_offset = this->last_got_offset();
1275       rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1276     }
1277
1278   this->set_got_size();
1279 }
1280
1281 template<int size, bool big_endian>
1282 void
1283 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1284     Symbol* gsym,
1285     unsigned int got_type,
1286     Rela_dyn* rela_dyn,
1287     unsigned int r_type_1,
1288     unsigned int r_type_2)
1289 {
1290   if (gsym->has_got_offset(got_type))
1291     return;
1292
1293   this->entries_.push_back(Got_entry());
1294   unsigned int got_offset = this->last_got_offset();
1295   gsym->set_got_offset(got_type, got_offset);
1296   rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1297
1298   this->entries_.push_back(Got_entry());
1299   if (r_type_2 != 0)
1300     {
1301       got_offset = this->last_got_offset();
1302       rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1303     }
1304
1305   this->set_got_size();
1306 }
1307
1308 // Add an entry for a local symbol to the GOT.  This returns true if
1309 // this is a new GOT entry, false if the symbol already has a GOT
1310 // entry.
1311
1312 template<int size, bool big_endian>
1313 bool
1314 Output_data_got<size, big_endian>::add_local(
1315     Sized_relobj<size, big_endian>* object,
1316     unsigned int symndx,
1317     unsigned int got_type)
1318 {
1319   if (object->local_has_got_offset(symndx, got_type))
1320     return false;
1321
1322   this->entries_.push_back(Got_entry(object, symndx));
1323   this->set_got_size();
1324   object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1325   return true;
1326 }
1327
1328 // Add an entry for a local symbol to the GOT, and add a dynamic
1329 // relocation of type R_TYPE for the GOT entry.
1330 template<int size, bool big_endian>
1331 void
1332 Output_data_got<size, big_endian>::add_local_with_rel(
1333     Sized_relobj<size, big_endian>* object,
1334     unsigned int symndx,
1335     unsigned int got_type,
1336     Rel_dyn* rel_dyn,
1337     unsigned int r_type)
1338 {
1339   if (object->local_has_got_offset(symndx, got_type))
1340     return;
1341
1342   this->entries_.push_back(Got_entry());
1343   this->set_got_size();
1344   unsigned int got_offset = this->last_got_offset();
1345   object->set_local_got_offset(symndx, got_type, got_offset);
1346   rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1347 }
1348
1349 template<int size, bool big_endian>
1350 void
1351 Output_data_got<size, big_endian>::add_local_with_rela(
1352     Sized_relobj<size, big_endian>* object,
1353     unsigned int symndx,
1354     unsigned int got_type,
1355     Rela_dyn* rela_dyn,
1356     unsigned int r_type)
1357 {
1358   if (object->local_has_got_offset(symndx, got_type))
1359     return;
1360
1361   this->entries_.push_back(Got_entry());
1362   this->set_got_size();
1363   unsigned int got_offset = this->last_got_offset();
1364   object->set_local_got_offset(symndx, got_type, got_offset);
1365   rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1366 }
1367
1368 // Add a pair of entries for a local symbol to the GOT, and add
1369 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1370 // If R_TYPE_2 == 0, add the second entry with no relocation.
1371 template<int size, bool big_endian>
1372 void
1373 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1374     Sized_relobj<size, big_endian>* object,
1375     unsigned int symndx,
1376     unsigned int shndx,
1377     unsigned int got_type,
1378     Rel_dyn* rel_dyn,
1379     unsigned int r_type_1,
1380     unsigned int r_type_2)
1381 {
1382   if (object->local_has_got_offset(symndx, got_type))
1383     return;
1384
1385   this->entries_.push_back(Got_entry());
1386   unsigned int got_offset = this->last_got_offset();
1387   object->set_local_got_offset(symndx, got_type, got_offset);
1388   Output_section* os = object->output_section(shndx);
1389   rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1390
1391   this->entries_.push_back(Got_entry(object, symndx));
1392   if (r_type_2 != 0)
1393     {
1394       got_offset = this->last_got_offset();
1395       rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1396     }
1397
1398   this->set_got_size();
1399 }
1400
1401 template<int size, bool big_endian>
1402 void
1403 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1404     Sized_relobj<size, big_endian>* object,
1405     unsigned int symndx,
1406     unsigned int shndx,
1407     unsigned int got_type,
1408     Rela_dyn* rela_dyn,
1409     unsigned int r_type_1,
1410     unsigned int r_type_2)
1411 {
1412   if (object->local_has_got_offset(symndx, got_type))
1413     return;
1414
1415   this->entries_.push_back(Got_entry());
1416   unsigned int got_offset = this->last_got_offset();
1417   object->set_local_got_offset(symndx, got_type, got_offset);
1418   Output_section* os = object->output_section(shndx);
1419   rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1420
1421   this->entries_.push_back(Got_entry(object, symndx));
1422   if (r_type_2 != 0)
1423     {
1424       got_offset = this->last_got_offset();
1425       rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1426     }
1427
1428   this->set_got_size();
1429 }
1430
1431 // Write out the GOT.
1432
1433 template<int size, bool big_endian>
1434 void
1435 Output_data_got<size, big_endian>::do_write(Output_file* of)
1436 {
1437   const int add = size / 8;
1438
1439   const off_t off = this->offset();
1440   const off_t oview_size = this->data_size();
1441   unsigned char* const oview = of->get_output_view(off, oview_size);
1442
1443   unsigned char* pov = oview;
1444   for (typename Got_entries::const_iterator p = this->entries_.begin();
1445        p != this->entries_.end();
1446        ++p)
1447     {
1448       p->write(pov);
1449       pov += add;
1450     }
1451
1452   gold_assert(pov - oview == oview_size);
1453
1454   of->write_output_view(off, oview_size, oview);
1455
1456   // We no longer need the GOT entries.
1457   this->entries_.clear();
1458 }
1459
1460 // Output_data_dynamic::Dynamic_entry methods.
1461
1462 // Write out the entry.
1463
1464 template<int size, bool big_endian>
1465 void
1466 Output_data_dynamic::Dynamic_entry::write(
1467     unsigned char* pov,
1468     const Stringpool* pool) const
1469 {
1470   typename elfcpp::Elf_types<size>::Elf_WXword val;
1471   switch (this->offset_)
1472     {
1473     case DYNAMIC_NUMBER:
1474       val = this->u_.val;
1475       break;
1476
1477     case DYNAMIC_SECTION_SIZE:
1478       val = this->u_.od->data_size();
1479       break;
1480
1481     case DYNAMIC_SYMBOL:
1482       {
1483         const Sized_symbol<size>* s =
1484           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1485         val = s->value();
1486       }
1487       break;
1488
1489     case DYNAMIC_STRING:
1490       val = pool->get_offset(this->u_.str);
1491       break;
1492
1493     default:
1494       val = this->u_.od->address() + this->offset_;
1495       break;
1496     }
1497
1498   elfcpp::Dyn_write<size, big_endian> dw(pov);
1499   dw.put_d_tag(this->tag_);
1500   dw.put_d_val(val);
1501 }
1502
1503 // Output_data_dynamic methods.
1504
1505 // Adjust the output section to set the entry size.
1506
1507 void
1508 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1509 {
1510   if (parameters->target().get_size() == 32)
1511     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1512   else if (parameters->target().get_size() == 64)
1513     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1514   else
1515     gold_unreachable();
1516 }
1517
1518 // Set the final data size.
1519
1520 void
1521 Output_data_dynamic::set_final_data_size()
1522 {
1523   // Add the terminating entry if it hasn't been added.
1524   // Because of relaxation, we can run this multiple times.
1525   if (this->entries_.empty()
1526       || this->entries_.rbegin()->tag() != elfcpp::DT_NULL)
1527     this->add_constant(elfcpp::DT_NULL, 0);
1528
1529   int dyn_size;
1530   if (parameters->target().get_size() == 32)
1531     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1532   else if (parameters->target().get_size() == 64)
1533     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1534   else
1535     gold_unreachable();
1536   this->set_data_size(this->entries_.size() * dyn_size);
1537 }
1538
1539 // Write out the dynamic entries.
1540
1541 void
1542 Output_data_dynamic::do_write(Output_file* of)
1543 {
1544   switch (parameters->size_and_endianness())
1545     {
1546 #ifdef HAVE_TARGET_32_LITTLE
1547     case Parameters::TARGET_32_LITTLE:
1548       this->sized_write<32, false>(of);
1549       break;
1550 #endif
1551 #ifdef HAVE_TARGET_32_BIG
1552     case Parameters::TARGET_32_BIG:
1553       this->sized_write<32, true>(of);
1554       break;
1555 #endif
1556 #ifdef HAVE_TARGET_64_LITTLE
1557     case Parameters::TARGET_64_LITTLE:
1558       this->sized_write<64, false>(of);
1559       break;
1560 #endif
1561 #ifdef HAVE_TARGET_64_BIG
1562     case Parameters::TARGET_64_BIG:
1563       this->sized_write<64, true>(of);
1564       break;
1565 #endif
1566     default:
1567       gold_unreachable();
1568     }
1569 }
1570
1571 template<int size, bool big_endian>
1572 void
1573 Output_data_dynamic::sized_write(Output_file* of)
1574 {
1575   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1576
1577   const off_t offset = this->offset();
1578   const off_t oview_size = this->data_size();
1579   unsigned char* const oview = of->get_output_view(offset, oview_size);
1580
1581   unsigned char* pov = oview;
1582   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1583        p != this->entries_.end();
1584        ++p)
1585     {
1586       p->write<size, big_endian>(pov, this->pool_);
1587       pov += dyn_size;
1588     }
1589
1590   gold_assert(pov - oview == oview_size);
1591
1592   of->write_output_view(offset, oview_size, oview);
1593
1594   // We no longer need the dynamic entries.
1595   this->entries_.clear();
1596 }
1597
1598 // Class Output_symtab_xindex.
1599
1600 void
1601 Output_symtab_xindex::do_write(Output_file* of)
1602 {
1603   const off_t offset = this->offset();
1604   const off_t oview_size = this->data_size();
1605   unsigned char* const oview = of->get_output_view(offset, oview_size);
1606
1607   memset(oview, 0, oview_size);
1608
1609   if (parameters->target().is_big_endian())
1610     this->endian_do_write<true>(oview);
1611   else
1612     this->endian_do_write<false>(oview);
1613
1614   of->write_output_view(offset, oview_size, oview);
1615
1616   // We no longer need the data.
1617   this->entries_.clear();
1618 }
1619
1620 template<bool big_endian>
1621 void
1622 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1623 {
1624   for (Xindex_entries::const_iterator p = this->entries_.begin();
1625        p != this->entries_.end();
1626        ++p)
1627     {
1628       unsigned int symndx = p->first;
1629       gold_assert(symndx * 4 < this->data_size());
1630       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1631     }
1632 }
1633
1634 // Output_section::Input_section methods.
1635
1636 // Return the data size.  For an input section we store the size here.
1637 // For an Output_section_data, we have to ask it for the size.
1638
1639 off_t
1640 Output_section::Input_section::data_size() const
1641 {
1642   if (this->is_input_section())
1643     return this->u1_.data_size;
1644   else
1645     return this->u2_.posd->data_size();
1646 }
1647
1648 // Set the address and file offset.
1649
1650 void
1651 Output_section::Input_section::set_address_and_file_offset(
1652     uint64_t address,
1653     off_t file_offset,
1654     off_t section_file_offset)
1655 {
1656   if (this->is_input_section())
1657     this->u2_.object->set_section_offset(this->shndx_,
1658                                          file_offset - section_file_offset);
1659   else
1660     this->u2_.posd->set_address_and_file_offset(address, file_offset);
1661 }
1662
1663 // Reset the address and file offset.
1664
1665 void
1666 Output_section::Input_section::reset_address_and_file_offset()
1667 {
1668   if (!this->is_input_section())
1669     this->u2_.posd->reset_address_and_file_offset();
1670 }
1671
1672 // Finalize the data size.
