kernel - Implement CPU localization hinting for low level page allocations
[dragonfly.git] / sys / vm / vm_object.c
1 /*
2  * Copyright (c) 1991, 1993, 2013
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  *
60  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/proc.h>           /* for curproc, pageproc */
70 #include <sys/thread.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/refcount.h>
78
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/swap_pager.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_zone.h>
91
92 #include <vm/vm_page2.h>
93
94 #include <machine/specialreg.h>
95
96 #define EASY_SCAN_FACTOR        8
97
98 static void     vm_object_qcollapse(vm_object_t object,
99                                     vm_object_t backing_object);
100 static void     vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101                                              int pagerflags);
102 static void     vm_object_lock_init(vm_object_t);
103
104
105 /*
106  *      Virtual memory objects maintain the actual data
107  *      associated with allocated virtual memory.  A given
108  *      page of memory exists within exactly one object.
109  *
110  *      An object is only deallocated when all "references"
111  *      are given up.  Only one "reference" to a given
112  *      region of an object should be writeable.
113  *
114  *      Associated with each object is a list of all resident
115  *      memory pages belonging to that object; this list is
116  *      maintained by the "vm_page" module, and locked by the object's
117  *      lock.
118  *
119  *      Each object also records a "pager" routine which is
120  *      used to retrieve (and store) pages to the proper backing
121  *      storage.  In addition, objects may be backed by other
122  *      objects from which they were virtual-copied.
123  *
124  *      The only items within the object structure which are
125  *      modified after time of creation are:
126  *              reference count         locked by object's lock
127  *              pager routine           locked by object's lock
128  *
129  */
130
131 struct vm_object kernel_object;
132
133 static long object_collapses;
134 static long object_bypasses;
135
136 struct vm_object_hash vm_object_hash[VMOBJ_HSIZE];
137
138 MALLOC_DEFINE(M_VM_OBJECT, "vm_object", "vm_object structures");
139
140 #if defined(DEBUG_LOCKS)
141
142 #define vm_object_vndeallocate(obj, vpp)        \
143                 debugvm_object_vndeallocate(obj, vpp, __FILE__, __LINE__)
144
145 /*
146  * Debug helper to track hold/drop/ref/deallocate calls.
147  */
148 static void
149 debugvm_object_add(vm_object_t obj, char *file, int line, int addrem)
150 {
151         int i;
152
153         i = atomic_fetchadd_int(&obj->debug_index, 1);
154         i = i & (VMOBJ_DEBUG_ARRAY_SIZE - 1);
155         ksnprintf(obj->debug_hold_thrs[i],
156                   sizeof(obj->debug_hold_thrs[i]),
157                   "%c%d:(%d):%s",
158                   (addrem == -1 ? '-' : (addrem == 1 ? '+' : '=')),
159                   (curthread->td_proc ? curthread->td_proc->p_pid : -1),
160                   obj->ref_count,
161                   curthread->td_comm);
162         obj->debug_hold_file[i] = file;
163         obj->debug_hold_line[i] = line;
164 #if 0
165         /* Uncomment for debugging obj refs/derefs in reproducable cases */
166         if (strcmp(curthread->td_comm, "sshd") == 0) {
167                 kprintf("%d %p refs=%d ar=%d file: %s/%d\n",
168                         (curthread->td_proc ? curthread->td_proc->p_pid : -1),
169                         obj, obj->ref_count, addrem, file, line);
170         }
171 #endif
172 }
173
174 #endif
175
176 /*
177  * Misc low level routines
178  */
179 static void
180 vm_object_lock_init(vm_object_t obj)
181 {
182 #if defined(DEBUG_LOCKS)
183         int i;
184
185         obj->debug_index = 0;
186         for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
187                 obj->debug_hold_thrs[i][0] = 0;
188                 obj->debug_hold_file[i] = NULL;
189                 obj->debug_hold_line[i] = 0;
190         }
191 #endif
192 }
193
194 void
195 vm_object_lock_swap(void)
196 {
197         lwkt_token_swap();
198 }
199
200 void
201 vm_object_lock(vm_object_t obj)
202 {
203         lwkt_gettoken(&obj->token);
204 }
205
206 /*
207  * Returns TRUE on sucesss
208  */
209 static int
210 vm_object_lock_try(vm_object_t obj)
211 {
212         return(lwkt_trytoken(&obj->token));
213 }
214
215 void
216 vm_object_lock_shared(vm_object_t obj)
217 {
218         lwkt_gettoken_shared(&obj->token);
219 }
220
221 void
222 vm_object_unlock(vm_object_t obj)
223 {
224         lwkt_reltoken(&obj->token);
225 }
226
227 void
228 vm_object_upgrade(vm_object_t obj)
229 {
230         lwkt_reltoken(&obj->token);
231         lwkt_gettoken(&obj->token);
232 }
233
234 void
235 vm_object_downgrade(vm_object_t obj)
236 {
237         lwkt_reltoken(&obj->token);
238         lwkt_gettoken_shared(&obj->token);
239 }
240
241 static __inline void
242 vm_object_assert_held(vm_object_t obj)
243 {
244         ASSERT_LWKT_TOKEN_HELD(&obj->token);
245 }
246
247 static __inline int
248 vm_quickcolor(void)
249 {
250         globaldata_t gd = mycpu;
251         int pg_color;
252
253         pg_color = (int)(intptr_t)gd->gd_curthread >> 10;
254         pg_color += gd->gd_quick_color;
255         gd->gd_quick_color += PQ_PRIME2;
256
257         return pg_color;
258 }
259
260 void
261 VMOBJDEBUG(vm_object_hold)(vm_object_t obj VMOBJDBARGS)
262 {
263         KKASSERT(obj != NULL);
264
265         /*
266          * Object must be held (object allocation is stable due to callers
267          * context, typically already holding the token on a parent object)
268          * prior to potentially blocking on the lock, otherwise the object
269          * can get ripped away from us.
270          */
271         refcount_acquire(&obj->hold_count);
272         vm_object_lock(obj);
273
274 #if defined(DEBUG_LOCKS)
275         debugvm_object_add(obj, file, line, 1);
276 #endif
277 }
278
279 int
280 VMOBJDEBUG(vm_object_hold_try)(vm_object_t obj VMOBJDBARGS)
281 {
282         KKASSERT(obj != NULL);
283
284         /*
285          * Object must be held (object allocation is stable due to callers
286          * context, typically already holding the token on a parent object)
287          * prior to potentially blocking on the lock, otherwise the object
288          * can get ripped away from us.
289          */
290         refcount_acquire(&obj->hold_count);
291         if (vm_object_lock_try(obj) == 0) {
292                 if (refcount_release(&obj->hold_count)) {
293                         if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
294                                 kfree(obj, M_VM_OBJECT);
295                 }
296                 return(0);
297         }
298
299 #if defined(DEBUG_LOCKS)
300         debugvm_object_add(obj, file, line, 1);
301 #endif
302         return(1);
303 }
304
305 void
306 VMOBJDEBUG(vm_object_hold_shared)(vm_object_t obj VMOBJDBARGS)
307 {
308         KKASSERT(obj != NULL);
309
310         /*
311          * Object must be held (object allocation is stable due to callers
312          * context, typically already holding the token on a parent object)
313          * prior to potentially blocking on the lock, otherwise the object
314          * can get ripped away from us.
315          */
316         refcount_acquire(&obj->hold_count);
317         vm_object_lock_shared(obj);
318
319 #if defined(DEBUG_LOCKS)
320         debugvm_object_add(obj, file, line, 1);
321 #endif
322 }
323
324 /*
325  * Drop the token and hold_count on the object.
326  *
327  * WARNING! Token might be shared.
328  */
329 void
330 VMOBJDEBUG(vm_object_drop)(vm_object_t obj VMOBJDBARGS)
331 {
332         if (obj == NULL)
333                 return;
334
335         /*
336          * No new holders should be possible once we drop hold_count 1->0 as
337          * there is no longer any way to reference the object.
338          */
339         KKASSERT(obj->hold_count > 0);
340         if (refcount_release(&obj->hold_count)) {
341 #if defined(DEBUG_LOCKS)
342                 debugvm_object_add(obj, file, line, -1);
343 #endif
344
345                 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
346                         vm_object_unlock(obj);
347                         kfree(obj, M_VM_OBJECT);
348                 } else {
349                         vm_object_unlock(obj);
350                 }
351         } else {
352 #if defined(DEBUG_LOCKS)
353                 debugvm_object_add(obj, file, line, -1);
354 #endif
355                 vm_object_unlock(obj);
356         }
357 }
358
359 /*
360  * Initialize a freshly allocated object, returning a held object.
361  *
362  * Used only by vm_object_allocate() and zinitna().
363  *
364  * No requirements.
365  */
366 void
367 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
368 {
369         struct vm_object_hash *hash;
370
371         RB_INIT(&object->rb_memq);
372         LIST_INIT(&object->shadow_head);
373         lwkt_token_init(&object->token, "vmobj");
374
375         object->type = type;
376         object->size = size;
377         object->ref_count = 1;
378         object->memattr = VM_MEMATTR_DEFAULT;
379         object->hold_count = 0;
380         object->flags = 0;
381         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
382                 vm_object_set_flag(object, OBJ_ONEMAPPING);
383         object->paging_in_progress = 0;
384         object->resident_page_count = 0;
385         object->agg_pv_list_count = 0;
386         object->shadow_count = 0;
387         /* cpu localization twist */
388         object->pg_color = vm_quickcolor();
389         object->handle = NULL;
390         object->backing_object = NULL;
391         object->backing_object_offset = (vm_ooffset_t)0;
392
393         object->generation++;
394         object->swblock_count = 0;
395         RB_INIT(&object->swblock_root);
396         vm_object_lock_init(object);
397         pmap_object_init(object);
398
399         vm_object_hold(object);
400
401         hash = VMOBJ_HASH(object);
402         lwkt_gettoken(&hash->token);
403         TAILQ_INSERT_TAIL(&hash->list, object, object_list);
404         lwkt_reltoken(&hash->token);
405 }
406
407 /*
408  * Initialize the VM objects module.
409  *
410  * Called from the low level boot code only.  Note that this occurs before
411  * kmalloc is initialized so we cannot allocate any VM objects.
412  */
413 void
414 vm_object_init(void)
415 {
416         int i;
417
418         for (i = 0; i < VMOBJ_HSIZE; ++i) {
419                 TAILQ_INIT(&vm_object_hash[i].list);
420                 lwkt_token_init(&vm_object_hash[i].token, "vmobjlst");
421         }
422         
423         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
424                             &kernel_object);
425         vm_object_drop(&kernel_object);
426 }
427
428 void
429 vm_object_init2(void)
430 {
431         kmalloc_set_unlimited(M_VM_OBJECT);
432 }
433
434 /*
435  * Allocate and return a new object of the specified type and size.
436  *
437  * No requirements.
438  */
439 vm_object_t
440 vm_object_allocate(objtype_t type, vm_pindex_t size)
441 {
442         vm_object_t obj;
443
444         obj = kmalloc(sizeof(*obj), M_VM_OBJECT, M_INTWAIT|M_ZERO);
445         _vm_object_allocate(type, size, obj);
446         vm_object_drop(obj);
447
448         return (obj);
449 }
450
451 /*
452  * This version returns a held object, allowing further atomic initialization
453  * of the object.
454  */
455 vm_object_t
456 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
457 {
458         vm_object_t obj;
459
460         obj = kmalloc(sizeof(*obj), M_VM_OBJECT, M_INTWAIT|M_ZERO);
461         _vm_object_allocate(type, size, obj);
462
463         return (obj);
464 }
465
466 /*
467  * Add an additional reference to a vm_object.  The object must already be
468  * held.  The original non-lock version is no longer supported.  The object
469  * must NOT be chain locked by anyone at the time the reference is added.
470  *
471  * Referencing a chain-locked object can blow up the fairly sensitive
472  * ref_count and shadow_count tests in the deallocator.  Most callers
473  * will call vm_object_chain_wait() prior to calling
474  * vm_object_reference_locked() to avoid the case.
475  *
476  * The object must be held, but may be held shared if desired (hence why
477  * we use an atomic op).
478  */
479 void
480 VMOBJDEBUG(vm_object_reference_locked)(vm_object_t object VMOBJDBARGS)
481 {
482         KKASSERT(object != NULL);
483         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
484         KKASSERT((object->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) == 0);
485         atomic_add_int(&object->ref_count, 1);
486         if (object->type == OBJT_VNODE) {
487                 vref(object->handle);
488                 /* XXX what if the vnode is being destroyed? */
489         }
490 #if defined(DEBUG_LOCKS)
491         debugvm_object_add(object, file, line, 1);
492 #endif
493 }
494
495 /*
496  * This version is only allowed for vnode objects.
