06ecc10d4aefac4d42713893a740bcacb8bc764c
[dragonfly.git] / sys / vm / vm_object.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *      This product includes software developed by the University of
21  *      California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
67  */
68
69 /*
70  *      Virtual memory object module.
71  */
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>           /* for curproc, pageproc */
76 #include <sys/thread.h>
77 #include <sys/vnode.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/mount.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
83 #include <sys/refcount.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_zone.h>
97
98 #define EASY_SCAN_FACTOR        8
99
100 static void     vm_object_qcollapse(vm_object_t object,
101                                     vm_object_t backing_object);
102 static void     vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
103                                              int pagerflags);
104 static void     vm_object_lock_init(vm_object_t);
105
106
107 /*
108  *      Virtual memory objects maintain the actual data
109  *      associated with allocated virtual memory.  A given
110  *      page of memory exists within exactly one object.
111  *
112  *      An object is only deallocated when all "references"
113  *      are given up.  Only one "reference" to a given
114  *      region of an object should be writeable.
115  *
116  *      Associated with each object is a list of all resident
117  *      memory pages belonging to that object; this list is
118  *      maintained by the "vm_page" module, and locked by the object's
119  *      lock.
120  *
121  *      Each object also records a "pager" routine which is
122  *      used to retrieve (and store) pages to the proper backing
123  *      storage.  In addition, objects may be backed by other
124  *      objects from which they were virtual-copied.
125  *
126  *      The only items within the object structure which are
127  *      modified after time of creation are:
128  *              reference count         locked by object's lock
129  *              pager routine           locked by object's lock
130  *
131  */
132
133 struct object_q vm_object_list;         /* locked by vmobj_token */
134 struct vm_object kernel_object;
135
136 static long vm_object_count;            /* locked by vmobj_token */
137 extern int vm_pageout_page_count;
138
139 static long object_collapses;
140 static long object_bypasses;
141 static int next_index;
142 static vm_zone_t obj_zone;
143 static struct vm_zone obj_zone_store;
144 #define VM_OBJECTS_INIT 256
145 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
146
147 /*
148  * Misc low level routines
149  */
150 static void
151 vm_object_lock_init(vm_object_t obj)
152 {
153 #if defined(DEBUG_LOCKS)
154         int i;
155
156         obj->debug_hold_bitmap = 0;
157         obj->debug_hold_ovfl = 0;
158         for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
159                 obj->debug_hold_thrs[i] = NULL;
160                 obj->debug_hold_file[i] = NULL;
161                 obj->debug_hold_line[i] = 0;
162         }
163 #endif
164 }
165
166 void
167 vm_object_lock_swap(void)
168 {
169         lwkt_token_swap();
170 }
171
172 void
173 vm_object_lock(vm_object_t obj)
174 {
175         lwkt_gettoken(&obj->token);
176 }
177
178 /*
179  * Returns TRUE on sucesss
180  */
181 static int
182 vm_object_lock_try(vm_object_t obj)
183 {
184         return(lwkt_trytoken(&obj->token));
185 }
186
187 void
188 vm_object_lock_shared(vm_object_t obj)
189 {
190         lwkt_gettoken_shared(&obj->token);
191 }
192
193 void
194 vm_object_unlock(vm_object_t obj)
195 {
196         lwkt_reltoken(&obj->token);
197 }
198
199 static __inline void
200 vm_object_assert_held(vm_object_t obj)
201 {
202         ASSERT_LWKT_TOKEN_HELD(&obj->token);
203 }
204
205 void
206 #ifndef DEBUG_LOCKS
207 vm_object_hold(vm_object_t obj)
208 #else
209 debugvm_object_hold(vm_object_t obj, char *file, int line)
210 #endif
211 {
212         KKASSERT(obj != NULL);
213
214         /*
215          * Object must be held (object allocation is stable due to callers
216          * context, typically already holding the token on a parent object)
217          * prior to potentially blocking on the lock, otherwise the object
218          * can get ripped away from us.
219          */
220         refcount_acquire(&obj->hold_count);
221         vm_object_lock(obj);
222
223 #if defined(DEBUG_LOCKS)
224         int i;
225         u_int mask;
226
227         for (;;) {
228                 mask = ~obj->debug_hold_bitmap;
229                 cpu_ccfence();
230                 if (mask == 0xFFFFFFFFU) {
231                         if (obj->debug_hold_ovfl == 0)
232                                 obj->debug_hold_ovfl = 1;
233                         break;
234                 }
235                 i = ffs(mask) - 1;
236                 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
237                                       ~mask | (1 << i))) {
238                         obj->debug_hold_bitmap |= (1 << i);
239                         obj->debug_hold_thrs[i] = curthread;
240                         obj->debug_hold_file[i] = file;
241                         obj->debug_hold_line[i] = line;
242                         break;
243                 }
244         }
245 #endif
246 }
247
248 int
249 #ifndef DEBUG_LOCKS
250 vm_object_hold_try(vm_object_t obj)
251 #else
252 debugvm_object_hold_try(vm_object_t obj, char *file, int line)
253 #endif
254 {
255         KKASSERT(obj != NULL);
256
257         /*
258          * Object must be held (object allocation is stable due to callers
259          * context, typically already holding the token on a parent object)
260          * prior to potentially blocking on the lock, otherwise the object
261          * can get ripped away from us.
262          */
263         refcount_acquire(&obj->hold_count);
264         if (vm_object_lock_try(obj) == 0) {
265                 if (refcount_release(&obj->hold_count)) {
266                         if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
267                                 zfree(obj_zone, obj);
268                 }
269                 return(0);
270         }
271
272 #if defined(DEBUG_LOCKS)
273         int i;
274         u_int mask;
275
276         for (;;) {
277                 mask = ~obj->debug_hold_bitmap;
278                 cpu_ccfence();
279                 if (mask == 0xFFFFFFFFU) {
280                         if (obj->debug_hold_ovfl == 0)
281                                 obj->debug_hold_ovfl = 1;
282                         break;
283                 }
284                 i = ffs(mask) - 1;
285                 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
286                                       ~mask | (1 << i))) {
287                         obj->debug_hold_bitmap |= (1 << i);
288                         obj->debug_hold_thrs[i] = curthread;
289                         obj->debug_hold_file[i] = file;
290                         obj->debug_hold_line[i] = line;
291                         break;
292                 }
293         }
294 #endif
295         return(1);
296 }
297
298 void
299 #ifndef DEBUG_LOCKS
300 vm_object_hold_shared(vm_object_t obj)
301 #else
302 debugvm_object_hold_shared(vm_object_t obj, char *file, int line)
303 #endif
304 {
305         KKASSERT(obj != NULL);
306
307         /*
308          * Object must be held (object allocation is stable due to callers
309          * context, typically already holding the token on a parent object)
310          * prior to potentially blocking on the lock, otherwise the object
311          * can get ripped away from us.
312          */
313         refcount_acquire(&obj->hold_count);
314         vm_object_lock_shared(obj);
315
316 #if defined(DEBUG_LOCKS)
317         int i;
318         u_int mask;
319
320         for (;;) {
321                 mask = ~obj->debug_hold_bitmap;
322                 cpu_ccfence();
323                 if (mask == 0xFFFFFFFFU) {
324                         if (obj->debug_hold_ovfl == 0)
325                                 obj->debug_hold_ovfl = 1;
326                         break;
327                 }
328                 i = ffs(mask) - 1;
329                 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
330                                       ~mask | (1 << i))) {
331                         obj->debug_hold_bitmap |= (1 << i);
332                         obj->debug_hold_thrs[i] = curthread;
333                         obj->debug_hold_file[i] = file;
334                         obj->debug_hold_line[i] = line;
335                         break;
336                 }
337         }
338 #endif
339 }
340
341 /*
342  * Drop the token and hold_count on the object.
343  */
344 void
345 vm_object_drop(vm_object_t obj)
346 {
347         if (obj == NULL)
348                 return;
349
350 #if defined(DEBUG_LOCKS)
351         int found = 0;
352         int i;
353
354         for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
355                 if ((obj->debug_hold_bitmap & (1 << i)) &&
356                     (obj->debug_hold_thrs[i] == curthread)) {
357                         obj->debug_hold_bitmap &= ~(1 << i);
358                         obj->debug_hold_thrs[i] = NULL;
359                         obj->debug_hold_file[i] = NULL;
360                         obj->debug_hold_line[i] = 0;
361                         found = 1;
362                         break;
363                 }
364         }
365
366         if (found == 0 && obj->debug_hold_ovfl == 0)
367                 panic("vm_object: attempt to drop hold on non-self-held obj");
368 #endif
369
370         /*
371          * No new holders should be possible once we drop hold_count 1->0 as
372          * there is no longer any way to reference the object.
373          */
374         KKASSERT(obj->hold_count > 0);
375         if (refcount_release(&obj->hold_count)) {
376                 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
377                         vm_object_unlock(obj);
378                         zfree(obj_zone, obj);
379                 } else {
380                         vm_object_unlock(obj);
381                 }
382         } else {
383                 vm_object_unlock(obj);
384         }
385 }
386
387 /*
388  * Initialize a freshly allocated object, returning a held object.
389  *
390  * Used only by vm_object_allocate() and zinitna().
391  *
392  * No requirements.
393  */
394 void
395 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
396 {
397         int incr;
398
399         RB_INIT(&object->rb_memq);
400         LIST_INIT(&object->shadow_head);
401         lwkt_token_init(&object->token, "vmobj");
402
403         object->type = type;
404         object->size = size;
405         object->ref_count = 1;
406         object->hold_count = 0;
407         object->flags = 0;
408         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
409                 vm_object_set_flag(object, OBJ_ONEMAPPING);
410         object->paging_in_progress = 0;
411         object->resident_page_count = 0;
412         object->agg_pv_list_count = 0;
413         object->shadow_count = 0;
414         /* cpu localization twist */
415         object->pg_color = (int)(intptr_t)curthread;
416         if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
417                 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
418         else
419                 incr = size;
420         next_index = (next_index + incr) & PQ_L2_MASK;
421         object->handle = NULL;
422         object->backing_object = NULL;
423         object->backing_object_offset = (vm_ooffset_t)0;
424
425         object->generation++;
426         object->swblock_count = 0;
427         RB_INIT(&object->swblock_root);
428         vm_object_lock_init(object);
429         pmap_object_init(object);
430
431         vm_object_hold(object);
432         lwkt_gettoken(&vmobj_token);
433         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
434         vm_object_count++;
435         lwkt_reltoken(&vmobj_token);
436 }
437
438 /*
439  * Initialize the VM objects module.
440  *
441  * Called from the low level boot code only.
