08c32a24500627a48b18f5e08ecde85b22d7d5ed
[dragonfly.git] / sys / vfs / hammer / hammer_ondisk.c
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_ondisk.c,v 1.76 2008/08/29 20:19:08 dillon Exp $
35  */
36 /*
37  * Manage HAMMER's on-disk structures.  These routines are primarily
38  * responsible for interfacing with the kernel's I/O subsystem and for
39  * managing in-memory structures.
40  */
41
42 #include <sys/nlookup.h>
43 #include <sys/buf2.h>
44
45 #include "hammer.h"
46
47 static void hammer_free_volume(hammer_volume_t volume);
48 static int hammer_load_volume(hammer_volume_t volume);
49 static int hammer_load_buffer(hammer_buffer_t buffer, int isnew);
50 static int hammer_load_node(hammer_transaction_t trans,
51                                 hammer_node_t node, int isnew);
52 static void _hammer_rel_node(hammer_node_t node, int locked);
53
54 static int
55 hammer_vol_rb_compare(hammer_volume_t vol1, hammer_volume_t vol2)
56 {
57         if (vol1->vol_no < vol2->vol_no)
58                 return(-1);
59         if (vol1->vol_no > vol2->vol_no)
60                 return(1);
61         return(0);
62 }
63
64 /*
65  * hammer_buffer structures are indexed via their zoneX_offset, not
66  * their zone2_offset.
67  */
68 static int
69 hammer_buf_rb_compare(hammer_buffer_t buf1, hammer_buffer_t buf2)
70 {
71         if (buf1->zoneX_offset < buf2->zoneX_offset)
72                 return(-1);
73         if (buf1->zoneX_offset > buf2->zoneX_offset)
74                 return(1);
75         return(0);
76 }
77
78 static int
79 hammer_nod_rb_compare(hammer_node_t node1, hammer_node_t node2)
80 {
81         if (node1->node_offset < node2->node_offset)
82                 return(-1);
83         if (node1->node_offset > node2->node_offset)
84                 return(1);
85         return(0);
86 }
87
88 RB_GENERATE2(hammer_vol_rb_tree, hammer_volume, rb_node,
89              hammer_vol_rb_compare, int32_t, vol_no);
90 RB_GENERATE2(hammer_buf_rb_tree, hammer_buffer, rb_node,
91              hammer_buf_rb_compare, hammer_off_t, zoneX_offset);
92 RB_GENERATE2(hammer_nod_rb_tree, hammer_node, rb_node,
93              hammer_nod_rb_compare, hammer_off_t, node_offset);
94
95 /************************************************************************
96  *                              VOLUMES                                 *
97  ************************************************************************
98  *
99  * Load a HAMMER volume by name.  Returns 0 on success or a positive error
100  * code on failure.  Volumes must be loaded at mount time or via hammer
101  * volume-add command, hammer_get_volume() will not load a new volume.
102  *
103  * The passed devvp is vref()'d but not locked.  This function consumes the
104  * ref (typically by associating it with the volume structure).
105  *
106  * Calls made to hammer_load_volume() or single-threaded
107  */
108 int
109 hammer_install_volume(hammer_mount_t hmp, const char *volname,
110                       struct vnode *devvp, void *data)
111 {
112         struct mount *mp;
113         hammer_volume_t volume;
114         struct hammer_volume_ondisk *ondisk;
115         struct hammer_volume_ondisk *img;
116         struct nlookupdata nd;
117         struct buf *bp = NULL;
118         int error;
119         int ronly;
120         int setmp = 0;
121         int i;
122
123         mp = hmp->mp;
124         ronly = ((mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
125
126         /*
127          * Allocate a volume structure
128          */
129         ++hammer_count_volumes;
130         volume = kmalloc(sizeof(*volume), hmp->m_misc, M_WAITOK|M_ZERO);
131         volume->vol_name = kstrdup(volname, hmp->m_misc);
132         volume->io.hmp = hmp;   /* bootstrap */
133         hammer_io_init(&volume->io, volume, HAMMER_STRUCTURE_VOLUME);
134         volume->io.offset = 0LL;
135         volume->io.bytes = HAMMER_BUFSIZE;
136
137         /*
138          * Get the device vnode
139          */
140         if (devvp == NULL) {
141                 error = nlookup_init(&nd, volume->vol_name, UIO_SYSSPACE, NLC_FOLLOW);
142                 if (error == 0)
143                         error = nlookup(&nd);
144                 if (error == 0)
145                         error = cache_vref(&nd.nl_nch, nd.nl_cred, &volume->devvp);
146                 nlookup_done(&nd);
147         } else {
148                 error = 0;
149                 volume->devvp = devvp;
150         }
151
152         if (error == 0) {
153                 if (vn_isdisk(volume->devvp, &error)) {
154                         error = vfs_mountedon(volume->devvp);
155                 }
156         }
157         if (error == 0 && vcount(volume->devvp) > 0)
158                 error = EBUSY;
159         if (error == 0) {
160                 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
161                 error = vinvalbuf(volume->devvp, V_SAVE, 0, 0);
162                 if (error == 0) {
163                         error = VOP_OPEN(volume->devvp,
164                                          (ronly ? FREAD : FREAD|FWRITE),
165                                          FSCRED, NULL);
166                 }
167                 vn_unlock(volume->devvp);
168         }
169         if (error) {
170                 hammer_free_volume(volume);
171                 return(error);
172         }
173         volume->devvp->v_rdev->si_mountpoint = mp;
174         setmp = 1;
175
176         /*
177          * Extract the volume number from the volume header and do various
178          * sanity checks.
179          */
180         error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
181         if (error)
182                 goto late_failure;
183         ondisk = (void *)bp->b_data;
184
185         /*
186          * Initialize the volume header with data if the data is specified.
187          */
188         if (ronly == 0 && data) {
189                 img = (struct hammer_volume_ondisk *)data;
190                 if (ondisk->vol_signature == HAMMER_FSBUF_VOLUME) {
191                         hkprintf("Formatting of valid HAMMER volume "
192                                 "%s denied. Erase with dd!\n", volname);
193                         error = EFTYPE;
194                         goto late_failure;
195                 }
196                 bcopy(img, ondisk, sizeof(*img));
197         }
198
199         if (ondisk->vol_signature != HAMMER_FSBUF_VOLUME) {
200                 hkprintf("volume %s has an invalid header\n",
201                         volume->vol_name);
202                 for (i = 0; i < (int)sizeof(ondisk->vol_signature); i++) {
203                         kprintf("%02x", ((char*)&ondisk->vol_signature)[i] & 0xFF);
204                         if (i != (int)sizeof(ondisk->vol_signature) - 1)
205                                 kprintf(" ");
206                 }
207                 kprintf("\n");
208                 error = EFTYPE;
209                 goto late_failure;
210         }
211         volume->vol_no = ondisk->vol_no;
212         volume->vol_flags = ondisk->vol_flags;
213         volume->maxbuf_off = HAMMER_ENCODE_RAW_BUFFER(volume->vol_no,
214                                     ondisk->vol_buf_end - ondisk->vol_buf_beg);
215
216         if (RB_EMPTY(&hmp->rb_vols_root)) {
217                 hmp->fsid = ondisk->vol_fsid;
218         } else if (bcmp(&hmp->fsid, &ondisk->vol_fsid, sizeof(uuid_t))) {
219                 hkprintf("volume %s's fsid does not match other volumes\n",
220                         volume->vol_name);
221                 error = EFTYPE;
222                 goto late_failure;
223         }
224
225         /*
226          * Insert the volume structure into the red-black tree.
227          */
228         if (RB_INSERT(hammer_vol_rb_tree, &hmp->rb_vols_root, volume)) {
229                 hkprintf("volume %s has a duplicate vol_no %d\n",
230                         volume->vol_name, volume->vol_no);
231                 error = EEXIST;
232         }
233
234         if (error == 0)
235                 HAMMER_VOLUME_NUMBER_ADD(hmp, volume);
236
237         /*
238          * Set the root volume .  HAMMER special cases rootvol the structure.
239          * We do not hold a ref because this would prevent related I/O
240          * from being flushed.
