igb: Remove no longer referenced code
[dragonfly.git] / sys / dev / netif / igb / if_igb.c
1 /*
2  * Copyright (c) 2001-2011, Intel Corporation 
3  * All rights reserved.
4  * 
5  * Redistribution and use in source and binary forms, with or without 
6  * modification, are permitted provided that the following conditions are met:
7  * 
8  *  1. Redistributions of source code must retain the above copyright notice, 
9  *     this list of conditions and the following disclaimer.
10  * 
11  *  2. Redistributions in binary form must reproduce the above copyright 
12  *     notice, this list of conditions and the following disclaimer in the 
13  *     documentation and/or other materials provided with the distribution.
14  * 
15  *  3. Neither the name of the Intel Corporation nor the names of its 
16  *     contributors may be used to endorse or promote products derived from 
17  *     this software without specific prior written permission.
18  * 
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 #include "opt_polling.h"
33 #include "opt_igb.h"
34
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/proc.h>
43 #include <sys/rman.h>
44 #include <sys/serialize.h>
45 #include <sys/serialize2.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/ifq_var.h>
58 #include <net/toeplitz.h>
59 #include <net/toeplitz2.h>
60 #include <net/vlan/if_vlan_var.h>
61 #include <net/vlan/if_vlan_ether.h>
62 #include <net/if_poll.h>
63
64 #include <netinet/in_systm.h>
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69
70 #include <bus/pci/pcivar.h>
71 #include <bus/pci/pcireg.h>
72
73 #include <dev/netif/ig_hal/e1000_api.h>
74 #include <dev/netif/ig_hal/e1000_82575.h>
75 #include <dev/netif/igb/if_igb.h>
76
77 #ifdef IGB_RSS_DEBUG
78 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...) \
79 do { \
80         if (sc->rss_debug >= lvl) \
81                 if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
82 } while (0)
83 #else   /* !IGB_RSS_DEBUG */
84 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...)      ((void)0)
85 #endif  /* IGB_RSS_DEBUG */
86
87 #define IGB_NAME        "Intel(R) PRO/1000 "
88 #define IGB_DEVICE(id)  \
89         { IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
90 #define IGB_DEVICE_NULL { 0, 0, NULL }
91
92 static struct igb_device {
93         uint16_t        vid;
94         uint16_t        did;
95         const char      *desc;
96 } igb_devices[] = {
97         IGB_DEVICE(82575EB_COPPER),
98         IGB_DEVICE(82575EB_FIBER_SERDES),
99         IGB_DEVICE(82575GB_QUAD_COPPER),
100         IGB_DEVICE(82576),
101         IGB_DEVICE(82576_NS),
102         IGB_DEVICE(82576_NS_SERDES),
103         IGB_DEVICE(82576_FIBER),
104         IGB_DEVICE(82576_SERDES),
105         IGB_DEVICE(82576_SERDES_QUAD),
106         IGB_DEVICE(82576_QUAD_COPPER),
107         IGB_DEVICE(82576_QUAD_COPPER_ET2),
108         IGB_DEVICE(82576_VF),
109         IGB_DEVICE(82580_COPPER),
110         IGB_DEVICE(82580_FIBER),
111         IGB_DEVICE(82580_SERDES),
112         IGB_DEVICE(82580_SGMII),
113         IGB_DEVICE(82580_COPPER_DUAL),
114         IGB_DEVICE(82580_QUAD_FIBER),
115         IGB_DEVICE(DH89XXCC_SERDES),
116         IGB_DEVICE(DH89XXCC_SGMII),
117         IGB_DEVICE(DH89XXCC_SFP),
118         IGB_DEVICE(DH89XXCC_BACKPLANE),
119         IGB_DEVICE(I350_COPPER),
120         IGB_DEVICE(I350_FIBER),
121         IGB_DEVICE(I350_SERDES),
122         IGB_DEVICE(I350_SGMII),
123         IGB_DEVICE(I350_VF),
124
125         /* required last entry */
126         IGB_DEVICE_NULL
127 };
128
129 static int      igb_probe(device_t);
130 static int      igb_attach(device_t);
131 static int      igb_detach(device_t);
132 static int      igb_shutdown(device_t);
133 static int      igb_suspend(device_t);
134 static int      igb_resume(device_t);
135
136 static boolean_t igb_is_valid_ether_addr(const uint8_t *);
137 static void     igb_setup_ifp(struct igb_softc *);
138 static boolean_t igb_txcsum_ctx(struct igb_tx_ring *, struct mbuf *);
139 static int      igb_tso_pullup(struct igb_tx_ring *, struct mbuf **);
140 static void     igb_tso_ctx(struct igb_tx_ring *, struct mbuf *, uint32_t *);
141 static void     igb_add_sysctl(struct igb_softc *);
142 static int      igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
143 static int      igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS);
144 static int      igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
145 static void     igb_set_ring_inuse(struct igb_softc *, boolean_t);
146
147 static void     igb_vf_init_stats(struct igb_softc *);
148 static void     igb_reset(struct igb_softc *);
149 static void     igb_update_stats_counters(struct igb_softc *);
150 static void     igb_update_vf_stats_counters(struct igb_softc *);
151 static void     igb_update_link_status(struct igb_softc *);
152 static void     igb_init_tx_unit(struct igb_softc *);
153 static void     igb_init_rx_unit(struct igb_softc *);
154
155 static void     igb_set_vlan(struct igb_softc *);
156 static void     igb_set_multi(struct igb_softc *);