497  */
498 void
499 VMOBJDEBUG(vm_object_reference_quick)(vm_object_t object VMOBJDBARGS)
500 {
501         KKASSERT(object->type == OBJT_VNODE);
502         atomic_add_int(&object->ref_count, 1);
503         vref(object->handle);
504 #if defined(DEBUG_LOCKS)
505         debugvm_object_add(object, file, line, 1);
506 #endif
507 }
508
509 /*
510  * Object OBJ_CHAINLOCK lock handling.
511  *
512  * The caller can chain-lock backing objects recursively and then
513  * use vm_object_chain_release_all() to undo the whole chain.
514  *
515  * Chain locks are used to prevent collapses and are only applicable
516  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
517  * on other object types are ignored.  This is also important because
518  * it allows e.g. the vnode underlying a memory mapping to take concurrent
519  * faults.
520  *
521  * The object must usually be held on entry, though intermediate
522  * objects need not be held on release.  The object must be held exclusively,
523  * NOT shared.  Note that the prefault path checks the shared state and
524  * avoids using the chain functions.
525  */
526 void
527 vm_object_chain_wait(vm_object_t object, int shared)
528 {
529         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
530         for (;;) {
531                 uint32_t chainlk = object->chainlk;
532
533                 cpu_ccfence();
534                 if (shared) {
535                         if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
536                                 tsleep_interlock(object, 0);
537                                 if (atomic_cmpset_int(&object->chainlk,
538                                                       chainlk,
539                                                       chainlk | CHAINLK_WAIT)) {
540                                         tsleep(object, PINTERLOCKED,
541                                                "objchns", 0);
542                                 }
543                                 /* retry */
544                         } else {
545                                 break;
546                         }
547                         /* retry */
548                 } else {
549                         if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
550                                 tsleep_interlock(object, 0);
551                                 if (atomic_cmpset_int(&object->chainlk,
552                                                       chainlk,
553                                                       chainlk | CHAINLK_WAIT))
554                                 {
555                                         tsleep(object, PINTERLOCKED,
556                                                "objchnx", 0);
557                                 }
558                                 /* retry */
559                         } else {
560                                 if (atomic_cmpset_int(&object->chainlk,
561                                                       chainlk,
562                                                       chainlk & ~CHAINLK_WAIT))
563                                 {
564                                         if (chainlk & CHAINLK_WAIT)
565                                                 wakeup(object);
566                                         break;
567                                 }
568                                 /* retry */
569                         }
570                 }
571                 /* retry */
572         }
573 }
574
575 void
576 vm_object_chain_acquire(vm_object_t object, int shared)
577 {
578         if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
579                 return;
580         if (vm_shared_fault == 0)
581                 shared = 0;
582
583         for (;;) {
584                 uint32_t chainlk = object->chainlk;
585
586                 cpu_ccfence();
587                 if (shared) {
588                         if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
589                                 tsleep_interlock(object, 0);
590                                 if (atomic_cmpset_int(&object->chainlk,
591                                                       chainlk,
592                                                       chainlk | CHAINLK_WAIT)) {
593                                         tsleep(object, PINTERLOCKED,
594                                                "objchns", 0);
595                                 }
596                                 /* retry */
597                         } else if (atomic_cmpset_int(&object->chainlk,
598                                               chainlk, chainlk + 1)) {
599                                 break;
600                         }
601                         /* retry */
602                 } else {
603                         if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
604                                 tsleep_interlock(object, 0);
605                                 if (atomic_cmpset_int(&object->chainlk,
606                                                       chainlk,
607                                                       chainlk |
608                                                        CHAINLK_WAIT |
609                                                        CHAINLK_EXCLREQ)) {
610                                         tsleep(object, PINTERLOCKED,
611                                                "objchnx", 0);
612                                 }
613                                 /* retry */
614                         } else {
615                                 if (atomic_cmpset_int(&object->chainlk,
616                                                       chainlk,
617                                                       (chainlk | CHAINLK_EXCL) &
618                                                       ~(CHAINLK_EXCLREQ |
619                                                         CHAINLK_WAIT))) {
620                                         if (chainlk & CHAINLK_WAIT)
621                                                 wakeup(object);
622                                         break;
623                                 }
624                                 /* retry */
625                         }
626                 }
627                 /* retry */
628         }
629 }
630
631 void
632 vm_object_chain_release(vm_object_t object)
633 {
634         /*ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));*/
635         if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
636                 return;
637         KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
638         for (;;) {
639                 uint32_t chainlk = object->chainlk;
640
641                 cpu_ccfence();
642                 if (chainlk & CHAINLK_MASK) {
643                         if ((chainlk & CHAINLK_MASK) == 1 &&
644                             atomic_cmpset_int(&object->chainlk,
645                                               chainlk,
646                                               (chainlk - 1) & ~CHAINLK_WAIT)) {
647                                 if (chainlk & CHAINLK_WAIT)
648                                         wakeup(object);
649                                 break;
650                         }
651                         if ((chainlk & CHAINLK_MASK) > 1 &&
652                             atomic_cmpset_int(&object->chainlk,
653                                               chainlk, chainlk - 1)) {
654                                 break;
655                         }
656                         /* retry */
657                 } else {
658                         KKASSERT(chainlk & CHAINLK_EXCL);
659                         if (atomic_cmpset_int(&object->chainlk,
660                                               chainlk,
661                                               chainlk & ~(CHAINLK_EXCL |
662                                                           CHAINLK_WAIT))) {
663                                 if (chainlk & CHAINLK_WAIT)
664                                         wakeup(object);
665                                 break;
666                         }
667                 }
668         }
669 }
670
671 /*
672  * Release the chain from first_object through and including stopobj.
673  * The caller is typically holding the first and last object locked
674  * (shared or exclusive) to prevent destruction races.
675  *
676  * We release stopobj first as an optimization as this object is most
677  * likely to be shared across multiple processes.
678  */
679 void
680 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
681 {
682         vm_object_t backing_object;
683         vm_object_t object;
684
685         vm_object_chain_release(stopobj);
686         object = first_object;
687
688         while (object != stopobj) {
689                 KKASSERT(object);
690                 backing_object = object->backing_object;
691                 vm_object_chain_release(object);
692                 object = backing_object;
693         }
694 }
695
696 /*
697  * Dereference an object and its underlying vnode.  The object may be
698  * held shared.  On return the object will remain held.
699  *
700  * This function may return a vnode in *vpp which the caller must release
701  * after the caller drops its own lock.  If vpp is NULL, we assume that
702  * the caller was holding an exclusive lock on the object and we vrele()
703  * the vp ourselves.
704  */
705 static void
706 VMOBJDEBUG(vm_object_vndeallocate)(vm_object_t object, struct vnode **vpp
707                                    VMOBJDBARGS)
708 {
709         struct vnode *vp = (struct vnode *) object->handle;
710
711         KASSERT(object->type == OBJT_VNODE,
712             ("vm_object_vndeallocate: not a vnode object"));
713         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
714         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
715 #ifdef INVARIANTS
716         if (object->ref_count == 0) {
717                 vprint("vm_object_vndeallocate", vp);
718                 panic("vm_object_vndeallocate: bad object reference count");
719         }
720 #endif
721         for (;;) {
722                 int count = object->ref_count;
723                 cpu_ccfence();
724                 if (count == 1) {
725                         vm_object_upgrade(object);
726                         if (atomic_cmpset_int(&object->ref_count, count, 0)) {
727                                 vclrflags(vp, VTEXT);
728                                 break;
729                         }
730                 } else {
731                         if (atomic_cmpset_int(&object->ref_count,
732                                               count, count - 1)) {
733                                 break;
734                         }
735                 }
736                 /* retry */
737         }
738 #if defined(DEBUG_LOCKS)
739         debugvm_object_add(object, file, line, -1);
740 #endif
741
742         /*
743          * vrele or return the vp to vrele.  We can only safely vrele(vp)
744          * if the object was locked exclusively.  But there are two races
745          * here.
746          *
747          * We had to upgrade the object above to safely clear VTEXT
748          * but the alternative path where the shared lock is retained
749          * can STILL race to 0 in other paths and cause our own vrele()
750          * to terminate the vnode.  We can't allow that if the VM object
751          * is still locked shared.
752          */
753         if (vpp)
754                 *vpp = vp;
755         else
756                 vrele(vp);
757 }
758
759 /*
760  * Release a reference to the specified object, gained either through a
761  * vm_object_allocate or a vm_object_reference call.  When all references
762  * are gone, storage associated with this object may be relinquished.
763  *
764  * The caller does not have to hold the object locked but must have control
765  * over the reference in question in order to guarantee that the object
766  * does not get ripped out from under us.
767  *
768  * XXX Currently all deallocations require an exclusive lock.
769  */
770 void
771 VMOBJDEBUG(vm_object_deallocate)(vm_object_t object VMOBJDBARGS)
772 {
773         struct vnode *vp;
774         int count;
775
776         if (object == NULL)
777                 return;
778
779         for (;;) {
780                 count = object->ref_count;
781                 cpu_ccfence();
782
783                 /*
784                  * If decrementing the count enters into special handling
785                  * territory (0, 1, or 2) we have to do it the hard way.
786                  * Fortunate though, objects with only a few refs like this
787                  * are not likely to be heavily contended anyway.
788                  *
789                  * For vnode objects we only care about 1->0 transitions.
790                  */
791                 if (count <= 3 || (object->type == OBJT_VNODE && count <= 1)) {
792 #if defined(DEBUG_LOCKS)
793                         debugvm_object_add(object, file, line, 0);
794 #endif
795                         vm_object_hold(object);
796                         vm_object_deallocate_locked(object);
797                         vm_object_drop(object);
798                         break;
799                 }
800
801                 /*
802                  * Try to decrement ref_count without acquiring a hold on
803                  * the object.  This is particularly important for the exec*()
804                  * and exit*() code paths because the program binary may
805                  * have a great deal of sharing and an exclusive lock will
806                  * crowbar performance in those circumstances.
807                  */
808                 if (object->type == OBJT_VNODE) {
809                         vp = (struct vnode *)object->handle;
810                         if (atomic_cmpset_int(&object->ref_count,
811                                               count, count - 1)) {
812 #if defined(DEBUG_LOCKS)
813                                 debugvm_object_add(object, file, line, -1);
814 #endif
815
816                                 vrele(vp);
817                                 break;
818                         }
819                         /* retry */
820                 } else {
821                         if (atomic_cmpset_int(&object->ref_count,
822                                               count, count - 1)) {
823 #if defined(DEBUG_LOCKS)
824                                 debugvm_object_add(object, file, line, -1);
825 #endif
826                                 break;
827                         }
828                         /* retry */
829                 }
830                 /* retry */
831         }
832 }
833
834 void
835 VMOBJDEBUG(vm_object_deallocate_locked)(vm_object_t object VMOBJDBARGS)
836 {
837         struct vm_object_dealloc_list *dlist = NULL;
838         struct vm_object_dealloc_list *dtmp;
839         vm_object_t temp;
840         int must_drop = 0;
841
842         /*
843          * We may chain deallocate object, but additional objects may
844          * collect on the dlist which also have to be deallocated.  We
845          * must avoid a recursion, vm_object chains can get deep.
846          */
847
848 again:
849         while (object != NULL) {
850                 /*
851                  * vnode case, caller either locked the object exclusively
852                  * or this is a recursion with must_drop != 0 and the vnode
853                  * object will be locked shared.
854                  *
855                  * If locked shared we have to drop the object before we can
856                  * call vrele() or risk a shared/exclusive livelock.
857                  */
858                 if (object->type == OBJT_VNODE) {
859                         ASSERT_LWKT_TOKEN_HELD(&object->token);
860                         if (must_drop) {
861                                 struct vnode *tmp_vp;
862
863                                 vm_object_vndeallocate(object, &tmp_vp);
864                                 vm_object_drop(object);
865                                 must_drop = 0;
866                                 object = NULL;
867                                 vrele(tmp_vp);
868                         } else {
869                                 vm_object_vndeallocate(object, NULL);
870                         }
871                         break;
872                 }
873                 ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
874
875                 /*
876                  * Normal case (object is locked exclusively)
877                  */
878                 if (object->ref_count == 0) {
879                         panic("vm_object_deallocate: object deallocated "
880                               "too many times: %d", object->type);
881                 }
882                 if (object->ref_count > 2) {
883                         atomic_add_int(&object->ref_count, -1);
884 #if defined(DEBUG_LOCKS)
885                         debugvm_object_add(object, file, line, -1);
886 #endif
887                         break;
888                 }
889
890                 /*
891                  * Here on ref_count of one or two, which are special cases for
892                  * objects.
893                  *
894                  * Nominal ref_count > 1 case if the second ref is not from
895                  * a shadow.
896                  *
897                  * (ONEMAPPING only applies to DEFAULT AND SWAP objects)
898                  */
899                 if (object->ref_count == 2 && object->shadow_count == 0) {
900                         if (object->type == OBJT_DEFAULT ||
901                             object->type == OBJT_SWAP) {
902                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
903                         }
904                         atomic_add_int(&object->ref_count, -1);
905 #if defined(DEBUG_LOCKS)
906                         debugvm_object_add(object, file, line, -1);
907 #endif
908                         break;
909                 }
910
911                 /*
912                  * If the second ref is from a shadow we chain along it
913                  * upwards if object's handle is exhausted.