241          */
242         if (error == 0 && ondisk->vol_rootvol == ondisk->vol_no) {
243                 hmp->rootvol = volume;
244                 hmp->nvolumes = ondisk->vol_count;
245                 if (bp) {
246                         brelse(bp);
247                         bp = NULL;
248                 }
249                 hmp->mp->mnt_stat.f_blocks += ondisk->vol0_stat_bigblocks *
250                                                 HAMMER_BUFFERS_PER_BIGBLOCK;
251                 hmp->mp->mnt_vstat.f_blocks += ondisk->vol0_stat_bigblocks *
252                                                 HAMMER_BUFFERS_PER_BIGBLOCK;
253         }
254 late_failure:
255         if (bp)
256                 brelse(bp);
257         if (error) {
258                 /*vinvalbuf(volume->devvp, V_SAVE, 0, 0);*/
259                 if (setmp)
260                         volume->devvp->v_rdev->si_mountpoint = NULL;
261                 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
262                 VOP_CLOSE(volume->devvp, ronly ? FREAD : FREAD|FWRITE, NULL);
263                 vn_unlock(volume->devvp);
264                 hammer_free_volume(volume);
265         }
266         return (error);
267 }
268
269 /*
270  * This is called for each volume when updating the mount point from
271  * read-write to read-only or vise-versa.
272  */
273 int
274 hammer_adjust_volume_mode(hammer_volume_t volume, void *data __unused)
275 {
276         if (volume->devvp) {
277                 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
278                 if (volume->io.hmp->ronly) {
279                         /* do not call vinvalbuf */
280                         VOP_OPEN(volume->devvp, FREAD, FSCRED, NULL);
281                         VOP_CLOSE(volume->devvp, FREAD|FWRITE, NULL);
282                 } else {
283                         /* do not call vinvalbuf */
284                         VOP_OPEN(volume->devvp, FREAD|FWRITE, FSCRED, NULL);
285                         VOP_CLOSE(volume->devvp, FREAD, NULL);
286                 }
287                 vn_unlock(volume->devvp);
288         }
289         return(0);
290 }
291
292 /*
293  * Unload and free a HAMMER volume.  Must return >= 0 to continue scan
294  * so returns -1 on failure.
295  */
296 int
297 hammer_unload_volume(hammer_volume_t volume, void *data)
298 {
299         hammer_mount_t hmp = volume->io.hmp;
300         struct buf *bp = NULL;
301         struct hammer_volume_ondisk *img;
302         int ronly = ((hmp->mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
303         int error;
304
305         /*
306          * Clear the volume header with data if the data is specified.
307          */
308         if (ronly == 0 && data && volume->devvp) {
309                 img = (struct hammer_volume_ondisk *)data;
310                 error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
311                 if (error || bp->b_bcount < sizeof(*img)) {
312                         hmkprintf(hmp, "Failed to read volume header: %d\n", error);
313                         brelse(bp);
314                 } else {
315                         bcopy(img, bp->b_data, sizeof(*img));
316                         error = bwrite(bp);
317                         if (error)
318                                 hmkprintf(hmp, "Failed to clear volume header: %d\n",
319                                         error);
320                 }
321         }
322
323         /*
324          * Clean up the root volume pointer, which is held unlocked in hmp.
325          */
326         if (hmp->rootvol == volume)
327                 hmp->rootvol = NULL;
328
329         /*
330          * We must not flush a dirty buffer to disk on umount.  It should
331          * have already been dealt with by the flusher, or we may be in
332          * catastrophic failure.
333          */
334         hammer_io_clear_modify(&volume->io, 1);
335         volume->io.waitdep = 1;
336
337         /*
338          * Clean up the persistent ref ioerror might have on the volume
339          */
340         if (volume->io.ioerror)
341                 hammer_io_clear_error_noassert(&volume->io);
342
343         /*
344          * This should release the bp.  Releasing the volume with flush set
345          * implies the interlock is set.
346          */
347         hammer_ref_interlock_true(&volume->io.lock);
348         hammer_rel_volume(volume, 1);
349         KKASSERT(volume->io.bp == NULL);
350
351         /*
352          * There should be no references on the volume.
353          */
354         KKASSERT(hammer_norefs(&volume->io.lock));
355
356         volume->ondisk = NULL;
357         if (volume->devvp) {
358                 if (volume->devvp->v_rdev &&
359                     volume->devvp->v_rdev->si_mountpoint == hmp->mp) {
360                         volume->devvp->v_rdev->si_mountpoint = NULL;
361                 }
362                 if (ronly) {
363                         /*
364                          * Make sure we don't sync anything to disk if we
365                          * are in read-only mode (1) or critically-errored
366                          * (2).  Note that there may be dirty buffers in
367                          * normal read-only mode from crash recovery.
368                          */
369                         vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
370                         vinvalbuf(volume->devvp, 0, 0, 0);
371                         VOP_CLOSE(volume->devvp, FREAD, NULL);
372                         vn_unlock(volume->devvp);
373                 } else {
374                         /*
375                          * Normal termination, save any dirty buffers
376                          * (XXX there really shouldn't be any).
377                          */
378                         vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
379                         vinvalbuf(volume->devvp, V_SAVE, 0, 0);
380                         VOP_CLOSE(volume->devvp, FREAD|FWRITE, NULL);
381                         vn_unlock(volume->devvp);
382                 }
383         }
384
385         /*
386          * Destroy the structure
387          */
388         RB_REMOVE(hammer_vol_rb_tree, &hmp->rb_vols_root, volume);
389         HAMMER_VOLUME_NUMBER_DEL(hmp, volume);
390         hammer_free_volume(volume);
391         return(0);
392 }
393
394 static
395 void
396 hammer_free_volume(hammer_volume_t volume)
397 {
398         hammer_mount_t hmp = volume->io.hmp;
399
400         if (volume->vol_name) {
401                 kfree(volume->vol_name, hmp->m_misc);
402                 volume->vol_name = NULL;
403         }
404         if (volume->devvp) {
405                 vrele(volume->devvp);
406                 volume->devvp = NULL;
407         }
408         --hammer_count_volumes;
409         kfree(volume, hmp->m_misc);
410 }
411
412 /*
413  * Get a HAMMER volume.  The volume must already exist.
414  */
415 hammer_volume_t
416 hammer_get_volume(hammer_mount_t hmp, int32_t vol_no, int *errorp)
417 {
418         struct hammer_volume *volume;
419
420         /*
421          * Locate the volume structure
422          */
423         volume = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, vol_no);
424         if (volume == NULL) {
425                 *errorp = ENOENT;
426                 return(NULL);
427         }
428
429         /*
430          * Reference the volume, load/check the data on the 0->1 transition.
431          * hammer_load_volume() will dispose of the interlock on return,
432          * and also clean up the ref count on error.
433          */
434         if (hammer_ref_interlock(&volume->io.lock)) {
435                 *errorp = hammer_load_volume(volume);
436                 if (*errorp)
437                         volume = NULL;
438         } else {
439                 KKASSERT(volume->ondisk);
440                 *errorp = 0;
441         }
442         return(volume);
443 }
444
445 int
446 hammer_ref_volume(hammer_volume_t volume)
447 {
448         int error;
449
450         /*
451          * Reference the volume and deal with the check condition used to
452          * load its ondisk info.
453          */
454         if (hammer_ref_interlock(&volume->io.lock)) {
455                 error = hammer_load_volume(volume);
456         } else {
457                 KKASSERT(volume->ondisk);
458                 error = 0;
459         }
460         return (error);
461 }
462
463 /*
464  * May be called without fs_token
465  */
466 hammer_volume_t
467 hammer_get_root_volume(hammer_mount_t hmp, int *errorp)
468 {
469         hammer_volume_t volume;
470
471         volume = hmp->rootvol;
472         KKASSERT(volume != NULL);
473
474         /*
475          * Reference the volume and deal with the check condition used to
476          * load its ondisk info.
477          */
478         if (hammer_ref_interlock(&volume->io.lock)) {
479                 lwkt_gettoken(&volume->io.hmp->fs_token);
480                 *errorp = hammer_load_volume(volume);
481                 lwkt_reltoken(&volume->io.hmp->fs_token);
482                 if (*errorp)
483                         volume = NULL;
484         } else {
485                 KKASSERT(volume->ondisk);
486                 *errorp = 0;
487         }
488         return (volume);
489 }
490
491 /*
492  * Load a volume's on-disk information.  The volume must be referenced and
493  * the interlock is held on call.  The interlock will be released on return.