157 static void     igb_set_promisc(struct igb_softc *);
158 static void     igb_disable_promisc(struct igb_softc *);
159
160 static int      igb_alloc_rings(struct igb_softc *);
161 static void     igb_free_rings(struct igb_softc *);
162 static int      igb_create_tx_ring(struct igb_tx_ring *);
163 static int      igb_create_rx_ring(struct igb_rx_ring *);
164 static void     igb_free_tx_ring(struct igb_tx_ring *);
165 static void     igb_free_rx_ring(struct igb_rx_ring *);
166 static void     igb_destroy_tx_ring(struct igb_tx_ring *, int);
167 static void     igb_destroy_rx_ring(struct igb_rx_ring *, int);
168 static void     igb_init_tx_ring(struct igb_tx_ring *);
169 static int      igb_init_rx_ring(struct igb_rx_ring *);
170 static int      igb_newbuf(struct igb_rx_ring *, int, boolean_t);
171 static int      igb_encap(struct igb_tx_ring *, struct mbuf **);
172
173 static void     igb_stop(struct igb_softc *);
174 static void     igb_init(void *);
175 static int      igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
176 static void     igb_media_status(struct ifnet *, struct ifmediareq *);
177 static int      igb_media_change(struct ifnet *);
178 static void     igb_timer(void *);
179 static void     igb_watchdog(struct ifnet *);
180 static void     igb_start(struct ifnet *);
181 #ifdef DEVICE_POLLING
182 static void     igb_poll(struct ifnet *, enum poll_cmd, int);
183 #endif
184 static void     igb_serialize(struct ifnet *, enum ifnet_serialize);
185 static void     igb_deserialize(struct ifnet *, enum ifnet_serialize);
186 static int      igb_tryserialize(struct ifnet *, enum ifnet_serialize);
187 #ifdef INVARIANTS
188 static void     igb_serialize_assert(struct ifnet *, enum ifnet_serialize,
189                     boolean_t);
190 #endif
191
192 static void     igb_intr(void *);
193 static void     igb_intr_shared(void *);
194 static void     igb_rxeof(struct igb_rx_ring *, int);
195 static void     igb_txeof(struct igb_tx_ring *);
196 static void     igb_set_eitr(struct igb_softc *, int, int);
197 static void     igb_enable_intr(struct igb_softc *);
198 static void     igb_disable_intr(struct igb_softc *);
199 static void     igb_init_unshared_intr(struct igb_softc *);
200 static void     igb_init_intr(struct igb_softc *);
201 static int      igb_setup_intr(struct igb_softc *);
202 static void     igb_set_txintr_mask(struct igb_tx_ring *, int *, int);
203 static void     igb_set_rxintr_mask(struct igb_rx_ring *, int *, int);
204 static void     igb_set_intr_mask(struct igb_softc *);
205 static int      igb_alloc_intr(struct igb_softc *);
206 static void     igb_free_intr(struct igb_softc *);
207 static void     igb_teardown_intr(struct igb_softc *);
208 static void     igb_msix_try_alloc(struct igb_softc *);
209 static void     igb_msix_free(struct igb_softc *, boolean_t);
210 static int      igb_msix_setup(struct igb_softc *);
211 static void     igb_msix_teardown(struct igb_softc *, int);
212 static void     igb_msix_rx(void *);
213 static void     igb_msix_tx(void *);
214 static void     igb_msix_status(void *);
215
216 /* Management and WOL Support */
217 static void     igb_get_mgmt(struct igb_softc *);
218 static void     igb_rel_mgmt(struct igb_softc *);
219 static void     igb_get_hw_control(struct igb_softc *);
220 static void     igb_rel_hw_control(struct igb_softc *);
221 static void     igb_enable_wol(device_t);
222
223 static device_method_t igb_methods[] = {
224         /* Device interface */
225         DEVMETHOD(device_probe,         igb_probe),
226         DEVMETHOD(device_attach,        igb_attach),
227         DEVMETHOD(device_detach,        igb_detach),
228         DEVMETHOD(device_shutdown,      igb_shutdown),
229         DEVMETHOD(device_suspend,       igb_suspend),
230         DEVMETHOD(device_resume,        igb_resume),
231         { 0, 0 }
232 };
233
234 static driver_t igb_driver = {
235         "igb",
236         igb_methods,
237         sizeof(struct igb_softc),
238 };
239
240 static devclass_t igb_devclass;
241
242 DECLARE_DUMMY_MODULE(if_igb);
243 MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
244 DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
245
246 static int      igb_rxd = IGB_DEFAULT_RXD;
247 static int      igb_txd = IGB_DEFAULT_TXD;
248 static int      igb_rxr = 0;
249 static int      igb_msi_enable = 1;
250 static int      igb_msix_enable = 1;
251 static int      igb_eee_disabled = 1;   /* Energy Efficient Ethernet */
252 static int      igb_fc_setting = e1000_fc_full;
253
254 /*
255  * DMA Coalescing, only for i350 - default to off,
256  * this feature is for power savings
257  */
258 static int      igb_dma_coalesce = 0;
259
260 TUNABLE_INT("hw.igb.rxd", &igb_rxd);
261 TUNABLE_INT("hw.igb.txd", &igb_txd);
262 TUNABLE_INT("hw.igb.rxr", &igb_rxr);
263 TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
264 TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
265 TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
266
267 /* i350 specific */
268 TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