442  */
443 void
444 vm_object_init(void)
445 {
446         TAILQ_INIT(&vm_object_list);
447         
448         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
449                             &kernel_object);
450         vm_object_drop(&kernel_object);
451
452         obj_zone = &obj_zone_store;
453         zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
454                 vm_objects_init, VM_OBJECTS_INIT);
455 }
456
457 void
458 vm_object_init2(void)
459 {
460         zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
461 }
462
463 /*
464  * Allocate and return a new object of the specified type and size.
465  *
466  * No requirements.
467  */
468 vm_object_t
469 vm_object_allocate(objtype_t type, vm_pindex_t size)
470 {
471         vm_object_t result;
472
473         result = (vm_object_t) zalloc(obj_zone);
474
475         _vm_object_allocate(type, size, result);
476         vm_object_drop(result);
477
478         return (result);
479 }
480
481 /*
482  * This version returns a held object, allowing further atomic initialization
483  * of the object.
484  */
485 vm_object_t
486 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
487 {
488         vm_object_t result;
489
490         result = (vm_object_t) zalloc(obj_zone);
491
492         _vm_object_allocate(type, size, result);
493
494         return (result);
495 }
496
497 /*
498  * Add an additional reference to a vm_object.  The object must already be
499  * held.  The original non-lock version is no longer supported.  The object
500  * must NOT be chain locked by anyone at the time the reference is added.
501  *
502  * Referencing a chain-locked object can blow up the fairly sensitive
503  * ref_count and shadow_count tests in the deallocator.  Most callers
504  * will call vm_object_chain_wait() prior to calling
505  * vm_object_reference_locked() to avoid the case.
506  *
507  * The object must be held.
508  */
509 void
510 vm_object_reference_locked(vm_object_t object)
511 {
512         KKASSERT(object != NULL);
513         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
514         KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
515         object->ref_count++;
516         if (object->type == OBJT_VNODE) {
517                 vref(object->handle);
518                 /* XXX what if the vnode is being destroyed? */
519         }
520 }
521
522 /*
523  * Object OBJ_CHAINLOCK lock handling.
524  *
525  * The caller can chain-lock backing objects recursively and then
526  * use vm_object_chain_release_all() to undo the whole chain.
527  *
528  * Chain locks are used to prevent collapses and are only applicable
529  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
530  * on other object types are ignored.  This is also important because
531  * it allows e.g. the vnode underlying a memory mapping to take concurrent
532  * faults.
533  *
534  * The object must usually be held on entry, though intermediate
535  * objects need not be held on release.
536  */
537 void
538 vm_object_chain_wait(vm_object_t object)
539 {
540         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
541         while (object->flags & OBJ_CHAINLOCK) {
542                 vm_object_set_flag(object, OBJ_CHAINWANT);
543                 tsleep(object, 0, "objchain", 0);
544         }
545 }
546
547 void
548 vm_object_chain_acquire(vm_object_t object)
549 {
550         if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
551                 vm_object_chain_wait(object);
552                 vm_object_set_flag(object, OBJ_CHAINLOCK);
553         }
554 }
555
556 void
557 vm_object_chain_release(vm_object_t object)
558 {
559         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
560         if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
561                 KKASSERT(object->flags & OBJ_CHAINLOCK);
562                 if (object->flags & OBJ_CHAINWANT) {
563                         vm_object_clear_flag(object,
564                                              OBJ_CHAINLOCK | OBJ_CHAINWANT);
565                         wakeup(object);
566                 } else {
567                         vm_object_clear_flag(object, OBJ_CHAINLOCK);
568                 }
569         }
570 }
571
572 /*
573  * This releases the entire chain of objects from first_object to and
574  * including stopobj, flowing through object->backing_object.
575  *
576  * We release stopobj first as an optimization as this object is most
577  * likely to be shared across multiple processes.
578  */
579 void
580 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
581 {
582         vm_object_t backing_object;
583         vm_object_t object;
584
585         vm_object_chain_release(stopobj);
586         object = first_object;
587
588         while (object != stopobj) {
589                 KKASSERT(object);
590                 if (object != first_object)
591                         vm_object_hold(object);
592                 backing_object = object->backing_object;
593                 vm_object_chain_release(object);
594                 if (object != first_object)
595                         vm_object_drop(object);
596                 object = backing_object;
597         }
598 }
599
600 /*
601  * Dereference an object and its underlying vnode.
602  *
603  * The object must be held and will be held on return.
604  */
605 static void
606 vm_object_vndeallocate(vm_object_t object)
607 {
608         struct vnode *vp = (struct vnode *) object->handle;
609
610         KASSERT(object->type == OBJT_VNODE,
611             ("vm_object_vndeallocate: not a vnode object"));
612         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
613         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
614 #ifdef INVARIANTS
615         if (object->ref_count == 0) {
616                 vprint("vm_object_vndeallocate", vp);
617                 panic("vm_object_vndeallocate: bad object reference count");
618         }
619 #endif
620         object->ref_count--;
621         if (object->ref_count == 0)
622                 vclrflags(vp, VTEXT);
623         vrele(vp);
624 }
625
626 /*
627  * Release a reference to the specified object, gained either through a
628  * vm_object_allocate or a vm_object_reference call.  When all references
629  * are gone, storage associated with this object may be relinquished.
630  *
631  * The caller does not have to hold the object locked but must have control
632  * over the reference in question in order to guarantee that the object
633  * does not get ripped out from under us.
634  */
635 void
636 vm_object_deallocate(vm_object_t object)
637 {
638         if (object) {
639                 vm_object_hold(object);
640                 vm_object_deallocate_locked(object);
641                 vm_object_drop(object);
642         }
643 }
644
645 void
646 vm_object_deallocate_locked(vm_object_t object)
647 {
648         struct vm_object_dealloc_list *dlist = NULL;
649         struct vm_object_dealloc_list *dtmp;
650         vm_object_t temp;
651         int must_drop = 0;
652
653         /*
654          * We may chain deallocate object, but additional objects may
655          * collect on the dlist which also have to be deallocated.  We
656          * must avoid a recursion, vm_object chains can get deep.
657          */
658 again:
659         while (object != NULL) {
660 #if 0
661                 /*
662                  * Don't rip a ref_count out from under an object undergoing
663                  * collapse, it will confuse the collapse code.
664                  */
665                 vm_object_chain_wait(object);
666 #endif
667                 if (object->type == OBJT_VNODE) {
668                         vm_object_vndeallocate(object);
669                         break;
670                 }
671
672                 if (object->ref_count == 0) {
673                         panic("vm_object_deallocate: object deallocated "
674                               "too many times: %d", object->type);
675                 }
676                 if (object->ref_count > 2) {
677                         object->ref_count--;
678                         break;
679                 }
680
681                 /*
682                  * Here on ref_count of one or two, which are special cases for
683                  * objects.
684                  *
685                  * Nominal ref_count > 1 case if the second ref is not from
686                  * a shadow.
687                  */
688                 if (object->ref_count == 2 && object->shadow_count == 0) {
689                         vm_object_set_flag(object, OBJ_ONEMAPPING);
690                         object->ref_count--;
691                         break;
692                 }
693
694                 /*
695                  * If the second ref is from a shadow we chain along it
696                  * upwards if object's handle is exhausted.
697                  *
698                  * We have to decrement object->ref_count before potentially
699                  * collapsing the first shadow object or the collapse code
700                  * will not be able to handle the degenerate case to remove
701                  * object.  However, if we do it too early the object can
702                  * get ripped out from under us.
703                  */
704                 if (object->ref_count == 2 && object->shadow_count == 1 &&
705                     object->handle == NULL && (object->type == OBJT_DEFAULT ||
706                                                object->type == OBJT_SWAP)) {
707                         temp = LIST_FIRST(&object->shadow_head);
708                         KKASSERT(temp != NULL);
709                         vm_object_hold(temp);
710
711                         /*
712                          * Wait for any paging to complete so the collapse
713                          * doesn't (or isn't likely to) qcollapse.  pip
714                          * waiting must occur before we acquire the
715                          * chainlock.
716                          */
717                         while (
718                                 temp->paging_in_progress ||
719                                 object->paging_in_progress
720                         ) {
721                                 vm_object_pip_wait(temp, "objde1");
722                                 vm_object_pip_wait(object, "objde2");
723                         }
724
725                         /*
726                          * If the parent is locked we have to give up, as
727                          * otherwise we would be acquiring locks in the
728                          * wrong order and potentially deadlock.
729                          */
730                         if (temp->flags & OBJ_CHAINLOCK) {
731                                 vm_object_drop(temp);
732                                 goto skip;
733                         }
734                         vm_object_chain_acquire(temp);
735
736                         /*
737                          * Recheck/retry after the hold and the paging
738                          * wait, both of which can block us.
739                          */
740                         if (object->ref_count != 2 ||
741                             object->shadow_count != 1 ||
742                             object->handle ||
743                             LIST_FIRST(&object->shadow_head) != temp ||
744                             (object->type != OBJT_DEFAULT &&
745                              object->type != OBJT_SWAP)) {
746                                 vm_object_chain_release(temp);
747                                 vm_object_drop(temp);
748                                 continue;
749                         }
750
751                         /*
752                          * We can safely drop object's ref_count now.
753                          */
754                         KKASSERT(object->ref_count == 2);
755                         object->ref_count--;
756
757                         /*
758                          * If our single parent is not collapseable just
759                          * decrement ref_count (2->1) and stop.
760                          */
761                         if (temp->handle || (temp->type != OBJT_DEFAULT &&
762                                              temp->type != OBJT_SWAP)) {
763                                 vm_object_chain_release(temp);
764                                 vm_object_drop(temp);
765                                 break;
766                         }
767
768                         /*
769                          * At this point we have already dropped object's
770                          * ref_count so it is possible for a race to
771                          * deallocate obj out from under us.  Any collapse
772                          * will re-check the situation.  We must not block
773                          * until we are able to collapse.
774                          *
775                          * Bump temp's ref_count to avoid an unwanted
776                          * degenerate recursion (can't call
777                          * vm_object_reference_locked() because it asserts
778                          * that CHAINLOCK is not set).
779                          */
780                         temp->ref_count++;
781                         KKASSERT(temp->ref_count > 1);
782
783                         /*
784                          * Collapse temp, then deallocate the extra ref
785                          * formally.
786                          */
787                         vm_object_collapse(temp, &dlist);
788                         vm_object_chain_release(temp);
789                         if (must_drop) {
790                                 vm_object_lock_swap();
791                                 vm_object_drop(object);
792                         }
793                         object = temp;
794                         must_drop = 1;
795                         continue;
796                 }
797
798                 /*
799                  * Drop the ref and handle termination on the 1->0 transition.
800                  * We may have blocked above so we have to recheck.
801                  */
802 skip:
803                 KKASSERT(object->ref_count != 0);
804                 if (object->ref_count >= 2) {
805                         object->ref_count--;
806                         break;
807                 }
808                 KKASSERT(object->ref_count == 1);
809
810                 /*
811                  * 1->0 transition.  Chain through the backing_object.