494  * The reference will also be released on return if an error occurs.
495  */
496 static int
497 hammer_load_volume(hammer_volume_t volume)
498 {
499         int error;
500
501         if (volume->ondisk == NULL) {
502                 error = hammer_io_read(volume->devvp, &volume->io,
503                                        HAMMER_BUFSIZE);
504                 if (error == 0) {
505                         volume->ondisk = (void *)volume->io.bp->b_data;
506                         hammer_ref_interlock_done(&volume->io.lock);
507                 } else {
508                         hammer_rel_volume(volume, 1);
509                 }
510         } else {
511                 error = 0;
512         }
513         return(error);
514 }
515
516 /*
517  * Release a previously acquired reference on the volume.
518  *
519  * Volumes are not unloaded from memory during normal operation.
520  *
521  * May be called without fs_token
522  */
523 void
524 hammer_rel_volume(hammer_volume_t volume, int locked)
525 {
526         struct buf *bp;
527
528         if (hammer_rel_interlock(&volume->io.lock, locked)) {
529                 lwkt_gettoken(&volume->io.hmp->fs_token);
530                 volume->ondisk = NULL;
531                 bp = hammer_io_release(&volume->io, locked);
532                 lwkt_reltoken(&volume->io.hmp->fs_token);
533                 hammer_rel_interlock_done(&volume->io.lock, locked);
534                 if (bp)
535                         brelse(bp);
536         }
537 }
538
539 int
540 hammer_mountcheck_volumes(hammer_mount_t hmp)
541 {
542         hammer_volume_t vol;
543         int i;
544
545         HAMMER_VOLUME_NUMBER_FOREACH(hmp, i) {
546                 vol = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, i);
547                 if (vol == NULL)
548                         return(EINVAL);
549         }
550         return(0);
551 }
552
553 int
554 hammer_get_installed_volumes(hammer_mount_t hmp)
555 {
556         int i, ret = 0;
557
558         HAMMER_VOLUME_NUMBER_FOREACH(hmp, i)
559                 ret++;
560         return(ret);
561 }
562
563 /************************************************************************
564  *                              BUFFERS                                 *
565  ************************************************************************
566  *
567  * Manage buffers.  Currently most blockmap-backed zones are direct-mapped
568  * to zone-2 buffer offsets, without a translation stage.  However, the
569  * hammer_buffer structure is indexed by its zoneX_offset, not its
570  * zone2_offset.
571  *
572  * The proper zone must be maintained throughout the code-base all the way
573  * through to the big-block allocator, or routines like hammer_del_buffers()
574  * will not be able to locate all potentially conflicting buffers.
575  */
576
577 /*
578  * Helper function returns whether a zone offset can be directly translated
579  * to a raw buffer index or not.  Really only the volume and undo zones
580  * can't be directly translated.  Volumes are special-cased and undo zones
581  * shouldn't be aliased accessed in read-only mode.
582  *
583  * This function is ONLY used to detect aliased zones during a read-only
584  * mount.
585  */
586 static __inline int
587 hammer_direct_zone(hammer_off_t buf_offset)
588 {
589         int zone = HAMMER_ZONE_DECODE(buf_offset);
590
591         return(hammer_is_direct_mapped_index(zone));
592 }
593
594 hammer_buffer_t
595 hammer_get_buffer(hammer_mount_t hmp, hammer_off_t buf_offset,
596                   int bytes, int isnew, int *errorp)
597 {
598         hammer_buffer_t buffer;
599         hammer_volume_t volume;
600         hammer_off_t    zone2_offset;
601         hammer_io_type_t iotype;
602         int vol_no;
603         int zone;
604
605         buf_offset &= ~HAMMER_BUFMASK64;
606 again:
607         /*
608          * Shortcut if the buffer is already cached
609          */
610         buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root, buf_offset);
611         if (buffer) {
612                 /*
613                  * Once refed the ondisk field will not be cleared by
614                  * any other action.  Shortcut the operation if the
615                  * ondisk structure is valid.
616                  */
617 found_aliased:
618                 if (hammer_ref_interlock(&buffer->io.lock) == 0) {
619                         hammer_io_advance(&buffer->io);
620                         KKASSERT(buffer->ondisk);
621                         *errorp = 0;
622                         return(buffer);
623                 }
624
625                 /*
626                  * 0->1 transition or defered 0->1 transition (CHECK),
627                  * interlock now held.  Shortcut if ondisk is already
628                  * assigned.
629                  */
630                 atomic_add_int(&hammer_count_refedbufs, 1);
631                 if (buffer->ondisk) {
632                         hammer_io_advance(&buffer->io);
633                         hammer_ref_interlock_done(&buffer->io.lock);
634                         *errorp = 0;
635                         return(buffer);
636                 }
637
638                 /*
639                  * The buffer is no longer loose if it has a ref, and
640                  * cannot become loose once it gains a ref.  Loose
641                  * buffers will never be in a modified state.  This should
642                  * only occur on the 0->1 transition of refs.
643                  *
644                  * lose_root can be modified via a biodone() interrupt
645                  * so the io_token must be held.
646                  */
647                 if (buffer->io.mod_root == &hmp->lose_root) {
648                         lwkt_gettoken(&hmp->io_token);
649                         if (buffer->io.mod_root == &hmp->lose_root) {
650                                 RB_REMOVE(hammer_mod_rb_tree,
651                                           buffer->io.mod_root, &buffer->io);
652                                 buffer->io.mod_root = NULL;
653                                 KKASSERT(buffer->io.modified == 0);
654                         }
655                         lwkt_reltoken(&hmp->io_token);
656                 }
657                 goto found;
658         } else if (hmp->ronly && hammer_direct_zone(buf_offset)) {
659                 /*
660                  * If this is a read-only mount there could be an alias
661                  * in the raw-zone.  If there is we use that buffer instead.
662                  *
663                  * rw mounts will not have aliases.  Also note when going
664                  * from ro -> rw the recovered raw buffers are flushed and
665                  * reclaimed, so again there will not be any aliases once
666                  * the mount is rw.
667                  */
668                 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
669                                    hammer_xlate_to_zone2(buf_offset));
670                 if (buffer) {
671                         if (hammer_debug_general & 0x0001) {
672                                 hkrateprintf(&hmp->kdiag,
673                                             "recovered aliased %016jx\n",
674                                             (intmax_t)buf_offset);
675                         }
676                         goto found_aliased;
677                 }
678         }
679
680         /*
681          * What is the buffer class?
682          */
683         zone = HAMMER_ZONE_DECODE(buf_offset);
684
685         switch(zone) {
686         case HAMMER_ZONE_LARGE_DATA_INDEX:
687         case HAMMER_ZONE_SMALL_DATA_INDEX:
688                 iotype = HAMMER_STRUCTURE_DATA_BUFFER;
689                 break;
690         case HAMMER_ZONE_UNDO_INDEX:
691                 iotype = HAMMER_STRUCTURE_UNDO_BUFFER;
692                 break;
693         case HAMMER_ZONE_META_INDEX:
694         default:
695                 /*
696                  * NOTE: inode data and directory entries are placed in this
697                  * zone.  inode atime/mtime is updated in-place and thus
698                  * buffers containing inodes must be synchronized as
699                  * meta-buffers, same as buffers containing B-Tree info.
700                  */
701                 iotype = HAMMER_STRUCTURE_META_BUFFER;
702                 break;
703         }
704
705         /*
706          * Handle blockmap offset translations
707          */
708         if (hammer_is_zone2_mapped_index(zone)) {
709                 zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, errorp);
710         } else if (zone == HAMMER_ZONE_UNDO_INDEX) {
711                 zone2_offset = hammer_undo_lookup(hmp, buf_offset, errorp);
712         } else {
713                 /* Must be zone-2 (not 1 or 4 or 15) */
714                 KKASSERT(zone == HAMMER_ZONE_RAW_BUFFER_INDEX);
715                 zone2_offset = buf_offset;
716                 *errorp = 0;
717         }
718         if (*errorp)
719                 return(NULL);
720
721         /*
722          * NOTE: zone2_offset and maxbuf_off are both full zone-2 offset
723          * specifications.