269 TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
270
271 static __inline void
272 igb_rxcsum(uint32_t staterr, struct mbuf *mp)
273 {
274         /* Ignore Checksum bit is set */
275         if (staterr & E1000_RXD_STAT_IXSM)
276                 return;
277
278         if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
279             E1000_RXD_STAT_IPCS)
280                 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
281
282         if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
283                 if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
284                         mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
285                             CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
286                         mp->m_pkthdr.csum_data = htons(0xffff);
287                 }
288         }
289 }
290
291 static __inline struct pktinfo *
292 igb_rssinfo(struct mbuf *m, struct pktinfo *pi,
293     uint32_t hash, uint32_t hashtype, uint32_t staterr)
294 {
295         switch (hashtype) {
296         case E1000_RXDADV_RSSTYPE_IPV4_TCP:
297                 pi->pi_netisr = NETISR_IP;
298                 pi->pi_flags = 0;
299                 pi->pi_l3proto = IPPROTO_TCP;
300                 break;
301
302         case E1000_RXDADV_RSSTYPE_IPV4:
303                 if (staterr & E1000_RXD_STAT_IXSM)
304                         return NULL;
305
306                 if ((staterr &
307                      (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
308                     E1000_RXD_STAT_TCPCS) {
309                         pi->pi_netisr = NETISR_IP;
310                         pi->pi_flags = 0;
311                         pi->pi_l3proto = IPPROTO_UDP;
312                         break;
313                 }
314                 /* FALL THROUGH */
315         default:
316                 return NULL;
317         }
318
319         m->m_flags |= M_HASH;
320         m->m_pkthdr.hash = toeplitz_hash(hash);
321         return pi;
322 }
323
324 static int
325 igb_probe(device_t dev)
326 {
327         const struct igb_device *d;
328         uint16_t vid, did;
329
330         vid = pci_get_vendor(dev);
331         did = pci_get_device(dev);
332
333         for (d = igb_devices; d->desc != NULL; ++d) {
334                 if (vid == d->vid && did == d->did) {
335                         device_set_desc(dev, d->desc);
336                         return 0;
337                 }
338         }
339         return ENXIO;
340 }
341
342 static int
343 igb_attach(device_t dev)
344 {
345         struct igb_softc *sc = device_get_softc(dev);
346         uint16_t eeprom_data;
347         int error = 0, i, j, ring_max;
348
349 #ifdef notyet
350         /* SYSCTL stuff */
351         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
352             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
353             OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
354             igb_sysctl_nvm_info, "I", "NVM Information");
355
356         SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
357             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
358             OID_AUTO, "enable_aim", CTLTYPE_INT|CTLFLAG_RW,
359             &igb_enable_aim, 1, "Interrupt Moderation");
360
361         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
362             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
363             OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
364             adapter, 0, igb_set_flowcntl, "I", "Flow Control");
365 #endif
366
367         callout_init_mp(&sc->timer);
368         lwkt_serialize_init(&sc->main_serialize);
369
370         sc->dev = sc->osdep.dev = dev;
371
372         /*
373          * Determine hardware and mac type
374          */
375         sc->hw.vendor_id = pci_get_vendor(dev);
376         sc->hw.device_id = pci_get_device(dev);
377         sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
378         sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
379         sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
380
381         if (e1000_set_mac_type(&sc->hw))
382                 return ENXIO;
383
384         /* Are we a VF device? */
385         if (sc->hw.mac.type == e1000_vfadapt ||
386             sc->hw.mac.type == e1000_vfadapt_i350)
387                 sc->vf_ifp = 1;
388         else
389                 sc->vf_ifp = 0;
390
391         /*
392          * Configure total supported RX/TX ring count
393          */
394         switch (sc->hw.mac.type) {
395         case e1000_82575:
396                 ring_max = IGB_MAX_RING_82575;
397                 break;
398         case e1000_82580:
399                 ring_max = IGB_MAX_RING_82580;
400                 break;
401         case e1000_i350:
402                 ring_max = IGB_MAX_RING_I350;
403                 break;
404         case e1000_82576:
405                 ring_max = IGB_MAX_RING_82576;
406                 break;
407         default:
408                 ring_max = IGB_MIN_RING;