812                  * Maintain the ref until we've located the backing object,
813                  * then re-check.
814                  */
815                 while ((temp = object->backing_object) != NULL) {
816                         vm_object_hold(temp);
817                         if (temp == object->backing_object)
818                                 break;
819                         vm_object_drop(temp);
820                 }
821
822                 /*
823                  * 1->0 transition verified, retry if ref_count is no longer
824                  * 1.  Otherwise disconnect the backing_object (temp) and
825                  * clean up.
826                  */
827                 if (object->ref_count != 1) {
828                         vm_object_drop(temp);
829                         continue;
830                 }
831
832                 /*
833                  * It shouldn't be possible for the object to be chain locked
834                  * if we're removing the last ref on it.
835                  */
836                 KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
837
838                 if (temp) {
839                         LIST_REMOVE(object, shadow_list);
840                         temp->shadow_count--;
841                         temp->generation++;
842                         object->backing_object = NULL;
843                 }
844
845                 --object->ref_count;
846                 if ((object->flags & OBJ_DEAD) == 0)
847                         vm_object_terminate(object);
848                 if (must_drop && temp)
849                         vm_object_lock_swap();
850                 if (must_drop)
851                         vm_object_drop(object);
852                 object = temp;
853                 must_drop = 1;
854         }
855         if (must_drop && object)
856                 vm_object_drop(object);
857
858         /*
859          * Additional tail recursion on dlist.  Avoid a recursion.  Objects
860          * on the dlist have a hold count but are not locked.
861          */
862         if ((dtmp = dlist) != NULL) {
863                 dlist = dtmp->next;
864                 object = dtmp->object;
865                 kfree(dtmp, M_TEMP);
866
867                 vm_object_lock(object); /* already held, add lock */
868                 must_drop = 1;          /* and we're responsible for it */
869                 goto again;
870         }
871 }
872
873 /*
874  * Destroy the specified object, freeing up related resources.
875  *
876  * The object must have zero references.
877  *
878  * The object must held.  The caller is responsible for dropping the object
879  * after terminate returns.  Terminate does NOT drop the object.
880  */
881 static int vm_object_terminate_callback(vm_page_t p, void *data);
882
883 void
884 vm_object_terminate(vm_object_t object)
885 {
886         /*
887          * Make sure no one uses us.  Once we set OBJ_DEAD we should be
888          * able to safely block.
889          */
890         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
891         KKASSERT((object->flags & OBJ_DEAD) == 0);
892         vm_object_set_flag(object, OBJ_DEAD);
893
894         /*
895          * Wait for the pageout daemon to be done with the object
896          */
897         vm_object_pip_wait(object, "objtrm1");
898
899         KASSERT(!object->paging_in_progress,
900                 ("vm_object_terminate: pageout in progress"));
901
902         /*
903          * Clean and free the pages, as appropriate. All references to the
904          * object are gone, so we don't need to lock it.
905          */
906         if (object->type == OBJT_VNODE) {
907                 struct vnode *vp;
908
909                 /*
910                  * Clean pages and flush buffers.
911                  *
912                  * NOTE!  TMPFS buffer flushes do not typically flush the
913                  *        actual page to swap as this would be highly
914                  *        inefficient, and normal filesystems usually wrap
915                  *        page flushes with buffer cache buffers.
916                  *
917                  *        To deal with this we have to call vinvalbuf() both
918                  *        before and after the vm_object_page_clean().
919                  */
920                 vp = (struct vnode *) object->handle;
921                 vinvalbuf(vp, V_SAVE, 0, 0);
922                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
923                 vinvalbuf(vp, V_SAVE, 0, 0);
924         }
925
926         /*
927          * Wait for any I/O to complete, after which there had better not
928          * be any references left on the object.
929          */
930         vm_object_pip_wait(object, "objtrm2");
931
932         if (object->ref_count != 0) {
933                 panic("vm_object_terminate: object with references, "
934                       "ref_count=%d", object->ref_count);
935         }
936
937         /*
938          * Cleanup any shared pmaps associated with this object.
939          */
940         pmap_object_free(object);
941
942         /*
943          * Now free any remaining pages. For internal objects, this also
944          * removes them from paging queues. Don't free wired pages, just
945          * remove them from the object. 
946          */
947         vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
948                                 vm_object_terminate_callback, NULL);
949
950         /*
951          * Let the pager know object is dead.
952          */
953         vm_pager_deallocate(object);
954
955         /*
956          * Wait for the object hold count to hit 1, clean out pages as
957          * we go.  vmobj_token interlocks any race conditions that might
958          * pick the object up from the vm_object_list after we have cleared
959          * rb_memq.
960          */
961         for (;;) {
962                 if (RB_ROOT(&object->rb_memq) == NULL)
963                         break;
964                 kprintf("vm_object_terminate: Warning, object %p "
965                         "still has %d pages\n",
966                         object, object->resident_page_count);
967                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
968                                         vm_object_terminate_callback, NULL);
969         }
970
971         /*
972          * There had better not be any pages left
973          */
974         KKASSERT(object->resident_page_count == 0);
975
976         /*
977          * Remove the object from the global object list.
978          */
979         lwkt_gettoken(&vmobj_token);
980         TAILQ_REMOVE(&vm_object_list, object, object_list);
981         vm_object_count--;
982         lwkt_reltoken(&vmobj_token);
983         vm_object_dead_wakeup(object);
984
985         if (object->ref_count != 0) {
986                 panic("vm_object_terminate2: object with references, "
987                       "ref_count=%d", object->ref_count);
988         }
989
990         /*
991          * NOTE: The object hold_count is at least 1, so we cannot zfree()
992          *       the object here.  See vm_object_drop().
993          */
994 }
995
996 /*
997  * The caller must hold the object.
998  */
999 static int
1000 vm_object_terminate_callback(vm_page_t p, void *data __unused)
1001 {
1002         vm_object_t object;
1003
1004         object = p->object;
1005         vm_page_busy_wait(p, TRUE, "vmpgtrm");
1006         if (object != p->object) {
1007                 kprintf("vm_object_terminate: Warning: Encountered "
1008                         "busied page %p on queue %d\n", p, p->queue);
1009                 vm_page_wakeup(p);
1010         } else if (p->wire_count == 0) {
1011                 /*
1012                  * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1013                  */
1014                 vm_page_free(p);
1015                 mycpu->gd_cnt.v_pfree++;
1016         } else {
1017                 if (p->queue != PQ_NONE)
1018                         kprintf("vm_object_terminate: Warning: Encountered "
1019                                 "wired page %p on queue %d\n", p, p->queue);
1020                 vm_page_remove(p);
1021                 vm_page_wakeup(p);
1022         }
1023         lwkt_yield();
1024         return(0);
1025 }
1026
1027 /*
1028  * The object is dead but still has an object<->pager association.  Sleep
1029  * and return.  The caller typically retests the association in a loop.
1030  *
1031  * The caller must hold the object.
1032  */
1033 void
1034 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
1035 {
1036         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1037         if (object->handle) {
1038                 vm_object_set_flag(object, OBJ_DEADWNT);
1039                 tsleep(object, 0, wmesg, 0);
1040                 /* object may be invalid after this point */
1041         }
1042 }
1043
1044 /*
1045  * Wakeup anyone waiting for the object<->pager disassociation on
1046  * a dead object.
1047  *
1048  * The caller must hold the object.
1049  */
1050 void
1051 vm_object_dead_wakeup(vm_object_t object)
1052 {
1053         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1054         if (object->flags & OBJ_DEADWNT) {
1055                 vm_object_clear_flag(object, OBJ_DEADWNT);
1056                 wakeup(object);
1057         }
1058 }
1059
1060 /*
1061  * Clean all dirty pages in the specified range of object.  Leaves page
1062  * on whatever queue it is currently on.   If NOSYNC is set then do not
1063  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1064  * leaving the object dirty.
1065  *
1066  * When stuffing pages asynchronously, allow clustering.  XXX we need a
1067  * synchronous clustering mode implementation.
1068  *
1069  * Odd semantics: if start == end, we clean everything.
1070  *
1071  * The object must be locked? XXX
1072  */
1073 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1074 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1075
1076 void
1077 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1078                      int flags)
1079 {
1080         struct rb_vm_page_scan_info info;
1081         struct vnode *vp;
1082         int wholescan;
1083         int pagerflags;
1084         int generation;
1085
1086         vm_object_hold(object);
1087         if (object->type != OBJT_VNODE ||
1088             (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1089                 vm_object_drop(object);
1090                 return;
1091         }
1092
1093         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 
1094                         VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1095         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1096
1097         vp = object->handle;
1098
1099         /*
1100          * Interlock other major object operations.  This allows us to 
1101          * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1102          */
1103         vm_object_set_flag(object, OBJ_CLEANING);
1104
1105         /*
1106          * Handle 'entire object' case
1107          */
1108         info.start_pindex = start;
1109         if (end == 0) {
1110                 info.end_pindex = object->size - 1;
1111         } else {
1112                 info.end_pindex = end - 1;
1113         }
1114         wholescan = (start == 0 && info.end_pindex == object->size - 1);
1115         info.limit = flags;
1116         info.pagerflags = pagerflags;
1117         info.object = object;
1118
1119         /*
1120          * If cleaning the entire object do a pass to mark the pages read-only.
1121          * If everything worked out ok, clear OBJ_WRITEABLE and
1122          * OBJ_MIGHTBEDIRTY.
1123          */
1124         if (wholescan) {
1125                 info.error = 0;
1126                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1127                                         vm_object_page_clean_pass1, &info);
1128                 if (info.error == 0) {
1129                         vm_object_clear_flag(object,
1130                                              OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1131                         if (object->type == OBJT_VNODE &&
1132                             (vp = (struct vnode *)object->handle) != NULL) {
1133                                 if (vp->v_flag & VOBJDIRTY) 
1134                                         vclrflags(vp, VOBJDIRTY);
1135                         }
1136                 }
1137         }
1138
1139         /*
1140          * Do a pass to clean all the dirty pages we find.
1141          */
1142         do {
1143                 info.error = 0;
1144                 generation = object->generation;
1145                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1146                                         vm_object_page_clean_pass2, &info);
1147         } while (info.error || generation != object->generation);
1148
1149         vm_object_clear_flag(object, OBJ_CLEANING);
1150         vm_object_drop(object);
1151 }
1152
1153 /*
1154  * The caller must hold the object.