1673
1674 void
1675 Output_section::Input_section::finalize_data_size()
1676 {
1677   if (!this->is_input_section())
1678     this->u2_.posd->finalize_data_size();
1679 }
1680
1681 // Try to turn an input offset into an output offset.  We want to
1682 // return the output offset relative to the start of this
1683 // Input_section in the output section.
1684
1685 inline bool
1686 Output_section::Input_section::output_offset(
1687     const Relobj* object,
1688     unsigned int shndx,
1689     section_offset_type offset,
1690     section_offset_type *poutput) const
1691 {
1692   if (!this->is_input_section())
1693     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1694   else
1695     {
1696       if (this->shndx_ != shndx || this->u2_.object != object)
1697         return false;
1698       *poutput = offset;
1699       return true;
1700     }
1701 }
1702
1703 // Return whether this is the merge section for the input section
1704 // SHNDX in OBJECT.
1705
1706 inline bool
1707 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1708                                                     unsigned int shndx) const
1709 {
1710   if (this->is_input_section())
1711     return false;
1712   return this->u2_.posd->is_merge_section_for(object, shndx);
1713 }
1714
1715 // Write out the data.  We don't have to do anything for an input
1716 // section--they are handled via Object::relocate--but this is where
1717 // we write out the data for an Output_section_data.
1718
1719 void
1720 Output_section::Input_section::write(Output_file* of)
1721 {
1722   if (!this->is_input_section())
1723     this->u2_.posd->write(of);
1724 }
1725
1726 // Write the data to a buffer.  As for write(), we don't have to do
1727 // anything for an input section.
1728
1729 void
1730 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1731 {
1732   if (!this->is_input_section())
1733     this->u2_.posd->write_to_buffer(buffer);
1734 }
1735
1736 // Print to a map file.
1737
1738 void
1739 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1740 {
1741   switch (this->shndx_)
1742     {
1743     case OUTPUT_SECTION_CODE:
1744     case MERGE_DATA_SECTION_CODE:
1745     case MERGE_STRING_SECTION_CODE:
1746       this->u2_.posd->print_to_mapfile(mapfile);
1747       break;
1748
1749     case RELAXED_INPUT_SECTION_CODE:
1750       {
1751         Output_relaxed_input_section* relaxed_section =
1752           this->relaxed_input_section();
1753         mapfile->print_input_section(relaxed_section->relobj(),
1754                                      relaxed_section->shndx());
1755       }
1756       break;
1757     default:
1758       mapfile->print_input_section(this->u2_.object, this->shndx_);
1759       break;
1760     }
1761 }
1762
1763 // Output_section methods.
1764
1765 // Construct an Output_section.  NAME will point into a Stringpool.
1766
1767 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1768                                elfcpp::Elf_Xword flags)
1769   : name_(name),
1770     addralign_(0),
1771     entsize_(0),
1772     load_address_(0),
1773     link_section_(NULL),
1774     link_(0),
1775     info_section_(NULL),
1776     info_symndx_(NULL),
1777     info_(0),
1778     type_(type),
1779     flags_(flags),
1780     out_shndx_(-1U),
1781     symtab_index_(0),
1782     dynsym_index_(0),
1783     input_sections_(),
1784     first_input_offset_(0),
1785     fills_(),
1786     postprocessing_buffer_(NULL),
1787     needs_symtab_index_(false),
1788     needs_dynsym_index_(false),
1789     should_link_to_symtab_(false),
1790     should_link_to_dynsym_(false),
1791     after_input_sections_(false),
1792     requires_postprocessing_(false),
1793     found_in_sections_clause_(false),
1794     has_load_address_(false),
1795     info_uses_section_index_(false),
1796     may_sort_attached_input_sections_(false),
1797     must_sort_attached_input_sections_(false),
1798     attached_input_sections_are_sorted_(false),
1799     is_relro_(false),
1800     is_relro_local_(false),
1801     is_small_section_(false),
1802     is_large_section_(false),
1803     tls_offset_(0),
1804     checkpoint_(NULL),
1805     merge_section_map_(),
1806     merge_section_by_properties_map_(),
1807     relaxed_input_section_map_(),
1808     is_relaxed_input_section_map_valid_(true),
1809     generate_code_fills_at_write_(false)
1810 {
1811   // An unallocated section has no address.  Forcing this means that
1812   // we don't need special treatment for symbols defined in debug
1813   // sections.
1814   if ((flags & elfcpp::SHF_ALLOC) == 0)
1815     this->set_address(0);
1816 }
1817
1818 Output_section::~Output_section()
1819 {
1820   delete this->checkpoint_;
1821 }
1822
1823 // Set the entry size.
1824
1825 void
1826 Output_section::set_entsize(uint64_t v)
1827 {
1828   if (this->entsize_ == 0)
1829     this->entsize_ = v;
1830   else
1831     gold_assert(this->entsize_ == v);
1832 }
1833
1834 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1835 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
1836 // relocation section which applies to this section, or 0 if none, or
1837 // -1U if more than one.  Return the offset of the input section
1838 // within the output section.  Return -1 if the input section will
1839 // receive special handling.  In the normal case we don't always keep
1840 // track of input sections for an Output_section.  Instead, each
1841 // Object keeps track of the Output_section for each of its input
1842 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1843 // track of input sections here; this is used when SECTIONS appears in
1844 // a linker script.
1845
1846 template<int size, bool big_endian>
1847 off_t
1848 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1849                                   unsigned int shndx,
1850                                   const char* secname,
1851                                   const elfcpp::Shdr<size, big_endian>& shdr,
1852                                   unsigned int reloc_shndx,
1853                                   bool have_sections_script)
1854 {
1855   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1856   if ((addralign & (addralign - 1)) != 0)
1857     {
1858       object->error(_("invalid alignment %lu for section \"%s\""),
1859                     static_cast<unsigned long>(addralign), secname);
1860       addralign = 1;
1861     }
1862
1863   if (addralign > this->addralign_)
1864     this->addralign_ = addralign;
1865
1866   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1867   this->update_flags_for_input_section(sh_flags);
1868
1869   uint64_t entsize = shdr.get_sh_entsize();
1870
1871   // .debug_str is a mergeable string section, but is not always so
1872   // marked by compilers.  Mark manually here so we can optimize.
1873   if (strcmp(secname, ".debug_str") == 0)
1874     {
1875       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1876       entsize = 1;
1877     }
1878
1879   // If this is a SHF_MERGE section, we pass all the input sections to
1880   // a Output_data_merge.  We don't try to handle relocations for such
1881   // a section.  We don't try to handle empty merge sections--they
1882   // mess up the mappings, and are useless anyhow.
1883   if ((sh_flags & elfcpp::SHF_MERGE) != 0
1884       && reloc_shndx == 0
1885       && shdr.get_sh_size() > 0)
1886     {
1887       if (this->add_merge_input_section(object, shndx, sh_flags,
1888                                         entsize, addralign))
1889         {
1890           // Tell the relocation routines that they need to call the
1891           // output_offset method to determine the final address.
1892           return -1;
1893         }
1894     }
1895
1896   off_t offset_in_section = this->current_data_size_for_child();
1897   off_t aligned_offset_in_section = align_address(offset_in_section,
1898                                                   addralign);
1899
1900   // Determine if we want to delay code-fill generation until the output
1901   // section is written.  When the target is relaxing, we want to delay fill
1902   // generating to avoid adjusting them during relaxation.
1903   if (!this->generate_code_fills_at_write_
1904       && !have_sections_script
1905       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1906       && parameters->target().has_code_fill()
1907       && parameters->target().may_relax())
1908     {
1909       gold_assert(this->fills_.empty());
1910       this->generate_code_fills_at_write_ = true;
1911     }
1912
1913   if (aligned_offset_in_section > offset_in_section
1914       && !this->generate_code_fills_at_write_
1915       && !have_sections_script
1916       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1917       && parameters->target().has_code_fill())
1918     {
1919       // We need to add some fill data.  Using fill_list_ when
1920       // possible is an optimization, since we will often have fill
1921       // sections without input sections.
1922       off_t fill_len = aligned_offset_in_section - offset_in_section;
1923       if (this->input_sections_.empty())
1924         this->fills_.push_back(Fill(offset_in_section, fill_len));
1925       else
1926         {
1927           std::string fill_data(parameters->target().code_fill(fill_len));
1928           Output_data_const* odc = new Output_data_const(fill_data, 1);
1929           this->input_sections_.push_back(Input_section(odc));
1930         }
1931     }
1932
1933   this->set_current_data_size_for_child(aligned_offset_in_section
1934                                         + shdr.get_sh_size());
1935
1936   // We need to keep track of this section if we are already keeping
1937   // track of sections, or if we are relaxing.  Also, if this is a
1938   // section which requires sorting, or which may require sorting in
1939   // the future, we keep track of the sections.
1940   if (have_sections_script
1941       || !this->input_sections_.empty()
1942       || this->may_sort_attached_input_sections()
1943       || this->must_sort_attached_input_sections()
1944       || parameters->options().user_set_Map()
1945       || parameters->target().may_relax())
1946     this->input_sections_.push_back(Input_section(object, shndx,
1947                                                   shdr.get_sh_size(),
1948                                                   addralign));
1949
1950   return aligned_offset_in_section;
1951 }
1952
1953 // Add arbitrary data to an output section.
1954
1955 void
1956 Output_section::add_output_section_data(Output_section_data* posd)
1957 {
1958   Input_section inp(posd);
1959   this->add_output_section_data(&inp);
1960
1961   if (posd->is_data_size_valid())
1962     {
1963       off_t offset_in_section = this->current_data_size_for_child();
1964       off_t aligned_offset_in_section = align_address(offset_in_section,
1965                                                       posd->addralign());
1966       this->set_current_data_size_for_child(aligned_offset_in_section
1967                                             + posd->data_size());
1968     }
1969 }
1970
1971 // Add a relaxed input section.
1972
1973 void
1974 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
1975 {
1976   Input_section inp(poris);
1977   this->add_output_section_data(&inp);
1978   if (this->is_relaxed_input_section_map_valid_)
1979     {
1980       Input_section_specifier iss(poris->relobj(), poris->shndx());
1981       this->relaxed_input_section_map_[iss] = poris;
1982     }
1983
1984   // For a relaxed section, we use the current data size.  Linker scripts
1985   // get all the input sections, including relaxed one from an output
1986   // section and add them back to them same output section to compute the
1987   // output section size.  If we do not account for sizes of relaxed input
1988   // sections,  an output section would be incorrectly sized.
1989   off_t offset_in_section = this->current_data_size_for_child();
1990   off_t aligned_offset_in_section = align_address(offset_in_section,
1991                                                   poris->addralign());
1992   this->set_current_data_size_for_child(aligned_offset_in_section
1993                                         + poris->current_data_size());
1994 }
1995
1996 // Add arbitrary data to an output section by Input_section.
1997
1998 void
1999 Output_section::add_output_section_data(Input_section* inp)
2000 {
2001   if (this->input_sections_.empty())
2002     this->first_input_offset_ = this->current_data_size_for_child();
2003
2004   this->input_sections_.push_back(*inp);
2005
2006   uint64_t addralign = inp->addralign();
2007   if (addralign > this->addralign_)
2008     this->addralign_ = addralign;
2009
2010   inp->set_output_section(this);
2011 }
2012
2013 // Add a merge section to an output section.
2014
2015 void
2016 Output_section::add_output_merge_section(Output_section_data* posd,
2017                                          bool is_string, uint64_t entsize)
2018 {
2019   Input_section inp(posd, is_string, entsize);
2020   this->add_output_section_data(&inp);
2021 }
2022
2023 // Add an input section to a SHF_MERGE section.
2024
2025 bool
2026 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2027                                         uint64_t flags, uint64_t entsize,
2028                                         uint64_t addralign)
2029 {
2030   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2031
2032   // We only merge strings if the alignment is not more than the
2033   // character size.  This could be handled, but it's unusual.
2034   if (is_string && addralign > entsize)
2035     return false;
2036
2037   // We cannot restore merged input section states.
2038   gold_assert(this->checkpoint_ == NULL);
2039
2040   // Look up merge sections by required properties.