914                  *
915                  * We have to decrement object->ref_count before potentially
916                  * collapsing the first shadow object or the collapse code
917                  * will not be able to handle the degenerate case to remove
918                  * object.  However, if we do it too early the object can
919                  * get ripped out from under us.
920                  */
921                 if (object->ref_count == 2 && object->shadow_count == 1 &&
922                     object->handle == NULL && (object->type == OBJT_DEFAULT ||
923                                                object->type == OBJT_SWAP)) {
924                         temp = LIST_FIRST(&object->shadow_head);
925                         KKASSERT(temp != NULL);
926                         vm_object_hold(temp);
927
928                         /*
929                          * Wait for any paging to complete so the collapse
930                          * doesn't (or isn't likely to) qcollapse.  pip
931                          * waiting must occur before we acquire the
932                          * chainlock.
933                          */
934                         while (
935                                 temp->paging_in_progress ||
936                                 object->paging_in_progress
937                         ) {
938                                 vm_object_pip_wait(temp, "objde1");
939                                 vm_object_pip_wait(object, "objde2");
940                         }
941
942                         /*
943                          * If the parent is locked we have to give up, as
944                          * otherwise we would be acquiring locks in the
945                          * wrong order and potentially deadlock.
946                          */
947                         if (temp->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) {
948                                 vm_object_drop(temp);
949                                 goto skip;
950                         }
951                         vm_object_chain_acquire(temp, 0);
952
953                         /*
954                          * Recheck/retry after the hold and the paging
955                          * wait, both of which can block us.
956                          */
957                         if (object->ref_count != 2 ||
958                             object->shadow_count != 1 ||
959                             object->handle ||
960                             LIST_FIRST(&object->shadow_head) != temp ||
961                             (object->type != OBJT_DEFAULT &&
962                              object->type != OBJT_SWAP)) {
963                                 vm_object_chain_release(temp);
964                                 vm_object_drop(temp);
965                                 continue;
966                         }
967
968                         /*
969                          * We can safely drop object's ref_count now.
970                          */
971                         KKASSERT(object->ref_count == 2);
972                         atomic_add_int(&object->ref_count, -1);
973 #if defined(DEBUG_LOCKS)
974                         debugvm_object_add(object, file, line, -1);
975 #endif
976
977                         /*
978                          * If our single parent is not collapseable just
979                          * decrement ref_count (2->1) and stop.
980                          */
981                         if (temp->handle || (temp->type != OBJT_DEFAULT &&
982                                              temp->type != OBJT_SWAP)) {
983                                 vm_object_chain_release(temp);
984                                 vm_object_drop(temp);
985                                 break;
986                         }
987
988                         /*
989                          * At this point we have already dropped object's
990                          * ref_count so it is possible for a race to
991                          * deallocate obj out from under us.  Any collapse
992                          * will re-check the situation.  We must not block
993                          * until we are able to collapse.
994                          *
995                          * Bump temp's ref_count to avoid an unwanted
996                          * degenerate recursion (can't call
997                          * vm_object_reference_locked() because it asserts
998                          * that CHAINLOCK is not set).
999                          */
1000                         atomic_add_int(&temp->ref_count, 1);
1001                         KKASSERT(temp->ref_count > 1);
1002
1003                         /*
1004                          * Collapse temp, then deallocate the extra ref
1005                          * formally.
1006                          */
1007                         vm_object_collapse(temp, &dlist);
1008                         vm_object_chain_release(temp);
1009                         if (must_drop) {
1010                                 vm_object_lock_swap();
1011                                 vm_object_drop(object);
1012                         }
1013                         object = temp;
1014                         must_drop = 1;
1015                         continue;
1016                 }
1017
1018                 /*
1019                  * Drop the ref and handle termination on the 1->0 transition.
1020                  * We may have blocked above so we have to recheck.
1021                  */
1022 skip:
1023                 KKASSERT(object->ref_count != 0);
1024                 if (object->ref_count >= 2) {
1025                         atomic_add_int(&object->ref_count, -1);
1026 #if defined(DEBUG_LOCKS)
1027                         debugvm_object_add(object, file, line, -1);
1028 #endif
1029                         break;
1030                 }
1031                 KKASSERT(object->ref_count == 1);
1032
1033                 /*
1034                  * 1->0 transition.  Chain through the backing_object.
1035                  * Maintain the ref until we've located the backing object,
1036                  * then re-check.
1037                  */
1038                 while ((temp = object->backing_object) != NULL) {
1039                         if (temp->type == OBJT_VNODE)
1040                                 vm_object_hold_shared(temp);
1041                         else
1042                                 vm_object_hold(temp);
1043                         if (temp == object->backing_object)
1044                                 break;
1045                         vm_object_drop(temp);
1046                 }
1047
1048                 /*
1049                  * 1->0 transition verified, retry if ref_count is no longer
1050                  * 1.  Otherwise disconnect the backing_object (temp) and
1051                  * clean up.
1052                  */
1053                 if (object->ref_count != 1) {
1054                         vm_object_drop(temp);
1055                         continue;
1056                 }
1057
1058                 /*
1059                  * It shouldn't be possible for the object to be chain locked
1060                  * if we're removing the last ref on it.
1061                  *
1062                  * Removing object from temp's shadow list requires dropping
1063                  * temp, which we will do on loop.
1064                  *
1065                  * NOTE! vnodes do not use the shadow list, but still have
1066                  *       the backing_object reference.
1067                  */
1068                 KKASSERT((object->chainlk & (CHAINLK_EXCL|CHAINLK_MASK)) == 0);
1069
1070                 if (temp) {
1071                         if (object->flags & OBJ_ONSHADOW) {
1072                                 LIST_REMOVE(object, shadow_list);
1073                                 temp->shadow_count--;
1074                                 temp->generation++;
1075                                 vm_object_clear_flag(object, OBJ_ONSHADOW);
1076                         }
1077                         object->backing_object = NULL;
1078                 }
1079
1080                 atomic_add_int(&object->ref_count, -1);
1081                 if ((object->flags & OBJ_DEAD) == 0)
1082                         vm_object_terminate(object);
1083                 if (must_drop && temp)
1084                         vm_object_lock_swap();
1085                 if (must_drop)
1086                         vm_object_drop(object);
1087                 object = temp;
1088                 must_drop = 1;
1089         }
1090
1091         if (must_drop && object)
1092                 vm_object_drop(object);
1093
1094         /*
1095          * Additional tail recursion on dlist.  Avoid a recursion.  Objects
1096          * on the dlist have a hold count but are not locked.
1097          */
1098         if ((dtmp = dlist) != NULL) {
1099                 dlist = dtmp->next;
1100                 object = dtmp->object;
1101                 kfree(dtmp, M_TEMP);
1102
1103                 vm_object_lock(object); /* already held, add lock */
1104                 must_drop = 1;          /* and we're responsible for it */
1105                 goto again;
1106         }
1107 }
1108
1109 /*
1110  * Destroy the specified object, freeing up related resources.
1111  *
1112  * The object must have zero references.
1113  *
1114  * The object must held.  The caller is responsible for dropping the object
1115  * after terminate returns.  Terminate does NOT drop the object.
1116  */
1117 static int vm_object_terminate_callback(vm_page_t p, void *data);
1118
1119 void
1120 vm_object_terminate(vm_object_t object)
1121 {
1122         struct rb_vm_page_scan_info info;
1123         struct vm_object_hash *hash;
1124
1125         /*
1126          * Make sure no one uses us.  Once we set OBJ_DEAD we should be
1127          * able to safely block.
1128          */
1129         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1130         KKASSERT((object->flags & OBJ_DEAD) == 0);
1131         vm_object_set_flag(object, OBJ_DEAD);
1132
1133         /*
1134          * Wait for the pageout daemon to be done with the object
1135          */
1136         vm_object_pip_wait(object, "objtrm1");
1137
1138         KASSERT(!object->paging_in_progress,
1139                 ("vm_object_terminate: pageout in progress"));
1140
1141         /*
1142          * Clean and free the pages, as appropriate. All references to the
1143          * object are gone, so we don't need to lock it.
1144          */
1145         if (object->type == OBJT_VNODE) {
1146                 struct vnode *vp;
1147
1148                 /*
1149                  * Clean pages and flush buffers.
1150                  *
1151                  * NOTE!  TMPFS buffer flushes do not typically flush the
1152                  *        actual page to swap as this would be highly
1153                  *        inefficient, and normal filesystems usually wrap
1154                  *        page flushes with buffer cache buffers.
1155                  *
1156                  *        To deal with this we have to call vinvalbuf() both
1157                  *        before and after the vm_object_page_clean().
1158                  */
1159                 vp = (struct vnode *) object->handle;
1160                 vinvalbuf(vp, V_SAVE, 0, 0);
1161                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
1162                 vinvalbuf(vp, V_SAVE, 0, 0);
1163         }
1164
1165         /*
1166          * Wait for any I/O to complete, after which there had better not
1167          * be any references left on the object.
1168          */
1169         vm_object_pip_wait(object, "objtrm2");
1170
1171         if (object->ref_count != 0) {
1172                 panic("vm_object_terminate: object with references, "
1173                       "ref_count=%d", object->ref_count);
1174         }
1175
1176         /*
1177          * Cleanup any shared pmaps associated with this object.
1178          */
1179         pmap_object_free(object);
1180
1181         /*
1182          * Now free any remaining pages. For internal objects, this also
1183          * removes them from paging queues. Don't free wired pages, just
1184          * remove them from the object. 
1185          */
1186         info.count = 0;
1187         info.object = object;
1188         vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1189                                 vm_object_terminate_callback, &info);
1190
1191         /*
1192          * Let the pager know object is dead.
1193          */
1194         vm_pager_deallocate(object);
1195
1196         /*
1197          * Wait for the object hold count to hit 1, clean out pages as
1198          * we go.  vmobj_token interlocks any race conditions that might
1199          * pick the object up from the vm_object_list after we have cleared
1200          * rb_memq.
1201          */
1202         for (;;) {
1203                 if (RB_ROOT(&object->rb_memq) == NULL)
1204                         break;
1205                 kprintf("vm_object_terminate: Warning, object %p "
1206                         "still has %ld pages\n",
1207                         object, object->resident_page_count);
1208                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1209                                         vm_object_terminate_callback, &info);
1210         }
1211
1212         /*
1213          * There had better not be any pages left
1214          */
1215         KKASSERT(object->resident_page_count == 0);
1216
1217         /*
1218          * Remove the object from the global object list.
1219          */
1220         hash = VMOBJ_HASH(object);
1221         lwkt_gettoken(&hash->token);
1222         TAILQ_REMOVE(&hash->list, object, object_list);
1223         lwkt_reltoken(&hash->token);
1224
1225         if (object->ref_count != 0) {
1226                 panic("vm_object_terminate2: object with references, "
1227                       "ref_count=%d", object->ref_count);
1228         }
1229
1230         /*
1231          * NOTE: The object hold_count is at least 1, so we cannot kfree()
1232          *       the object here.  See vm_object_drop().
1233          */
1234 }
1235
1236 /*
1237  * The caller must hold the object.
1238  */
1239 static int
1240 vm_object_terminate_callback(vm_page_t p, void *data)
1241 {
1242         struct rb_vm_page_scan_info *info = data;
1243         vm_object_t object;
1244
1245         if ((++info->count & 63) == 0)
1246                 lwkt_user_yield();
1247         object = p->object;
1248         if (object != info->object) {
1249                 kprintf("vm_object_terminate_callback: obj/pg race %p/%p\n",
1250                         info->object, p);
1251                 return(0);
1252         }
1253         vm_page_busy_wait(p, TRUE, "vmpgtrm");
1254         if (object != p->object) {
1255                 kprintf("vm_object_terminate: Warning: Encountered "
1256                         "busied page %p on queue %d\n", p, p->queue);
1257                 vm_page_wakeup(p);
1258         } else if (p->wire_count == 0) {
1259                 /*
1260                  * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1261                  */
1262                 vm_page_free(p);
1263                 mycpu->gd_cnt.v_pfree++;
1264         } else {
1265                 if (p->queue != PQ_NONE)
1266                         kprintf("vm_object_terminate: Warning: Encountered "
1267                                 "wired page %p on queue %d\n", p, p->queue);
1268                 vm_page_remove(p);
1269                 vm_page_wakeup(p);
1270         }
1271         return(0);
1272 }
1273
1274 /*
1275  * Clean all dirty pages in the specified range of object.  Leaves page
1276  * on whatever queue it is currently on.   If NOSYNC is set then do not
1277  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1278  * leaving the object dirty.
1279  *
1280  * When stuffing pages asynchronously, allow clustering.  XXX we need a
1281  * synchronous clustering mode implementation.