1155  */
1156 static 
1157 int
1158 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1159 {
1160         struct rb_vm_page_scan_info *info = data;
1161
1162         vm_page_flag_set(p, PG_CLEANCHK);
1163         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1164                 info->error = 1;
1165         } else if (vm_page_busy_try(p, FALSE) == 0) {
1166                 vm_page_protect(p, VM_PROT_READ);       /* must not block */
1167                 vm_page_wakeup(p);
1168         } else {
1169                 info->error = 1;
1170         }
1171         lwkt_yield();
1172         return(0);
1173 }
1174
1175 /*
1176  * The caller must hold the object
1177  */
1178 static 
1179 int
1180 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1181 {
1182         struct rb_vm_page_scan_info *info = data;
1183         int generation;
1184
1185         /*
1186          * Do not mess with pages that were inserted after we started
1187          * the cleaning pass.
1188          */
1189         if ((p->flags & PG_CLEANCHK) == 0)
1190                 goto done;
1191
1192         generation = info->object->generation;
1193         vm_page_busy_wait(p, TRUE, "vpcwai");
1194         if (p->object != info->object ||
1195             info->object->generation != generation) {
1196                 info->error = 1;
1197                 vm_page_wakeup(p);
1198                 goto done;
1199         }
1200
1201         /*
1202          * Before wasting time traversing the pmaps, check for trivial
1203          * cases where the page cannot be dirty.
1204          */
1205         if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1206                 KKASSERT((p->dirty & p->valid) == 0 &&
1207                          (p->flags & PG_NEED_COMMIT) == 0);
1208                 vm_page_wakeup(p);
1209                 goto done;
1210         }
1211
1212         /*
1213          * Check whether the page is dirty or not.  The page has been set
1214          * to be read-only so the check will not race a user dirtying the
1215          * page.
1216          */
1217         vm_page_test_dirty(p);
1218         if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1219                 vm_page_flag_clear(p, PG_CLEANCHK);
1220                 vm_page_wakeup(p);
1221                 goto done;
1222         }
1223
1224         /*
1225          * If we have been asked to skip nosync pages and this is a
1226          * nosync page, skip it.  Note that the object flags were
1227          * not cleared in this case (because pass1 will have returned an
1228          * error), so we do not have to set them.
1229          */
1230         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1231                 vm_page_flag_clear(p, PG_CLEANCHK);
1232                 vm_page_wakeup(p);
1233                 goto done;
1234         }
1235
1236         /*
1237          * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1238          * the pages that get successfully flushed.  Set info->error if
1239          * we raced an object modification.
1240          */
1241         vm_object_page_collect_flush(info->object, p, info->pagerflags);
1242         vm_wait_nominal();
1243 done:
1244         lwkt_yield();
1245         return(0);
1246 }
1247
1248 /*
1249  * Collect the specified page and nearby pages and flush them out.
1250  * The number of pages flushed is returned.  The passed page is busied
1251  * by the caller and we are responsible for its disposition.
1252  *
1253  * The caller must hold the object.
1254  */
1255 static void
1256 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1257 {
1258         int runlen;
1259         int error;
1260         int maxf;
1261         int chkb;
1262         int maxb;
1263         int i;
1264         vm_pindex_t pi;
1265         vm_page_t maf[vm_pageout_page_count];
1266         vm_page_t mab[vm_pageout_page_count];
1267         vm_page_t ma[vm_pageout_page_count];
1268
1269         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1270
1271         pi = p->pindex;
1272
1273         maxf = 0;
1274         for(i = 1; i < vm_pageout_page_count; i++) {
1275                 vm_page_t tp;
1276
1277                 tp = vm_page_lookup_busy_try(object, pi + i, TRUE, &error);
1278                 if (error)
1279                         break;
1280                 if (tp == NULL)
1281                         break;
1282                 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1283                     (tp->flags & PG_CLEANCHK) == 0) {
1284                         vm_page_wakeup(tp);
1285                         break;
1286                 }
1287                 if ((tp->queue - tp->pc) == PQ_CACHE) {
1288                         vm_page_flag_clear(tp, PG_CLEANCHK);
1289                         vm_page_wakeup(tp);
1290                         break;
1291                 }
1292                 vm_page_test_dirty(tp);
1293                 if ((tp->dirty & tp->valid) == 0 &&
1294                     (tp->flags & PG_NEED_COMMIT) == 0) {
1295                         vm_page_flag_clear(tp, PG_CLEANCHK);
1296                         vm_page_wakeup(tp);
1297                         break;
1298                 }
1299                 maf[i - 1] = tp;
1300                 maxf++;
1301         }
1302
1303         maxb = 0;
1304         chkb = vm_pageout_page_count -  maxf;
1305         /*
1306          * NOTE: chkb can be 0
1307          */
1308         for(i = 1; chkb && i < chkb; i++) {
1309                 vm_page_t tp;
1310
1311                 tp = vm_page_lookup_busy_try(object, pi - i, TRUE, &error);
1312                 if (error)
1313                         break;
1314                 if (tp == NULL)
1315                         break;
1316                 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1317                     (tp->flags & PG_CLEANCHK) == 0) {
1318                         vm_page_wakeup(tp);
1319                         break;
1320                 }
1321                 if ((tp->queue - tp->pc) == PQ_CACHE) {
1322                         vm_page_flag_clear(tp, PG_CLEANCHK);
1323                         vm_page_wakeup(tp);
1324                         break;
1325                 }
1326                 vm_page_test_dirty(tp);
1327                 if ((tp->dirty & tp->valid) == 0 &&
1328                     (tp->flags & PG_NEED_COMMIT) == 0) {
1329                         vm_page_flag_clear(tp, PG_CLEANCHK);
1330                         vm_page_wakeup(tp);
1331                         break;
1332                 }
1333                 mab[i - 1] = tp;
1334                 maxb++;
1335         }
1336
1337         /*
1338          * All pages in the maf[] and mab[] array are busied.
1339          */
1340         for (i = 0; i < maxb; i++) {
1341                 int index = (maxb - i) - 1;
1342                 ma[index] = mab[i];
1343                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
1344         }
1345         vm_page_flag_clear(p, PG_CLEANCHK);
1346         ma[maxb] = p;
1347         for(i = 0; i < maxf; i++) {
1348                 int index = (maxb + i) + 1;
1349                 ma[index] = maf[i];
1350                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
1351         }
1352         runlen = maxb + maxf + 1;
1353
1354         for (i = 0; i < runlen; i++)    /* XXX need this any more? */
1355                 vm_page_hold(ma[i]);
1356
1357         vm_pageout_flush(ma, runlen, pagerflags);
1358
1359         for (i = 0; i < runlen; i++)    /* XXX need this any more? */
1360                 vm_page_unhold(ma[i]);
1361 }
1362
1363 /*
1364  * Same as vm_object_pmap_copy, except range checking really
1365  * works, and is meant for small sections of an object.
1366  *
1367  * This code protects resident pages by making them read-only
1368  * and is typically called on a fork or split when a page
1369  * is converted to copy-on-write.  
1370  *
1371  * NOTE: If the page is already at VM_PROT_NONE, calling
1372  * vm_page_protect will have no effect.
1373  */
1374 void
1375 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1376 {
1377         vm_pindex_t idx;
1378         vm_page_t p;
1379
1380         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1381                 return;
1382
1383         vm_object_hold(object);
1384         for (idx = start; idx < end; idx++) {
1385                 p = vm_page_lookup(object, idx);
1386                 if (p == NULL)
1387                         continue;
1388                 vm_page_protect(p, VM_PROT_READ);
1389         }
1390         vm_object_drop(object);
1391 }
1392
1393 /*
1394  * Removes all physical pages in the specified object range from all
1395  * physical maps.
1396  *
1397  * The object must *not* be locked.
1398  */
1399
1400 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1401
1402 void
1403 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1404 {
1405         struct rb_vm_page_scan_info info;
1406
1407         if (object == NULL)
1408                 return;
1409         info.start_pindex = start;
1410         info.end_pindex = end - 1;
1411
1412         vm_object_hold(object);
1413         vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1414                                 vm_object_pmap_remove_callback, &info);
1415         if (start == 0 && end == object->size)
1416                 vm_object_clear_flag(object, OBJ_WRITEABLE);
1417         vm_object_drop(object);
1418 }
1419
1420 /*
1421  * The caller must hold the object
1422  */
1423 static int
1424 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
1425 {
1426         vm_page_protect(p, VM_PROT_NONE);
1427         return(0);
1428 }
1429
1430 /*
1431  * Implements the madvise function at the object/page level.
1432  *
1433  * MADV_WILLNEED        (any object)
1434  *
1435  *      Activate the specified pages if they are resident.
1436  *
1437  * MADV_DONTNEED        (any object)
1438  *
1439  *      Deactivate the specified pages if they are resident.
1440  *
1441  * MADV_FREE    (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1442  *
1443  *      Deactivate and clean the specified pages if they are
1444  *      resident.  This permits the process to reuse the pages
1445  *      without faulting or the kernel to reclaim the pages
1446  *      without I/O.
1447  *
1448  * No requirements.
1449  */
1450 void
1451 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1452 {
1453         vm_pindex_t end, tpindex;
1454         vm_object_t tobject;
1455         vm_object_t xobj;
1456         vm_page_t m;
1457         int error;
1458
1459         if (object == NULL)
1460                 return;
1461
1462         end = pindex + count;
1463
1464         vm_object_hold(object);
1465         tobject = object;
1466
1467         /*
1468          * Locate and adjust resident pages
1469          */
1470         for (; pindex < end; pindex += 1) {
1471 relookup:
1472                 if (tobject != object)
1473                         vm_object_drop(tobject);
1474                 tobject = object;
1475                 tpindex = pindex;
1476 shadowlookup:
1477                 /*
1478                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1479                  * and those pages must be OBJ_ONEMAPPING.
1480                  */
1481                 if (advise == MADV_FREE) {
1482                         if ((tobject->type != OBJT_DEFAULT &&
1483                              tobject->type != OBJT_SWAP) ||
1484                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1485                                 continue;
1486                         }
1487                 }
1488
1489                 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1490
1491                 if (error) {
1492                         vm_page_sleep_busy(m, TRUE, "madvpo");
1493                         goto relookup;
1494                 }
1495                 if (m == NULL) {
1496                         /*
1497                          * There may be swap even if there is no backing page
1498                          */
1499                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1500                                 swap_pager_freespace(tobject, tpindex, 1);
1501
1502                         /*
1503                          * next object
1504                          */
1505                         while ((xobj = tobject->backing_object) != NULL) {
1506                                 KKASSERT(xobj != object);
1507                                 vm_object_hold(xobj);
1508                                 if (xobj == tobject->backing_object)
1509                                         break;
1510                                 vm_object_drop(xobj);
1511                         }
1512                         if (xobj == NULL)
1513                                 continue;
1514                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1515                         if (tobject != object) {
1516                                 vm_object_lock_swap();
1517                                 vm_object_drop(tobject);
1518                         }
1519                         tobject = xobj;
1520                         goto shadowlookup;
1521                 }
1522
1523                 /*
1524                  * If the page is not in a normal active state, we skip it.