724          */
725         KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
726                  HAMMER_ZONE_RAW_BUFFER);
727         vol_no = HAMMER_VOL_DECODE(zone2_offset);
728         volume = hammer_get_volume(hmp, vol_no, errorp);
729         if (volume == NULL)
730                 return(NULL);
731
732         KKASSERT(zone2_offset < volume->maxbuf_off);
733
734         /*
735          * Allocate a new buffer structure.  We will check for races later.
736          */
737         ++hammer_count_buffers;
738         buffer = kmalloc(sizeof(*buffer), hmp->m_misc,
739                          M_WAITOK|M_ZERO|M_USE_RESERVE);
740         buffer->zone2_offset = zone2_offset;
741         buffer->zoneX_offset = buf_offset;
742
743         hammer_io_init(&buffer->io, volume, iotype);
744         buffer->io.offset = hammer_xlate_to_phys(volume->ondisk, zone2_offset);
745         buffer->io.bytes = bytes;
746         TAILQ_INIT(&buffer->node_list);
747         hammer_ref_interlock_true(&buffer->io.lock);
748
749         /*
750          * Insert the buffer into the RB tree and handle late collisions.
751          */
752         if (RB_INSERT(hammer_buf_rb_tree, &hmp->rb_bufs_root, buffer)) {
753                 hammer_rel_volume(volume, 0);
754                 buffer->io.volume = NULL;                       /* safety */
755                 if (hammer_rel_interlock(&buffer->io.lock, 1))  /* safety */
756                         hammer_rel_interlock_done(&buffer->io.lock, 1);
757                 --hammer_count_buffers;
758                 kfree(buffer, hmp->m_misc);
759                 goto again;
760         }
761         atomic_add_int(&hammer_count_refedbufs, 1);
762 found:
763
764         /*
765          * The buffer is referenced and interlocked.  Load the buffer
766          * if necessary.  hammer_load_buffer() deals with the interlock
767          * and, if an error is returned, also deals with the ref.
768          */
769         if (buffer->ondisk == NULL) {
770                 *errorp = hammer_load_buffer(buffer, isnew);
771                 if (*errorp)
772                         buffer = NULL;
773         } else {
774                 hammer_io_advance(&buffer->io);
775                 hammer_ref_interlock_done(&buffer->io.lock);
776                 *errorp = 0;
777         }
778         return(buffer);
779 }
780
781 /*
782  * This is used by the direct-read code to deal with large-data buffers
783  * created by the reblocker and mirror-write code.  The direct-read code
784  * bypasses the HAMMER buffer subsystem and so any aliased dirty or write-
785  * running hammer buffers must be fully synced to disk before we can issue
786  * the direct-read.
787  *
788  * This code path is not considered critical as only the rebocker and
789  * mirror-write code will create large-data buffers via the HAMMER buffer
790  * subsystem.  They do that because they operate at the B-Tree level and
791  * do not access the vnode/inode structures.
792  */
793 void
794 hammer_sync_buffers(hammer_mount_t hmp, hammer_off_t base_offset, int bytes)
795 {
796         hammer_buffer_t buffer;
797         int error;
798
799         KKASSERT((base_offset & HAMMER_OFF_ZONE_MASK) ==
800                  HAMMER_ZONE_LARGE_DATA);
801
802         while (bytes > 0) {
803                 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
804                                    base_offset);
805                 if (buffer && (buffer->io.modified || buffer->io.running)) {
806                         error = hammer_ref_buffer(buffer);
807                         if (error == 0) {
808                                 hammer_io_wait(&buffer->io);
809                                 if (buffer->io.modified) {
810                                         hammer_io_write_interlock(&buffer->io);
811                                         hammer_io_flush(&buffer->io, 0);
812                                         hammer_io_done_interlock(&buffer->io);
813                                         hammer_io_wait(&buffer->io);
814                                 }
815                                 hammer_rel_buffer(buffer, 0);
816                         }
817                 }
818                 base_offset += HAMMER_BUFSIZE;
819                 bytes -= HAMMER_BUFSIZE;
820         }
821 }
822
823 /*
824  * Destroy all buffers covering the specified zoneX offset range.  This
825  * is called when the related blockmap layer2 entry is freed or when
826  * a direct write bypasses our buffer/buffer-cache subsystem.
827  *
828  * The buffers may be referenced by the caller itself.  Setting reclaim
829  * will cause the buffer to be destroyed when it's ref count reaches zero.
830  *
831  * Return 0 on success, EAGAIN if some buffers could not be destroyed due
832  * to additional references held by other threads, or some other (typically
833  * fatal) error.
834  */
835 int
836 hammer_del_buffers(hammer_mount_t hmp, hammer_off_t base_offset,
837                    hammer_off_t zone2_offset, int bytes,
838                    int report_conflicts)
839 {
840         hammer_buffer_t buffer;
841         hammer_volume_t volume;
842         int vol_no;
843         int error;
844         int ret_error;
845
846         vol_no = HAMMER_VOL_DECODE(zone2_offset);
847         volume = hammer_get_volume(hmp, vol_no, &ret_error);
848         KKASSERT(ret_error == 0);
849
850         while (bytes > 0) {
851                 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
852                                    base_offset);
853                 if (buffer) {
854                         error = hammer_ref_buffer(buffer);
855                         if (hammer_debug_general & 0x20000) {
856                                 hkprintf("delbufr %016jx rerr=%d 1ref=%d\n",
857                                         (intmax_t)buffer->zoneX_offset,
858                                         error,
859                                         hammer_oneref(&buffer->io.lock));
860                         }
861                         if (error == 0 && !hammer_oneref(&buffer->io.lock)) {
862                                 error = EAGAIN;
863                                 hammer_rel_buffer(buffer, 0);
864                         }
865                         if (error == 0) {
866                                 KKASSERT(buffer->zone2_offset == zone2_offset);
867                                 hammer_io_clear_modify(&buffer->io, 1);
868                                 buffer->io.reclaim = 1;
869                                 buffer->io.waitdep = 1;
870                                 KKASSERT(buffer->io.volume == volume);
871                                 hammer_rel_buffer(buffer, 0);
872                         }
873                 } else {
874                         error = hammer_io_inval(volume, zone2_offset);
875                 }
876                 if (error) {
877                         ret_error = error;
878                         if (report_conflicts ||
879                             (hammer_debug_general & 0x8000)) {
880                                 krateprintf(&hmp->kdiag,
881                                         "hammer_del_buffers: unable to "
882                                         "invalidate %016llx buffer=%p "
883                                         "rep=%d lkrefs=%08x\n",
884                                         (long long)base_offset,
885                                         buffer, report_conflicts,
886                                         (buffer ? buffer->io.lock.refs : -1));
887                         }
888                 }
889                 base_offset += HAMMER_BUFSIZE;
890                 zone2_offset += HAMMER_BUFSIZE;
891                 bytes -= HAMMER_BUFSIZE;
892         }
893         hammer_rel_volume(volume, 0);
894         return (ret_error);
895 }
896
897 /*
898  * Given a referenced and interlocked buffer load/validate the data.
899  *
900  * The buffer interlock will be released on return.  If an error is
901  * returned the buffer reference will also be released (and the buffer
902  * pointer will thus be stale).
903  */
904 static int
905 hammer_load_buffer(hammer_buffer_t buffer, int isnew)
906 {
907         hammer_volume_t volume;
908         int error;
909
910         /*
911          * Load the buffer's on-disk info
912          */
913         volume = buffer->io.volume;
914
915         if (hammer_debug_io & 0x0004) {
916                 hdkprintf("load_buffer %016llx %016llx isnew=%d od=%p\n",
917                         (long long)buffer->zoneX_offset,
918                         (long long)buffer->zone2_offset,
919                         isnew, buffer->ondisk);
920         }
921
922         if (buffer->ondisk == NULL) {
923                 /*
924                  * Issue the read or generate a new buffer.  When reading
925                  * the limit argument controls any read-ahead clustering
926                  * hammer_io_read() is allowed to do.