1282  *
1283  * Odd semantics: if start == end, we clean everything.
1284  *
1285  * The object must be locked? XXX
1286  */
1287 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1288 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1289
1290 void
1291 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1292                      int flags)
1293 {
1294         struct rb_vm_page_scan_info info;
1295         struct vnode *vp;
1296         int wholescan;
1297         int pagerflags;
1298         int generation;
1299
1300         vm_object_hold(object);
1301         if (object->type != OBJT_VNODE ||
1302             (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1303                 vm_object_drop(object);
1304                 return;
1305         }
1306
1307         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 
1308                         VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1309         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1310
1311         vp = object->handle;
1312
1313         /*
1314          * Interlock other major object operations.  This allows us to 
1315          * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1316          */
1317         vm_object_set_flag(object, OBJ_CLEANING);
1318
1319         /*
1320          * Handle 'entire object' case
1321          */
1322         info.start_pindex = start;
1323         if (end == 0) {
1324                 info.end_pindex = object->size - 1;
1325         } else {
1326                 info.end_pindex = end - 1;
1327         }
1328         wholescan = (start == 0 && info.end_pindex == object->size - 1);
1329         info.limit = flags;
1330         info.pagerflags = pagerflags;
1331         info.object = object;
1332
1333         /*
1334          * If cleaning the entire object do a pass to mark the pages read-only.
1335          * If everything worked out ok, clear OBJ_WRITEABLE and
1336          * OBJ_MIGHTBEDIRTY.
1337          */
1338         if (wholescan) {
1339                 info.error = 0;
1340                 info.count = 0;
1341                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1342                                         vm_object_page_clean_pass1, &info);
1343                 if (info.error == 0) {
1344                         vm_object_clear_flag(object,
1345                                              OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1346                         if (object->type == OBJT_VNODE &&
1347                             (vp = (struct vnode *)object->handle) != NULL) {
1348                                 /*
1349                                  * Use new-style interface to clear VISDIRTY
1350                                  * because the vnode is not necessarily removed
1351                                  * from the syncer list(s) as often as it was
1352                                  * under the old interface, which can leave
1353                                  * the vnode on the syncer list after reclaim.
1354                                  */
1355                                 vclrobjdirty(vp);
1356                         }
1357                 }
1358         }
1359
1360         /*
1361          * Do a pass to clean all the dirty pages we find.
1362          */
1363         do {
1364                 info.error = 0;
1365                 info.count = 0;
1366                 generation = object->generation;
1367                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1368                                         vm_object_page_clean_pass2, &info);
1369         } while (info.error || generation != object->generation);
1370
1371         vm_object_clear_flag(object, OBJ_CLEANING);
1372         vm_object_drop(object);
1373 }
1374
1375 /*
1376  * The caller must hold the object.
1377  */
1378 static 
1379 int
1380 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1381 {
1382         struct rb_vm_page_scan_info *info = data;
1383
1384         if ((++info->count & 63) == 0)
1385                 lwkt_user_yield();
1386         if (p->object != info->object ||
1387             p->pindex < info->start_pindex ||
1388             p->pindex > info->end_pindex) {
1389                 kprintf("vm_object_page_clean_pass1: obj/pg race %p/%p\n",
1390                         info->object, p);
1391                 return(0);
1392         }
1393         vm_page_flag_set(p, PG_CLEANCHK);
1394         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1395                 info->error = 1;
1396         } else if (vm_page_busy_try(p, FALSE) == 0) {
1397                 if (p->object == info->object)
1398                         vm_page_protect(p, VM_PROT_READ);
1399                 vm_page_wakeup(p);
1400         } else {
1401                 info->error = 1;
1402         }
1403         return(0);
1404 }
1405
1406 /*
1407  * The caller must hold the object
1408  */
1409 static 
1410 int
1411 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1412 {
1413         struct rb_vm_page_scan_info *info = data;
1414         int generation;
1415
1416         if (p->object != info->object ||
1417             p->pindex < info->start_pindex ||
1418             p->pindex > info->end_pindex) {
1419                 kprintf("vm_object_page_clean_pass2: obj/pg race %p/%p\n",
1420                         info->object, p);
1421                 return(0);
1422         }
1423
1424         /*
1425          * Do not mess with pages that were inserted after we started
1426          * the cleaning pass.
1427          */
1428         if ((p->flags & PG_CLEANCHK) == 0)
1429                 goto done;
1430
1431         generation = info->object->generation;
1432         vm_page_busy_wait(p, TRUE, "vpcwai");
1433
1434         if (p->object != info->object ||
1435             p->pindex < info->start_pindex ||
1436             p->pindex > info->end_pindex ||
1437             info->object->generation != generation) {
1438                 info->error = 1;
1439                 vm_page_wakeup(p);
1440                 goto done;
1441         }
1442
1443         /*
1444          * Before wasting time traversing the pmaps, check for trivial
1445          * cases where the page cannot be dirty.
1446          */
1447         if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1448                 KKASSERT((p->dirty & p->valid) == 0 &&
1449                          (p->flags & PG_NEED_COMMIT) == 0);
1450                 vm_page_wakeup(p);
1451                 goto done;
1452         }
1453
1454         /*
1455          * Check whether the page is dirty or not.  The page has been set
1456          * to be read-only so the check will not race a user dirtying the
1457          * page.
1458          */
1459         vm_page_test_dirty(p);
1460         if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1461                 vm_page_flag_clear(p, PG_CLEANCHK);
1462                 vm_page_wakeup(p);
1463                 goto done;
1464         }
1465
1466         /*
1467          * If we have been asked to skip nosync pages and this is a
1468          * nosync page, skip it.  Note that the object flags were
1469          * not cleared in this case (because pass1 will have returned an
1470          * error), so we do not have to set them.
1471          */
1472         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1473                 vm_page_flag_clear(p, PG_CLEANCHK);
1474                 vm_page_wakeup(p);
1475                 goto done;
1476         }
1477
1478         /*
1479          * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1480          * the pages that get successfully flushed.  Set info->error if
1481          * we raced an object modification.
1482          */
1483         vm_object_page_collect_flush(info->object, p, info->pagerflags);
1484         /* vm_wait_nominal(); this can deadlock the system in syncer/pageout */
1485 done:
1486         if ((++info->count & 63) == 0)
1487                 lwkt_user_yield();
1488
1489         return(0);
1490 }
1491
1492 /*
1493  * Collect the specified page and nearby pages and flush them out.
1494  * The number of pages flushed is returned.  The passed page is busied
1495  * by the caller and we are responsible for its disposition.
1496  *
1497  * The caller must hold the object.
1498  */
1499 static void
1500 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1501 {
1502         int error;
1503         int is;
1504         int ib;
1505         int i;
1506         int page_base;
1507         vm_pindex_t pi;
1508         vm_page_t ma[BLIST_MAX_ALLOC];
1509
1510         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1511
1512         pi = p->pindex;
1513         page_base = pi % BLIST_MAX_ALLOC;
1514         ma[page_base] = p;
1515         ib = page_base - 1;
1516         is = page_base + 1;
1517
1518         while (ib >= 0) {
1519                 vm_page_t tp;
1520
1521                 tp = vm_page_lookup_busy_try(object, pi - page_base + ib,
1522                                              TRUE, &error);
1523                 if (error)
1524                         break;
1525                 if (tp == NULL)
1526                         break;
1527                 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1528                     (tp->flags & PG_CLEANCHK) == 0) {
1529                         vm_page_wakeup(tp);
1530                         break;
1531                 }
1532                 if ((tp->queue - tp->pc) == PQ_CACHE) {
1533                         vm_page_flag_clear(tp, PG_CLEANCHK);
1534                         vm_page_wakeup(tp);
1535                         break;
1536                 }
1537                 vm_page_test_dirty(tp);
1538                 if ((tp->dirty & tp->valid) == 0 &&
1539                     (tp->flags & PG_NEED_COMMIT) == 0) {
1540                         vm_page_flag_clear(tp, PG_CLEANCHK);
1541                         vm_page_wakeup(tp);
1542                         break;
1543                 }
1544                 ma[ib] = tp;
1545                 --ib;
1546         }
1547         ++ib;   /* fixup */
1548
1549         while (is < BLIST_MAX_ALLOC &&
1550                pi - page_base + is < object->size) {
1551                 vm_page_t tp;
1552
1553                 tp = vm_page_lookup_busy_try(object, pi - page_base + is,
1554                                              TRUE, &error);
1555                 if (error)
1556                         break;
1557                 if (tp == NULL)
1558                         break;
1559                 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1560                     (tp->flags & PG_CLEANCHK) == 0) {
1561                         vm_page_wakeup(tp);
1562                         break;
1563                 }
1564                 if ((tp->queue - tp->pc) == PQ_CACHE) {
1565                         vm_page_flag_clear(tp, PG_CLEANCHK);
1566                         vm_page_wakeup(tp);
1567                         break;
1568                 }
1569                 vm_page_test_dirty(tp);
1570                 if ((tp->dirty & tp->valid) == 0 &&
1571                     (tp->flags & PG_NEED_COMMIT) == 0) {
1572                         vm_page_flag_clear(tp, PG_CLEANCHK);
1573                         vm_page_wakeup(tp);
1574                         break;
1575                 }
1576                 ma[is] = tp;
1577                 ++is;
1578         }
1579
1580         /*
1581          * All pages in the ma[] array are busied now
1582          */
1583         for (i = ib; i < is; ++i) {
1584                 vm_page_flag_clear(ma[i], PG_CLEANCHK);
1585                 vm_page_hold(ma[i]);    /* XXX need this any more? */
1586         }
1587         vm_pageout_flush(&ma[ib], is - ib, pagerflags);
1588         for (i = ib; i < is; ++i)       /* XXX need this any more? */
1589                 vm_page_unhold(ma[i]);
1590 }
1591
1592 /*
1593  * Same as vm_object_pmap_copy, except range checking really
1594  * works, and is meant for small sections of an object.
1595  *
1596  * This code protects resident pages by making them read-only
1597  * and is typically called on a fork or split when a page
1598  * is converted to copy-on-write.  
1599  *
1600  * NOTE: If the page is already at VM_PROT_NONE, calling
1601  * vm_page_protect will have no effect.
1602  */
1603 void
1604 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1605 {
1606         vm_pindex_t idx;
1607         vm_page_t p;
1608
1609         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1610                 return;
1611
1612         vm_object_hold(object);
1613         for (idx = start; idx < end; idx++) {
1614                 p = vm_page_lookup(object, idx);
1615                 if (p == NULL)
1616                         continue;
1617                 vm_page_protect(p, VM_PROT_READ);
1618         }
1619         vm_object_drop(object);
1620 }
1621
1622 /*
1623  * Removes all physical pages in the specified object range from all
1624  * physical maps.
1625  *
1626  * The object must *not* be locked.
1627  */
1628
1629 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1630
1631 void
1632 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1633 {
1634         struct rb_vm_page_scan_info info;
1635
1636         if (object == NULL)
1637                 return;
1638         info.start_pindex = start;
1639         info.end_pindex = end - 1;
1640         info.count = 0;
1641         info.object = object;
1642
1643         vm_object_hold(object);
1644         vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1645                                 vm_object_pmap_remove_callback, &info);
1646         if (start == 0 && end == object->size)
1647                 vm_object_clear_flag(object, OBJ_WRITEABLE);
1648         vm_object_drop(object);
1649 }
1650
1651 /*
1652  * The caller must hold the object
1653  */
1654 static int
1655 vm_object_pmap_remove_callback(vm_page_t p, void *data)
1656 {
1657         struct rb_vm_page_scan_info *info = data;
1658
1659         if ((++info->count & 63) == 0)
1660                 lwkt_user_yield();
1661
1662         if (info->object != p->object ||
1663             p->pindex < info->start_pindex ||
1664             p->pindex > info->end_pindex) {
1665                 kprintf("vm_object_pmap_remove_callback: obj/pg race %p/%p\n",
1666                         info->object, p);
1667                 return(0);
1668         }
1669
1670         vm_page_protect(p, VM_PROT_NONE);
1671
1672         return(0);
1673 }
1674
1675 /*
1676  * Implements the madvise function at the object/page level.
1677  *
1678  * MADV_WILLNEED        (any object)
1679  *
1680  *      Activate the specified pages if they are resident.
1681  *
1682  * MADV_DONTNEED        (any object)
1683  *
1684  *      Deactivate the specified pages if they are resident.
1685  *
1686  * MADV_FREE    (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1687  *
1688  *      Deactivate and clean the specified pages if they are
1689  *      resident.  This permits the process to reuse the pages
1690  *      without faulting or the kernel to reclaim the pages
1691  *      without I/O.
1692  *
1693  * No requirements.