2041   Merge_section_properties msp(is_string, entsize, addralign);
2042   Merge_section_by_properties_map::const_iterator p =
2043     this->merge_section_by_properties_map_.find(msp);
2044   if (p != this->merge_section_by_properties_map_.end())
2045     {
2046       Output_merge_base* merge_section = p->second;
2047       merge_section->add_input_section(object, shndx);
2048       gold_assert(merge_section->is_string() == is_string
2049                   && merge_section->entsize() == entsize
2050                   && merge_section->addralign() == addralign);
2051
2052       // Link input section to found merge section.
2053       Input_section_specifier iss(object, shndx);
2054       this->merge_section_map_[iss] = merge_section;
2055       return true;
2056     }
2057
2058   // We handle the actual constant merging in Output_merge_data or
2059   // Output_merge_string_data.
2060   Output_merge_base* pomb;
2061   if (!is_string)
2062     pomb = new Output_merge_data(entsize, addralign);
2063   else
2064     {
2065       switch (entsize)
2066         {
2067         case 1:
2068           pomb = new Output_merge_string<char>(addralign);
2069           break;
2070         case 2:
2071           pomb = new Output_merge_string<uint16_t>(addralign);
2072           break;
2073         case 4:
2074           pomb = new Output_merge_string<uint32_t>(addralign);
2075           break;
2076         default:
2077           return false;
2078         }
2079     }
2080
2081   // Add new merge section to this output section and link merge section
2082   // properties to new merge section in map.
2083   this->add_output_merge_section(pomb, is_string, entsize);
2084   this->merge_section_by_properties_map_[msp] = pomb;
2085
2086   // Add input section to new merge section and link input section to new
2087   // merge section in map.
2088   pomb->add_input_section(object, shndx);
2089   Input_section_specifier iss(object, shndx);
2090   this->merge_section_map_[iss] = pomb;
2091
2092   return true;
2093 }
2094
2095 // Build a relaxation map to speed up relaxation of existing input sections.
2096 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2097
2098 void
2099 Output_section::build_relaxation_map(
2100   const Input_section_list& input_sections,
2101   size_t limit,
2102   Relaxation_map* relaxation_map) const
2103 {
2104   for (size_t i = 0; i < limit; ++i)
2105     {
2106       const Input_section& is(input_sections[i]);
2107       if (is.is_input_section() || is.is_relaxed_input_section())
2108         {
2109           Input_section_specifier iss(is.relobj(), is.shndx());
2110           (*relaxation_map)[iss] = i;
2111         }
2112     }
2113 }
2114
2115 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2116 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from input section
2117 // specifier to indices of INPUT_SECTIONS.
2118
2119 void
2120 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2121   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2122   const Relaxation_map& map,
2123   Input_section_list* input_sections)
2124 {
2125   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2126     {
2127       Output_relaxed_input_section* poris = relaxed_sections[i];
2128       Input_section_specifier iss(poris->relobj(), poris->shndx());
2129       Relaxation_map::const_iterator p = map.find(iss);
2130       gold_assert(p != map.end());
2131       gold_assert((*input_sections)[p->second].is_input_section());
2132       (*input_sections)[p->second] = Input_section(poris);
2133     }
2134 }
2135   
2136 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2137 // is a vector of pointers to Output_relaxed_input_section or its derived
2138 // classes.  The relaxed sections must correspond to existing input sections.
2139
2140 void
2141 Output_section::convert_input_sections_to_relaxed_sections(
2142   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2143 {
2144   gold_assert(parameters->target().may_relax());
2145
2146   // We want to make sure that restore_states does not undo the effect of
2147   // this.  If there is no checkpoint active, just search the current
2148   // input section list and replace the sections there.  If there is
2149   // a checkpoint, also replace the sections there.
2150   
2151   // By default, we look at the whole list.
2152   size_t limit = this->input_sections_.size();
2153
2154   if (this->checkpoint_ != NULL)
2155     {
2156       // Replace input sections with relaxed input section in the saved
2157       // copy of the input section list.
2158       if (this->checkpoint_->input_sections_saved())
2159         {
2160           Relaxation_map map;
2161           this->build_relaxation_map(
2162                     *(this->checkpoint_->input_sections()),
2163                     this->checkpoint_->input_sections()->size(),
2164                     &map);
2165           this->convert_input_sections_in_list_to_relaxed_sections(
2166                     relaxed_sections,
2167                     map,
2168                     this->checkpoint_->input_sections());
2169         }
2170       else
2171         {
2172           // We have not copied the input section list yet.  Instead, just
2173           // look at the portion that would be saved.
2174           limit = this->checkpoint_->input_sections_size();
2175         }
2176     }
2177
2178   // Convert input sections in input_section_list.
2179   Relaxation_map map;
2180   this->build_relaxation_map(this->input_sections_, limit, &map);
2181   this->convert_input_sections_in_list_to_relaxed_sections(
2182             relaxed_sections,
2183             map,
2184             &this->input_sections_);
2185 }
2186
2187 // Update the output section flags based on input section flags.
2188
2189 void
2190 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2191 {
2192   // If we created the section with SHF_ALLOC clear, we set the
2193   // address.  If we are now setting the SHF_ALLOC flag, we need to
2194   // undo that.
2195   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2196       && (flags & elfcpp::SHF_ALLOC) != 0)
2197     this->mark_address_invalid();
2198
2199   this->flags_ |= (flags
2200                    & (elfcpp::SHF_WRITE
2201                       | elfcpp::SHF_ALLOC
2202                       | elfcpp::SHF_EXECINSTR));
2203 }
2204
2205 // Find the merge section into which an input section with index SHNDX in
2206 // OBJECT has been added.  Return NULL if none found.
2207
2208 Output_section_data*
2209 Output_section::find_merge_section(const Relobj* object,
2210                                    unsigned int shndx) const
2211 {
2212   Input_section_specifier iss(object, shndx);
2213   Output_section_data_by_input_section_map::const_iterator p =
2214     this->merge_section_map_.find(iss);
2215   if (p != this->merge_section_map_.end())
2216     {
2217       Output_section_data* posd = p->second;
2218       gold_assert(posd->is_merge_section_for(object, shndx));
2219       return posd;
2220     }
2221   else
2222     return NULL;
2223 }
2224
2225 // Find an relaxed input section corresponding to an input section
2226 // in OBJECT with index SHNDX.
2227
2228 const Output_section_data*
2229 Output_section::find_relaxed_input_section(const Relobj* object,
2230                                            unsigned int shndx) const
2231 {
2232   // Be careful that the map may not be valid due to input section export
2233   // to scripts or a check-point restore.
2234   if (!this->is_relaxed_input_section_map_valid_)
2235     {
2236       // Rebuild the map as needed.
2237       this->relaxed_input_section_map_.clear();
2238       for (Input_section_list::const_iterator p = this->input_sections_.begin();
2239            p != this->input_sections_.end();
2240            ++p)
2241         if (p->is_relaxed_input_section())
2242           {
2243             Input_section_specifier iss(p->relobj(), p->shndx());
2244             this->relaxed_input_section_map_[iss] =
2245               p->relaxed_input_section();
2246           }
2247       this->is_relaxed_input_section_map_valid_ = true;
2248     }
2249
2250   Input_section_specifier iss(object, shndx);
2251   Output_section_data_by_input_section_map::const_iterator p =
2252     this->relaxed_input_section_map_.find(iss);
2253   if (p != this->relaxed_input_section_map_.end())
2254     return p->second;
2255   else
2256     return NULL;
2257 }
2258
2259 // Given an address OFFSET relative to the start of input section
2260 // SHNDX in OBJECT, return whether this address is being included in
2261 // the final link.  This should only be called if SHNDX in OBJECT has
2262 // a special mapping.
2263
2264 bool
2265 Output_section::is_input_address_mapped(const Relobj* object,
2266                                         unsigned int shndx,
2267                                         off_t offset) const
2268 {
2269   // Look at the Output_section_data_maps first.
2270   const Output_section_data* posd = this->find_merge_section(object, shndx);
2271   if (posd == NULL)
2272     posd = this->find_relaxed_input_section(object, shndx);
2273
2274   if (posd != NULL)
2275     {
2276       section_offset_type output_offset;
2277       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2278       gold_assert(found);   
2279       return output_offset != -1;
2280     }
2281
2282   // Fall back to the slow look-up.
2283   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2284        p != this->input_sections_.end();
2285        ++p)
2286     {
2287       section_offset_type output_offset;
2288       if (p->output_offset(object, shndx, offset, &output_offset))
2289         return output_offset != -1;
2290     }
2291
2292   // By default we assume that the address is mapped.  This should
2293   // only be called after we have passed all sections to Layout.  At
2294   // that point we should know what we are discarding.
2295   return true;
2296 }
2297
2298 // Given an address OFFSET relative to the start of input section
2299 // SHNDX in object OBJECT, return the output offset relative to the
2300 // start of the input section in the output section.  This should only
2301 // be called if SHNDX in OBJECT has a special mapping.
2302
2303 section_offset_type
2304 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2305                               section_offset_type offset) const
2306 {
2307   // This can only be called meaningfully when we know the data size
2308   // of this.
2309   gold_assert(this->is_data_size_valid());
2310
2311   // Look at the Output_section_data_maps first.
2312   const Output_section_data* posd = this->find_merge_section(object, shndx);
2313   if (posd == NULL) 
2314     posd = this->find_relaxed_input_section(object, shndx);
2315   if (posd != NULL)
2316     {
2317       section_offset_type output_offset;
2318       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2319       gold_assert(found);   
2320       return output_offset;
2321     }
2322
2323   // Fall back to the slow look-up.
2324   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2325        p != this->input_sections_.end();
2326        ++p)
2327     {
2328       section_offset_type output_offset;
2329       if (p->output_offset(object, shndx, offset, &output_offset))
2330         return output_offset;
2331     }
2332   gold_unreachable();
2333 }
2334
2335 // Return the output virtual address of OFFSET relative to the start
2336 // of input section SHNDX in object OBJECT.
2337
2338 uint64_t
2339 Output_section::output_address(const Relobj* object, unsigned int shndx,
2340                                off_t offset) const
2341 {
2342   uint64_t addr = this->address() + this->first_input_offset_;
2343
2344   // Look at the Output_section_data_maps first.
2345   const Output_section_data* posd = this->find_merge_section(object, shndx);
2346   if (posd == NULL) 
2347     posd = this->find_relaxed_input_section(object, shndx);
2348   if (posd != NULL && posd->is_address_valid())
2349     {
2350       section_offset_type output_offset;
2351       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2352       gold_assert(found);
2353       return posd->address() + output_offset;
2354     }
2355
2356   // Fall back to the slow look-up.
2357   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2358        p != this->input_sections_.end();
2359        ++p)
2360     {
2361       addr = align_address(addr, p->addralign());
2362       section_offset_type output_offset;
2363       if (p->output_offset(object, shndx, offset, &output_offset))
2364         {
2365           if (output_offset == -1)
2366             return -1ULL;
2367           return addr + output_offset;
2368         }
2369       addr += p->data_size();
2370     }
2371
2372   // If we get here, it means that we don't know the mapping for this
2373   // input section.  This might happen in principle if
2374   // add_input_section were called before add_output_section_data.
2375   // But it should never actually happen.
2376
2377   gold_unreachable();
2378 }
2379
2380 // Find the output address of the start of the merged section for
2381 // input section SHNDX in object OBJECT.
2382
2383 bool
2384 Output_section::find_starting_output_address(const Relobj* object,
2385                                              unsigned int shndx,
2386                                              uint64_t* paddr) const
2387 {
2388   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2389   // Looking up the merge section map does not always work as we sometimes
2390   // find a merge section without its address set.
2391   uint64_t addr = this->address() + this->first_input_offset_;
2392   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2393        p != this->input_sections_.end();
2394        ++p)
2395     {
2396       addr = align_address(addr, p->addralign());
2397
2398       // It would be nice if we could use the existing output_offset
2399       // method to get the output offset of input offset 0.
2400       // Unfortunately we don't know for sure that input offset 0 is
2401       // mapped at all.