1525                  * If the page is not managed there are no page queues to
1526                  * mess with.  Things can break if we mess with pages in
1527                  * any of the below states.
1528                  */
1529                 if (m->wire_count ||
1530                     (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1531                     m->valid != VM_PAGE_BITS_ALL
1532                 ) {
1533                         vm_page_wakeup(m);
1534                         continue;
1535                 }
1536
1537                 /*
1538                  * Theoretically once a page is known not to be busy, an
1539                  * interrupt cannot come along and rip it out from under us.
1540                  */
1541
1542                 if (advise == MADV_WILLNEED) {
1543                         vm_page_activate(m);
1544                 } else if (advise == MADV_DONTNEED) {
1545                         vm_page_dontneed(m);
1546                 } else if (advise == MADV_FREE) {
1547                         /*
1548                          * Mark the page clean.  This will allow the page
1549                          * to be freed up by the system.  However, such pages
1550                          * are often reused quickly by malloc()/free()
1551                          * so we do not do anything that would cause
1552                          * a page fault if we can help it.
1553                          *
1554                          * Specifically, we do not try to actually free
1555                          * the page now nor do we try to put it in the
1556                          * cache (which would cause a page fault on reuse).
1557                          *
1558                          * But we do make the page is freeable as we
1559                          * can without actually taking the step of unmapping
1560                          * it.
1561                          */
1562                         pmap_clear_modify(m);
1563                         m->dirty = 0;
1564                         m->act_count = 0;
1565                         vm_page_dontneed(m);
1566                         if (tobject->type == OBJT_SWAP)
1567                                 swap_pager_freespace(tobject, tpindex, 1);
1568                 }
1569                 vm_page_wakeup(m);
1570         }       
1571         if (tobject != object)
1572                 vm_object_drop(tobject);
1573         vm_object_drop(object);
1574 }
1575
1576 /*
1577  * Create a new object which is backed by the specified existing object
1578  * range.  Replace the pointer and offset that was pointing at the existing
1579  * object with the pointer/offset for the new object.
1580  *
1581  * No other requirements.
1582  */
1583 void
1584 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1585                  int addref)
1586 {
1587         vm_object_t source;
1588         vm_object_t result;
1589
1590         source = *objectp;
1591
1592         /*
1593          * Don't create the new object if the old object isn't shared.
1594          * We have to chain wait before adding the reference to avoid
1595          * racing a collapse or deallocation.
1596          *
1597          * Add the additional ref to source here to avoid racing a later
1598          * collapse or deallocation. Clear the ONEMAPPING flag whether
1599          * addref is TRUE or not in this case because the original object
1600          * will be shadowed.
1601          */
1602         if (source) {
1603                 vm_object_hold(source);
1604                 vm_object_chain_wait(source);
1605                 if (source->ref_count == 1 &&
1606                     source->handle == NULL &&
1607                     (source->type == OBJT_DEFAULT ||
1608                      source->type == OBJT_SWAP)) {
1609                         vm_object_drop(source);
1610                         if (addref) {
1611                                 vm_object_reference_locked(source);
1612                                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1613                         }
1614                         return;
1615                 }
1616                 vm_object_reference_locked(source);
1617                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1618         }
1619
1620         /*
1621          * Allocate a new object with the given length.  The new object
1622          * is returned referenced but we may have to add another one.
1623          * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1624          * (typically because the caller is about to clone a vm_map_entry).
1625          *
1626          * The source object currently has an extra reference to prevent
1627          * collapses into it while we mess with its shadow list, which
1628          * we will remove later in this routine.
1629          */
1630         if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1631                 panic("vm_object_shadow: no object for shadowing");
1632         vm_object_hold(result);
1633         if (addref) {
1634                 vm_object_reference_locked(result);
1635                 vm_object_clear_flag(result, OBJ_ONEMAPPING);
1636         }
1637
1638         /*
1639          * The new object shadows the source object.  Chain wait before
1640          * adjusting shadow_count or the shadow list to avoid races.
1641          *
1642          * Try to optimize the result object's page color when shadowing
1643          * in order to maintain page coloring consistency in the combined 
1644          * shadowed object.
1645          */
1646         KKASSERT(result->backing_object == NULL);
1647         result->backing_object = source;
1648         if (source) {
1649                 vm_object_chain_wait(source);
1650                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1651                 source->shadow_count++;
1652                 source->generation++;
1653                 /* cpu localization twist */
1654                 result->pg_color = (int)(intptr_t)curthread;
1655         }
1656
1657         /*
1658          * Adjust the return storage.  Drop the ref on source before
1659          * returning.
1660          */
1661         result->backing_object_offset = *offset;
1662         vm_object_drop(result);
1663         *offset = 0;
1664         if (source) {
1665                 vm_object_deallocate_locked(source);
1666                 vm_object_drop(source);
1667         }
1668
1669         /*
1670          * Return the new things
1671          */
1672         *objectp = result;
1673 }
1674
1675 #define OBSC_TEST_ALL_SHADOWED  0x0001
1676 #define OBSC_COLLAPSE_NOWAIT    0x0002
1677 #define OBSC_COLLAPSE_WAIT      0x0004
1678
1679 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1680
1681 /*
1682  * The caller must hold the object.
1683  */
1684 static __inline int
1685 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1686 {
1687         struct rb_vm_page_scan_info info;
1688
1689         vm_object_assert_held(object);
1690         vm_object_assert_held(backing_object);
1691
1692         KKASSERT(backing_object == object->backing_object);
1693         info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1694
1695         /*
1696          * Initial conditions
1697          */
1698         if (op & OBSC_TEST_ALL_SHADOWED) {
1699                 /*
1700                  * We do not want to have to test for the existence of
1701                  * swap pages in the backing object.  XXX but with the
1702                  * new swapper this would be pretty easy to do.
1703                  *
1704                  * XXX what about anonymous MAP_SHARED memory that hasn't
1705                  * been ZFOD faulted yet?  If we do not test for this, the
1706                  * shadow test may succeed! XXX
1707                  */
1708                 if (backing_object->type != OBJT_DEFAULT)
1709                         return(0);
1710         }
1711         if (op & OBSC_COLLAPSE_WAIT) {
1712                 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1713                 vm_object_set_flag(backing_object, OBJ_DEAD);
1714                 lwkt_gettoken(&vmobj_token);
1715                 TAILQ_REMOVE(&vm_object_list, backing_object, object_list);
1716                 vm_object_count--;
1717                 lwkt_reltoken(&vmobj_token);
1718                 vm_object_dead_wakeup(backing_object);
1719         }
1720
1721         /*
1722          * Our scan.   We have to retry if a negative error code is returned,
1723          * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1724          * the scan had to be stopped because the parent does not completely
1725          * shadow the child.
1726          */
1727         info.object = object;
1728         info.backing_object = backing_object;
1729         info.limit = op;
1730         do {
1731                 info.error = 1;
1732                 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1733                                         vm_object_backing_scan_callback,
1734                                         &info);
1735         } while (info.error < 0);
1736
1737         return(info.error);
1738 }
1739
1740 /*
1741  * The caller must hold the object.
1742  */
1743 static int
1744 vm_object_backing_scan_callback(vm_page_t p, void *data)
1745 {
1746         struct rb_vm_page_scan_info *info = data;
1747         vm_object_t backing_object;
1748         vm_object_t object;
1749         vm_pindex_t pindex;
1750         vm_pindex_t new_pindex;
1751         vm_pindex_t backing_offset_index;
1752         int op;
1753
1754         pindex = p->pindex;
1755         new_pindex = pindex - info->backing_offset_index;
1756         op = info->limit;
1757         object = info->object;
1758         backing_object = info->backing_object;
1759         backing_offset_index = info->backing_offset_index;
1760
1761         if (op & OBSC_TEST_ALL_SHADOWED) {
1762                 vm_page_t pp;
1763
1764                 /*
1765                  * Ignore pages outside the parent object's range
1766                  * and outside the parent object's mapping of the 
1767                  * backing object.
1768                  *
1769                  * note that we do not busy the backing object's
1770                  * page.
1771                  */
1772                 if (pindex < backing_offset_index ||
1773                     new_pindex >= object->size
1774                 ) {
1775                         return(0);
1776                 }
1777
1778                 /*
1779                  * See if the parent has the page or if the parent's
1780                  * object pager has the page.  If the parent has the
1781                  * page but the page is not valid, the parent's
1782                  * object pager must have the page.
1783                  *
1784                  * If this fails, the parent does not completely shadow
1785                  * the object and we might as well give up now.
1786                  */
1787                 pp = vm_page_lookup(object, new_pindex);
1788                 if ((pp == NULL || pp->valid == 0) &&
1789                     !vm_pager_has_page(object, new_pindex)
1790                 ) {
1791                         info->error = 0;        /* problemo */
1792                         return(-1);             /* stop the scan */
1793                 }
1794         }
1795
1796         /*
1797          * Check for busy page.  Note that we may have lost (p) when we
1798          * possibly blocked above.
1799          */
1800         if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1801                 vm_page_t pp;
1802
1803                 if (vm_page_busy_try(p, TRUE)) {
1804                         if (op & OBSC_COLLAPSE_NOWAIT) {
1805                                 return(0);
1806                         } else {
1807                                 /*
1808                                  * If we slept, anything could have
1809                                  * happened.   Ask that the scan be restarted.
1810                                  *
1811                                  * Since the object is marked dead, the
1812                                  * backing offset should not have changed.  
1813                                  */
1814                                 vm_page_sleep_busy(p, TRUE, "vmocol");
1815                                 info->error = -1;
1816                                 return(-1);
1817                         }
1818                 }
1819
1820                 /*
1821                  * If (p) is no longer valid restart the scan.
1822                  */
1823                 if (p->object != backing_object || p->pindex != pindex) {
1824                         kprintf("vm_object_backing_scan: Warning: page "
1825                                 "%p ripped out from under us\n", p);
1826                         vm_page_wakeup(p);
1827                         info->error = -1;
1828                         return(-1);
1829                 }
1830
1831                 if (op & OBSC_COLLAPSE_NOWAIT) {
1832                         if (p->valid == 0 ||
1833                             p->wire_count ||
1834                             (p->flags & PG_NEED_COMMIT)) {
1835                                 vm_page_wakeup(p);
1836                                 return(0);
1837                         }
1838                 } else {
1839                         /* XXX what if p->valid == 0 , hold_count, etc? */
1840                 }
1841
1842                 KASSERT(
1843                     p->object == backing_object,
1844                     ("vm_object_qcollapse(): object mismatch")
1845                 );
1846
1847                 /*
1848                  * Destroy any associated swap
1849                  */
1850                 if (backing_object->type == OBJT_SWAP)
1851                         swap_pager_freespace(backing_object, p->pindex, 1);
1852
1853                 if (
1854                     p->pindex < backing_offset_index ||
1855                     new_pindex >= object->size
1856                 ) {
1857                         /*
1858                          * Page is out of the parent object's range, we 
1859                          * can simply destroy it. 