927                  *
928                  * We cannot read-ahead in the large-data zone and we cannot
929                  * cross a big-block boundary as the next big-block might
930                  * use a different buffer size.
931                  */
932                 if (isnew) {
933                         error = hammer_io_new(volume->devvp, &buffer->io);
934                 } else if ((buffer->zoneX_offset & HAMMER_OFF_ZONE_MASK) ==
935                            HAMMER_ZONE_LARGE_DATA) {
936                         error = hammer_io_read(volume->devvp, &buffer->io,
937                                                buffer->io.bytes);
938                 } else {
939                         hammer_off_t limit;
940
941                         limit = (buffer->zone2_offset +
942                                  HAMMER_BIGBLOCK_MASK64) &
943                                 ~HAMMER_BIGBLOCK_MASK64;
944                         limit -= buffer->zone2_offset;
945                         error = hammer_io_read(volume->devvp, &buffer->io,
946                                                limit);
947                 }
948                 if (error == 0)
949                         buffer->ondisk = (void *)buffer->io.bp->b_data;
950         } else if (isnew) {
951                 error = hammer_io_new(volume->devvp, &buffer->io);
952         } else {
953                 error = 0;
954         }
955         if (error == 0) {
956                 hammer_io_advance(&buffer->io);
957                 hammer_ref_interlock_done(&buffer->io.lock);
958         } else {
959                 hammer_rel_buffer(buffer, 1);
960         }
961         return (error);
962 }
963
964 /*
965  * NOTE: Called from RB_SCAN, must return >= 0 for scan to continue.
966  * This routine is only called during unmount or when a volume is
967  * removed.
968  *
969  * If data != NULL, it specifies a volume whoose buffers should
970  * be unloaded.
971  */
972 int
973 hammer_unload_buffer(hammer_buffer_t buffer, void *data)
974 {
975         struct hammer_volume *volume = (struct hammer_volume *) data;
976
977         /*
978          * If volume != NULL we are only interested in unloading buffers
979          * associated with a particular volume.
980          */
981         if (volume != NULL && volume != buffer->io.volume)
982                 return 0;
983
984         /*
985          * Clean up the persistent ref ioerror might have on the buffer
986          * and acquire a ref.  Expect a 0->1 transition.
987          */
988         if (buffer->io.ioerror) {
989                 hammer_io_clear_error_noassert(&buffer->io);
990                 atomic_add_int(&hammer_count_refedbufs, -1);
991         }
992         hammer_ref_interlock_true(&buffer->io.lock);
993         atomic_add_int(&hammer_count_refedbufs, 1);
994
995         /*
996          * We must not flush a dirty buffer to disk on umount.  It should
997          * have already been dealt with by the flusher, or we may be in
998          * catastrophic failure.
999          *
1000          * We must set waitdep to ensure that a running buffer is waited
1001          * on and released prior to us trying to unload the volume.
1002          */
1003         hammer_io_clear_modify(&buffer->io, 1);
1004         hammer_flush_buffer_nodes(buffer);
1005         buffer->io.waitdep = 1;
1006         hammer_rel_buffer(buffer, 1);
1007         return(0);
1008 }
1009
1010 /*
1011  * Reference a buffer that is either already referenced or via a specially
1012  * handled pointer (aka cursor->buffer).
1013  */
1014 int
1015 hammer_ref_buffer(hammer_buffer_t buffer)
1016 {
1017         hammer_mount_t hmp;
1018         int error;
1019         int locked;
1020
1021         /*
1022          * Acquire a ref, plus the buffer will be interlocked on the
1023          * 0->1 transition.
1024          */
1025         locked = hammer_ref_interlock(&buffer->io.lock);
1026         hmp = buffer->io.hmp;
1027
1028         /*
1029          * At this point a biodone() will not touch the buffer other then
1030          * incidental bits.  However, lose_root can be modified via
1031          * a biodone() interrupt.
1032          *
1033          * No longer loose.  lose_root requires the io_token.
1034          */
1035         if (buffer->io.mod_root == &hmp->lose_root) {
1036                 lwkt_gettoken(&hmp->io_token);
1037                 if (buffer->io.mod_root == &hmp->lose_root) {
1038                         RB_REMOVE(hammer_mod_rb_tree,
1039                                   buffer->io.mod_root, &buffer->io);
1040                         buffer->io.mod_root = NULL;
1041                 }
1042                 lwkt_reltoken(&hmp->io_token);
1043         }
1044
1045         if (locked) {
1046                 atomic_add_int(&hammer_count_refedbufs, 1);
1047                 error = hammer_load_buffer(buffer, 0);
1048                 /* NOTE: on error the buffer pointer is stale */
1049         } else {
1050                 error = 0;
1051         }
1052         return(error);
1053 }
1054
1055 /*
1056  * Release a reference on the buffer.  On the 1->0 transition the
1057  * underlying IO will be released but the data reference is left
1058  * cached.
1059  *
1060  * Only destroy the structure itself if the related buffer cache buffer
1061  * was disassociated from it.  This ties the management of the structure
1062  * to the buffer cache subsystem.  buffer->ondisk determines whether the
1063  * embedded io is referenced or not.
1064  */
1065 void
1066 hammer_rel_buffer(hammer_buffer_t buffer, int locked)
1067 {
1068         hammer_volume_t volume;
1069         hammer_mount_t hmp;
1070         struct buf *bp = NULL;
1071         int freeme = 0;
1072
1073         hmp = buffer->io.hmp;
1074
1075         if (hammer_rel_interlock(&buffer->io.lock, locked) == 0)
1076                 return;
1077
1078         /*
1079          * hammer_count_refedbufs accounting.  Decrement if we are in
1080          * the error path or if CHECK is clear.
1081          *
1082          * If we are not in the error path and CHECK is set the caller
1083          * probably just did a hammer_ref() and didn't account for it,
1084          * so we don't account for the loss here.
1085          */
1086         if (locked || (buffer->io.lock.refs & HAMMER_REFS_CHECK) == 0)
1087                 atomic_add_int(&hammer_count_refedbufs, -1);
1088
1089         /*
1090          * If the caller locked us or the normal released transitions
1091          * from 1->0 (and acquired the lock) attempt to release the
1092          * io.  If the called locked us we tell hammer_io_release()
1093          * to flush (which would be the unload or failure path).
1094          */
1095         bp = hammer_io_release(&buffer->io, locked);
1096
1097         /*
1098          * If the buffer has no bp association and no refs we can destroy
1099          * it.
1100          *
1101          * NOTE: It is impossible for any associated B-Tree nodes to have
1102          * refs if the buffer has no additional refs.
1103          */
1104         if (buffer->io.bp == NULL && hammer_norefs(&buffer->io.lock)) {
1105                 RB_REMOVE(hammer_buf_rb_tree,
1106                           &buffer->io.hmp->rb_bufs_root,
1107                           buffer);
1108                 volume = buffer->io.volume;
1109                 buffer->io.volume = NULL; /* sanity */
1110                 hammer_rel_volume(volume, 0);
1111                 hammer_io_clear_modlist(&buffer->io);
1112                 hammer_flush_buffer_nodes(buffer);
1113                 KKASSERT(TAILQ_EMPTY(&buffer->node_list));
1114                 freeme = 1;
1115         }
1116
1117         /*
1118          * Cleanup
1119          */
1120         hammer_rel_interlock_done(&buffer->io.lock, locked);
1121         if (bp)
1122                 brelse(bp);
1123         if (freeme) {
1124                 --hammer_count_buffers;
1125                 kfree(buffer, hmp->m_misc);
1126         }
1127 }
1128
1129 /*
1130  * Access the filesystem buffer containing the specified hammer offset.
1131  * buf_offset is a conglomeration of the volume number and vol_buf_beg
1132  * relative buffer offset.  It must also have bit 55 set to be valid.
1133  * (see hammer_off_t in hammer_disk.h).
1134  *
1135  * Any prior buffer in *bufferp will be released and replaced by the
1136  * requested buffer.
1137  *
1138  * NOTE: The buffer is indexed via its zoneX_offset but we allow the
1139  * passed cached *bufferp to match against either zoneX or zone2.