2402       if (p->is_merge_section_for(object, shndx))
2403         {
2404           *paddr = addr;
2405           return true;
2406         }
2407
2408       addr += p->data_size();
2409     }
2410
2411   // We couldn't find a merge output section for this input section.
2412   return false;
2413 }
2414
2415 // Set the data size of an Output_section.  This is where we handle
2416 // setting the addresses of any Output_section_data objects.
2417
2418 void
2419 Output_section::set_final_data_size()
2420 {
2421   if (this->input_sections_.empty())
2422     {
2423       this->set_data_size(this->current_data_size_for_child());
2424       return;
2425     }
2426
2427   if (this->must_sort_attached_input_sections())
2428     this->sort_attached_input_sections();
2429
2430   uint64_t address = this->address();
2431   off_t startoff = this->offset();
2432   off_t off = startoff + this->first_input_offset_;
2433   for (Input_section_list::iterator p = this->input_sections_.begin();
2434        p != this->input_sections_.end();
2435        ++p)
2436     {
2437       off = align_address(off, p->addralign());
2438       p->set_address_and_file_offset(address + (off - startoff), off,
2439                                      startoff);
2440       off += p->data_size();
2441     }
2442
2443   this->set_data_size(off - startoff);
2444 }
2445
2446 // Reset the address and file offset.
2447
2448 void
2449 Output_section::do_reset_address_and_file_offset()
2450 {
2451   // An unallocated section has no address.  Forcing this means that
2452   // we don't need special treatment for symbols defined in debug
2453   // sections.  We do the same in the constructor.
2454   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2455      this->set_address(0);
2456
2457   for (Input_section_list::iterator p = this->input_sections_.begin();
2458        p != this->input_sections_.end();
2459        ++p)
2460     p->reset_address_and_file_offset();
2461 }
2462   
2463 // Return true if address and file offset have the values after reset.
2464
2465 bool
2466 Output_section::do_address_and_file_offset_have_reset_values() const
2467 {
2468   if (this->is_offset_valid())
2469     return false;
2470
2471   // An unallocated section has address 0 after its construction or a reset.
2472   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2473     return this->is_address_valid() && this->address() == 0;
2474   else
2475     return !this->is_address_valid();
2476 }
2477
2478 // Set the TLS offset.  Called only for SHT_TLS sections.
2479
2480 void
2481 Output_section::do_set_tls_offset(uint64_t tls_base)
2482 {
2483   this->tls_offset_ = this->address() - tls_base;
2484 }
2485
2486 // In a few cases we need to sort the input sections attached to an
2487 // output section.  This is used to implement the type of constructor
2488 // priority ordering implemented by the GNU linker, in which the
2489 // priority becomes part of the section name and the sections are
2490 // sorted by name.  We only do this for an output section if we see an
2491 // attached input section matching ".ctor.*", ".dtor.*",
2492 // ".init_array.*" or ".fini_array.*".
2493
2494 class Output_section::Input_section_sort_entry
2495 {
2496  public:
2497   Input_section_sort_entry()
2498     : input_section_(), index_(-1U), section_has_name_(false),
2499       section_name_()
2500   { }
2501
2502   Input_section_sort_entry(const Input_section& input_section,
2503                            unsigned int index)
2504     : input_section_(input_section), index_(index),
2505       section_has_name_(input_section.is_input_section()
2506                         || input_section.is_relaxed_input_section())
2507   {
2508     if (this->section_has_name_)
2509       {
2510         // This is only called single-threaded from Layout::finalize,
2511         // so it is OK to lock.  Unfortunately we have no way to pass
2512         // in a Task token.
2513         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2514         Object* obj = (input_section.is_input_section()
2515                        ? input_section.relobj()
2516                        : input_section.relaxed_input_section()->relobj());
2517         Task_lock_obj<Object> tl(dummy_task, obj);
2518
2519         // This is a slow operation, which should be cached in
2520         // Layout::layout if this becomes a speed problem.
2521         this->section_name_ = obj->section_name(input_section.shndx());
2522       }
2523   }
2524
2525   // Return the Input_section.
2526   const Input_section&
2527   input_section() const
2528   {
2529     gold_assert(this->index_ != -1U);
2530     return this->input_section_;
2531   }
2532
2533   // The index of this entry in the original list.  This is used to
2534   // make the sort stable.
2535   unsigned int
2536   index() const
2537   {
2538     gold_assert(this->index_ != -1U);
2539     return this->index_;
2540   }
2541
2542   // Whether there is a section name.
2543   bool
2544   section_has_name() const
2545   { return this->section_has_name_; }
2546
2547   // The section name.
2548   const std::string&
2549   section_name() const
2550   {
2551     gold_assert(this->section_has_name_);
2552     return this->section_name_;
2553   }
2554
2555   // Return true if the section name has a priority.  This is assumed
2556   // to be true if it has a dot after the initial dot.
2557   bool
2558   has_priority() const
2559   {
2560     gold_assert(this->section_has_name_);
2561     return this->section_name_.find('.', 1);
2562   }
2563
2564   // Return true if this an input file whose base name matches
2565   // FILE_NAME.  The base name must have an extension of ".o", and
2566   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2567   // This is to match crtbegin.o as well as crtbeginS.o without
2568   // getting confused by other possibilities.  Overall matching the
2569   // file name this way is a dreadful hack, but the GNU linker does it
2570   // in order to better support gcc, and we need to be compatible.
2571   bool
2572   match_file_name(const char* match_file_name) const
2573   {
2574     const std::string& file_name(this->input_section_.relobj()->name());
2575     const char* base_name = lbasename(file_name.c_str());
2576     size_t match_len = strlen(match_file_name);
2577     if (strncmp(base_name, match_file_name, match_len) != 0)
2578       return false;
2579     size_t base_len = strlen(base_name);
2580     if (base_len != match_len + 2 && base_len != match_len + 3)
2581       return false;
2582     return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2583   }
2584
2585  private:
2586   // The Input_section we are sorting.
2587   Input_section input_section_;
2588   // The index of this Input_section in the original list.
2589   unsigned int index_;
2590   // Whether this Input_section has a section name--it won't if this
2591   // is some random Output_section_data.
2592   bool section_has_name_;
2593   // The section name if there is one.
2594   std::string section_name_;
2595 };
2596
2597 // Return true if S1 should come before S2 in the output section.
2598
2599 bool
2600 Output_section::Input_section_sort_compare::operator()(
2601     const Output_section::Input_section_sort_entry& s1,
2602     const Output_section::Input_section_sort_entry& s2) const
2603 {
2604   // crtbegin.o must come first.
2605   bool s1_begin = s1.match_file_name("crtbegin");
2606   bool s2_begin = s2.match_file_name("crtbegin");
2607   if (s1_begin || s2_begin)
2608     {
2609       if (!s1_begin)
2610         return false;
2611       if (!s2_begin)
2612         return true;
2613       return s1.index() < s2.index();
2614     }
2615
2616   // crtend.o must come last.
2617   bool s1_end = s1.match_file_name("crtend");
2618   bool s2_end = s2.match_file_name("crtend");
2619   if (s1_end || s2_end)
2620     {
2621       if (!s1_end)
2622         return true;
2623       if (!s2_end)
2624         return false;
2625       return s1.index() < s2.index();
2626     }
2627
2628   // We sort all the sections with no names to the end.
2629   if (!s1.section_has_name() || !s2.section_has_name())
2630     {
2631       if (s1.section_has_name())
2632         return true;
2633       if (s2.section_has_name())
2634         return false;
2635       return s1.index() < s2.index();
2636     }
2637
2638   // A section with a priority follows a section without a priority.
2639   // The GNU linker does this for all but .init_array sections; until
2640   // further notice we'll assume that that is an mistake.
2641   bool s1_has_priority = s1.has_priority();
2642   bool s2_has_priority = s2.has_priority();
2643   if (s1_has_priority && !s2_has_priority)
2644     return false;
2645   if (!s1_has_priority && s2_has_priority)
2646     return true;
2647
2648   // Otherwise we sort by name.
2649   int compare = s1.section_name().compare(s2.section_name());
2650   if (compare != 0)
2651     return compare < 0;
2652
2653   // Otherwise we keep the input order.
2654   return s1.index() < s2.index();
2655 }
2656
2657 // Sort the input sections attached to an output section.
2658
2659 void
2660 Output_section::sort_attached_input_sections()
2661 {
2662   if (this->attached_input_sections_are_sorted_)
2663     return;
2664
2665   if (this->checkpoint_ != NULL
2666       && !this->checkpoint_->input_sections_saved())
2667     this->checkpoint_->save_input_sections();
2668
2669   // The only thing we know about an input section is the object and
2670   // the section index.  We need the section name.  Recomputing this
2671   // is slow but this is an unusual case.  If this becomes a speed
2672   // problem we can cache the names as required in Layout::layout.
2673
2674   // We start by building a larger vector holding a copy of each
2675   // Input_section, plus its current index in the list and its name.
2676   std::vector<Input_section_sort_entry> sort_list;
2677
2678   unsigned int i = 0;
2679   for (Input_section_list::iterator p = this->input_sections_.begin();
2680        p != this->input_sections_.end();
2681        ++p, ++i)
2682     sort_list.push_back(Input_section_sort_entry(*p, i));
2683
2684   // Sort the input sections.
2685   std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2686
2687   // Copy the sorted input sections back to our list.
2688   this->input_sections_.clear();
2689   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2690        p != sort_list.end();
2691        ++p)
2692     this->input_sections_.push_back(p->input_section());
2693
2694   // Remember that we sorted the input sections, since we might get
2695   // called again.
2696   this->attached_input_sections_are_sorted_ = true;
2697 }
2698
2699 // Write the section header to *OSHDR.
2700
2701 template<int size, bool big_endian>
2702 void
2703 Output_section::write_header(const Layout* layout,
2704                              const Stringpool* secnamepool,
2705                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
2706 {
2707   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2708   oshdr->put_sh_type(this->type_);
2709
2710   elfcpp::Elf_Xword flags = this->flags_;
2711   if (this->info_section_ != NULL && this->info_uses_section_index_)
2712     flags |= elfcpp::SHF_INFO_LINK;
2713   oshdr->put_sh_flags(flags);
2714
2715   oshdr->put_sh_addr(this->address());
2716   oshdr->put_sh_offset(this->offset());
2717   oshdr->put_sh_size(this->data_size());
2718   if (this->link_section_ != NULL)
2719     oshdr->put_sh_link(this->link_section_->out_shndx());
2720   else if (this->should_link_to_symtab_)
2721     oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2722   else if (this->should_link_to_dynsym_)
2723     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2724   else
2725     oshdr->put_sh_link(this->link_);
2726
2727   elfcpp::Elf_Word info;
2728   if (this->info_section_ != NULL)
2729     {
2730       if (this->info_uses_section_index_)
2731         info = this->info_section_->out_shndx();
2732       else
2733         info = this->info_section_->symtab_index();
2734     }
2735   else if (this->info_symndx_ != NULL)
2736     info = this->info_symndx_->symtab_index();
2737   else
2738     info = this->info_;
2739   oshdr->put_sh_info(info);
2740
2741   oshdr->put_sh_addralign(this->addralign_);
2742   oshdr->put_sh_entsize(this->entsize_);
2743 }
2744
2745 // Write out the data.  For input sections the data is written out by
2746 // Object::relocate, but we have to handle Output_section_data objects
2747 // here.
2748
2749 void
2750 Output_section::do_write(Output_file* of)
2751 {
2752   gold_assert(!this->requires_postprocessing());
2753
2754   // If the target performs relaxation, we delay filler generation until now.