409                 break;
410         }
411         sc->rx_ring_cnt = device_getenv_int(dev, "rxr", igb_rxr);
412         sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, ring_max);
413 #ifdef IGB_RSS_DEBUG
414         sc->rx_ring_cnt = device_getenv_int(dev, "rxr_debug", sc->rx_ring_cnt);
415 #endif
416         sc->rx_ring_inuse = sc->rx_ring_cnt;
417         sc->tx_ring_cnt = 1; /* XXX */
418
419         if (sc->hw.mac.type == e1000_82575)
420                 sc->flags |= IGB_FLAG_TSO_IPLEN0;
421
422         /* Enable bus mastering */
423         pci_enable_busmaster(dev);
424
425         /*
426          * Allocate IO memory
427          */
428         sc->mem_rid = PCIR_BAR(0);
429         sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
430             RF_ACTIVE);
431         if (sc->mem_res == NULL) {
432                 device_printf(dev, "Unable to allocate bus resource: memory\n");
433                 error = ENXIO;
434                 goto failed;
435         }
436         sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
437         sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
438
439         sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
440
441         /* Save PCI command register for Shared Code */
442         sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
443         sc->hw.back = &sc->osdep;
444
445         /* Do Shared Code initialization */
446         if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
447                 device_printf(dev, "Setup of Shared code failed\n");
448                 error = ENXIO;
449                 goto failed;
450         }
451
452         e1000_get_bus_info(&sc->hw);
453
454         sc->hw.mac.autoneg = DO_AUTO_NEG;
455         sc->hw.phy.autoneg_wait_to_complete = FALSE;
456         sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
457
458         /* Copper options */
459         if (sc->hw.phy.media_type == e1000_media_type_copper) {
460                 sc->hw.phy.mdix = AUTO_ALL_MODES;
461                 sc->hw.phy.disable_polarity_correction = FALSE;
462                 sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
463         }
464
465         /* Set the frame limits assuming  standard ethernet sized frames. */
466         sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
467
468         /* Allocate RX/TX rings */
469         error = igb_alloc_rings(sc);
470         if (error)
471                 goto failed;
472
473         /* Allocate interrupt */
474         error = igb_alloc_intr(sc);
475         if (error)
476                 goto failed;
477
478         /*
479          * Setup serializers
480          */
481         i = 0;
482         sc->serializes[i++] = &sc->main_serialize;
483
484         sc->tx_serialize = i;
485         for (j = 0; j < sc->tx_ring_cnt; ++j)
486                 sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
487
488         sc->rx_serialize = i;
489         for (j = 0; j < sc->rx_ring_cnt; ++j)
490                 sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
491
492         sc->serialize_cnt = i;
493         KKASSERT(sc->serialize_cnt <= IGB_NSERIALIZE);
494
495         /* Allocate the appropriate stats memory */
496         if (sc->vf_ifp) {
497                 sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
498                     M_WAITOK | M_ZERO);
499                 igb_vf_init_stats(sc);
500         } else {
501                 sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
502                     M_WAITOK | M_ZERO);
503         }
504
505         /* Allocate multicast array memory. */
506         sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
507             M_DEVBUF, M_WAITOK);
508
509         /* Some adapter-specific advanced features */
510         if (sc->hw.mac.type >= e1000_i350) {
511 #ifdef notyet
512                 igb_set_sysctl_value(adapter, "dma_coalesce",
513                     "configure dma coalesce",
514                     &adapter->dma_coalesce, igb_dma_coalesce);
515                 igb_set_sysctl_value(adapter, "eee_disabled",
516                     "enable Energy Efficient Ethernet",
517                     &adapter->hw.dev_spec._82575.eee_disable,
518                     igb_eee_disabled);
519 #else
520                 sc->dma_coalesce = igb_dma_coalesce;
521                 sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
522 #endif
523                 e1000_set_eee_i350(&sc->hw);
524         }
525
526         /*
527          * Start from a known state, this is important in reading the nvm and
528          * mac from that.
529          */
530         e1000_reset_hw(&sc->hw);
531
532         /* Make sure we have a good EEPROM before we read from it */
533         if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
534                 /*
535                  * Some PCI-E parts fail the first check due to
536                  * the link being in sleep state, call it again,
537                  * if it fails a second time its a real issue.