1694  */
1695 void
1696 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1697 {
1698         vm_pindex_t end, tpindex;
1699         vm_object_t tobject;
1700         vm_object_t xobj;
1701         vm_page_t m;
1702         int error;
1703
1704         if (object == NULL)
1705                 return;
1706
1707         end = pindex + count;
1708
1709         vm_object_hold(object);
1710         tobject = object;
1711
1712         /*
1713          * Locate and adjust resident pages
1714          */
1715         for (; pindex < end; pindex += 1) {
1716 relookup:
1717                 if (tobject != object)
1718                         vm_object_drop(tobject);
1719                 tobject = object;
1720                 tpindex = pindex;
1721 shadowlookup:
1722                 /*
1723                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1724                  * and those pages must be OBJ_ONEMAPPING.
1725                  */
1726                 if (advise == MADV_FREE) {
1727                         if ((tobject->type != OBJT_DEFAULT &&
1728                              tobject->type != OBJT_SWAP) ||
1729                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1730                                 continue;
1731                         }
1732                 }
1733
1734                 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1735
1736                 if (error) {
1737                         vm_page_sleep_busy(m, TRUE, "madvpo");
1738                         goto relookup;
1739                 }
1740                 if (m == NULL) {
1741                         /*
1742                          * There may be swap even if there is no backing page
1743                          */
1744                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1745                                 swap_pager_freespace(tobject, tpindex, 1);
1746
1747                         /*
1748                          * next object
1749                          */
1750                         while ((xobj = tobject->backing_object) != NULL) {
1751                                 KKASSERT(xobj != object);
1752                                 vm_object_hold(xobj);
1753                                 if (xobj == tobject->backing_object)
1754                                         break;
1755                                 vm_object_drop(xobj);
1756                         }
1757                         if (xobj == NULL)
1758                                 continue;
1759                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1760                         if (tobject != object) {
1761                                 vm_object_lock_swap();
1762                                 vm_object_drop(tobject);
1763                         }
1764                         tobject = xobj;
1765                         goto shadowlookup;
1766                 }
1767
1768                 /*
1769                  * If the page is not in a normal active state, we skip it.
1770                  * If the page is not managed there are no page queues to
1771                  * mess with.  Things can break if we mess with pages in
1772                  * any of the below states.
1773                  */
1774                 if (m->wire_count ||
1775                     (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1776                     m->valid != VM_PAGE_BITS_ALL
1777                 ) {
1778                         vm_page_wakeup(m);
1779                         continue;
1780                 }
1781
1782                 /*
1783                  * Theoretically once a page is known not to be busy, an
1784                  * interrupt cannot come along and rip it out from under us.
1785                  */
1786
1787                 if (advise == MADV_WILLNEED) {
1788                         vm_page_activate(m);
1789                 } else if (advise == MADV_DONTNEED) {
1790                         vm_page_dontneed(m);
1791                 } else if (advise == MADV_FREE) {
1792                         /*
1793                          * Mark the page clean.  This will allow the page
1794                          * to be freed up by the system.  However, such pages
1795                          * are often reused quickly by malloc()/free()
1796                          * so we do not do anything that would cause
1797                          * a page fault if we can help it.
1798                          *
1799                          * Specifically, we do not try to actually free
1800                          * the page now nor do we try to put it in the
1801                          * cache (which would cause a page fault on reuse).
1802                          *
1803                          * But we do make the page is freeable as we
1804                          * can without actually taking the step of unmapping
1805                          * it.
1806                          */
1807                         pmap_clear_modify(m);
1808                         m->dirty = 0;
1809                         m->act_count = 0;
1810                         vm_page_dontneed(m);
1811                         if (tobject->type == OBJT_SWAP)
1812                                 swap_pager_freespace(tobject, tpindex, 1);
1813                 }
1814                 vm_page_wakeup(m);
1815         }       
1816         if (tobject != object)
1817                 vm_object_drop(tobject);
1818         vm_object_drop(object);
1819 }
1820
1821 /*
1822  * Create a new object which is backed by the specified existing object
1823  * range.  Replace the pointer and offset that was pointing at the existing
1824  * object with the pointer/offset for the new object.
1825  *
1826  * If addref is non-zero the returned object is given an additional reference.
1827  * This mechanic exists to avoid the situation where refs might be 1 and
1828  * race against a collapse when the caller intends to bump it.  So the
1829  * caller cannot add the ref after the fact.  Used when the caller is
1830  * duplicating a vm_map_entry.
1831  *
1832  * No other requirements.
1833  */
1834 void
1835 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1836                  int addref)
1837 {
1838         vm_object_t source;
1839         vm_object_t result;
1840         int useshadowlist;
1841
1842         source = *objectp;
1843
1844         /*
1845          * Don't create the new object if the old object isn't shared.
1846          * We have to chain wait before adding the reference to avoid
1847          * racing a collapse or deallocation.
1848          *
1849          * Clear OBJ_ONEMAPPING flag when shadowing.
1850          *
1851          * The caller owns a ref on source via *objectp which we are going
1852          * to replace.  This ref is inherited by the backing_object assignment.
1853          * from nobject and does not need to be incremented here.
1854          *
1855          * However, we add a temporary extra reference to the original source
1856          * prior to holding nobject in case we block, to avoid races where
1857          * someone else might believe that the source can be collapsed.
1858          */
1859         useshadowlist = 0;
1860         if (source) {
1861                 if (source->type != OBJT_VNODE) {
1862                         useshadowlist = 1;
1863                         vm_object_hold(source);
1864                         vm_object_chain_wait(source, 0);
1865                         if (source->ref_count == 1 &&
1866                             source->handle == NULL &&
1867                             (source->type == OBJT_DEFAULT ||
1868                              source->type == OBJT_SWAP)) {
1869                                 if (addref) {
1870                                         vm_object_reference_locked(source);
1871                                         vm_object_clear_flag(source,
1872                                                              OBJ_ONEMAPPING);
1873                                 }
1874                                 vm_object_drop(source);
1875                                 return;
1876                         }
1877                         vm_object_reference_locked(source);
1878                         vm_object_clear_flag(source, OBJ_ONEMAPPING);
1879                 } else {
1880                         vm_object_reference_quick(source);
1881                         vm_object_clear_flag(source, OBJ_ONEMAPPING);
1882                 }
1883         }
1884
1885         /*
1886          * Allocate a new object with the given length.  The new object
1887          * is returned referenced but we may have to add another one.
1888          * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1889          * (typically because the caller is about to clone a vm_map_entry).
1890          *
1891          * The source object currently has an extra reference to prevent
1892          * collapses into it while we mess with its shadow list, which
1893          * we will remove later in this routine.
1894          *
1895          * The target object may require a second reference if asked for one
1896          * by the caller.
1897          */
1898         result = vm_object_allocate(OBJT_DEFAULT, length);
1899         if (result == NULL)
1900                 panic("vm_object_shadow: no object for shadowing");
1901         vm_object_hold(result);
1902         if (addref) {
1903                 vm_object_reference_locked(result);
1904                 vm_object_clear_flag(result, OBJ_ONEMAPPING);
1905         }
1906
1907         /*
1908          * The new object shadows the source object.  Chain wait before
1909          * adjusting shadow_count or the shadow list to avoid races.
1910          *
1911          * Try to optimize the result object's page color when shadowing
1912          * in order to maintain page coloring consistency in the combined 
1913          * shadowed object.
1914          *
1915          * The backing_object reference to source requires adding a ref to
1916          * source.  We simply inherit the ref from the original *objectp
1917          * (which we are replacing) so no additional refs need to be added.
1918          * (we must still clean up the extra ref we had to prevent collapse
1919          * races).
1920          *
1921          * SHADOWING IS NOT APPLICABLE TO OBJT_VNODE OBJECTS
1922          */
1923         KKASSERT(result->backing_object == NULL);
1924         result->backing_object = source;
1925         if (source) {
1926                 if (useshadowlist) {
1927                         vm_object_chain_wait(source, 0);
1928                         LIST_INSERT_HEAD(&source->shadow_head,
1929                                          result, shadow_list);
1930                         source->shadow_count++;
1931                         source->generation++;
1932                         vm_object_set_flag(result, OBJ_ONSHADOW);
1933                 }
1934                 /* cpu localization twist */
1935                 result->pg_color = vm_quickcolor();
1936         }
1937
1938         /*
1939          * Adjust the return storage.  Drop the ref on source before
1940          * returning.
1941          */
1942         result->backing_object_offset = *offset;
1943         vm_object_drop(result);
1944         *offset = 0;
1945         if (source) {
1946                 if (useshadowlist) {
1947                         vm_object_deallocate_locked(source);
1948                         vm_object_drop(source);
1949                 } else {
1950                         vm_object_deallocate(source);
1951                 }
1952         }
1953
1954         /*
1955          * Return the new things
1956          */
1957         *objectp = result;
1958 }
1959
1960 #define OBSC_TEST_ALL_SHADOWED  0x0001
1961 #define OBSC_COLLAPSE_NOWAIT    0x0002
1962 #define OBSC_COLLAPSE_WAIT      0x0004
1963
1964 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1965
1966 /*
1967  * The caller must hold the object.
1968  */
1969 static __inline int
1970 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1971 {
1972         struct rb_vm_page_scan_info info;
1973         struct vm_object_hash *hash;
1974
1975         vm_object_assert_held(object);
1976         vm_object_assert_held(backing_object);
1977
1978         KKASSERT(backing_object == object->backing_object);
1979         info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1980
1981         /*
1982          * Initial conditions
1983          */
1984         if (op & OBSC_TEST_ALL_SHADOWED) {
1985                 /*
1986                  * We do not want to have to test for the existence of
1987                  * swap pages in the backing object.  XXX but with the
1988                  * new swapper this would be pretty easy to do.
1989                  *
1990                  * XXX what about anonymous MAP_SHARED memory that hasn't
1991                  * been ZFOD faulted yet?  If we do not test for this, the
1992                  * shadow test may succeed! XXX
1993                  */
1994                 if (backing_object->type != OBJT_DEFAULT)
1995                         return(0);
1996         }
1997         if (op & OBSC_COLLAPSE_WAIT) {
1998                 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1999                 vm_object_set_flag(backing_object, OBJ_DEAD);
2000
2001                 hash = VMOBJ_HASH(backing_object);
2002                 lwkt_gettoken(&hash->token);
2003                 TAILQ_REMOVE(&hash->list, backing_object, object_list);
2004                 lwkt_reltoken(&hash->token);
2005         }
2006
2007         /*
2008          * Our scan.   We have to retry if a negative error code is returned,
2009          * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
2010          * the scan had to be stopped because the parent does not completely
2011          * shadow the child.
2012          */
2013         info.object = object;
2014         info.backing_object = backing_object;
2015         info.limit = op;
2016         info.count = 0;
2017         do {
2018                 info.error = 1;
2019                 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
2020                                         vm_object_backing_scan_callback,
2021                                         &info);
2022         } while (info.error < 0);
2023
2024         return(info.error);
2025 }
2026
2027 /*
2028  * The caller must hold the object.
2029  */
2030 static int
2031 vm_object_backing_scan_callback(vm_page_t p, void *data)
2032 {
2033         struct rb_vm_page_scan_info *info = data;
2034         vm_object_t backing_object;
2035         vm_object_t object;
2036         vm_pindex_t pindex;
2037         vm_pindex_t new_pindex;
2038         vm_pindex_t backing_offset_index;
2039         int op;
2040
2041         pindex = p->pindex;
2042         new_pindex = pindex - info->backing_offset_index;
2043         op = info->limit;
2044         object = info->object;
2045         backing_object = info->backing_object;
2046         backing_offset_index = info->backing_offset_index;
2047
2048         if (op & OBSC_TEST_ALL_SHADOWED) {
2049                 vm_page_t pp;
2050
2051                 /*
2052                  * Ignore pages outside the parent object's range
2053                  * and outside the parent object's mapping of the 
2054                  * backing object.
2055                  *
2056                  * note that we do not busy the backing object's
2057                  * page.
2058                  */
2059                 if (pindex < backing_offset_index ||
2060                     new_pindex >= object->size
2061                 ) {
2062                         return(0);
2063                 }
2064
2065                 /*
2066                  * See if the parent has the page or if the parent's
2067                  * object pager has the page.  If the parent has the
2068                  * page but the page is not valid, the parent's
2069                  * object pager must have the page.
2070                  *
2071                  * If this fails, the parent does not completely shadow
2072                  * the object and we might as well give up now.
2073                  */
2074                 pp = vm_page_lookup(object, new_pindex);
2075                 if ((pp == NULL || pp->valid == 0) &&
2076                     !vm_pager_has_page(object, new_pindex)
2077                 ) {
2078                         info->error = 0;        /* problemo */
2079                         return(-1);             /* stop the scan */
2080                 }
2081         }
2082
2083         /*
2084          * Check for busy page.  Note that we may have lost (p) when we
2085          * possibly blocked above.