2755   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2756
2757   off_t output_section_file_offset = this->offset();
2758   for (Fill_list::iterator p = this->fills_.begin();
2759        p != this->fills_.end();
2760        ++p)
2761     {
2762       std::string fill_data(parameters->target().code_fill(p->length()));
2763       of->write(output_section_file_offset + p->section_offset(),
2764                 fill_data.data(), fill_data.size());
2765     }
2766
2767   off_t off = this->offset() + this->first_input_offset_;
2768   for (Input_section_list::iterator p = this->input_sections_.begin();
2769        p != this->input_sections_.end();
2770        ++p)
2771     {
2772       off_t aligned_off = align_address(off, p->addralign());
2773       if (this->generate_code_fills_at_write_ && (off != aligned_off))
2774         {
2775           size_t fill_len = aligned_off - off;
2776           std::string fill_data(parameters->target().code_fill(fill_len));
2777           of->write(off, fill_data.data(), fill_data.size());
2778         }
2779
2780       p->write(of);
2781       off = aligned_off + p->data_size();
2782     }
2783 }
2784
2785 // If a section requires postprocessing, create the buffer to use.
2786
2787 void
2788 Output_section::create_postprocessing_buffer()
2789 {
2790   gold_assert(this->requires_postprocessing());
2791
2792   if (this->postprocessing_buffer_ != NULL)
2793     return;
2794
2795   if (!this->input_sections_.empty())
2796     {
2797       off_t off = this->first_input_offset_;
2798       for (Input_section_list::iterator p = this->input_sections_.begin();
2799            p != this->input_sections_.end();
2800            ++p)
2801         {
2802           off = align_address(off, p->addralign());
2803           p->finalize_data_size();
2804           off += p->data_size();
2805         }
2806       this->set_current_data_size_for_child(off);
2807     }
2808
2809   off_t buffer_size = this->current_data_size_for_child();
2810   this->postprocessing_buffer_ = new unsigned char[buffer_size];
2811 }
2812
2813 // Write all the data of an Output_section into the postprocessing
2814 // buffer.  This is used for sections which require postprocessing,
2815 // such as compression.  Input sections are handled by
2816 // Object::Relocate.
2817
2818 void
2819 Output_section::write_to_postprocessing_buffer()
2820 {
2821   gold_assert(this->requires_postprocessing());
2822
2823   // If the target performs relaxation, we delay filler generation until now.
2824   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2825
2826   unsigned char* buffer = this->postprocessing_buffer();
2827   for (Fill_list::iterator p = this->fills_.begin();
2828        p != this->fills_.end();
2829        ++p)
2830     {
2831       std::string fill_data(parameters->target().code_fill(p->length()));
2832       memcpy(buffer + p->section_offset(), fill_data.data(),
2833              fill_data.size());
2834     }
2835
2836   off_t off = this->first_input_offset_;
2837   for (Input_section_list::iterator p = this->input_sections_.begin();
2838        p != this->input_sections_.end();
2839        ++p)
2840     {
2841       off_t aligned_off = align_address(off, p->addralign());
2842       if (this->generate_code_fills_at_write_ && (off != aligned_off))
2843         {
2844           size_t fill_len = aligned_off - off;
2845           std::string fill_data(parameters->target().code_fill(fill_len));
2846           memcpy(buffer + off, fill_data.data(), fill_data.size());
2847         }
2848
2849       p->write_to_buffer(buffer + aligned_off);
2850       off = aligned_off + p->data_size();
2851     }
2852 }
2853
2854 // Get the input sections for linker script processing.  We leave
2855 // behind the Output_section_data entries.  Note that this may be
2856 // slightly incorrect for merge sections.  We will leave them behind,
2857 // but it is possible that the script says that they should follow
2858 // some other input sections, as in:
2859 //    .rodata { *(.rodata) *(.rodata.cst*) }
2860 // For that matter, we don't handle this correctly:
2861 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2862 // With luck this will never matter.
2863
2864 uint64_t
2865 Output_section::get_input_sections(
2866     uint64_t address,
2867     const std::string& fill,
2868     std::list<Simple_input_section>* input_sections)
2869 {
2870   if (this->checkpoint_ != NULL
2871       && !this->checkpoint_->input_sections_saved())
2872     this->checkpoint_->save_input_sections();
2873
2874   // Invalidate the relaxed input section map.
2875   this->is_relaxed_input_section_map_valid_ = false;
2876
2877   uint64_t orig_address = address;
2878
2879   address = align_address(address, this->addralign());
2880
2881   Input_section_list remaining;
2882   for (Input_section_list::iterator p = this->input_sections_.begin();
2883        p != this->input_sections_.end();
2884        ++p)
2885     {
2886       if (p->is_input_section())
2887         input_sections->push_back(Simple_input_section(p->relobj(),
2888                                                        p->shndx()));
2889       else if (p->is_relaxed_input_section())
2890         input_sections->push_back(
2891             Simple_input_section(p->relaxed_input_section()));
2892       else
2893         {
2894           uint64_t aligned_address = align_address(address, p->addralign());
2895           if (aligned_address != address && !fill.empty())
2896             {
2897               section_size_type length =
2898                 convert_to_section_size_type(aligned_address - address);
2899               std::string this_fill;
2900               this_fill.reserve(length);
2901               while (this_fill.length() + fill.length() <= length)
2902                 this_fill += fill;
2903               if (this_fill.length() < length)
2904                 this_fill.append(fill, 0, length - this_fill.length());
2905
2906               Output_section_data* posd = new Output_data_const(this_fill, 0);
2907               remaining.push_back(Input_section(posd));
2908             }
2909           address = aligned_address;
2910
2911           remaining.push_back(*p);
2912
2913           p->finalize_data_size();
2914           address += p->data_size();
2915         }
2916     }
2917
2918   this->input_sections_.swap(remaining);
2919   this->first_input_offset_ = 0;
2920
2921   uint64_t data_size = address - orig_address;
2922   this->set_current_data_size_for_child(data_size);
2923   return data_size;
2924 }
2925
2926 // Add an input section from a script.
2927
2928 void
2929 Output_section::add_input_section_for_script(const Simple_input_section& sis,
2930                                              off_t data_size,
2931                                              uint64_t addralign)
2932 {
2933   if (addralign > this->addralign_)
2934     this->addralign_ = addralign;
2935
2936   off_t offset_in_section = this->current_data_size_for_child();
2937   off_t aligned_offset_in_section = align_address(offset_in_section,
2938                                                   addralign);
2939
2940   this->set_current_data_size_for_child(aligned_offset_in_section
2941                                         + data_size);
2942
2943   Input_section is =
2944     (sis.is_relaxed_input_section()
2945      ? Input_section(sis.relaxed_input_section())
2946      : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
2947   this->input_sections_.push_back(is);
2948 }
2949
2950 //
2951
2952 void
2953 Output_section::save_states()
2954 {
2955   gold_assert(this->checkpoint_ == NULL);
2956   Checkpoint_output_section* checkpoint =
2957     new Checkpoint_output_section(this->addralign_, this->flags_,
2958                                   this->input_sections_,
2959                                   this->first_input_offset_,
2960                                   this->attached_input_sections_are_sorted_);
2961   this->checkpoint_ = checkpoint;
2962   gold_assert(this->fills_.empty());
2963 }
2964
2965 void
2966 Output_section::restore_states()
2967 {
2968   gold_assert(this->checkpoint_ != NULL);
2969   Checkpoint_output_section* checkpoint = this->checkpoint_;
2970
2971   this->addralign_ = checkpoint->addralign();
2972   this->flags_ = checkpoint->flags();
2973   this->first_input_offset_ = checkpoint->first_input_offset();
2974
2975   if (!checkpoint->input_sections_saved())
2976     {
2977       // If we have not copied the input sections, just resize it.
2978       size_t old_size = checkpoint->input_sections_size();
2979       gold_assert(this->input_sections_.size() >= old_size);
2980       this->input_sections_.resize(old_size);
2981     }
2982   else
2983     {
2984       // We need to copy the whole list.  This is not efficient for
2985       // extremely large output with hundreads of thousands of input
2986       // objects.  We may need to re-think how we should pass sections
2987       // to scripts.
2988       this->input_sections_ = *checkpoint->input_sections();
2989     }
2990
2991   this->attached_input_sections_are_sorted_ =
2992     checkpoint->attached_input_sections_are_sorted();
2993
2994   // Simply invalidate the relaxed input section map since we do not keep
2995   // track of it.
2996   this->is_relaxed_input_section_map_valid_ = false;
2997 }
2998
2999 // Print to the map file.
3000
3001 void
3002 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3003 {
3004   mapfile->print_output_section(this);
3005
3006   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3007        p != this->input_sections_.end();
3008        ++p)
3009     p->print_to_mapfile(mapfile);
3010 }
3011
3012 // Print stats for merge sections to stderr.
3013
3014 void
3015 Output_section::print_merge_stats()
3016 {
3017   Input_section_list::iterator p;
3018   for (p = this->input_sections_.begin();
3019        p != this->input_sections_.end();
3020        ++p)
3021     p->print_merge_stats(this->name_);
3022 }
3023
3024 // Output segment methods.
3025
3026 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3027   : output_data_(),
3028     output_bss_(),
3029     vaddr_(0),
3030     paddr_(0),
3031     memsz_(0),
3032     max_align_(0),
3033     min_p_align_(0),
3034     offset_(0),
3035     filesz_(0),
3036     type_(type),
3037     flags_(flags),
3038     is_max_align_known_(false),
3039     are_addresses_set_(false),
3040     is_large_data_segment_(false)
3041 {
3042 }
3043
3044 // Add an Output_section to an Output_segment.
3045
3046 void
3047 Output_segment::add_output_section(Output_section* os,
3048                                    elfcpp::Elf_Word seg_flags)
3049 {
3050   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3051   gold_assert(!this->is_max_align_known_);
3052   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3053
3054   // Update the segment flags.
3055   this->flags_ |= seg_flags;
3056
3057   Output_segment::Output_data_list* pdl;
3058   if (os->type() == elfcpp::SHT_NOBITS)
3059     pdl = &this->output_bss_;
3060   else
3061     pdl = &this->output_data_;
3062
3063   // So that PT_NOTE segments will work correctly, we need to ensure
3064   // that all SHT_NOTE sections are adjacent.  This will normally
3065   // happen automatically, because all the SHT_NOTE input sections
3066   // will wind up in the same output section.  However, it is possible
3067   // for multiple SHT_NOTE input sections to have different section
3068   // flags, and thus be in different output sections, but for the
3069   // different section flags to map into the same segment flags and
3070   // thus the same output segment.
3071
3072   // Note that while there may be many input sections in an output
3073   // section, there are normally only a few output sections in an
3074   // output segment.  This loop is expected to be fast.
3075
3076   if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
3077     {
3078       Output_segment::Output_data_list::iterator p = pdl->end();
3079       do
3080         {
3081           --p;
3082           if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3083             {
3084               ++p;
3085               pdl->insert(p, os);
3086               return;
3087             }
3088         }
3089       while (p != pdl->begin());
3090     }
3091
3092   // Similarly, so that PT_TLS segments will work, we need to group
3093   // SHF_TLS sections.  An SHF_TLS/SHT_NOBITS section is a special
3094   // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3095   // SHF_TLS/SHT_PROGBITS sections.  This lets us set up PT_TLS
3096   // correctly.  SHF_TLS sections get added to both a PT_LOAD segment
3097   // and the PT_TLS segment -- we do this grouping only for the
3098   // PT_LOAD segment.
3099   if (this->type_ != elfcpp::PT_TLS
3100       && (os->flags() & elfcpp::SHF_TLS) != 0)
3101     {
3102       pdl = &this->output_data_;
3103       if (!pdl->empty())
3104         {
3105           bool nobits = os->type() == elfcpp::SHT_NOBITS;
3106           bool sawtls = false;
3107           Output_segment::Output_data_list::iterator p = pdl->end();
3108           gold_assert(p != pdl->begin());
3109           do
3110             {
3111               --p;
3112               bool insert;
3113               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3114                 {
3115                   sawtls = true;
3116                   // Put a NOBITS section after the first TLS section.
3117                   // Put a PROGBITS section after the first
3118                   // TLS/PROGBITS section.
3119                   insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3120                 }
3121               else
3122                 {
3123                   // If we've gone past the TLS sections, but we've
3124                   // seen a TLS section, then we need to insert this
3125                   // section now.