538                  */
539                 if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
540                         device_printf(dev,
541                             "The EEPROM Checksum Is Not Valid\n");
542                         error = EIO;
543                         goto failed;
544                 }
545         }
546
547         /* Copy the permanent MAC address out of the EEPROM */
548         if (e1000_read_mac_addr(&sc->hw) < 0) {
549                 device_printf(dev, "EEPROM read error while reading MAC"
550                     " address\n");
551                 error = EIO;
552                 goto failed;
553         }
554         if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
555                 device_printf(dev, "Invalid MAC address\n");
556                 error = EIO;
557                 goto failed;
558         }
559
560 #ifdef notyet
561         /* 
562         ** Configure Interrupts
563         */
564         if ((adapter->msix > 1) && (igb_enable_msix))
565                 error = igb_allocate_msix(adapter);
566         else /* MSI or Legacy */
567                 error = igb_allocate_legacy(adapter);
568         if (error)
569                 goto err_late;
570 #endif
571
572         /* Setup OS specific network interface */
573         igb_setup_ifp(sc);
574
575         /* Add sysctl tree, must after igb_setup_ifp() */
576         igb_add_sysctl(sc);
577
578         /* Now get a good starting state */
579         igb_reset(sc);
580
581         /* Initialize statistics */
582         igb_update_stats_counters(sc);
583
584         sc->hw.mac.get_link_status = 1;
585         igb_update_link_status(sc);
586
587         /* Indicate SOL/IDER usage */
588         if (e1000_check_reset_block(&sc->hw)) {
589                 device_printf(dev,
590                     "PHY reset is blocked due to SOL/IDER session.\n");
591         }
592
593         /* Determine if we have to control management hardware */
594         if (e1000_enable_mng_pass_thru(&sc->hw))
595                 sc->flags |= IGB_FLAG_HAS_MGMT;
596
597         /*
598          * Setup Wake-on-Lan
599          */
600         /* APME bit in EEPROM is mapped to WUC.APME */
601         eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
602         if (eeprom_data)
603                 sc->wol = E1000_WUFC_MAG;
604         /* XXX disable WOL */
605         sc->wol = 0; 
606
607 #ifdef notyet
608         /* Register for VLAN events */
609         adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
610              igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
611         adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
612              igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
613 #endif
614
615 #ifdef notyet
616         igb_add_hw_stats(adapter);
617 #endif
618
619         error = igb_setup_intr(sc);
620         if (error) {
621                 ether_ifdetach(&sc->arpcom.ac_if);
622                 goto failed;
623         }
624         return 0;
625
626 failed:
627         igb_detach(dev);
628         return error;
629 }
630
631 static int
632 igb_detach(device_t dev)
633 {
634         struct igb_softc *sc = device_get_softc(dev);
635
636         if (device_is_attached(dev)) {
637                 struct ifnet *ifp = &sc->arpcom.ac_if;
638
639                 ifnet_serialize_all(ifp);
640
641                 igb_stop(sc);
642
643                 e1000_phy_hw_reset(&sc->hw);
644
645                 /* Give control back to firmware */
646                 igb_rel_mgmt(sc);
647                 igb_rel_hw_control(sc);
648
649                 if (sc->wol) {
650                         E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
651                         E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
652                         igb_enable_wol(dev);
653                 }
654
655                 igb_teardown_intr(sc);
656
657                 ifnet_deserialize_all(ifp);
658
659                 ether_ifdetach(ifp);
660         } else if (sc->mem_res != NULL) {
661                 igb_rel_hw_control(sc);
662         }
663         bus_generic_detach(dev);
664
665         if (sc->sysctl_tree != NULL)
666                 sysctl_ctx_free(&sc->sysctl_ctx);
667
668         igb_free_intr(sc);
669
670         if (sc->msix_mem_res != NULL) {
671                 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_mem_rid,
672                     sc->msix_mem_res);
673         }
674         if (sc->mem_res != NULL) {
675                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
676                     sc->mem_res);
677         }
678
679         igb_free_rings(sc);
680
681         if (sc->mta != NULL)
682                 kfree(sc->mta, M_DEVBUF);
683         if (sc->stats != NULL)
684                 kfree(sc->stats, M_DEVBUF);
685
686         return 0;
687 }
688
689 static int
690 igb_shutdown(device_t dev)
691 {
692         return igb_suspend(dev);
693 }
694
695 static int
696 igb_suspend(device_t dev)
697 {
698         struct igb_softc *sc = device_get_softc(dev);
699         struct ifnet *ifp = &sc->arpcom.ac_if;
700
701         ifnet_serialize_all(ifp);
702
703         igb_stop(sc);
704
705         igb_rel_mgmt(sc);
706         igb_rel_hw_control(sc);
707
708         if (sc->wol) {
709                 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
710                 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
711                 igb_enable_wol(dev);
712         }
713
714         ifnet_deserialize_all(ifp);
715