1860                          */
1861                         vm_page_protect(p, VM_PROT_NONE);
1862                         vm_page_free(p);
1863                         return(0);
1864                 }
1865
1866                 pp = vm_page_lookup(object, new_pindex);
1867                 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1868                         /*
1869                          * page already exists in parent OR swap exists
1870                          * for this location in the parent.  Destroy 
1871                          * the original page from the backing object.
1872                          *
1873                          * Leave the parent's page alone
1874                          */
1875                         vm_page_protect(p, VM_PROT_NONE);
1876                         vm_page_free(p);
1877                         return(0);
1878                 }
1879
1880                 /*
1881                  * Page does not exist in parent, rename the
1882                  * page from the backing object to the main object. 
1883                  *
1884                  * If the page was mapped to a process, it can remain 
1885                  * mapped through the rename.
1886                  */
1887                 if ((p->queue - p->pc) == PQ_CACHE)
1888                         vm_page_deactivate(p);
1889
1890                 vm_page_rename(p, object, new_pindex);
1891                 vm_page_wakeup(p);
1892                 /* page automatically made dirty by rename */
1893         }
1894         return(0);
1895 }
1896
1897 /*
1898  * This version of collapse allows the operation to occur earlier and
1899  * when paging_in_progress is true for an object...  This is not a complete
1900  * operation, but should plug 99.9% of the rest of the leaks.
1901  *
1902  * The caller must hold the object and backing_object and both must be
1903  * chainlocked.
1904  *
1905  * (only called from vm_object_collapse)
1906  */
1907 static void
1908 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
1909 {
1910         if (backing_object->ref_count == 1) {
1911                 backing_object->ref_count += 2;
1912                 vm_object_backing_scan(object, backing_object,
1913                                        OBSC_COLLAPSE_NOWAIT);
1914                 backing_object->ref_count -= 2;
1915         }
1916 }
1917
1918 /*
1919  * Collapse an object with the object backing it.  Pages in the backing
1920  * object are moved into the parent, and the backing object is deallocated.
1921  * Any conflict is resolved in favor of the parent's existing pages.
1922  *
1923  * object must be held and chain-locked on call.
1924  *
1925  * The caller must have an extra ref on object to prevent a race from
1926  * destroying it during the collapse.
1927  */
1928 void
1929 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
1930 {
1931         struct vm_object_dealloc_list *dlist = NULL;
1932         vm_object_t backing_object;
1933
1934         /*
1935          * Only one thread is attempting a collapse at any given moment.
1936          * There are few restrictions for (object) that callers of this
1937          * function check so reentrancy is likely.
1938          */
1939         KKASSERT(object != NULL);
1940         vm_object_assert_held(object);
1941         KKASSERT(object->flags & OBJ_CHAINLOCK);
1942
1943         for (;;) {
1944                 vm_object_t bbobj;
1945                 int dodealloc;
1946
1947                 /*
1948                  * We have to hold the backing object, check races.
1949                  */
1950                 while ((backing_object = object->backing_object) != NULL) {
1951                         vm_object_hold(backing_object);
1952                         if (backing_object == object->backing_object)
1953                                 break;
1954                         vm_object_drop(backing_object);
1955                 }
1956
1957                 /*
1958                  * No backing object?  Nothing to collapse then.
1959                  */
1960                 if (backing_object == NULL)
1961                         break;
1962
1963                 /*
1964                  * You can't collapse with a non-default/non-swap object.
1965                  */
1966                 if (backing_object->type != OBJT_DEFAULT &&
1967                     backing_object->type != OBJT_SWAP) {
1968                         vm_object_drop(backing_object);
1969                         backing_object = NULL;
1970                         break;
1971                 }
1972
1973                 /*
1974                  * Chain-lock the backing object too because if we
1975                  * successfully merge its pages into the top object we
1976                  * will collapse backing_object->backing_object as the
1977                  * new backing_object.  Re-check that it is still our
1978                  * backing object.
1979                  */
1980                 vm_object_chain_acquire(backing_object);
1981                 if (backing_object != object->backing_object) {
1982                         vm_object_chain_release(backing_object);
1983                         vm_object_drop(backing_object);
1984                         continue;
1985                 }
1986
1987                 /*
1988                  * we check the backing object first, because it is most likely
1989                  * not collapsable.
1990                  */
1991                 if (backing_object->handle != NULL ||
1992                     (backing_object->type != OBJT_DEFAULT &&
1993                      backing_object->type != OBJT_SWAP) ||
1994                     (backing_object->flags & OBJ_DEAD) ||
1995                     object->handle != NULL ||
1996                     (object->type != OBJT_DEFAULT &&
1997                      object->type != OBJT_SWAP) ||
1998                     (object->flags & OBJ_DEAD)) {
1999                         break;
2000                 }
2001
2002                 /*
2003                  * If paging is in progress we can't do a normal collapse.
2004                  */
2005                 if (
2006                     object->paging_in_progress != 0 ||
2007                     backing_object->paging_in_progress != 0
2008                 ) {
2009                         vm_object_qcollapse(object, backing_object);
2010                         break;
2011                 }
2012
2013                 /*
2014                  * We know that we can either collapse the backing object (if
2015                  * the parent is the only reference to it) or (perhaps) have
2016                  * the parent bypass the object if the parent happens to shadow
2017                  * all the resident pages in the entire backing object.
2018                  *
2019                  * This is ignoring pager-backed pages such as swap pages.
2020                  * vm_object_backing_scan fails the shadowing test in this
2021                  * case.
2022                  */
2023                 if (backing_object->ref_count == 1) {
2024                         /*
2025                          * If there is exactly one reference to the backing
2026                          * object, we can collapse it into the parent.  
2027                          */
2028                         KKASSERT(object->backing_object == backing_object);
2029                         vm_object_backing_scan(object, backing_object,
2030                                                OBSC_COLLAPSE_WAIT);
2031
2032                         /*
2033                          * Move the pager from backing_object to object.
2034                          */
2035                         if (backing_object->type == OBJT_SWAP) {
2036                                 vm_object_pip_add(backing_object, 1);
2037
2038                                 /*
2039                                  * scrap the paging_offset junk and do a 
2040                                  * discrete copy.  This also removes major 
2041                                  * assumptions about how the swap-pager 
2042                                  * works from where it doesn't belong.  The
2043                                  * new swapper is able to optimize the
2044                                  * destroy-source case.
2045                                  */
2046                                 vm_object_pip_add(object, 1);
2047                                 swap_pager_copy(backing_object, object,
2048                                     OFF_TO_IDX(object->backing_object_offset),
2049                                     TRUE);
2050                                 vm_object_pip_wakeup(object);
2051                                 vm_object_pip_wakeup(backing_object);
2052                         }
2053
2054                         /*
2055                          * Object now shadows whatever backing_object did.
2056                          * Remove object from backing_object's shadow_list.
2057                          */
2058                         LIST_REMOVE(object, shadow_list);
2059                         KKASSERT(object->backing_object == backing_object);
2060                         backing_object->shadow_count--;
2061                         backing_object->generation++;
2062
2063                         /*
2064                          * backing_object->backing_object moves from within
2065                          * backing_object to within object.
2066                          */
2067                         while ((bbobj = backing_object->backing_object) != NULL) {
2068                                 vm_object_hold(bbobj);
2069                                 if (bbobj == backing_object->backing_object)
2070                                         break;
2071                                 vm_object_drop(bbobj);
2072                         }
2073                         if (bbobj) {
2074                                 LIST_REMOVE(backing_object, shadow_list);
2075                                 bbobj->shadow_count--;
2076                                 bbobj->generation++;
2077                                 backing_object->backing_object = NULL;
2078                         }
2079                         object->backing_object = bbobj;
2080                         if (bbobj) {
2081                                 LIST_INSERT_HEAD(&bbobj->shadow_head,
2082                                                  object, shadow_list);
2083                                 bbobj->shadow_count++;
2084                                 bbobj->generation++;
2085                         }
2086
2087                         object->backing_object_offset +=
2088                                 backing_object->backing_object_offset;
2089
2090                         vm_object_drop(bbobj);
2091
2092                         /*
2093                          * Discard the old backing_object.  Nothing should be
2094                          * able to ref it, other than a vm_map_split(),
2095                          * and vm_map_split() will stall on our chain lock.
2096                          * And we control the parent so it shouldn't be
2097                          * possible for it to go away either.
2098                          *
2099                          * Since the backing object has no pages, no pager
2100                          * left, and no object references within it, all
2101                          * that is necessary is to dispose of it.
2102                          */
2103                         KASSERT(backing_object->ref_count == 1,
2104                                 ("backing_object %p was somehow "
2105                                  "re-referenced during collapse!",
2106                                  backing_object));
2107                         KASSERT(RB_EMPTY(&backing_object->rb_memq),
2108                                 ("backing_object %p somehow has left "
2109                                  "over pages during collapse!",
2110                                  backing_object));
2111
2112                         /*
2113                          * The object can be destroyed.
2114                          *
2115                          * XXX just fall through and dodealloc instead
2116                          *     of forcing destruction?
2117                          */
2118                         --backing_object->ref_count;
2119                         if ((backing_object->flags & OBJ_DEAD) == 0)
2120                                 vm_object_terminate(backing_object);
2121                         object_collapses++;
2122                         dodealloc = 0;
2123                 } else {
2124                         /*
2125                          * If we do not entirely shadow the backing object,
2126                          * there is nothing we can do so we give up.
2127                          */
2128                         if (vm_object_backing_scan(object, backing_object,
2129                                                 OBSC_TEST_ALL_SHADOWED) == 0) {
2130                                 break;
2131                         }
2132
2133                         /*
2134                          * bbobj is backing_object->backing_object.  Since
2135                          * object completely shadows backing_object we can
2136                          * bypass it and become backed by bbobj instead.
2137                          */
2138                         while ((bbobj = backing_object->backing_object) != NULL) {
2139                                 vm_object_hold(bbobj);
2140                                 if (bbobj == backing_object->backing_object)
2141                                         break;
2142                                 vm_object_drop(bbobj);
2143                         }
2144
2145                         /*
2146                          * Make object shadow bbobj instead of backing_object.
2147                          * Remove object from backing_object's shadow list.
2148                          *
2149                          * Deallocating backing_object will not remove
2150                          * it, since its reference count is at least 2.