3126                   insert = sawtls;
3127                 }
3128
3129               if (insert)
3130                 {
3131                   ++p;
3132                   pdl->insert(p, os);
3133                   return;
3134                 }
3135             }
3136           while (p != pdl->begin());
3137         }
3138
3139       // There are no TLS sections yet; put this one at the requested
3140       // location in the section list.
3141     }
3142
3143   // For the PT_GNU_RELRO segment, we need to group relro sections,
3144   // and we need to put them before any non-relro sections.  Also,
3145   // relro local sections go before relro non-local sections.
3146   if (parameters->options().relro() && os->is_relro())
3147     {
3148       gold_assert(pdl == &this->output_data_);
3149       Output_segment::Output_data_list::iterator p;
3150       for (p = pdl->begin(); p != pdl->end(); ++p)
3151         {
3152           if (!(*p)->is_section())
3153             break;
3154
3155           Output_section* pos = (*p)->output_section();
3156           if (!pos->is_relro()
3157               || (os->is_relro_local() && !pos->is_relro_local()))
3158             break;
3159         }
3160
3161       pdl->insert(p, os);
3162       return;
3163     }
3164
3165   // Small data sections go at the end of the list of data sections.
3166   // If OS is not small, and there are small sections, we have to
3167   // insert it before the first small section.
3168   if (os->type() != elfcpp::SHT_NOBITS
3169       && !os->is_small_section()
3170       && !pdl->empty()
3171       && pdl->back()->is_section()
3172       && pdl->back()->output_section()->is_small_section())
3173     {
3174       for (Output_segment::Output_data_list::iterator p = pdl->begin();
3175            p != pdl->end();
3176            ++p)
3177         {
3178           if ((*p)->is_section()
3179               && (*p)->output_section()->is_small_section())
3180             {
3181               pdl->insert(p, os);
3182               return;
3183             }
3184         }
3185       gold_unreachable();
3186     }
3187
3188   // A small BSS section goes at the start of the BSS sections, after
3189   // other small BSS sections.
3190   if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3191     {
3192       for (Output_segment::Output_data_list::iterator p = pdl->begin();
3193            p != pdl->end();
3194            ++p)
3195         {
3196           if (!(*p)->is_section()
3197               || !(*p)->output_section()->is_small_section())
3198             {
3199               pdl->insert(p, os);
3200               return;
3201             }
3202         }
3203     }
3204
3205   // A large BSS section goes at the end of the BSS sections, which
3206   // means that one that is not large must come before the first large
3207   // one.
3208   if (os->type() == elfcpp::SHT_NOBITS
3209       && !os->is_large_section()
3210       && !pdl->empty()
3211       && pdl->back()->is_section()
3212       && pdl->back()->output_section()->is_large_section())
3213     {
3214       for (Output_segment::Output_data_list::iterator p = pdl->begin();
3215            p != pdl->end();
3216            ++p)
3217         {
3218           if ((*p)->is_section()
3219               && (*p)->output_section()->is_large_section())
3220             {
3221               pdl->insert(p, os);
3222               return;
3223             }
3224         }
3225       gold_unreachable();
3226     }
3227
3228   pdl->push_back(os);
3229 }
3230
3231 // Remove an Output_section from this segment.  It is an error if it
3232 // is not present.
3233
3234 void
3235 Output_segment::remove_output_section(Output_section* os)
3236 {
3237   // We only need this for SHT_PROGBITS.
3238   gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3239   for (Output_data_list::iterator p = this->output_data_.begin();
3240        p != this->output_data_.end();
3241        ++p)
3242    {
3243      if (*p == os)
3244        {
3245          this->output_data_.erase(p);
3246          return;
3247        }
3248    }
3249   gold_unreachable();
3250 }
3251
3252 // Add an Output_data (which is not an Output_section) to the start of
3253 // a segment.
3254
3255 void
3256 Output_segment::add_initial_output_data(Output_data* od)
3257 {
3258   gold_assert(!this->is_max_align_known_);
3259   this->output_data_.push_front(od);
3260 }
3261
3262 // Return whether the first data section is a relro section.
3263
3264 bool
3265 Output_segment::is_first_section_relro() const
3266 {
3267   return (!this->output_data_.empty()
3268           && this->output_data_.front()->is_section()
3269           && this->output_data_.front()->output_section()->is_relro());
3270 }
3271
3272 // Return the maximum alignment of the Output_data in Output_segment.
3273
3274 uint64_t
3275 Output_segment::maximum_alignment()
3276 {
3277   if (!this->is_max_align_known_)
3278     {
3279       uint64_t addralign;
3280
3281       addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3282       if (addralign > this->max_align_)
3283         this->max_align_ = addralign;
3284
3285       addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3286       if (addralign > this->max_align_)
3287         this->max_align_ = addralign;
3288
3289       // If -z relro is in effect, and the first section in this
3290       // segment is a relro section, then the segment must be aligned
3291       // to at least the common page size.  This ensures that the
3292       // PT_GNU_RELRO segment will start at a page boundary.
3293       if (this->type_ == elfcpp::PT_LOAD
3294           && parameters->options().relro()
3295           && this->is_first_section_relro())
3296         {
3297           addralign = parameters->target().common_pagesize();
3298           if (addralign > this->max_align_)
3299             this->max_align_ = addralign;
3300         }
3301
3302       this->is_max_align_known_ = true;
3303     }
3304
3305   return this->max_align_;
3306 }
3307
3308 // Return the maximum alignment of a list of Output_data.
3309
3310 uint64_t
3311 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3312 {
3313   uint64_t ret = 0;
3314   for (Output_data_list::const_iterator p = pdl->begin();
3315        p != pdl->end();
3316        ++p)
3317     {
3318       uint64_t addralign = (*p)->addralign();
3319       if (addralign > ret)
3320         ret = addralign;
3321     }
3322   return ret;
3323 }
3324
3325 // Return the number of dynamic relocs applied to this segment.
3326
3327 unsigned int
3328 Output_segment::dynamic_reloc_count() const
3329 {
3330   return (this->dynamic_reloc_count_list(&this->output_data_)
3331           + this->dynamic_reloc_count_list(&this->output_bss_));
3332 }
3333
3334 // Return the number of dynamic relocs applied to an Output_data_list.
3335
3336 unsigned int
3337 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3338 {
3339   unsigned int count = 0;
3340   for (Output_data_list::const_iterator p = pdl->begin();
3341        p != pdl->end();
3342        ++p)
3343     count += (*p)->dynamic_reloc_count();
3344   return count;
3345 }
3346
3347 // Set the section addresses for an Output_segment.  If RESET is true,
3348 // reset the addresses first.  ADDR is the address and *POFF is the
3349 // file offset.  Set the section indexes starting with *PSHNDX.
3350 // Return the address of the immediately following segment.  Update
3351 // *POFF and *PSHNDX.
3352
3353 uint64_t
3354 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3355                                       uint64_t addr, off_t* poff,
3356                                       unsigned int* pshndx)
3357 {
3358   gold_assert(this->type_ == elfcpp::PT_LOAD);
3359
3360   if (!reset && this->are_addresses_set_)
3361     {
3362       gold_assert(this->paddr_ == addr);
3363       addr = this->vaddr_;
3364     }
3365   else
3366     {
3367       this->vaddr_ = addr;
3368       this->paddr_ = addr;
3369       this->are_addresses_set_ = true;
3370     }
3371
3372   bool in_tls = false;
3373
3374   bool in_relro = (parameters->options().relro()
3375                    && this->is_first_section_relro());
3376
3377   off_t orig_off = *poff;
3378   this->offset_ = orig_off;
3379
3380   addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3381                                           addr, poff, pshndx, &in_tls,
3382                                           &in_relro);
3383   this->filesz_ = *poff - orig_off;
3384
3385   off_t off = *poff;
3386
3387   uint64_t ret = this->set_section_list_addresses(layout, reset,
3388                                                   &this->output_bss_,
3389                                                   addr, poff, pshndx,
3390                                                   &in_tls, &in_relro);
3391
3392   // If the last section was a TLS section, align upward to the
3393   // alignment of the TLS segment, so that the overall size of the TLS
3394   // segment is aligned.
3395   if (in_tls)
3396     {
3397       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3398       *poff = align_address(*poff, segment_align);
3399     }
3400
3401   // If all the sections were relro sections, align upward to the
3402   // common page size.
3403   if (in_relro)
3404     {
3405       uint64_t page_align = parameters->target().common_pagesize();
3406       *poff = align_address(*poff, page_align);
3407     }
3408
3409   this->memsz_ = *poff - orig_off;
3410
3411   // Ignore the file offset adjustments made by the BSS Output_data
3412   // objects.
3413   *poff = off;
3414
3415   return ret;
3416 }
3417
3418 // Set the addresses and file offsets in a list of Output_data
3419 // structures.
3420
3421 uint64_t
3422 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3423                                            Output_data_list* pdl,
3424                                            uint64_t addr, off_t* poff,
3425                                            unsigned int* pshndx,
3426                                            bool* in_tls, bool* in_relro)
3427 {
3428   off_t startoff = *poff;
3429
3430   off_t off = startoff;
3431   for (Output_data_list::iterator p = pdl->begin();
3432        p != pdl->end();
3433        ++p)
3434     {
3435       if (reset)
3436         (*p)->reset_address_and_file_offset();
3437
3438       // When using a linker script the section will most likely
3439       // already have an address.
3440       if (!(*p)->is_address_valid())
3441         {
3442           uint64_t align = (*p)->addralign();
3443
3444           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3445             {
3446               // Give the first TLS section the alignment of the
3447               // entire TLS segment.  Otherwise the TLS segment as a
3448               // whole may be misaligned.
3449               if (!*in_tls)
3450                 {
3451                   Output_segment* tls_segment = layout->tls_segment();
3452                   gold_assert(tls_segment != NULL);
3453                   uint64_t segment_align = tls_segment->maximum_alignment();
3454                   gold_assert(segment_align >= align);
3455                   align = segment_align;
3456
3457                   *in_tls = true;
3458                 }
3459             }
3460           else
3461             {
3462               // If this is the first section after the TLS segment,
3463               // align it to at least the alignment of the TLS
3464               // segment, so that the size of the overall TLS segment
3465               // is aligned.
3466               if (*in_tls)
3467                 {
3468                   uint64_t segment_align =
3469                       layout->tls_segment()->maximum_alignment();
3470                   if (segment_align > align)
3471                     align = segment_align;
3472
3473                   *in_tls = false;
3474                 }
3475             }
3476
3477           // If this is a non-relro section after a relro section,
3478           // align it to a common page boundary so that the dynamic
3479           // linker has a page to mark as read-only.
3480           if (*in_relro
3481               && (!(*p)->is_section()
3482                   || !(*p)->output_section()->is_relro()))
3483             {
3484               uint64_t page_align = parameters->target().common_pagesize();
3485               if (page_align > align)
3486                 align = page_align;
3487               *in_relro = false;
3488             }
3489
3490           off = align_address(off, align);
3491           (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3492         }
3493       else
3494         {
3495           // The script may have inserted a skip forward, but it
3496           // better not have moved backward.
3497           if ((*p)->address() >= addr + (off - startoff))
3498             off += (*p)->address() - (addr + (off - startoff));
3499           else
3500             {
3501               if (!layout->script_options()->saw_sections_clause())
3502                 gold_unreachable();
3503               else
3504                 {
3505                   Output_section* os = (*p)->output_section();
3506                   if (os == NULL)
3507                     gold_error(_("dot moves backward in linker script "
3508                                  "from 0x%llx to 0x%llx"),
3509                                addr + (off - startoff), (*p)->address());
3510                   else
3511                     gold_error(_("address of section '%s' moves backward "
3512                                  "from 0x%llx to 0x%llx"),
3513                                os->name(), addr + (off - startoff),
3514                                (*p)->address());
3515                 }
3516             }
3517           (*p)->set_file_offset(off);
3518           (*p)->finalize_data_size();
3519         }
3520
3521       // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3522       // section.  Such a section does not affect the size of a
3523       // PT_LOAD segment.