716         return bus_generic_suspend(dev);
717 }
718
719 static int
720 igb_resume(device_t dev)
721 {
722         struct igb_softc *sc = device_get_softc(dev);
723         struct ifnet *ifp = &sc->arpcom.ac_if;
724
725         ifnet_serialize_all(ifp);
726
727         igb_init(sc);
728         igb_get_mgmt(sc);
729
730         if_devstart(ifp);
731
732         ifnet_deserialize_all(ifp);
733
734         return bus_generic_resume(dev);
735 }
736
737 static int
738 igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
739 {
740         struct igb_softc *sc = ifp->if_softc;
741         struct ifreq *ifr = (struct ifreq *)data;
742         int max_frame_size, mask, reinit;
743         int error = 0;
744
745         ASSERT_IFNET_SERIALIZED_ALL(ifp);
746
747         switch (command) {
748         case SIOCSIFMTU:
749                 max_frame_size = 9234;
750                 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
751                     ETHER_CRC_LEN) {
752                         error = EINVAL;
753                         break;
754                 }
755
756                 ifp->if_mtu = ifr->ifr_mtu;
757                 sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
758                     ETHER_CRC_LEN;
759
760                 if (ifp->if_flags & IFF_RUNNING)
761                         igb_init(sc);
762                 break;
763
764         case SIOCSIFFLAGS:
765                 if (ifp->if_flags & IFF_UP) {
766                         if (ifp->if_flags & IFF_RUNNING) {
767                                 if ((ifp->if_flags ^ sc->if_flags) &
768                                     (IFF_PROMISC | IFF_ALLMULTI)) {
769                                         igb_disable_promisc(sc);
770                                         igb_set_promisc(sc);
771                                 }
772                         } else {
773                                 igb_init(sc);
774                         }
775                 } else if (ifp->if_flags & IFF_RUNNING) {
776                         igb_stop(sc);
777                 }
778                 sc->if_flags = ifp->if_flags;
779                 break;
780
781         case SIOCADDMULTI:
782         case SIOCDELMULTI:
783                 if (ifp->if_flags & IFF_RUNNING) {
784                         igb_disable_intr(sc);
785                         igb_set_multi(sc);
786 #ifdef DEVICE_POLLING
787                         if (!(ifp->if_flags & IFF_POLLING))
788 #endif
789                                 igb_enable_intr(sc);
790                 }
791                 break;
792
793         case SIOCSIFMEDIA:
794                 /*
795                  * As the speed/duplex settings are being
796                  * changed, we need toreset the PHY.
797                  */
798                 sc->hw.phy.reset_disable = FALSE;
799
800                 /* Check SOL/IDER usage */
801                 if (e1000_check_reset_block(&sc->hw)) {
802                         if_printf(ifp, "Media change is "
803                             "blocked due to SOL/IDER session.\n");
804                         break;
805                 }
806                 /* FALL THROUGH */
807
808         case SIOCGIFMEDIA:
809                 error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
810                 break;
811
812         case SIOCSIFCAP:
813                 reinit = 0;
814                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
815                 if (mask & IFCAP_RXCSUM) {
816                         ifp->if_capenable ^= IFCAP_RXCSUM;
817                         reinit = 1;
818                 }
819                 if (mask & IFCAP_VLAN_HWTAGGING) {
820                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
821                         reinit = 1;
822                 }
823                 if (mask & IFCAP_TXCSUM) {
824                         ifp->if_capenable ^= IFCAP_TXCSUM;
825                         if (ifp->if_capenable & IFCAP_TXCSUM)
826                                 ifp->if_hwassist |= IGB_CSUM_FEATURES;
827                         else
828                                 ifp->if_hwassist &= ~IGB_CSUM_FEATURES;
829                 }
830                 if (mask & IFCAP_TSO) {
831                         ifp->if_capenable ^= IFCAP_TSO;
832                         if (ifp->if_capenable & IFCAP_TSO)
833                                 ifp->if_hwassist |= CSUM_TSO;
834                         else
835                                 ifp->if_hwassist &= ~CSUM_TSO;
836                 }
837                 if (mask & IFCAP_RSS)
838                         ifp->if_capenable ^= IFCAP_RSS;
839                 if (reinit && (ifp->if_flags & IFF_RUNNING))
840                         igb_init(sc);
841                 break;
842
843         default:
844                 error = ether_ioctl(ifp, command, data);
845                 break;
846         }
847         return error;
848 }
849
850 static void
851 igb_init(void *xsc)
852 {
853         struct igb_softc *sc = xsc;
854         struct ifnet *ifp = &sc->arpcom.ac_if;
855         boolean_t polling;
856         int i;
857
858         ASSERT_IFNET_SERIALIZED_ALL(ifp);
859
860         igb_stop(sc);
861
862         /* Get the latest mac address, User can use a LAA */
863         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
864
865         /* Put the address into the Receive Address Array */
866         e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
867
868         igb_reset(sc);
869         igb_update_link_status(sc);
870