2086          */
2087         if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
2088                 vm_page_t pp;
2089
2090                 if (vm_page_busy_try(p, TRUE)) {
2091                         if (op & OBSC_COLLAPSE_NOWAIT) {
2092                                 return(0);
2093                         } else {
2094                                 /*
2095                                  * If we slept, anything could have
2096                                  * happened.   Ask that the scan be restarted.
2097                                  *
2098                                  * Since the object is marked dead, the
2099                                  * backing offset should not have changed.  
2100                                  */
2101                                 vm_page_sleep_busy(p, TRUE, "vmocol");
2102                                 info->error = -1;
2103                                 return(-1);
2104                         }
2105                 }
2106
2107                 /*
2108                  * If (p) is no longer valid restart the scan.
2109                  */
2110                 if (p->object != backing_object || p->pindex != pindex) {
2111                         kprintf("vm_object_backing_scan: Warning: page "
2112                                 "%p ripped out from under us\n", p);
2113                         vm_page_wakeup(p);
2114                         info->error = -1;
2115                         return(-1);
2116                 }
2117
2118                 if (op & OBSC_COLLAPSE_NOWAIT) {
2119                         if (p->valid == 0 ||
2120                             p->wire_count ||
2121                             (p->flags & PG_NEED_COMMIT)) {
2122                                 vm_page_wakeup(p);
2123                                 return(0);
2124                         }
2125                 } else {
2126                         /* XXX what if p->valid == 0 , hold_count, etc? */
2127                 }
2128
2129                 KASSERT(
2130                     p->object == backing_object,
2131                     ("vm_object_qcollapse(): object mismatch")
2132                 );
2133
2134                 /*
2135                  * Destroy any associated swap
2136                  */
2137                 if (backing_object->type == OBJT_SWAP)
2138                         swap_pager_freespace(backing_object, p->pindex, 1);
2139
2140                 if (
2141                     p->pindex < backing_offset_index ||
2142                     new_pindex >= object->size
2143                 ) {
2144                         /*
2145                          * Page is out of the parent object's range, we 
2146                          * can simply destroy it. 
2147                          */
2148                         vm_page_protect(p, VM_PROT_NONE);
2149                         vm_page_free(p);
2150                         return(0);
2151                 }
2152
2153                 pp = vm_page_lookup(object, new_pindex);
2154                 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
2155                         /*
2156                          * page already exists in parent OR swap exists
2157                          * for this location in the parent.  Destroy 
2158                          * the original page from the backing object.
2159                          *
2160                          * Leave the parent's page alone
2161                          */
2162                         vm_page_protect(p, VM_PROT_NONE);
2163                         vm_page_free(p);
2164                         return(0);
2165                 }
2166
2167                 /*
2168                  * Page does not exist in parent, rename the
2169                  * page from the backing object to the main object. 
2170                  *
2171                  * If the page was mapped to a process, it can remain 
2172                  * mapped through the rename.
2173                  */
2174                 if ((p->queue - p->pc) == PQ_CACHE)
2175                         vm_page_deactivate(p);
2176
2177                 vm_page_rename(p, object, new_pindex);
2178                 vm_page_wakeup(p);
2179                 /* page automatically made dirty by rename */
2180         }
2181         return(0);
2182 }
2183
2184 /*
2185  * This version of collapse allows the operation to occur earlier and
2186  * when paging_in_progress is true for an object...  This is not a complete
2187  * operation, but should plug 99.9% of the rest of the leaks.
2188  *
2189  * The caller must hold the object and backing_object and both must be
2190  * chainlocked.
2191  *
2192  * (only called from vm_object_collapse)
2193  */
2194 static void
2195 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
2196 {
2197         if (backing_object->ref_count == 1) {
2198                 atomic_add_int(&backing_object->ref_count, 2);
2199 #if defined(DEBUG_LOCKS)
2200                 debugvm_object_add(backing_object, "qcollapse", 1, 2);
2201 #endif
2202                 vm_object_backing_scan(object, backing_object,
2203                                        OBSC_COLLAPSE_NOWAIT);
2204                 atomic_add_int(&backing_object->ref_count, -2);
2205 #if defined(DEBUG_LOCKS)
2206                 debugvm_object_add(backing_object, "qcollapse", 2, -2);
2207 #endif
2208         }
2209 }
2210
2211 /*
2212  * Collapse an object with the object backing it.  Pages in the backing
2213  * object are moved into the parent, and the backing object is deallocated.
2214  * Any conflict is resolved in favor of the parent's existing pages.
2215  *
2216  * object must be held and chain-locked on call.
2217  *
2218  * The caller must have an extra ref on object to prevent a race from
2219  * destroying it during the collapse.
2220  */
2221 void
2222 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
2223 {
2224         struct vm_object_dealloc_list *dlist = NULL;
2225         vm_object_t backing_object;
2226
2227         /*
2228          * Only one thread is attempting a collapse at any given moment.
2229          * There are few restrictions for (object) that callers of this
2230          * function check so reentrancy is likely.
2231          */
2232         KKASSERT(object != NULL);
2233         vm_object_assert_held(object);
2234         KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
2235
2236         for (;;) {
2237                 vm_object_t bbobj;
2238                 int dodealloc;
2239
2240                 /*
2241                  * We can only collapse a DEFAULT/SWAP object with a
2242                  * DEFAULT/SWAP object.
2243                  */
2244                 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP) {
2245                         backing_object = NULL;
2246                         break;
2247                 }
2248
2249                 backing_object = object->backing_object;
2250                 if (backing_object == NULL)
2251                         break;
2252                 if (backing_object->type != OBJT_DEFAULT &&
2253                     backing_object->type != OBJT_SWAP) {
2254                         backing_object = NULL;
2255                         break;
2256                 }
2257
2258                 /*
2259                  * Hold the backing_object and check for races
2260                  */
2261                 vm_object_hold(backing_object);
2262                 if (backing_object != object->backing_object ||
2263                     (backing_object->type != OBJT_DEFAULT &&
2264                      backing_object->type != OBJT_SWAP)) {
2265                         vm_object_drop(backing_object);
2266                         continue;
2267                 }
2268
2269                 /*
2270                  * Chain-lock the backing object too because if we
2271                  * successfully merge its pages into the top object we
2272                  * will collapse backing_object->backing_object as the
2273                  * new backing_object.  Re-check that it is still our
2274                  * backing object.
2275                  */
2276                 vm_object_chain_acquire(backing_object, 0);
2277                 if (backing_object != object->backing_object) {
2278                         vm_object_chain_release(backing_object);
2279                         vm_object_drop(backing_object);
2280                         continue;
2281                 }
2282
2283                 /*
2284                  * we check the backing object first, because it is most likely
2285                  * not collapsable.
2286                  */
2287                 if (backing_object->handle != NULL ||
2288                     (backing_object->type != OBJT_DEFAULT &&
2289                      backing_object->type != OBJT_SWAP) ||
2290                     (backing_object->flags & OBJ_DEAD) ||
2291                     object->handle != NULL ||
2292                     (object->type != OBJT_DEFAULT &&
2293                      object->type != OBJT_SWAP) ||
2294                     (object->flags & OBJ_DEAD)) {
2295                         break;
2296                 }
2297
2298                 /*
2299                  * If paging is in progress we can't do a normal collapse.
2300                  */
2301                 if (
2302                     object->paging_in_progress != 0 ||
2303                     backing_object->paging_in_progress != 0
2304                 ) {
2305                         vm_object_qcollapse(object, backing_object);
2306                         break;
2307                 }
2308
2309                 /*
2310                  * We know that we can either collapse the backing object (if
2311                  * the parent is the only reference to it) or (perhaps) have
2312                  * the parent bypass the object if the parent happens to shadow
2313                  * all the resident pages in the entire backing object.
2314                  *
2315                  * This is ignoring pager-backed pages such as swap pages.
2316                  * vm_object_backing_scan fails the shadowing test in this
2317                  * case.
2318                  */
2319                 if (backing_object->ref_count == 1) {
2320                         /*
2321                          * If there is exactly one reference to the backing
2322                          * object, we can collapse it into the parent.  
2323                          */
2324                         KKASSERT(object->backing_object == backing_object);
2325                         vm_object_backing_scan(object, backing_object,
2326                                                OBSC_COLLAPSE_WAIT);
2327
2328                         /*
2329                          * Move the pager from backing_object to object.
2330                          */
2331                         if (backing_object->type == OBJT_SWAP) {
2332                                 vm_object_pip_add(backing_object, 1);
2333
2334                                 /*
2335                                  * scrap the paging_offset junk and do a 
2336                                  * discrete copy.  This also removes major 
2337                                  * assumptions about how the swap-pager 
2338                                  * works from where it doesn't belong.  The
2339                                  * new swapper is able to optimize the
2340                                  * destroy-source case.
2341                                  */
2342                                 vm_object_pip_add(object, 1);
2343                                 swap_pager_copy(backing_object, object,
2344                                     OFF_TO_IDX(object->backing_object_offset),
2345                                     TRUE);
2346                                 vm_object_pip_wakeup(object);
2347                                 vm_object_pip_wakeup(backing_object);
2348                         }
2349
2350                         /*
2351                          * Object now shadows whatever backing_object did.
2352                          * Remove object from backing_object's shadow_list.
2353                          *
2354                          * Removing object from backing_objects shadow list
2355                          * requires releasing object, which we will do below.
2356                          */
2357                         KKASSERT(object->backing_object == backing_object);
2358                         if (object->flags & OBJ_ONSHADOW) {
2359                                 LIST_REMOVE(object, shadow_list);
2360                                 backing_object->shadow_count--;
2361                                 backing_object->generation++;
2362                                 vm_object_clear_flag(object, OBJ_ONSHADOW);
2363                         }
2364
2365                         /*
2366                          * backing_object->backing_object moves from within
2367                          * backing_object to within object.
2368                          *
2369                          * OBJT_VNODE bbobj's should have empty shadow lists.
2370                          */
2371                         while ((bbobj = backing_object->backing_object) != NULL) {
2372                                 if (bbobj->type == OBJT_VNODE)
2373                                         vm_object_hold_shared(bbobj);
2374                                 else
2375                                         vm_object_hold(bbobj);
2376                                 if (bbobj == backing_object->backing_object)
2377                                         break;
2378                                 vm_object_drop(bbobj);
2379                         }
2380
2381                         /*
2382                          * We are removing backing_object from bbobj's
2383                          * shadow list and adding object to bbobj's shadow
2384                          * list, so the ref_count on bbobj is unchanged.
2385                          */
2386                         if (bbobj) {
2387                                 if (backing_object->flags & OBJ_ONSHADOW) {
2388                                         /* not locked exclusively if vnode */
2389                                         KKASSERT(bbobj->type != OBJT_VNODE);
2390                                         LIST_REMOVE(backing_object,
2391                                                     shadow_list);
2392                                         bbobj->shadow_count--;
2393                                         bbobj->generation++;
2394                                         vm_object_clear_flag(backing_object,
2395                                                              OBJ_ONSHADOW);
2396                                 }
2397                                 backing_object->backing_object = NULL;
2398                         }
2399                         object->backing_object = bbobj;
2400                         if (bbobj) {
2401                                 if (bbobj->type != OBJT_VNODE) {
2402                                         LIST_INSERT_HEAD(&bbobj->shadow_head,
2403                                                          object, shadow_list);
2404                                         bbobj->shadow_count++;
2405                                         bbobj->generation++;
2406                                         vm_object_set_flag(object,
2407                                                            OBJ_ONSHADOW);
2408                                 }
2409                         }
2410
2411                         object->backing_object_offset +=
2412                                 backing_object->backing_object_offset;
2413
2414                         vm_object_drop(bbobj);
2415
2416                         /*
2417                          * Discard the old backing_object.  Nothing should be
2418                          * able to ref it, other than a vm_map_split(),
2419                          * and vm_map_split() will stall on our chain lock.
2420                          * And we control the parent so it shouldn't be
2421                          * possible for it to go away either.
2422                          *
2423                          * Since the backing object has no pages, no pager
2424                          * left, and no object references within it, all
2425                          * that is necessary is to dispose of it.
2426                          */
2427                         KASSERT(backing_object->ref_count == 1,
2428                                 ("backing_object %p was somehow "
2429                                  "re-referenced during collapse!",
2430                                  backing_object));
2431                         KASSERT(RB_EMPTY(&backing_object->rb_memq),
2432                                 ("backing_object %p somehow has left "
2433                                  "over pages during collapse!",
2434                                  backing_object));
2435
2436                         /*
2437                          * The object can be destroyed.
2438                          *
2439                          * XXX just fall through and dodealloc instead
2440                          *     of forcing destruction?
2441                          */
2442                         atomic_add_int(&backing_object->ref_count, -1);
2443 #if defined(DEBUG_LOCKS)
2444                         debugvm_object_add(backing_object, "collapse", 1, -1);
2445 #endif
2446                         if ((backing_object->flags & OBJ_DEAD) == 0)
2447                                 vm_object_terminate(backing_object);
2448                         object_collapses++;
2449                         dodealloc = 0;
2450                 } else {
2451                         /*
2452                          * If we do not entirely shadow the backing object,
2453                          * there is nothing we can do so we give up.