1140  */
1141 static __inline
1142 void *
1143 _hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1144              int isnew, int *errorp, struct hammer_buffer **bufferp)
1145 {
1146         hammer_buffer_t buffer;
1147         int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
1148
1149         buf_offset &= ~HAMMER_BUFMASK64;
1150         KKASSERT(HAMMER_ZONE(buf_offset) != 0);
1151
1152         buffer = *bufferp;
1153         if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
1154                                buffer->zoneX_offset != buf_offset)) {
1155                 if (buffer)
1156                         hammer_rel_buffer(buffer, 0);
1157                 buffer = hammer_get_buffer(hmp, buf_offset, bytes, isnew, errorp);
1158                 *bufferp = buffer;
1159         } else {
1160                 *errorp = 0;
1161         }
1162
1163         /*
1164          * Return a pointer to the buffer data.
1165          */
1166         if (buffer == NULL)
1167                 return(NULL);
1168         else
1169                 return((char *)buffer->ondisk + xoff);
1170 }
1171
1172 void *
1173 hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset,
1174              int *errorp, struct hammer_buffer **bufferp)
1175 {
1176         return(_hammer_bread(hmp, buf_offset, HAMMER_BUFSIZE, 0, errorp, bufferp));
1177 }
1178
1179 void *
1180 hammer_bread_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1181                  int *errorp, struct hammer_buffer **bufferp)
1182 {
1183         bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1184         return(_hammer_bread(hmp, buf_offset, bytes, 0, errorp, bufferp));
1185 }
1186
1187 /*
1188  * Access the filesystem buffer containing the specified hammer offset.
1189  * No disk read operation occurs.  The result buffer may contain garbage.
1190  *
1191  * Any prior buffer in *bufferp will be released and replaced by the
1192  * requested buffer.
1193  *
1194  * This function marks the buffer dirty but does not increment its
1195  * modify_refs count.
1196  */
1197 void *
1198 hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset,
1199              int *errorp, struct hammer_buffer **bufferp)
1200 {
1201         return(_hammer_bread(hmp, buf_offset, HAMMER_BUFSIZE, 1, errorp, bufferp));
1202 }
1203
1204 void *
1205 hammer_bnew_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1206                 int *errorp, struct hammer_buffer **bufferp)
1207 {
1208         bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1209         return(_hammer_bread(hmp, buf_offset, bytes, 1, errorp, bufferp));
1210 }
1211
1212 /************************************************************************
1213  *                              NODES                                   *
1214  ************************************************************************
1215  *
1216  * Manage B-Tree nodes.  B-Tree nodes represent the primary indexing
1217  * method used by the HAMMER filesystem.
1218  *
1219  * Unlike other HAMMER structures, a hammer_node can be PASSIVELY
1220  * associated with its buffer, and will only referenced the buffer while
1221  * the node itself is referenced.
1222  *
1223  * A hammer_node can also be passively associated with other HAMMER
1224  * structures, such as inodes, while retaining 0 references.  These
1225  * associations can be cleared backwards using a pointer-to-pointer in
1226  * the hammer_node.
1227  *
1228  * This allows the HAMMER implementation to cache hammer_nodes long-term
1229  * and short-cut a great deal of the infrastructure's complexity.  In
1230  * most cases a cached node can be reacquired without having to dip into
1231  * the B-Tree.
1232  */
1233 hammer_node_t
1234 hammer_get_node(hammer_transaction_t trans, hammer_off_t node_offset,
1235                 int isnew, int *errorp)
1236 {
1237         hammer_mount_t hmp = trans->hmp;
1238         hammer_node_t node;
1239         int doload;
1240
1241         KKASSERT((node_offset & HAMMER_OFF_ZONE_MASK) == HAMMER_ZONE_BTREE);
1242
1243         /*
1244          * Locate the structure, allocating one if necessary.
1245          */
1246 again:
1247         node = RB_LOOKUP(hammer_nod_rb_tree, &hmp->rb_nods_root, node_offset);
1248         if (node == NULL) {
1249                 ++hammer_count_nodes;
1250                 node = kmalloc(sizeof(*node), hmp->m_misc, M_WAITOK|M_ZERO|M_USE_RESERVE);
1251                 node->node_offset = node_offset;
1252                 node->hmp = hmp;
1253                 TAILQ_INIT(&node->cursor_list);
1254                 TAILQ_INIT(&node->cache_list);
1255                 if (RB_INSERT(hammer_nod_rb_tree, &hmp->rb_nods_root, node)) {
1256                         --hammer_count_nodes;
1257                         kfree(node, hmp->m_misc);
1258                         goto again;
1259                 }
1260                 doload = hammer_ref_interlock_true(&node->lock);
1261         } else {
1262                 doload = hammer_ref_interlock(&node->lock);
1263         }
1264         if (doload) {
1265                 *errorp = hammer_load_node(trans, node, isnew);
1266                 if (*errorp)
1267                         node = NULL;
1268         } else {
1269                 KKASSERT(node->ondisk);
1270                 *errorp = 0;
1271                 hammer_io_advance(&node->buffer->io);
1272         }
1273         return(node);
1274 }
1275
1276 /*
1277  * Reference an already-referenced node.  0->1 transitions should assert
1278  * so we do not have to deal with hammer_ref() setting CHECK.
1279  */
1280 void
1281 hammer_ref_node(hammer_node_t node)
1282 {
1283         KKASSERT(hammer_isactive(&node->lock) && node->ondisk != NULL);
1284         hammer_ref(&node->lock);
1285 }
1286
1287 /*
1288  * Load a node's on-disk data reference.  Called with the node referenced
1289  * and interlocked.
1290  *
1291  * On return the node interlock will be unlocked.  If a non-zero error code
1292  * is returned the node will also be dereferenced (and the caller's pointer
1293  * will be stale).
1294  */
1295 static int
1296 hammer_load_node(hammer_transaction_t trans, hammer_node_t node, int isnew)
1297 {
1298         hammer_buffer_t buffer;
1299         hammer_off_t buf_offset;
1300         int error;
1301
1302         error = 0;
1303         if (node->ondisk == NULL) {
1304                 /*
1305                  * This is a little confusing but the jist is that
1306                  * node->buffer determines whether the node is on
1307                  * the buffer's node_list and node->ondisk determines
1308                  * whether the buffer is referenced.
1309                  *
1310                  * We could be racing a buffer release, in which case
1311                  * node->buffer may become NULL while we are blocked
1312                  * referencing the buffer.
1313                  */
1314                 if ((buffer = node->buffer) != NULL) {
1315                         error = hammer_ref_buffer(buffer);
1316                         if (error == 0 && node->buffer == NULL) {
1317                                 TAILQ_INSERT_TAIL(&buffer->node_list, node, entry);
1318                                 node->buffer = buffer;
1319                         }
1320                 } else {
1321                         buf_offset = node->node_offset & ~HAMMER_BUFMASK64;
1322                         buffer = hammer_get_buffer(node->hmp, buf_offset,
1323                                                    HAMMER_BUFSIZE, 0, &error);
1324                         if (buffer) {
1325                                 KKASSERT(error == 0);
1326                                 TAILQ_INSERT_TAIL(&buffer->node_list, node, entry);
1327                                 node->buffer = buffer;
1328                         }
1329                 }
1330                 if (error)
1331                         goto failed;
1332                 node->ondisk = (void *)((char *)buffer->ondisk +
1333                                         (node->node_offset & HAMMER_BUFMASK));
1334
1335                 /*
1336                  * Check CRC.  NOTE: Neither flag is set and the CRC is not
1337                  * generated on new B-Tree nodes.