2151                          */
2152                         KKASSERT(object->backing_object == backing_object);
2153                         LIST_REMOVE(object, shadow_list);
2154                         backing_object->shadow_count--;
2155                         backing_object->generation++;
2156
2157                         /*
2158                          * Add a ref to bbobj, bbobj now shadows object.
2159                          *
2160                          * NOTE: backing_object->backing_object still points
2161                          *       to bbobj.  That relationship remains intact
2162                          *       because backing_object has > 1 ref, so
2163                          *       someone else is pointing to it (hence why
2164                          *       we can't collapse it into object and can
2165                          *       only handle the all-shadowed bypass case).
2166                          */
2167                         if (bbobj) {
2168                                 vm_object_chain_wait(bbobj);
2169                                 vm_object_reference_locked(bbobj);
2170                                 LIST_INSERT_HEAD(&bbobj->shadow_head,
2171                                                  object, shadow_list);
2172                                 bbobj->shadow_count++;
2173                                 bbobj->generation++;
2174                                 object->backing_object_offset +=
2175                                         backing_object->backing_object_offset;
2176                                 object->backing_object = bbobj;
2177                                 vm_object_drop(bbobj);
2178                         } else {
2179                                 object->backing_object = NULL;
2180                         }
2181
2182                         /*
2183                          * Drop the reference count on backing_object.  To
2184                          * handle ref_count races properly we can't assume
2185                          * that the ref_count is still at least 2 so we
2186                          * have to actually call vm_object_deallocate()
2187                          * (after clearing the chainlock).
2188                          */
2189                         object_bypasses++;
2190                         dodealloc = 1;
2191                 }
2192
2193                 /*
2194                  * Ok, we want to loop on the new object->bbobj association,
2195                  * possibly collapsing it further.  However if dodealloc is
2196                  * non-zero we have to deallocate the backing_object which
2197                  * itself can potentially undergo a collapse, creating a
2198                  * recursion depth issue with the LWKT token subsystem.
2199                  *
2200                  * In the case where we must deallocate the backing_object
2201                  * it is possible now that the backing_object has a single
2202                  * shadow count on some other object (not represented here
2203                  * as yet), since it no longer shadows us.  Thus when we
2204                  * call vm_object_deallocate() it may attempt to collapse
2205                  * itself into its remaining parent.
2206                  */
2207                 if (dodealloc) {
2208                         struct vm_object_dealloc_list *dtmp;
2209
2210                         vm_object_chain_release(backing_object);
2211                         vm_object_unlock(backing_object);
2212                         /* backing_object remains held */
2213
2214                         /*
2215                          * Auto-deallocation list for caller convenience.
2216                          */
2217                         if (dlistp == NULL)
2218                                 dlistp = &dlist;
2219
2220                         dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2221                         dtmp->object = backing_object;
2222                         dtmp->next = *dlistp;
2223                         *dlistp = dtmp;
2224                 } else {
2225                         vm_object_chain_release(backing_object);
2226                         vm_object_drop(backing_object);
2227                 }
2228                 /* backing_object = NULL; not needed */
2229                 /* loop */
2230         }
2231
2232         /*
2233          * Clean up any left over backing_object
2234          */
2235         if (backing_object) {
2236                 vm_object_chain_release(backing_object);
2237                 vm_object_drop(backing_object);
2238         }
2239
2240         /*
2241          * Clean up any auto-deallocation list.  This is a convenience
2242          * for top-level callers so they don't have to pass &dlist.
2243          * Do not clean up any caller-passed dlistp, the caller will
2244          * do that.
2245          */
2246         if (dlist)
2247                 vm_object_deallocate_list(&dlist);
2248
2249 }
2250
2251 /*
2252  * vm_object_collapse() may collect additional objects in need of
2253  * deallocation.  This routine deallocates these objects.  The
2254  * deallocation itself can trigger additional collapses (which the
2255  * deallocate function takes care of).  This procedure is used to
2256  * reduce procedural recursion since these vm_object shadow chains
2257  * can become quite long.
2258  */
2259 void
2260 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2261 {
2262         struct vm_object_dealloc_list *dlist;
2263
2264         while ((dlist = *dlistp) != NULL) {
2265                 *dlistp = dlist->next;
2266                 vm_object_lock(dlist->object);
2267                 vm_object_deallocate_locked(dlist->object);
2268                 vm_object_drop(dlist->object);
2269                 kfree(dlist, M_TEMP);
2270         }
2271 }
2272
2273 /*
2274  * Removes all physical pages in the specified object range from the
2275  * object's list of pages.
2276  *
2277  * No requirements.
2278  */
2279 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2280
2281 void
2282 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2283                       boolean_t clean_only)
2284 {
2285         struct rb_vm_page_scan_info info;
2286         int all;
2287
2288         /*
2289          * Degenerate cases and assertions
2290          */
2291         vm_object_hold(object);
2292         if (object == NULL ||
2293             (object->resident_page_count == 0 && object->swblock_count == 0)) {
2294                 vm_object_drop(object);
2295                 return;
2296         }
2297         KASSERT(object->type != OBJT_PHYS, 
2298                 ("attempt to remove pages from a physical object"));
2299
2300         /*
2301          * Indicate that paging is occuring on the object
2302          */
2303         vm_object_pip_add(object, 1);
2304
2305         /*
2306          * Figure out the actual removal range and whether we are removing
2307          * the entire contents of the object or not.  If removing the entire
2308          * contents, be sure to get all pages, even those that might be 
2309          * beyond the end of the object.
2310          */
2311         info.start_pindex = start;
2312         if (end == 0)
2313                 info.end_pindex = (vm_pindex_t)-1;
2314         else
2315                 info.end_pindex = end - 1;
2316         info.limit = clean_only;
2317         all = (start == 0 && info.end_pindex >= object->size - 1);
2318
2319         /*
2320          * Loop until we are sure we have gotten them all.
2321          */
2322         do {
2323                 info.error = 0;
2324                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2325                                         vm_object_page_remove_callback, &info);
2326         } while (info.error);
2327
2328         /*
2329          * Remove any related swap if throwing away pages, or for
2330          * non-swap objects (the swap is a clean copy in that case).
2331          */
2332         if (object->type != OBJT_SWAP || clean_only == FALSE) {
2333                 if (all)
2334                         swap_pager_freespace_all(object);
2335                 else
2336                         swap_pager_freespace(object, info.start_pindex,
2337                              info.end_pindex - info.start_pindex + 1);
2338         }
2339
2340         /*
2341          * Cleanup
2342          */
2343         vm_object_pip_wakeup(object);
2344         vm_object_drop(object);
2345 }
2346
2347 /*
2348  * The caller must hold the object
2349  */
2350 static int
2351 vm_object_page_remove_callback(vm_page_t p, void *data)
2352 {
2353         struct rb_vm_page_scan_info *info = data;
2354
2355         if (vm_page_busy_try(p, TRUE)) {
2356                 vm_page_sleep_busy(p, TRUE, "vmopar");
2357                 info->error = 1;
2358                 return(0);
2359         }
2360
2361         /*
2362          * Wired pages cannot be destroyed, but they can be invalidated
2363          * and we do so if clean_only (limit) is not set.
2364          *
2365          * WARNING!  The page may be wired due to being part of a buffer
2366          *           cache buffer, and the buffer might be marked B_CACHE.
2367          *           This is fine as part of a truncation but VFSs must be
2368          *           sure to fix the buffer up when re-extending the file.
2369          *
2370          * NOTE!     PG_NEED_COMMIT is ignored.
2371          */
2372         if (p->wire_count != 0) {
2373                 vm_page_protect(p, VM_PROT_NONE);
2374                 if (info->limit == 0)
2375                         p->valid = 0;
2376                 vm_page_wakeup(p);
2377                 return(0);
2378         }
2379
2380         /*
2381          * limit is our clean_only flag.  If set and the page is dirty or
2382          * requires a commit, do not free it.  If set and the page is being
2383          * held by someone, do not free it.
2384          */
2385         if (info->limit && p->valid) {
2386                 vm_page_test_dirty(p);
2387                 if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2388                         vm_page_wakeup(p);
2389                         return(0);
2390                 }
2391 #if 0
2392                 if (p->hold_count) {
2393                         vm_page_wakeup(p);
2394                         return(0);
2395                 }
2396 #endif
2397         }
2398
2399         /*
2400          * Destroy the page
2401          */
2402         vm_page_protect(p, VM_PROT_NONE);
2403         vm_page_free(p);
2404         return(0);
2405 }
2406
2407 /*
2408  * Coalesces two objects backing up adjoining regions of memory into a
2409  * single object.
2410  *
2411  * returns TRUE if objects were combined.
2412  *
2413  * NOTE: Only works at the moment if the second object is NULL -
2414  *       if it's not, which object do we lock first?
2415  *
2416  * Parameters:
2417  *      prev_object     First object to coalesce
2418  *      prev_offset     Offset into prev_object
2419  *      next_object     Second object into coalesce
2420  *      next_offset     Offset into next_object
2421  *
2422  *      prev_size       Size of reference to prev_object
2423  *      next_size       Size of reference to next_object
2424  *
2425  * The caller does not need to hold (prev_object) but must have a stable
2426  * pointer to it (typically by holding the vm_map locked).
2427  */
2428 boolean_t
2429 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2430                    vm_size_t prev_size, vm_size_t next_size)
2431 {
2432         vm_pindex_t next_pindex;
2433
2434         if (prev_object == NULL)
2435                 return (TRUE);
2436
2437         vm_object_hold(prev_object);
2438
2439         if (prev_object->type != OBJT_DEFAULT &&
2440             prev_object->type != OBJT_SWAP) {
2441                 vm_object_drop(prev_object);
2442                 return (FALSE);
2443         }
2444
2445         /*
2446          * Try to collapse the object first
2447          */
2448         vm_object_chain_acquire(prev_object);
2449         vm_object_collapse(prev_object, NULL);
2450
2451         /*
2452          * Can't coalesce if: . more than one reference . paged out . shadows
2453          * another object . has a copy elsewhere (any of which mean that the
2454          * pages not mapped to prev_entry may be in use anyway)
2455          */
2456
2457         if (prev_object->backing_object != NULL) {
2458                 vm_object_chain_release(prev_object);
2459                 vm_object_drop(prev_object);
2460                 return (FALSE);
2461         }
2462
2463         prev_size >>= PAGE_SHIFT;
2464         next_size >>= PAGE_SHIFT;
2465         next_pindex = prev_pindex + prev_size;
2466
2467         if ((prev_object->ref_count > 1) &&
2468             (prev_object->size != next_pindex)) {
2469                 vm_object_chain_release(prev_object);
2470                 vm_object_drop(prev_object);
2471                 return (FALSE);
2472         }
2473
2474         /*
2475          * Remove any pages that may still be in the object from a previous
2476          * deallocation.