3524       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3525           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3526         off += (*p)->data_size();
3527
3528       if ((*p)->is_section())
3529         {
3530           (*p)->set_out_shndx(*pshndx);
3531           ++*pshndx;
3532         }
3533     }
3534
3535   *poff = off;
3536   return addr + (off - startoff);
3537 }
3538
3539 // For a non-PT_LOAD segment, set the offset from the sections, if
3540 // any.
3541
3542 void
3543 Output_segment::set_offset()
3544 {
3545   gold_assert(this->type_ != elfcpp::PT_LOAD);
3546
3547   gold_assert(!this->are_addresses_set_);
3548
3549   if (this->output_data_.empty() && this->output_bss_.empty())
3550     {
3551       this->vaddr_ = 0;
3552       this->paddr_ = 0;
3553       this->are_addresses_set_ = true;
3554       this->memsz_ = 0;
3555       this->min_p_align_ = 0;
3556       this->offset_ = 0;
3557       this->filesz_ = 0;
3558       return;
3559     }
3560
3561   const Output_data* first;
3562   if (this->output_data_.empty())
3563     first = this->output_bss_.front();
3564   else
3565     first = this->output_data_.front();
3566   this->vaddr_ = first->address();
3567   this->paddr_ = (first->has_load_address()
3568                   ? first->load_address()
3569                   : this->vaddr_);
3570   this->are_addresses_set_ = true;
3571   this->offset_ = first->offset();
3572
3573   if (this->output_data_.empty())
3574     this->filesz_ = 0;
3575   else
3576     {
3577       const Output_data* last_data = this->output_data_.back();
3578       this->filesz_ = (last_data->address()
3579                        + last_data->data_size()
3580                        - this->vaddr_);
3581     }
3582
3583   const Output_data* last;
3584   if (this->output_bss_.empty())
3585     last = this->output_data_.back();
3586   else
3587     last = this->output_bss_.back();
3588   this->memsz_ = (last->address()
3589                   + last->data_size()
3590                   - this->vaddr_);
3591
3592   // If this is a TLS segment, align the memory size.  The code in
3593   // set_section_list ensures that the section after the TLS segment
3594   // is aligned to give us room.
3595   if (this->type_ == elfcpp::PT_TLS)
3596     {
3597       uint64_t segment_align = this->maximum_alignment();
3598       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3599       this->memsz_ = align_address(this->memsz_, segment_align);
3600     }
3601
3602   // If this is a RELRO segment, align the memory size.  The code in
3603   // set_section_list ensures that the section after the RELRO segment
3604   // is aligned to give us room.
3605   if (this->type_ == elfcpp::PT_GNU_RELRO)
3606     {
3607       uint64_t page_align = parameters->target().common_pagesize();
3608       gold_assert(this->vaddr_ == align_address(this->vaddr_, page_align));
3609       this->memsz_ = align_address(this->memsz_, page_align);
3610     }
3611 }
3612
3613 // Set the TLS offsets of the sections in the PT_TLS segment.
3614
3615 void
3616 Output_segment::set_tls_offsets()
3617 {
3618   gold_assert(this->type_ == elfcpp::PT_TLS);
3619
3620   for (Output_data_list::iterator p = this->output_data_.begin();
3621        p != this->output_data_.end();
3622        ++p)
3623     (*p)->set_tls_offset(this->vaddr_);
3624
3625   for (Output_data_list::iterator p = this->output_bss_.begin();
3626        p != this->output_bss_.end();
3627        ++p)
3628     (*p)->set_tls_offset(this->vaddr_);
3629 }
3630
3631 // Return the address of the first section.
3632
3633 uint64_t
3634 Output_segment::first_section_load_address() const
3635 {
3636   for (Output_data_list::const_iterator p = this->output_data_.begin();
3637        p != this->output_data_.end();
3638        ++p)
3639     if ((*p)->is_section())
3640       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3641
3642   for (Output_data_list::const_iterator p = this->output_bss_.begin();
3643        p != this->output_bss_.end();
3644        ++p)
3645     if ((*p)->is_section())
3646       return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3647
3648   gold_unreachable();
3649 }
3650
3651 // Return the number of Output_sections in an Output_segment.
3652
3653 unsigned int
3654 Output_segment::output_section_count() const
3655 {
3656   return (this->output_section_count_list(&this->output_data_)
3657           + this->output_section_count_list(&this->output_bss_));
3658 }
3659
3660 // Return the number of Output_sections in an Output_data_list.
3661
3662 unsigned int
3663 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3664 {
3665   unsigned int count = 0;
3666   for (Output_data_list::const_iterator p = pdl->begin();
3667        p != pdl->end();
3668        ++p)
3669     {
3670       if ((*p)->is_section())
3671         ++count;
3672     }
3673   return count;
3674 }
3675
3676 // Return the section attached to the list segment with the lowest
3677 // load address.  This is used when handling a PHDRS clause in a
3678 // linker script.
3679
3680 Output_section*
3681 Output_segment::section_with_lowest_load_address() const
3682 {
3683   Output_section* found = NULL;
3684   uint64_t found_lma = 0;
3685   this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3686
3687   Output_section* found_data = found;
3688   this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3689   if (found != found_data && found_data != NULL)
3690     {
3691       gold_error(_("nobits section %s may not precede progbits section %s "
3692                    "in same segment"),
3693                  found->name(), found_data->name());
3694       return NULL;
3695     }
3696
3697   return found;
3698 }
3699
3700 // Look through a list for a section with a lower load address.
3701
3702 void
3703 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3704                                             Output_section** found,
3705                                             uint64_t* found_lma) const
3706 {
3707   for (Output_data_list::const_iterator p = pdl->begin();
3708        p != pdl->end();
3709        ++p)
3710     {
3711       if (!(*p)->is_section())
3712         continue;
3713       Output_section* os = static_cast<Output_section*>(*p);
3714       uint64_t lma = (os->has_load_address()
3715                       ? os->load_address()
3716                       : os->address());
3717       if (*found == NULL || lma < *found_lma)
3718         {
3719           *found = os;
3720           *found_lma = lma;
3721         }
3722     }
3723 }
3724
3725 // Write the segment data into *OPHDR.
3726
3727 template<int size, bool big_endian>
3728 void
3729 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3730 {
3731   ophdr->put_p_type(this->type_);
3732   ophdr->put_p_offset(this->offset_);
3733   ophdr->put_p_vaddr(this->vaddr_);
3734   ophdr->put_p_paddr(this->paddr_);
3735   ophdr->put_p_filesz(this->filesz_);
3736   ophdr->put_p_memsz(this->memsz_);
3737   ophdr->put_p_flags(this->flags_);
3738   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3739 }
3740
3741 // Write the section headers into V.
3742
3743 template<int size, bool big_endian>
3744 unsigned char*
3745 Output_segment::write_section_headers(const Layout* layout,
3746                                       const Stringpool* secnamepool,
3747                                       unsigned char* v,
3748                                       unsigned int *pshndx) const
3749 {
3750   // Every section that is attached to a segment must be attached to a
3751   // PT_LOAD segment, so we only write out section headers for PT_LOAD
3752   // segments.
3753   if (this->type_ != elfcpp::PT_LOAD)
3754     return v;
3755
3756   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3757                                                          &this->output_data_,
3758                                                          v, pshndx);
3759   v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3760                                                          &this->output_bss_,
3761                                                          v, pshndx);
3762   return v;
3763 }
3764
3765 template<int size, bool big_endian>
3766 unsigned char*
3767 Output_segment::write_section_headers_list(const Layout* layout,
3768                                            const Stringpool* secnamepool,
3769                                            const Output_data_list* pdl,
3770                                            unsigned char* v,
3771                                            unsigned int* pshndx) const
3772 {
3773   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3774   for (Output_data_list::const_iterator p = pdl->begin();
3775        p != pdl->end();
3776        ++p)
3777     {
3778       if ((*p)->is_section())
3779         {
3780           const Output_section* ps = static_cast<const Output_section*>(*p);
3781           gold_assert(*pshndx == ps->out_shndx());
3782           elfcpp::Shdr_write<size, big_endian> oshdr(v);
3783           ps->write_header(layout, secnamepool, &oshdr);
3784           v += shdr_size;
3785           ++*pshndx;
3786         }
3787     }
3788   return v;
3789 }
3790
3791 // Print the output sections to the map file.
3792
3793 void
3794 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
3795 {
3796   if (this->type() != elfcpp::PT_LOAD)
3797     return;
3798   this->print_section_list_to_mapfile(mapfile, &this->output_data_);
3799   this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
3800 }
3801
3802 // Print an output section list to the map file.
3803
3804 void
3805 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
3806                                               const Output_data_list* pdl) const
3807 {
3808   for (Output_data_list::const_iterator p = pdl->begin();
3809        p != pdl->end();
3810        ++p)
3811     (*p)->print_to_mapfile(mapfile);
3812 }
3813
3814 // Output_file methods.
3815
3816 Output_file::Output_file(const char* name)
3817   : name_(name),
3818     o_(-1),
3819     file_size_(0),
3820     base_(NULL),
3821     map_is_anonymous_(false),
3822     is_temporary_(false)
3823 {
3824 }
3825
3826 // Try to open an existing file.  Returns false if the file doesn't
3827 // exist, has a size of 0 or can't be mmapped.
3828
3829 bool
3830 Output_file::open_for_modification()
3831 {
3832   // The name "-" means "stdout".
3833   if (strcmp(this->name_, "-") == 0)
3834     return false;
3835
3836   // Don't bother opening files with a size of zero.
3837   struct stat s;
3838   if (::stat(this->name_, &s) != 0 || s.st_size == 0)
3839     return false;
3840
3841   int o = open_descriptor(-1, this->name_, O_RDWR, 0);
3842   if (o < 0)
3843     gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3844   this->o_ = o;
3845   this->file_size_ = s.st_size;
3846
3847   // If the file can't be mmapped, copying the content to an anonymous
3848   // map will probably negate the performance benefits of incremental
3849   // linking.  This could be helped by using views and loading only
3850   // the necessary parts, but this is not supported as of now.
3851   if (!this->map_no_anonymous())
3852     {
3853       release_descriptor(o, true);
3854       this->o_ = -1;
3855       this->file_size_ = 0;
3856       return false;
3857     }
3858
3859   return true;
3860 }
3861
3862 // Open the output file.
3863
3864 void
3865 Output_file::open(off_t file_size)
3866 {
3867   this->file_size_ = file_size;
3868
3869   // Unlink the file first; otherwise the open() may fail if the file
3870   // is busy (e.g. it's an executable that's currently being executed).
3871   //
3872   // However, the linker may be part of a system where a zero-length
3873   // file is created for it to write to, with tight permissions (gcc
3874   // 2.95 did something like this).  Unlinking the file would work
3875   // around those permission controls, so we only unlink if the file
3876   // has a non-zero size.  We also unlink only regular files to avoid
3877   // trouble with directories/etc.
3878   //
3879   // If we fail, continue; this command is merely a best-effort attempt
3880   // to improve the odds for open().
3881
3882   // We let the name "-" mean "stdout"
3883   if (!this->is_temporary_)
3884     {
3885       if (strcmp(this->name_, "-") == 0)
3886         this->o_ = STDOUT_FILENO;
3887       else
3888         {
3889           struct stat s;
3890           if (::stat(this->name_, &s) == 0
3891               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
3892             {
3893               if (s.st_size != 0)
3894                 ::unlink(this->name_);
3895               else if (!parameters->options().relocatable())
3896                 {
3897                   // If we don't unlink the existing file, add execute
3898                   // permission where read permissions already exist
3899                   // and where the umask permits.
3900                   int mask = ::umask(0);
3901                   ::umask(mask);
3902                   s.st_mode |= (s.st_mode & 0444) >> 2;
3903                   ::chmod(this->name_, s.st_mode & ~mask);
3904                 }
3905             }
3906
3907           int mode = parameters->options().relocatable() ? 0666 : 0777;
3908           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
3909                                   mode);
3910           if (o < 0)
3911             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3912           this->o_ = o;
3913         }
3914     }
3915
3916   this->map();
3917 }
3918
3919 // Resize the output file.