871         E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
872
873         /* Configure for OS presence */
874         igb_get_mgmt(sc);
875
876         polling = FALSE;
877 #ifdef DEVICE_POLLING
878         if (ifp->if_flags & IFF_POLLING)
879                 polling = TRUE;
880 #endif
881
882         /* Configured used RX/TX rings */
883         igb_set_ring_inuse(sc, polling);
884
885         /* Initialize interrupt */
886         igb_init_intr(sc);
887
888         /* Prepare transmit descriptors and buffers */
889         for (i = 0; i < sc->tx_ring_cnt; ++i)
890                 igb_init_tx_ring(&sc->tx_rings[i]);
891         igb_init_tx_unit(sc);
892
893         /* Setup Multicast table */
894         igb_set_multi(sc);
895
896 #if 0
897         /*
898          * Figure out the desired mbuf pool
899          * for doing jumbo/packetsplit
900          */
901         if (adapter->max_frame_size <= 2048)
902                 adapter->rx_mbuf_sz = MCLBYTES;
903         else if (adapter->max_frame_size <= 4096)
904                 adapter->rx_mbuf_sz = MJUMPAGESIZE;
905         else
906                 adapter->rx_mbuf_sz = MJUM9BYTES;
907 #endif
908
909         /* Prepare receive descriptors and buffers */
910         for (i = 0; i < sc->rx_ring_inuse; ++i) {
911                 int error;
912
913                 error = igb_init_rx_ring(&sc->rx_rings[i]);
914                 if (error) {
915                         if_printf(ifp, "Could not setup receive structures\n");
916                         igb_stop(sc);
917                         return;
918                 }
919         }
920         igb_init_rx_unit(sc);
921
922         /* Enable VLAN support */
923         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
924                 igb_set_vlan(sc);
925
926         /* Don't lose promiscuous settings */
927         igb_set_promisc(sc);
928
929         ifp->if_flags |= IFF_RUNNING;
930         ifp->if_flags &= ~IFF_OACTIVE;
931
932         callout_reset(&sc->timer, hz, igb_timer, sc);
933         e1000_clear_hw_cntrs_base_generic(&sc->hw);
934
935         /* This clears any pending interrupts */
936         E1000_READ_REG(&sc->hw, E1000_ICR);
937
938         /*
939          * Only enable interrupts if we are not polling, make sure
940          * they are off otherwise.
941          */
942         if (polling) {
943                 igb_disable_intr(sc);
944         } else {
945                 igb_enable_intr(sc);
946                 E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
947         }
948
949         /* Set Energy Efficient Ethernet */
950         e1000_set_eee_i350(&sc->hw);
951
952         /* Don't reset the phy next time init gets called */
953         sc->hw.phy.reset_disable = TRUE;
954 }
955
956 static void
957 igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
958 {
959         struct igb_softc *sc = ifp->if_softc;
960         u_char fiber_type = IFM_1000_SX;
961
962         ASSERT_IFNET_SERIALIZED_ALL(ifp);
963
964         igb_update_link_status(sc);
965
966         ifmr->ifm_status = IFM_AVALID;
967         ifmr->ifm_active = IFM_ETHER;
968
969         if (!sc->link_active)
970                 return;
971
972         ifmr->ifm_status |= IFM_ACTIVE;
973
974         if (sc->hw.phy.media_type == e1000_media_type_fiber ||
975             sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
976                 ifmr->ifm_active |= fiber_type | IFM_FDX;
977         } else {
978                 switch (sc->link_speed) {
979                 case 10:
980                         ifmr->ifm_active |= IFM_10_T;
981                         break;
982
983                 case 100:
984                         ifmr->ifm_active |= IFM_100_TX;
985                         break;
986
987                 case 1000:
988                         ifmr->ifm_active |= IFM_1000_T;
989                         break;
990                 }
991                 if (sc->link_duplex == FULL_DUPLEX)
992                         ifmr->ifm_active |= IFM_FDX;
993                 else
994                         ifmr->ifm_active |= IFM_HDX;
995         }
996 }
997
998 static int
999 igb_media_change(struct ifnet *ifp)
1000 {
1001         struct igb_softc *sc = ifp->if_softc;
1002         struct ifmedia *ifm = &sc->media;
1003
1004         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1005
1006         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1007                 return EINVAL;
1008
1009         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1010         case IFM_AUTO:
1011                 sc->hw.mac.autoneg = DO_AUTO_NEG;
1012                 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1013                 break;
1014
1015         case IFM_1000_LX:
1016         case IFM_1000_SX:
1017         case IFM_1000_T:
1018                 sc->hw.mac.autoneg = DO_AUTO_NEG;
1019                 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1020                 break;
1021
1022         case IFM_100_TX:
1023                 sc->hw.mac.autoneg = FALSE;
1024                 sc->hw.phy.autoneg_advertised = 0;
1025                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1026                         sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1027                 else
1028                         sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1029                 break;
1030
1031         case IFM_10_T:
1032                 sc->hw.mac.autoneg = FALSE;
1033                 sc->hw.phy.autoneg_advertised = 0;