2477          */
2478         if (next_pindex < prev_object->size) {
2479                 vm_object_page_remove(prev_object,
2480                                       next_pindex,
2481                                       next_pindex + next_size, FALSE);
2482                 if (prev_object->type == OBJT_SWAP)
2483                         swap_pager_freespace(prev_object,
2484                                              next_pindex, next_size);
2485         }
2486
2487         /*
2488          * Extend the object if necessary.
2489          */
2490         if (next_pindex + next_size > prev_object->size)
2491                 prev_object->size = next_pindex + next_size;
2492
2493         vm_object_chain_release(prev_object);
2494         vm_object_drop(prev_object);
2495         return (TRUE);
2496 }
2497
2498 /*
2499  * Make the object writable and flag is being possibly dirty.
2500  *
2501  * The caller must hold the object. XXX called from vm_page_dirty(),
2502  * There is currently no requirement to hold the object.
2503  */
2504 void
2505 vm_object_set_writeable_dirty(vm_object_t object)
2506 {
2507         struct vnode *vp;
2508
2509         /*vm_object_assert_held(object);*/
2510         /*
2511          * Avoid contention in vm fault path by checking the state before
2512          * issuing an atomic op on it.
2513          */
2514         if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2515             (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2516                 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2517         }
2518         if (object->type == OBJT_VNODE &&
2519             (vp = (struct vnode *)object->handle) != NULL) {
2520                 if ((vp->v_flag & VOBJDIRTY) == 0) {
2521                         vsetflags(vp, VOBJDIRTY);
2522                 }
2523         }
2524 }
2525
2526 #include "opt_ddb.h"
2527 #ifdef DDB
2528 #include <sys/kernel.h>
2529
2530 #include <sys/cons.h>
2531
2532 #include <ddb/ddb.h>
2533
2534 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
2535                                        vm_map_entry_t entry);
2536 static int      vm_object_in_map (vm_object_t object);
2537
2538 /*
2539  * The caller must hold the object.
2540  */
2541 static int
2542 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2543 {
2544         vm_map_t tmpm;
2545         vm_map_entry_t tmpe;
2546         vm_object_t obj, nobj;
2547         int entcount;
2548
2549         if (map == 0)
2550                 return 0;
2551         if (entry == 0) {
2552                 tmpe = map->header.next;
2553                 entcount = map->nentries;
2554                 while (entcount-- && (tmpe != &map->header)) {
2555                         if( _vm_object_in_map(map, object, tmpe)) {
2556                                 return 1;
2557                         }
2558                         tmpe = tmpe->next;
2559                 }
2560                 return (0);
2561         }
2562         switch(entry->maptype) {
2563         case VM_MAPTYPE_SUBMAP:
2564                 tmpm = entry->object.sub_map;
2565                 tmpe = tmpm->header.next;
2566                 entcount = tmpm->nentries;
2567                 while (entcount-- && tmpe != &tmpm->header) {
2568                         if( _vm_object_in_map(tmpm, object, tmpe)) {
2569                                 return 1;
2570                         }
2571                         tmpe = tmpe->next;
2572                 }
2573                 break;
2574         case VM_MAPTYPE_NORMAL:
2575         case VM_MAPTYPE_VPAGETABLE:
2576                 obj = entry->object.vm_object;
2577                 while (obj) {
2578                         if (obj == object) {
2579                                 if (obj != entry->object.vm_object)
2580                                         vm_object_drop(obj);
2581                                 return 1;
2582                         }
2583                         while ((nobj = obj->backing_object) != NULL) {
2584                                 vm_object_hold(nobj);
2585                                 if (nobj == obj->backing_object)
2586                                         break;
2587                                 vm_object_drop(nobj);
2588                         }
2589                         if (obj != entry->object.vm_object) {
2590                                 if (nobj)
2591                                         vm_object_lock_swap();
2592                                 vm_object_drop(obj);
2593                         }
2594                         obj = nobj;
2595                 }
2596                 break;
2597         default:
2598                 break;
2599         }
2600         return 0;
2601 }
2602
2603 static int vm_object_in_map_callback(struct proc *p, void *data);
2604
2605 struct vm_object_in_map_info {
2606         vm_object_t object;
2607         int rv;
2608 };
2609
2610 /*
2611  * Debugging only
2612  */
2613 static int
2614 vm_object_in_map(vm_object_t object)
2615 {
2616         struct vm_object_in_map_info info;
2617
2618         info.rv = 0;
2619         info.object = object;
2620
2621         allproc_scan(vm_object_in_map_callback, &info);
2622         if (info.rv)
2623                 return 1;
2624         if( _vm_object_in_map(&kernel_map, object, 0))
2625                 return 1;
2626         if( _vm_object_in_map(&pager_map, object, 0))
2627                 return 1;
2628         if( _vm_object_in_map(&buffer_map, object, 0))
2629                 return 1;
2630         return 0;
2631 }
2632
2633 /*
2634  * Debugging only
2635  */
2636 static int
2637 vm_object_in_map_callback(struct proc *p, void *data)
2638 {
2639         struct vm_object_in_map_info *info = data;
2640
2641         if (p->p_vmspace) {
2642                 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2643                         info->rv = 1;
2644                         return -1;
2645                 }
2646         }
2647         return (0);
2648 }
2649
2650 DB_SHOW_COMMAND(vmochk, vm_object_check)
2651 {
2652         vm_object_t object;
2653
2654         /*
2655          * make sure that internal objs are in a map somewhere
2656          * and none have zero ref counts.
2657          */
2658         for (object = TAILQ_FIRST(&vm_object_list);
2659                         object != NULL;
2660                         object = TAILQ_NEXT(object, object_list)) {
2661                 if (object->type == OBJT_MARKER)
2662                         continue;
2663                 if (object->handle == NULL &&
2664                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2665                         if (object->ref_count == 0) {
2666                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2667                                         (long)object->size);
2668                         }
2669                         if (!vm_object_in_map(object)) {
2670                                 db_printf(
2671                         "vmochk: internal obj is not in a map: "
2672                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2673                                     object->ref_count, (u_long)object->size, 
2674                                     (u_long)object->size,
2675                                     (void *)object->backing_object);
2676                         }
2677                 }
2678         }
2679 }
2680
2681 /*
2682  * Debugging only
2683  */
2684 DB_SHOW_COMMAND(object, vm_object_print_static)
2685 {
2686         /* XXX convert args. */
2687         vm_object_t object = (vm_object_t)addr;
2688         boolean_t full = have_addr;
2689
2690         vm_page_t p;
2691
2692         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2693 #define count   was_count
2694
2695         int count;
2696
2697         if (object == NULL)
2698                 return;
2699
2700         db_iprintf(
2701             "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2702             object, (int)object->type, (u_long)object->size,
2703             object->resident_page_count, object->ref_count, object->flags);
2704         /*
2705          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2706          */
2707         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2708             object->shadow_count, 
2709             object->backing_object ? object->backing_object->ref_count : 0,
2710             object->backing_object, (long)object->backing_object_offset);
2711
2712         if (!full)
2713                 return;
2714
2715         db_indent += 2;
2716         count = 0;
2717         RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
2718                 if (count == 0)
2719                         db_iprintf("memory:=");
2720                 else if (count == 6) {
2721                         db_printf("\n");
2722                         db_iprintf(" ...");
2723                         count = 0;
2724                 } else
2725                         db_printf(",");
2726                 count++;
2727
2728                 db_printf("(off=0x%lx,page=0x%lx)",
2729                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2730         }
2731         if (count != 0)
2732                 db_printf("\n");
2733         db_indent -= 2;
2734 }
2735
2736 /* XXX. */
2737 #undef count
2738
2739 /*
2740  * XXX need this non-static entry for calling from vm_map_print.
2741  *
2742  * Debugging only
2743  */
2744 void
2745 vm_object_print(/* db_expr_t */ long addr,
2746                 boolean_t have_addr,
2747                 /* db_expr_t */ long count,
2748                 char *modif)
2749 {
2750         vm_object_print_static(addr, have_addr, count, modif);
2751 }
2752
2753 /*
2754  * Debugging only
2755  */
2756 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2757 {
2758         vm_object_t object;
2759         int nl = 0;
2760         int c;
2761         for (object = TAILQ_FIRST(&vm_object_list);
2762                         object != NULL;
2763                         object = TAILQ_NEXT(object, object_list)) {
2764                 vm_pindex_t idx, fidx;
2765                 vm_pindex_t osize;
2766                 vm_paddr_t pa = -1, padiff;
2767                 int rcount;
2768                 vm_page_t m;
2769
2770                 if (object->type == OBJT_MARKER)
2771                         continue;
2772                 db_printf("new object: %p\n", (void *)object);
2773                 if ( nl > 18) {
2774                         c = cngetc();
2775                         if (c != ' ')
2776                                 return;
2777                         nl = 0;
2778                 }
2779                 nl++;
2780                 rcount = 0;
2781                 fidx = 0;
2782                 osize = object->size;
2783                 if (osize > 128)
2784                         osize = 128;
2785                 for (idx = 0; idx < osize; idx++) {
2786                         m = vm_page_lookup(object, idx);
2787                         if (m == NULL) {
2788                                 if (rcount) {
2789                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2790                                                 (long)fidx, rcount, (long)pa);
2791                                         if ( nl > 18) {
2792                                                 c = cngetc();
2793                                                 if (c != ' ')
2794                                                         return;
2795                                                 nl = 0;
2796                                         }
2797                                         nl++;
2798                                         rcount = 0;
2799                                 }
2800                                 continue;
2801                         }
2802
2803                                 
2804                         if (rcount &&
2805                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2806                                 ++rcount;
2807                                 continue;
2808                         }
2809                         if (rcount) {
2810                                 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2811                                 padiff >>= PAGE_SHIFT;
2812                                 padiff &= PQ_L2_MASK;
2813                                 if (padiff == 0) {
2814                                         pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2815                                         ++rcount;
2816                                         continue;
2817                                 }
2818                                 db_printf(" index(%ld)run(%d)pa(0x%lx)",
2819                                         (long)fidx, rcount, (long)pa);
2820                                 db_printf("pd(%ld)\n", (long)padiff);
2821                                 if ( nl > 18) {
2822                                         c = cngetc();
2823                                         if (c != ' ')
2824                                                 return;
2825                                         nl = 0;
2826                                 }
2827                                 nl++;
2828                         }
2829                         fidx = idx;
2830                         pa = VM_PAGE_TO_PHYS(m);
2831                         rcount = 1;
2832                 }
2833                 if (rcount) {
2834                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2835                                 (long)fidx, rcount, (long)pa);
2836                         if ( nl > 18) {
2837                                 c = cngetc();
2838                                 if (c != ' ')
2839                                         return;
2840                                 nl = 0;
2841                         }
2842                         nl++;
2843                 }
2844         }
2845 }
2846 #endif /* DDB */