2454                          */
2455                         if (vm_object_backing_scan(object, backing_object,
2456                                                 OBSC_TEST_ALL_SHADOWED) == 0) {
2457                                 break;
2458                         }
2459
2460                         /*
2461                          * bbobj is backing_object->backing_object.  Since
2462                          * object completely shadows backing_object we can
2463                          * bypass it and become backed by bbobj instead.
2464                          *
2465                          * The shadow list for vnode backing objects is not
2466                          * used and a shared hold is allowed.
2467                          */
2468                         while ((bbobj = backing_object->backing_object) != NULL) {
2469                                 if (bbobj->type == OBJT_VNODE)
2470                                         vm_object_hold_shared(bbobj);
2471                                 else
2472                                         vm_object_hold(bbobj);
2473                                 if (bbobj == backing_object->backing_object)
2474                                         break;
2475                                 vm_object_drop(bbobj);
2476                         }
2477
2478                         /*
2479                          * Make object shadow bbobj instead of backing_object.
2480                          * Remove object from backing_object's shadow list.
2481                          *
2482                          * Deallocating backing_object will not remove
2483                          * it, since its reference count is at least 2.
2484                          *
2485                          * Removing object from backing_object's shadow
2486                          * list requires releasing a ref, which we do
2487                          * below by setting dodealloc to 1.
2488                          */
2489                         KKASSERT(object->backing_object == backing_object);
2490                         if (object->flags & OBJ_ONSHADOW) {
2491                                 LIST_REMOVE(object, shadow_list);
2492                                 backing_object->shadow_count--;
2493                                 backing_object->generation++;
2494                                 vm_object_clear_flag(object, OBJ_ONSHADOW);
2495                         }
2496
2497                         /*
2498                          * Add a ref to bbobj, bbobj now shadows object.
2499                          *
2500                          * NOTE: backing_object->backing_object still points
2501                          *       to bbobj.  That relationship remains intact
2502                          *       because backing_object has > 1 ref, so
2503                          *       someone else is pointing to it (hence why
2504                          *       we can't collapse it into object and can
2505                          *       only handle the all-shadowed bypass case).
2506                          */
2507                         if (bbobj) {
2508                                 if (bbobj->type != OBJT_VNODE) {
2509                                         vm_object_chain_wait(bbobj, 0);
2510                                         vm_object_reference_locked(bbobj);
2511                                         LIST_INSERT_HEAD(&bbobj->shadow_head,
2512                                                          object, shadow_list);
2513                                         bbobj->shadow_count++;
2514                                         bbobj->generation++;
2515                                         vm_object_set_flag(object,
2516                                                            OBJ_ONSHADOW);
2517                                 } else {
2518                                         vm_object_reference_quick(bbobj);
2519                                 }
2520                                 object->backing_object_offset +=
2521                                         backing_object->backing_object_offset;
2522                                 object->backing_object = bbobj;
2523                                 vm_object_drop(bbobj);
2524                         } else {
2525                                 object->backing_object = NULL;
2526                         }
2527
2528                         /*
2529                          * Drop the reference count on backing_object.  To
2530                          * handle ref_count races properly we can't assume
2531                          * that the ref_count is still at least 2 so we
2532                          * have to actually call vm_object_deallocate()
2533                          * (after clearing the chainlock).
2534                          */
2535                         object_bypasses++;
2536                         dodealloc = 1;
2537                 }
2538
2539                 /*
2540                  * Ok, we want to loop on the new object->bbobj association,
2541                  * possibly collapsing it further.  However if dodealloc is
2542                  * non-zero we have to deallocate the backing_object which
2543                  * itself can potentially undergo a collapse, creating a
2544                  * recursion depth issue with the LWKT token subsystem.
2545                  *
2546                  * In the case where we must deallocate the backing_object
2547                  * it is possible now that the backing_object has a single
2548                  * shadow count on some other object (not represented here
2549                  * as yet), since it no longer shadows us.  Thus when we
2550                  * call vm_object_deallocate() it may attempt to collapse
2551                  * itself into its remaining parent.
2552                  */
2553                 if (dodealloc) {
2554                         struct vm_object_dealloc_list *dtmp;
2555
2556                         vm_object_chain_release(backing_object);
2557                         vm_object_unlock(backing_object);
2558                         /* backing_object remains held */
2559
2560                         /*
2561                          * Auto-deallocation list for caller convenience.
2562                          */
2563                         if (dlistp == NULL)
2564                                 dlistp = &dlist;
2565
2566                         dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2567                         dtmp->object = backing_object;
2568                         dtmp->next = *dlistp;
2569                         *dlistp = dtmp;
2570                 } else {
2571                         vm_object_chain_release(backing_object);
2572                         vm_object_drop(backing_object);
2573                 }
2574                 /* backing_object = NULL; not needed */
2575                 /* loop */
2576         }
2577
2578         /*
2579          * Clean up any left over backing_object
2580          */
2581         if (backing_object) {
2582                 vm_object_chain_release(backing_object);
2583                 vm_object_drop(backing_object);
2584         }
2585
2586         /*
2587          * Clean up any auto-deallocation list.  This is a convenience
2588          * for top-level callers so they don't have to pass &dlist.
2589          * Do not clean up any caller-passed dlistp, the caller will
2590          * do that.
2591          */
2592         if (dlist)
2593                 vm_object_deallocate_list(&dlist);
2594
2595 }
2596
2597 /*
2598  * vm_object_collapse() may collect additional objects in need of
2599  * deallocation.  This routine deallocates these objects.  The
2600  * deallocation itself can trigger additional collapses (which the
2601  * deallocate function takes care of).  This procedure is used to
2602  * reduce procedural recursion since these vm_object shadow chains
2603  * can become quite long.
2604  */
2605 void
2606 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2607 {
2608         struct vm_object_dealloc_list *dlist;
2609
2610         while ((dlist = *dlistp) != NULL) {
2611                 *dlistp = dlist->next;
2612                 vm_object_lock(dlist->object);
2613                 vm_object_deallocate_locked(dlist->object);
2614                 vm_object_drop(dlist->object);
2615                 kfree(dlist, M_TEMP);
2616         }
2617 }
2618
2619 /*
2620  * Removes all physical pages in the specified object range from the
2621  * object's list of pages.
2622  *
2623  * No requirements.
2624  */
2625 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2626
2627 void
2628 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2629                       boolean_t clean_only)
2630 {
2631         struct rb_vm_page_scan_info info;
2632         int all;
2633
2634         /*
2635          * Degenerate cases and assertions
2636          */
2637         vm_object_hold(object);
2638         if (object == NULL ||
2639             (object->resident_page_count == 0 && object->swblock_count == 0)) {
2640                 vm_object_drop(object);
2641                 return;
2642         }
2643         KASSERT(object->type != OBJT_PHYS, 
2644                 ("attempt to remove pages from a physical object"));
2645
2646         /*
2647          * Indicate that paging is occuring on the object
2648          */
2649         vm_object_pip_add(object, 1);
2650
2651         /*
2652          * Figure out the actual removal range and whether we are removing
2653          * the entire contents of the object or not.  If removing the entire
2654          * contents, be sure to get all pages, even those that might be 
2655          * beyond the end of the object.
2656          */
2657         info.object = object;
2658         info.start_pindex = start;
2659         if (end == 0)
2660                 info.end_pindex = (vm_pindex_t)-1;
2661         else
2662                 info.end_pindex = end - 1;
2663         info.limit = clean_only;
2664         info.count = 0;
2665         all = (start == 0 && info.end_pindex >= object->size - 1);
2666
2667         /*
2668          * Loop until we are sure we have gotten them all.
2669          */
2670         do {
2671                 info.error = 0;
2672                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2673                                         vm_object_page_remove_callback, &info);
2674         } while (info.error);
2675
2676         /*
2677          * Remove any related swap if throwing away pages, or for
2678          * non-swap objects (the swap is a clean copy in that case).
2679          */
2680         if (object->type != OBJT_SWAP || clean_only == FALSE) {
2681                 if (all)
2682                         swap_pager_freespace_all(object);
2683                 else
2684                         swap_pager_freespace(object, info.start_pindex,
2685                              info.end_pindex - info.start_pindex + 1);
2686         }
2687
2688         /*
2689          * Cleanup
2690          */
2691         vm_object_pip_wakeup(object);
2692         vm_object_drop(object);
2693 }
2694
2695 /*
2696  * The caller must hold the object.
2697  *
2698  * NOTE: User yields are allowed when removing more than one page, but not
2699  *       allowed if only removing one page (the path for single page removals
2700  *       might hold a spinlock).
2701  */
2702 static int
2703 vm_object_page_remove_callback(vm_page_t p, void *data)
2704 {
2705         struct rb_vm_page_scan_info *info = data;
2706
2707         if ((++info->count & 63) == 0)
2708                 lwkt_user_yield();
2709
2710         if (info->object != p->object ||
2711             p->pindex < info->start_pindex ||
2712             p->pindex > info->end_pindex) {
2713                 kprintf("vm_object_page_remove_callbackA: obj/pg race %p/%p\n",
2714                         info->object, p);
2715                 return(0);
2716         }
2717         if (vm_page_busy_try(p, TRUE)) {
2718                 vm_page_sleep_busy(p, TRUE, "vmopar");
2719                 info->error = 1;
2720                 return(0);
2721         }
2722         if (info->object != p->object) {
2723                 /* this should never happen */
2724                 kprintf("vm_object_page_remove_callbackB: obj/pg race %p/%p\n",
2725                         info->object, p);
2726                 vm_page_wakeup(p);
2727                 return(0);
2728         }
2729
2730         /*
2731          * Wired pages cannot be destroyed, but they can be invalidated
2732          * and we do so if clean_only (limit) is not set.
2733          *
2734          * WARNING!  The page may be wired due to being part of a buffer
2735          *           cache buffer, and the buffer might be marked B_CACHE.
2736          *           This is fine as part of a truncation but VFSs must be
2737          *           sure to fix the buffer up when re-extending the file.
2738          *
2739          * NOTE!     PG_NEED_COMMIT is ignored.
2740          */
2741         if (p->wire_count != 0) {
2742                 vm_page_protect(p, VM_PROT_NONE);
2743                 if (info->limit == 0)
2744                         p->valid = 0;
2745                 vm_page_wakeup(p);
2746                 return(0);
2747         }
2748
2749         /*
2750          * limit is our clean_only flag.  If set and the page is dirty or
2751          * requires a commit, do not free it.  If set and the page is being
2752          * held by someone, do not free it.
2753          */
2754         if (info->limit && p->valid) {
2755                 vm_page_test_dirty(p);
2756                 if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2757                         vm_page_wakeup(p);
2758                         return(0);
2759                 }
2760         }
2761
2762         /*
2763          * Destroy the page
2764          */
2765         vm_page_protect(p, VM_PROT_NONE);
2766         vm_page_free(p);
2767
2768         return(0);
2769 }
2770
2771 /*
2772  * Coalesces two objects backing up adjoining regions of memory into a
2773  * single object.
2774  *
2775  * returns TRUE if objects were combined.
2776  *
2777  * NOTE: Only works at the moment if the second object is NULL -
2778  *       if it's not, which object do we lock first?
2779  *
2780  * Parameters:
2781  *      prev_object     First object to coalesce
2782  *      prev_offset     Offset into prev_object
2783  *      next_object     Second object into coalesce
2784  *      next_offset     Offset into next_object
2785  *
2786  *      prev_size       Size of reference to prev_object
2787  *      next_size       Size of reference to next_object
2788  *
2789  * The caller does not need to hold (prev_object) but must have a stable
2790  * pointer to it (typically by holding the vm_map locked).
2791  */
2792 boolean_t
2793 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2794                    vm_size_t prev_size, vm_size_t next_size)
2795 {
2796         vm_pindex_t next_pindex;
2797
2798         if (prev_object == NULL)
2799                 return (TRUE);
2800
2801         vm_object_hold(prev_object);
2802
2803         if (prev_object->type != OBJT_DEFAULT &&
2804             prev_object->type != OBJT_SWAP) {
2805                 vm_object_drop(prev_object);
2806                 return (FALSE);
2807         }
2808
2809         /*
2810          * Try to collapse the object first
2811          */
2812         vm_object_chain_acquire(prev_object, 0);
2813         vm_object_collapse(prev_object, NULL);
2814
2815         /*
2816          * Can't coalesce if: . more than one reference . paged out . shadows
2817          * another object . has a copy elsewhere (any of which mean that the
2818          * pages not mapped to prev_entry may be in use anyway)
2819          */
2820
2821         if (prev_object->backing_object != NULL) {
2822                 vm_object_chain_release(prev_object);
2823                 vm_object_drop(prev_object);
2824                 return (FALSE);
2825         }
2826
2827         prev_size >>= PAGE_SHIFT;
2828         next_size >>= PAGE_SHIFT;
2829         next_pindex = prev_pindex + prev_size;
2830
2831         if ((prev_object->ref_count > 1) &&
2832             (prev_object->size != next_pindex)) {
2833                 vm_object_chain_release(prev_object);
2834                 vm_object_drop(prev_object);
2835                 return (FALSE);
2836         }
2837
2838         /*
2839          * Remove any pages that may still be in the object from a previous
2840          * deallocation.