3920
3921 void
3922 Output_file::resize(off_t file_size)
3923 {
3924   // If the mmap is mapping an anonymous memory buffer, this is easy:
3925   // just mremap to the new size.  If it's mapping to a file, we want
3926   // to unmap to flush to the file, then remap after growing the file.
3927   if (this->map_is_anonymous_)
3928     {
3929       void* base = ::mremap(this->base_, this->file_size_, file_size,
3930                             MREMAP_MAYMOVE);
3931       if (base == MAP_FAILED)
3932         gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
3933       this->base_ = static_cast<unsigned char*>(base);
3934       this->file_size_ = file_size;
3935     }
3936   else
3937     {
3938       this->unmap();
3939       this->file_size_ = file_size;
3940       if (!this->map_no_anonymous())
3941         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
3942     }
3943 }
3944
3945 // Map an anonymous block of memory which will later be written to the
3946 // file.  Return whether the map succeeded.
3947
3948 bool
3949 Output_file::map_anonymous()
3950 {
3951   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3952                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3953   if (base != MAP_FAILED)
3954     {
3955       this->map_is_anonymous_ = true;
3956       this->base_ = static_cast<unsigned char*>(base);
3957       return true;
3958     }
3959   return false;
3960 }
3961
3962 // Map the file into memory.  Return whether the mapping succeeded.
3963
3964 bool
3965 Output_file::map_no_anonymous()
3966 {
3967   const int o = this->o_;
3968
3969   // If the output file is not a regular file, don't try to mmap it;
3970   // instead, we'll mmap a block of memory (an anonymous buffer), and
3971   // then later write the buffer to the file.
3972   void* base;
3973   struct stat statbuf;
3974   if (o == STDOUT_FILENO || o == STDERR_FILENO
3975       || ::fstat(o, &statbuf) != 0
3976       || !S_ISREG(statbuf.st_mode)
3977       || this->is_temporary_)
3978     return false;
3979
3980   // Ensure that we have disk space available for the file.  If we
3981   // don't do this, it is possible that we will call munmap, close,
3982   // and exit with dirty buffers still in the cache with no assigned
3983   // disk blocks.  If the disk is out of space at that point, the
3984   // output file will wind up incomplete, but we will have already
3985   // exited.  The alternative to fallocate would be to use fdatasync,
3986   // but that would be a more significant performance hit.
3987   if (::posix_fallocate(o, 0, this->file_size_) < 0)
3988     gold_fatal(_("%s: %s"), this->name_, strerror(errno));
3989
3990   // Map the file into memory.
3991   base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3992                 MAP_SHARED, o, 0);
3993
3994   // The mmap call might fail because of file system issues: the file
3995   // system might not support mmap at all, or it might not support
3996   // mmap with PROT_WRITE.
3997   if (base == MAP_FAILED)
3998     return false;
3999
4000   this->map_is_anonymous_ = false;
4001   this->base_ = static_cast<unsigned char*>(base);
4002   return true;
4003 }
4004
4005 // Map the file into memory.
4006
4007 void
4008 Output_file::map()
4009 {
4010   if (this->map_no_anonymous())
4011     return;
4012
4013   // The mmap call might fail because of file system issues: the file
4014   // system might not support mmap at all, or it might not support
4015   // mmap with PROT_WRITE.  I'm not sure which errno values we will
4016   // see in all cases, so if the mmap fails for any reason and we
4017   // don't care about file contents, try for an anonymous map.
4018   if (this->map_anonymous())
4019     return;
4020
4021   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4022              this->name_, static_cast<unsigned long>(this->file_size_),
4023              strerror(errno));
4024 }
4025
4026 // Unmap the file from memory.
4027
4028 void
4029 Output_file::unmap()
4030 {
4031   if (::munmap(this->base_, this->file_size_) < 0)
4032     gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4033   this->base_ = NULL;
4034 }
4035
4036 // Close the output file.
4037
4038 void
4039 Output_file::close()
4040 {
4041   // If the map isn't file-backed, we need to write it now.
4042   if (this->map_is_anonymous_ && !this->is_temporary_)
4043     {
4044       size_t bytes_to_write = this->file_size_;
4045       size_t offset = 0;
4046       while (bytes_to_write > 0)
4047         {
4048           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4049                                           bytes_to_write);
4050           if (bytes_written == 0)
4051             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4052           else if (bytes_written < 0)
4053             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4054           else
4055             {
4056               bytes_to_write -= bytes_written;
4057               offset += bytes_written;
4058             }
4059         }
4060     }
4061   this->unmap();
4062
4063   // We don't close stdout or stderr
4064   if (this->o_ != STDOUT_FILENO
4065       && this->o_ != STDERR_FILENO
4066       && !this->is_temporary_)
4067     if (::close(this->o_) < 0)
4068       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4069   this->o_ = -1;
4070 }
4071
4072 // Instantiate the templates we need.  We could use the configure
4073 // script to restrict this to only the ones for implemented targets.
4074
4075 #ifdef HAVE_TARGET_32_LITTLE
4076 template
4077 off_t
4078 Output_section::add_input_section<32, false>(
4079     Sized_relobj<32, false>* object,
4080     unsigned int shndx,
4081     const char* secname,
4082     const elfcpp::Shdr<32, false>& shdr,
4083     unsigned int reloc_shndx,
4084     bool have_sections_script);
4085 #endif
4086
4087 #ifdef HAVE_TARGET_32_BIG
4088 template
4089 off_t
4090 Output_section::add_input_section<32, true>(
4091     Sized_relobj<32, true>* object,
4092     unsigned int shndx,
4093     const char* secname,
4094     const elfcpp::Shdr<32, true>& shdr,
4095     unsigned int reloc_shndx,
4096     bool have_sections_script);
4097 #endif
4098
4099 #ifdef HAVE_TARGET_64_LITTLE
4100 template
4101 off_t
4102 Output_section::add_input_section<64, false>(
4103     Sized_relobj<64, false>* object,
4104     unsigned int shndx,
4105     const char* secname,
4106     const elfcpp::Shdr<64, false>& shdr,
4107     unsigned int reloc_shndx,
4108     bool have_sections_script);
4109 #endif
4110
4111 #ifdef HAVE_TARGET_64_BIG
4112 template
4113 off_t
4114 Output_section::add_input_section<64, true>(
4115     Sized_relobj<64, true>* object,
4116     unsigned int shndx,
4117     const char* secname,
4118     const elfcpp::Shdr<64, true>& shdr,
4119     unsigned int reloc_shndx,
4120     bool have_sections_script);
4121 #endif
4122
4123 #ifdef HAVE_TARGET_32_LITTLE
4124 template
4125 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4126 #endif
4127
4128 #ifdef HAVE_TARGET_32_BIG
4129 template
4130 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4131 #endif
4132
4133 #ifdef HAVE_TARGET_64_LITTLE
4134 template
4135 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4136 #endif
4137
4138 #ifdef HAVE_TARGET_64_BIG
4139 template
4140 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4141 #endif
4142
4143 #ifdef HAVE_TARGET_32_LITTLE
4144 template
4145 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4146 #endif
4147
4148 #ifdef HAVE_TARGET_32_BIG
4149 template
4150 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4151 #endif
4152
4153 #ifdef HAVE_TARGET_64_LITTLE
4154 template
4155 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4156 #endif
4157
4158 #ifdef HAVE_TARGET_64_BIG
4159 template
4160 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4161 #endif
4162
4163 #ifdef HAVE_TARGET_32_LITTLE
4164 template
4165 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4166 #endif
4167
4168 #ifdef HAVE_TARGET_32_BIG
4169 template
4170 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4171 #endif
4172
4173 #ifdef HAVE_TARGET_64_LITTLE
4174 template
4175 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4176 #endif
4177
4178 #ifdef HAVE_TARGET_64_BIG
4179 template
4180 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4181 #endif
4182
4183 #ifdef HAVE_TARGET_32_LITTLE
4184 template
4185 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4186 #endif
4187
4188 #ifdef HAVE_TARGET_32_BIG
4189 template
4190 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4191 #endif
4192
4193 #ifdef HAVE_TARGET_64_LITTLE
4194 template
4195 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4196 #endif
4197
4198 #ifdef HAVE_TARGET_64_BIG
4199 template
4200 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4201 #endif
4202
4203 #ifdef HAVE_TARGET_32_LITTLE
4204 template
4205 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4206 #endif
4207
4208 #ifdef HAVE_TARGET_32_BIG
4209 template
4210 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4211 #endif
4212
4213 #ifdef HAVE_TARGET_64_LITTLE
4214 template
4215 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4216 #endif
4217
4218 #ifdef HAVE_TARGET_64_BIG
4219 template
4220 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4221 #endif
4222
4223 #ifdef HAVE_TARGET_32_LITTLE
4224 template
4225 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4226 #endif
4227
4228 #ifdef HAVE_TARGET_32_BIG
4229 template
4230 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4231 #endif
4232
4233 #ifdef HAVE_TARGET_64_LITTLE
4234 template
4235 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4236 #endif
4237
4238 #ifdef HAVE_TARGET_64_BIG
4239 template
4240 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4241 #endif
4242
4243 #ifdef HAVE_TARGET_32_LITTLE
4244 template
4245 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4246 #endif
4247
4248 #ifdef HAVE_TARGET_32_BIG
4249 template
4250 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4251 #endif
4252
4253 #ifdef HAVE_TARGET_64_LITTLE
4254 template
4255 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4256 #endif
4257
4258 #ifdef HAVE_TARGET_64_BIG
4259 template
4260 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4261 #endif
4262
4263 #ifdef HAVE_TARGET_32_LITTLE
4264 template
4265 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4266 #endif
4267
4268 #ifdef HAVE_TARGET_32_BIG
4269 template
4270 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4271 #endif
4272
4273 #ifdef HAVE_TARGET_64_LITTLE
4274 template
4275 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4276 #endif
4277
4278 #ifdef HAVE_TARGET_64_BIG
4279 template
4280 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4281 #endif
4282
4283 #ifdef HAVE_TARGET_32_LITTLE
4284 template
4285 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4286 #endif
4287
4288 #ifdef HAVE_TARGET_32_BIG
4289 template
4290 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4291 #endif
4292
4293 #ifdef HAVE_TARGET_64_LITTLE
4294 template
4295 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4296 #endif
4297
4298 #ifdef HAVE_TARGET_64_BIG
4299 template
4300 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4301 #endif
4302
4303 #ifdef HAVE_TARGET_32_LITTLE
4304 template
4305 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4306 #endif
4307
4308 #ifdef HAVE_TARGET_32_BIG
4309 template
4310 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4311 #endif
4312
4313 #ifdef HAVE_TARGET_64_LITTLE
4314 template
4315 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4316 #endif
4317
4318 #ifdef HAVE_TARGET_64_BIG
4319 template
4320 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4321 #endif
4322
4323 #ifdef HAVE_TARGET_32_LITTLE
4324 template
4325 class Output_data_group<32, false>;
4326 #endif
4327
4328 #ifdef HAVE_TARGET_32_BIG
4329 template
4330 class Output_data_group<32, true>;
4331 #endif
4332
4333 #ifdef HAVE_TARGET_64_LITTLE
4334 template
4335 class Output_data_group<64, false>;
4336 #endif
4337
4338 #ifdef HAVE_TARGET_64_BIG
4339 template
4340 class Output_data_group<64, true>;
4341 #endif
4342
4343 #ifdef HAVE_TARGET_32_LITTLE
4344 template
4345 class Output_data_got<32, false>;
4346 #endif
4347
4348 #ifdef HAVE_TARGET_32_BIG
4349 template
4350 class Output_data_got<32, true>;
4351 #endif
4352
4353 #ifdef HAVE_TARGET_64_LITTLE
4354 template
4355 class Output_data_got<64, false>;
4356 #endif
4357
4358 #ifdef HAVE_TARGET_64_BIG
4359 template
4360 class Output_data_got<64, true>;
4361 #endif
4362
4363 } // End namespace gold.