1338                  */
1339                 if (isnew == 0 &&
1340                     (node->flags & HAMMER_NODE_CRCANY) == 0) {
1341                         if (hammer_crc_test_btree(node->ondisk) == 0) {
1342                                 hdkprintf("CRC B-TREE NODE @ %016llx/%lu FAILED\n",
1343                                         (long long)node->node_offset,
1344                                         sizeof(*node->ondisk));
1345                                 if (hammer_debug_critical)
1346                                         Debugger("CRC FAILED: B-TREE NODE");
1347                                 node->flags |= HAMMER_NODE_CRCBAD;
1348                         } else {
1349                                 node->flags |= HAMMER_NODE_CRCGOOD;
1350                         }
1351                 }
1352         }
1353         if (node->flags & HAMMER_NODE_CRCBAD) {
1354                 if (trans->flags & HAMMER_TRANSF_CRCDOM)
1355                         error = EDOM;
1356                 else
1357                         error = EIO;
1358         }
1359 failed:
1360         if (error) {
1361                 _hammer_rel_node(node, 1);
1362         } else {
1363                 hammer_ref_interlock_done(&node->lock);
1364         }
1365         return (error);
1366 }
1367
1368 /*
1369  * Safely reference a node, interlock against flushes via the IO subsystem.
1370  */
1371 hammer_node_t
1372 hammer_ref_node_safe(hammer_transaction_t trans, hammer_node_cache_t cache,
1373                      int *errorp)
1374 {
1375         hammer_node_t node;
1376         int doload;
1377
1378         node = cache->node;
1379         if (node != NULL) {
1380                 doload = hammer_ref_interlock(&node->lock);
1381                 if (doload) {
1382                         *errorp = hammer_load_node(trans, node, 0);
1383                         if (*errorp)
1384                                 node = NULL;
1385                 } else {
1386                         KKASSERT(node->ondisk);
1387                         if (node->flags & HAMMER_NODE_CRCBAD) {
1388                                 if (trans->flags & HAMMER_TRANSF_CRCDOM)
1389                                         *errorp = EDOM;
1390                                 else
1391                                         *errorp = EIO;
1392                                 _hammer_rel_node(node, 0);
1393                                 node = NULL;
1394                         } else {
1395                                 *errorp = 0;
1396                         }
1397                 }
1398         } else {
1399                 *errorp = ENOENT;
1400         }
1401         return(node);
1402 }
1403
1404 /*
1405  * Release a hammer_node.  On the last release the node dereferences
1406  * its underlying buffer and may or may not be destroyed.
1407  *
1408  * If locked is non-zero the passed node has been interlocked by the
1409  * caller and we are in the failure/unload path, otherwise it has not and
1410  * we are doing a normal release.
1411  *
1412  * This function will dispose of the interlock and the reference.
1413  * On return the node pointer is stale.
1414  */
1415 void
1416 _hammer_rel_node(hammer_node_t node, int locked)
1417 {
1418         hammer_buffer_t buffer;
1419
1420         /*
1421          * Deref the node.  If this isn't the 1->0 transition we're basically
1422          * done.  If locked is non-zero this function will just deref the
1423          * locked node and return 1, otherwise it will deref the locked
1424          * node and either lock and return 1 on the 1->0 transition or
1425          * not lock and return 0.
1426          */
1427         if (hammer_rel_interlock(&node->lock, locked) == 0)
1428                 return;
1429
1430         /*
1431          * Either locked was non-zero and we are interlocked, or the
1432          * hammer_rel_interlock() call returned non-zero and we are
1433          * interlocked.
1434          *
1435          * The ref-count must still be decremented if locked != 0 so
1436          * the cleanup required still varies a bit.
1437          *
1438          * hammer_flush_node() when called with 1 or 2 will dispose of
1439          * the lock and possible ref-count.
1440          */
1441         if (node->ondisk == NULL) {
1442                 hammer_flush_node(node, locked + 1);
1443                 /* node is stale now */
1444                 return;
1445         }
1446
1447         /*
1448          * Do not disassociate the node from the buffer if it represents
1449          * a modified B-Tree node that still needs its crc to be generated.
1450          */
1451         if (node->flags & HAMMER_NODE_NEEDSCRC) {
1452                 hammer_rel_interlock_done(&node->lock, locked);
1453                 return;
1454         }
1455
1456         /*
1457          * Do final cleanups and then either destroy the node and leave it
1458          * passively cached.  The buffer reference is removed regardless.
1459          */
1460         buffer = node->buffer;
1461         node->ondisk = NULL;
1462
1463         if ((node->flags & HAMMER_NODE_FLUSH) == 0) {
1464                 /*
1465                  * Normal release.
1466                  */
1467                 hammer_rel_interlock_done(&node->lock, locked);
1468         } else {
1469                 /*
1470                  * Destroy the node.
1471                  */
1472                 hammer_flush_node(node, locked + 1);
1473                 /* node is stale */
1474
1475         }
1476         hammer_rel_buffer(buffer, 0);
1477 }
1478
1479 void
1480 hammer_rel_node(hammer_node_t node)
1481 {
1482         _hammer_rel_node(node, 0);
1483 }
1484
1485 /*
1486  * Free space on-media associated with a B-Tree node.
1487  */
1488 void
1489 hammer_delete_node(hammer_transaction_t trans, hammer_node_t node)
1490 {
1491         KKASSERT((node->flags & HAMMER_NODE_DELETED) == 0);
1492         node->flags |= HAMMER_NODE_DELETED;
1493         hammer_blockmap_free(trans, node->node_offset, sizeof(*node->ondisk));
1494 }
1495
1496 /*
1497  * Passively cache a referenced hammer_node.  The caller may release
1498  * the node on return.
1499  */
1500 void
1501 hammer_cache_node(hammer_node_cache_t cache, hammer_node_t node)
1502 {
1503         /*
1504          * If the node doesn't exist, or is being deleted, don't cache it!
1505          *
1506          * The node can only ever be NULL in the I/O failure path.
1507          */
1508         if (node == NULL || (node->flags & HAMMER_NODE_DELETED))
1509                 return;
1510         if (cache->node == node)
1511                 return;
1512         while (cache->node)
1513                 hammer_uncache_node(cache);
1514         if (node->flags & HAMMER_NODE_DELETED)
1515                 return;
1516         cache->node = node;
1517         TAILQ_INSERT_TAIL(&node->cache_list, cache, entry);
1518 }
1519
1520 void
1521 hammer_uncache_node(hammer_node_cache_t cache)
1522 {
1523         hammer_node_t node;
1524
1525         if ((node = cache->node) != NULL) {
1526                 TAILQ_REMOVE(&node->cache_list, cache, entry);
1527                 cache->node = NULL;
1528                 if (TAILQ_EMPTY(&node->cache_list))
1529                         hammer_flush_node(node, 0);
1530         }
1531 }
1532
1533 /*
1534  * Remove a node's cache references and destroy the node if it has no
1535  * other references or backing store.
1536  *
1537  * locked == 0  Normal unlocked operation
1538  * locked == 1  Call hammer_rel_interlock_done(..., 0);
1539  * locked == 2  Call hammer_rel_interlock_done(..., 1);
1540  *
1541  * XXX for now this isn't even close to being MPSAFE so the refs check
1542  *     is sufficient.
1543  */
1544 void
1545 hammer_flush_node(hammer_node_t node, int locked)
1546 {
1547         hammer_node_cache_t cache;
1548         hammer_buffer_t buffer;
1549         hammer_mount_t hmp = node->hmp;
1550         int dofree;
1551
1552         while ((cache = TAILQ_FIRST(&node->cache_list)) != NULL) {
1553                 TAILQ_REMOVE(&node->cache_list, cache, entry);
1554                 cache->node = NULL;
1555         }
1556
1557         /*
1558          * NOTE: refs is predisposed if another thread is blocking and
1559          *       will be larger than 0 in that case.  We aren't MPSAFE
1560          *       here.
1561          */
1562         if (node->ondisk == NULL && hammer_norefs(&node->lock)) {
1563                 KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1564                 RB_REMOVE(hammer_nod_rb_tree, &node->hmp->rb_nods_root, node);
1565                 if ((buffer = node->buffer) != NULL) {
1566                         node->buffer = NULL;
1567                         TAILQ_REMOVE(&buffer->node_list, node, entry);
1568                         /* buffer is unreferenced because ondisk is NULL */
1569                 }
1570                 dofree = 1;
1571         } else {
1572                 dofree = 0;
1573         }
1574
1575         /*
1576          * Deal with the interlock if locked == 1 or locked == 2.