2841          */
2842         if (next_pindex < prev_object->size) {
2843                 vm_object_page_remove(prev_object,
2844                                       next_pindex,
2845                                       next_pindex + next_size, FALSE);
2846                 if (prev_object->type == OBJT_SWAP)
2847                         swap_pager_freespace(prev_object,
2848                                              next_pindex, next_size);
2849         }
2850
2851         /*
2852          * Extend the object if necessary.
2853          */
2854         if (next_pindex + next_size > prev_object->size)
2855                 prev_object->size = next_pindex + next_size;
2856
2857         vm_object_chain_release(prev_object);
2858         vm_object_drop(prev_object);
2859         return (TRUE);
2860 }
2861
2862 /*
2863  * Make the object writable and flag is being possibly dirty.
2864  *
2865  * The object might not be held (or might be held but held shared),
2866  * the related vnode is probably not held either.  Object and vnode are
2867  * stable by virtue of the vm_page busied by the caller preventing
2868  * destruction.
2869  *
2870  * If the related mount is flagged MNTK_THR_SYNC we need to call
2871  * vsetobjdirty().  Filesystems using this option usually shortcut
2872  * synchronization by only scanning the syncer list.
2873  */
2874 void
2875 vm_object_set_writeable_dirty(vm_object_t object)
2876 {
2877         struct vnode *vp;
2878
2879         /*vm_object_assert_held(object);*/
2880         /*
2881          * Avoid contention in vm fault path by checking the state before
2882          * issuing an atomic op on it.
2883          */
2884         if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2885             (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2886                 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2887         }
2888         if (object->type == OBJT_VNODE &&
2889             (vp = (struct vnode *)object->handle) != NULL) {
2890                 if ((vp->v_flag & VOBJDIRTY) == 0) {
2891                         if (vp->v_mount &&
2892                             (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) {
2893                                 /*
2894                                  * New style THR_SYNC places vnodes on the
2895                                  * syncer list more deterministically.
2896                                  */
2897                                 vsetobjdirty(vp);
2898                         } else {
2899                                 /*
2900                                  * Old style scan would not necessarily place
2901                                  * a vnode on the syncer list when possibly
2902                                  * modified via mmap.
2903                                  */
2904                                 vsetflags(vp, VOBJDIRTY);
2905                         }
2906                 }
2907         }
2908 }
2909
2910 #include "opt_ddb.h"
2911 #ifdef DDB
2912 #include <sys/kernel.h>
2913
2914 #include <sys/cons.h>
2915
2916 #include <ddb/ddb.h>
2917
2918 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
2919                                        vm_map_entry_t entry);
2920 static int      vm_object_in_map (vm_object_t object);
2921
2922 /*
2923  * The caller must hold the object.
2924  */
2925 static int
2926 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2927 {
2928         vm_map_t tmpm;
2929         vm_map_entry_t tmpe;
2930         vm_object_t obj, nobj;
2931         int entcount;
2932
2933         if (map == 0)
2934                 return 0;
2935         if (entry == 0) {
2936                 tmpe = map->header.next;
2937                 entcount = map->nentries;
2938                 while (entcount-- && (tmpe != &map->header)) {
2939                         if( _vm_object_in_map(map, object, tmpe)) {
2940                                 return 1;
2941                         }
2942                         tmpe = tmpe->next;
2943                 }
2944                 return (0);
2945         }
2946         switch(entry->maptype) {
2947         case VM_MAPTYPE_SUBMAP:
2948                 tmpm = entry->object.sub_map;
2949                 tmpe = tmpm->header.next;
2950                 entcount = tmpm->nentries;
2951                 while (entcount-- && tmpe != &tmpm->header) {
2952                         if( _vm_object_in_map(tmpm, object, tmpe)) {
2953                                 return 1;
2954                         }
2955                         tmpe = tmpe->next;
2956                 }
2957                 break;
2958         case VM_MAPTYPE_NORMAL:
2959         case VM_MAPTYPE_VPAGETABLE:
2960                 obj = entry->object.vm_object;
2961                 while (obj) {
2962                         if (obj == object) {
2963                                 if (obj != entry->object.vm_object)
2964                                         vm_object_drop(obj);
2965                                 return 1;
2966                         }
2967                         while ((nobj = obj->backing_object) != NULL) {
2968                                 vm_object_hold(nobj);
2969                                 if (nobj == obj->backing_object)
2970                                         break;
2971                                 vm_object_drop(nobj);
2972                         }
2973                         if (obj != entry->object.vm_object) {
2974                                 if (nobj)
2975                                         vm_object_lock_swap();
2976                                 vm_object_drop(obj);
2977                         }
2978                         obj = nobj;
2979                 }
2980                 break;
2981         default:
2982                 break;
2983         }
2984         return 0;
2985 }
2986
2987 static int vm_object_in_map_callback(struct proc *p, void *data);
2988
2989 struct vm_object_in_map_info {
2990         vm_object_t object;
2991         int rv;
2992 };
2993
2994 /*
2995  * Debugging only
2996  */
2997 static int
2998 vm_object_in_map(vm_object_t object)
2999 {
3000         struct vm_object_in_map_info info;
3001
3002         info.rv = 0;
3003         info.object = object;
3004
3005         allproc_scan(vm_object_in_map_callback, &info);
3006         if (info.rv)
3007                 return 1;
3008         if( _vm_object_in_map(&kernel_map, object, 0))
3009                 return 1;
3010         if( _vm_object_in_map(&pager_map, object, 0))
3011                 return 1;
3012         if( _vm_object_in_map(&buffer_map, object, 0))
3013                 return 1;
3014         return 0;
3015 }
3016
3017 /*
3018  * Debugging only
3019  */
3020 static int
3021 vm_object_in_map_callback(struct proc *p, void *data)
3022 {
3023         struct vm_object_in_map_info *info = data;
3024
3025         if (p->p_vmspace) {
3026                 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
3027                         info->rv = 1;
3028                         return -1;
3029                 }
3030         }
3031         return (0);
3032 }
3033
3034 DB_SHOW_COMMAND(vmochk, vm_object_check)
3035 {
3036         struct vm_object_hash *hash;
3037         vm_object_t object;
3038         int n;
3039
3040         /*
3041          * make sure that internal objs are in a map somewhere
3042          * and none have zero ref counts.
3043          */
3044         for (n = 0; n < VMOBJ_HSIZE; ++n) {
3045                 hash = &vm_object_hash[n];
3046                 for (object = TAILQ_FIRST(&hash->list);
3047                                 object != NULL;
3048                                 object = TAILQ_NEXT(object, object_list)) {
3049                         if (object->type == OBJT_MARKER)
3050                                 continue;
3051                         if (object->handle != NULL ||
3052                             (object->type != OBJT_DEFAULT &&
3053                              object->type != OBJT_SWAP)) {
3054                                 continue;
3055                         }
3056                         if (object->ref_count == 0) {
3057                                 db_printf("vmochk: internal obj has "
3058                                           "zero ref count: %ld\n",
3059                                           (long)object->size);
3060                         }
3061                         if (vm_object_in_map(object))
3062                                 continue;
3063                         db_printf("vmochk: internal obj is not in a map: "
3064                                   "ref: %d, size: %lu: 0x%lx, "
3065                                   "backing_object: %p\n",
3066                                   object->ref_count, (u_long)object->size,
3067                                   (u_long)object->size,
3068                                   (void *)object->backing_object);
3069                 }
3070         }
3071 }
3072
3073 /*
3074  * Debugging only
3075  */
3076 DB_SHOW_COMMAND(object, vm_object_print_static)
3077 {
3078         /* XXX convert args. */
3079         vm_object_t object = (vm_object_t)addr;
3080         boolean_t full = have_addr;
3081
3082         vm_page_t p;
3083
3084         /* XXX count is an (unused) arg.  Avoid shadowing it. */
3085 #define count   was_count
3086
3087         int count;
3088
3089         if (object == NULL)
3090                 return;
3091
3092         db_iprintf(
3093             "Object %p: type=%d, size=0x%lx, res=%ld, ref=%d, flags=0x%x\n",
3094             object, (int)object->type, (u_long)object->size,
3095             object->resident_page_count, object->ref_count, object->flags);
3096         /*
3097          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
3098          */
3099         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
3100             object->shadow_count, 
3101             object->backing_object ? object->backing_object->ref_count : 0,
3102             object->backing_object, (long)object->backing_object_offset);
3103
3104         if (!full)
3105                 return;
3106
3107         db_indent += 2;
3108         count = 0;
3109         RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
3110                 if (count == 0)
3111                         db_iprintf("memory:=");
3112                 else if (count == 6) {
3113                         db_printf("\n");
3114                         db_iprintf(" ...");
3115                         count = 0;
3116                 } else
3117                         db_printf(",");
3118                 count++;
3119
3120                 db_printf("(off=0x%lx,page=0x%lx)",
3121                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
3122         }
3123         if (count != 0)
3124                 db_printf("\n");
3125         db_indent -= 2;
3126 }
3127
3128 /* XXX. */
3129 #undef count
3130
3131 /*
3132  * XXX need this non-static entry for calling from vm_map_print.
3133  *
3134  * Debugging only
3135  */
3136 void
3137 vm_object_print(/* db_expr_t */ long addr,
3138                 boolean_t have_addr,
3139                 /* db_expr_t */ long count,
3140                 char *modif)
3141 {
3142         vm_object_print_static(addr, have_addr, count, modif);
3143 }
3144
3145 /*
3146  * Debugging only
3147  */
3148 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
3149 {
3150         struct vm_object_hash *hash;
3151         vm_object_t object;
3152         int nl = 0;
3153         int c;
3154         int n;
3155
3156         for (n = 0; n < VMOBJ_HSIZE; ++n) {
3157                 hash = &vm_object_hash[n];
3158                 for (object = TAILQ_FIRST(&hash->list);
3159                                 object != NULL;
3160                                 object = TAILQ_NEXT(object, object_list)) {
3161                         vm_pindex_t idx, fidx;
3162                         vm_pindex_t osize;
3163                         vm_paddr_t pa = -1, padiff;
3164                         int rcount;
3165                         vm_page_t m;
3166
3167                         if (object->type == OBJT_MARKER)
3168                                 continue;
3169                         db_printf("new object: %p\n", (void *)object);
3170                         if ( nl > 18) {
3171                                 c = cngetc();
3172                                 if (c != ' ')
3173                                         return;
3174                                 nl = 0;
3175                         }
3176                         nl++;
3177                         rcount = 0;
3178                         fidx = 0;
3179                         osize = object->size;
3180                         if (osize > 128)
3181                                 osize = 128;
3182                         for (idx = 0; idx < osize; idx++) {
3183                                 m = vm_page_lookup(object, idx);
3184                                 if (m == NULL) {
3185                                         if (rcount) {
3186                                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3187                                                         (long)fidx, rcount, (long)pa);
3188                                                 if ( nl > 18) {
3189                                                         c = cngetc();
3190                                                         if (c != ' ')
3191                                                                 return;
3192                                                         nl = 0;
3193                                                 }
3194                                                 nl++;
3195                                                 rcount = 0;
3196                                         }
3197                                         continue;
3198                                 }
3199
3200                                 if (rcount &&
3201                                         (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
3202                                         ++rcount;
3203                                         continue;
3204                                 }
3205                                 if (rcount) {
3206                                         padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
3207                                         padiff >>= PAGE_SHIFT;
3208                                         padiff &= PQ_L2_MASK;
3209                                         if (padiff == 0) {
3210                                                 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
3211                                                 ++rcount;
3212                                                 continue;
3213                                         }
3214                                         db_printf(" index(%ld)run(%d)pa(0x%lx)",
3215                                                 (long)fidx, rcount, (long)pa);
3216                                         db_printf("pd(%ld)\n", (long)padiff);
3217                                         if ( nl > 18) {
3218                                                 c = cngetc();
3219                                                 if (c != ' ')
3220                                                         return;
3221                                                 nl = 0;
3222                                         }
3223                                         nl++;
3224                                 }
3225                                 fidx = idx;
3226                                 pa = VM_PAGE_TO_PHYS(m);
3227                                 rcount = 1;
3228                         }
3229                         if (rcount) {
3230                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3231                                         (long)fidx, rcount, (long)pa);
3232                                 if ( nl > 18) {
3233                                         c = cngetc();
3234                                         if (c != ' ')
3235                                                 return;
3236                                         nl = 0;
3237                                 }
3238                                 nl++;
3239                         }
3240                 }
3241         }
3242 }
3243 #endif /* DDB */