1577          */
1578         if (locked)
1579                 hammer_rel_interlock_done(&node->lock, locked - 1);
1580
1581         /*
1582          * Destroy if requested
1583          */
1584         if (dofree) {
1585                 --hammer_count_nodes;
1586                 kfree(node, hmp->m_misc);
1587         }
1588 }
1589
1590 /*
1591  * Flush passively cached B-Tree nodes associated with this buffer.
1592  * This is only called when the buffer is about to be destroyed, so
1593  * none of the nodes should have any references.  The buffer is locked.
1594  *
1595  * We may be interlocked with the buffer.
1596  */
1597 void
1598 hammer_flush_buffer_nodes(hammer_buffer_t buffer)
1599 {
1600         hammer_node_t node;
1601
1602         while ((node = TAILQ_FIRST(&buffer->node_list)) != NULL) {
1603                 KKASSERT(node->ondisk == NULL);
1604                 KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1605
1606                 if (hammer_try_interlock_norefs(&node->lock)) {
1607                         hammer_ref(&node->lock);
1608                         node->flags |= HAMMER_NODE_FLUSH;
1609                         _hammer_rel_node(node, 1);
1610                 } else {
1611                         KKASSERT(node->buffer != NULL);
1612                         buffer = node->buffer;
1613                         node->buffer = NULL;
1614                         TAILQ_REMOVE(&buffer->node_list, node, entry);
1615                         /* buffer is unreferenced because ondisk is NULL */
1616                 }
1617         }
1618 }
1619
1620
1621 /************************************************************************
1622  *                              ALLOCATORS                              *
1623  ************************************************************************/
1624
1625 /*
1626  * Allocate a B-Tree node.
1627  */
1628 hammer_node_t
1629 hammer_alloc_btree(hammer_transaction_t trans, hammer_off_t hint, int *errorp)
1630 {
1631         hammer_buffer_t buffer = NULL;
1632         hammer_node_t node = NULL;
1633         hammer_off_t node_offset;
1634
1635         node_offset = hammer_blockmap_alloc(trans, HAMMER_ZONE_BTREE_INDEX,
1636                                             sizeof(struct hammer_node_ondisk),
1637                                             hint, errorp);
1638         if (*errorp == 0) {
1639                 node = hammer_get_node(trans, node_offset, 1, errorp);
1640                 hammer_modify_node_noundo(trans, node);
1641                 bzero(node->ondisk, sizeof(*node->ondisk));
1642                 hammer_modify_node_done(node);
1643         }
1644         if (buffer)
1645                 hammer_rel_buffer(buffer, 0);
1646         return(node);
1647 }
1648
1649 /*
1650  * Allocate data.  If the address of a data buffer is supplied then
1651  * any prior non-NULL *data_bufferp will be released and *data_bufferp
1652  * will be set to the related buffer.  The caller must release it when
1653  * finally done.  The initial *data_bufferp should be set to NULL by
1654  * the caller.
1655  *
1656  * The caller is responsible for making hammer_modify*() calls on the
1657  * *data_bufferp.
1658  */
1659 void *
1660 hammer_alloc_data(hammer_transaction_t trans, int32_t data_len,
1661                   uint16_t rec_type, hammer_off_t *data_offsetp,
1662                   struct hammer_buffer **data_bufferp,
1663                   hammer_off_t hint, int *errorp)
1664 {
1665         void *data;
1666         int zone;
1667
1668         /*
1669          * Allocate data directly from blockmap.
1670          */
1671         if (data_len) {
1672                 switch(rec_type) {
1673                 case HAMMER_RECTYPE_INODE:
1674                 case HAMMER_RECTYPE_DIRENTRY:
1675                 case HAMMER_RECTYPE_EXT:
1676                 case HAMMER_RECTYPE_FIX:
1677                 case HAMMER_RECTYPE_PFS:
1678                 case HAMMER_RECTYPE_SNAPSHOT:
1679                 case HAMMER_RECTYPE_CONFIG:
1680                         zone = HAMMER_ZONE_META_INDEX;
1681                         break;
1682                 case HAMMER_RECTYPE_DATA:
1683                 case HAMMER_RECTYPE_DB:
1684                         /*
1685                          * Only mirror-write comes here.
1686                          * Regular allocation path uses blockmap reservation.
1687                          */
1688                         zone = hammer_data_zone_index(data_len);
1689                         if (zone == HAMMER_ZONE_LARGE_DATA_INDEX) {
1690                                 /* round up */
1691                                 data_len = (data_len + HAMMER_BUFMASK) &
1692                                            ~HAMMER_BUFMASK;
1693                         }
1694                         break;
1695                 default:
1696                         hpanic("rec_type %04x unknown", rec_type);
1697                         zone = HAMMER_ZONE_UNAVAIL_INDEX; /* NOT REACHED */
1698                         break;
1699                 }
1700                 *data_offsetp = hammer_blockmap_alloc(trans, zone, data_len,
1701                                                       hint, errorp);
1702         } else {
1703                 *data_offsetp = 0;
1704         }
1705
1706         data = NULL;
1707         if (*errorp == 0 && data_bufferp && data_len)
1708                 data = hammer_bread_ext(trans->hmp, *data_offsetp, data_len,
1709                                         errorp, data_bufferp);
1710         return(data);
1711 }
1712
1713 /*
1714  * Sync dirty buffers to the media and clean-up any loose ends.
1715  *
1716  * These functions do not start the flusher going, they simply
1717  * queue everything up to the flusher.
1718  */
1719 static int hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
1720
1721 struct hammer_sync_info {
1722         int error;
1723 };
1724
1725 int
1726 hammer_queue_inodes_flusher(hammer_mount_t hmp, int waitfor)
1727 {
1728         struct hammer_sync_info info;
1729
1730         info.error = 0;
1731         if (waitfor == MNT_WAIT) {
1732                 vsyncscan(hmp->mp, VMSC_GETVP | VMSC_ONEPASS,
1733                           hammer_sync_scan2, &info);
1734         } else {
1735                 vsyncscan(hmp->mp, VMSC_GETVP | VMSC_ONEPASS | VMSC_NOWAIT,
1736                           hammer_sync_scan2, &info);
1737         }
1738         return(info.error);
1739 }
1740
1741 /*
1742  * Filesystem sync.  If doing a synchronous sync make a second pass on
1743  * the vnodes in case any were already flushing during the first pass,
1744  * and activate the flusher twice (the second time brings the UNDO FIFO's
1745  * start position up to the end position after the first call).
1746  *
1747  * If doing a lazy sync make just one pass on the vnode list, ignoring
1748  * any new vnodes added to the list while the sync is in progress.
1749  */
1750 int
1751 hammer_sync_hmp(hammer_mount_t hmp, int waitfor)
1752 {
1753         struct hammer_sync_info info;
1754         int flags;
1755
1756         flags = VMSC_GETVP;
1757         if (waitfor & MNT_LAZY)
1758                 flags |= VMSC_ONEPASS;
1759
1760         info.error = 0;
1761         vsyncscan(hmp->mp, flags | VMSC_NOWAIT, hammer_sync_scan2, &info);
1762
1763         if (info.error == 0 && (waitfor & MNT_WAIT)) {
1764                 vsyncscan(hmp->mp, flags, hammer_sync_scan2, &info);
1765         }
1766         if (waitfor == MNT_WAIT) {
1767                 hammer_flusher_sync(hmp);
1768                 hammer_flusher_sync(hmp);
1769         } else {
1770                 hammer_flusher_async(hmp, NULL);
1771                 hammer_flusher_async(hmp, NULL);
1772         }
1773         return(info.error);
1774 }
1775
1776 static int
1777 hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
1778 {
1779         struct hammer_sync_info *info = data;
1780         struct hammer_inode *ip;
1781         int error;
1782
1783         ip = VTOI(vp);
1784         if (ip == NULL)
1785                 return(0);
1786         if (vp->v_type == VNON || vp->v_type == VBAD) {
1787                 vclrisdirty(vp);
1788                 return(0);
1789         }
1790         if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1791             RB_EMPTY(&vp->v_rbdirty_tree)) {
1792                 vclrisdirty(vp);
1793                 return(0);
1794         }
1795         error = VOP_FSYNC(vp, MNT_NOWAIT, 0);
1796         if (error)
1797                 info->error = error;
1798         return(0);
1799 }