1034                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1035                         sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1036                 else
1037                         sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1038                 break;
1039
1040         default:
1041                 if_printf(ifp, "Unsupported media type\n");
1042                 break;
1043         }
1044
1045         igb_init(sc);
1046
1047         return 0;
1048 }
1049
1050 static void
1051 igb_set_promisc(struct igb_softc *sc)
1052 {
1053         struct ifnet *ifp = &sc->arpcom.ac_if;
1054         struct e1000_hw *hw = &sc->hw;
1055         uint32_t reg;
1056
1057         if (sc->vf_ifp) {
1058                 e1000_promisc_set_vf(hw, e1000_promisc_enabled);
1059                 return;
1060         }
1061
1062         reg = E1000_READ_REG(hw, E1000_RCTL);
1063         if (ifp->if_flags & IFF_PROMISC) {
1064                 reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1065                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1066         } else if (ifp->if_flags & IFF_ALLMULTI) {
1067                 reg |= E1000_RCTL_MPE;
1068                 reg &= ~E1000_RCTL_UPE;
1069                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1070         }
1071 }
1072
1073 static void
1074 igb_disable_promisc(struct igb_softc *sc)
1075 {
1076         struct e1000_hw *hw = &sc->hw;
1077         uint32_t reg;
1078
1079         if (sc->vf_ifp) {
1080                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
1081                 return;
1082         }
1083         reg = E1000_READ_REG(hw, E1000_RCTL);
1084         reg &= ~E1000_RCTL_UPE;
1085         reg &= ~E1000_RCTL_MPE;
1086         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1087 }
1088
1089 static void
1090 igb_set_multi(struct igb_softc *sc)
1091 {
1092         struct ifnet *ifp = &sc->arpcom.ac_if;
1093         struct ifmultiaddr *ifma;
1094         uint32_t reg_rctl = 0;
1095         uint8_t *mta;
1096         int mcnt = 0;
1097
1098         mta = sc->mta;
1099         bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1100
1101         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1102                 if (ifma->ifma_addr->sa_family != AF_LINK)
1103                         continue;
1104
1105                 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1106                         break;
1107
1108                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1109                     &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
1110                 mcnt++;
1111         }
1112
1113         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1114                 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1115                 reg_rctl |= E1000_RCTL_MPE;
1116                 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1117         } else {
1118                 e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1119         }
1120 }
1121
1122 static void
1123 igb_timer(void *xsc)
1124 {
1125         struct igb_softc *sc = xsc;
1126
1127         lwkt_serialize_enter(&sc->main_serialize);
1128
1129         igb_update_link_status(sc);
1130         igb_update_stats_counters(sc);
1131
1132         callout_reset(&sc->timer, hz, igb_timer, sc);
1133
1134         lwkt_serialize_exit(&sc->main_serialize);
1135 }
1136
1137 static void
1138 igb_update_link_status(struct igb_softc *sc)
1139 {
1140         struct ifnet *ifp = &sc->arpcom.ac_if;
1141         struct e1000_hw *hw = &sc->hw;
1142         uint32_t link_check, thstat, ctrl;
1143
1144         link_check = thstat = ctrl = 0;
1145
1146         /* Get the cached link value or read for real */
1147         switch (hw->phy.media_type) {
1148         case e1000_media_type_copper:
1149                 if (hw->mac.get_link_status) {
1150                         /* Do the work to read phy */
1151                         e1000_check_for_link(hw);
1152                         link_check = !hw->mac.get_link_status;
1153                 } else {
1154                         link_check = TRUE;
1155                 }
1156                 break;
1157
1158         case e1000_media_type_fiber:
1159                 e1000_check_for_link(hw);
1160                 link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1161                 break;
1162
1163         case e1000_media_type_internal_serdes:
1164                 e1000_check_for_link(hw);
1165                 link_check = hw->mac.serdes_has_link;
1166                 break;
1167
1168         /* VF device is type_unknown */
1169         case e1000_media_type_unknown:
1170                 e1000_check_for_link(hw);
1171                 link_check = !hw->mac.get_link_status;
1172                 /* Fall thru */
1173         default:
1174                 break;
1175         }
1176
1177         /* Check for thermal downshift or shutdown */
1178         if (hw->mac.type == e1000_i350) {
1179                 thstat = E1000_READ_REG(hw, E1000_THSTAT);
1180                 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1181         }
1182
1183         /* Now we check if a transition has happened */
1184         if (link_check && sc->link_active == 0) {
1185                 e1000_get_speed_and_duplex(hw, 
1186                     &sc->link_speed, &sc->link_duplex);
1187                 if (bootverbose) {
1188                         if_printf(ifp, "Link is up %d Mbps %s\n",
1189                             sc->link_speed,
1190                             sc->link_duplex == FULL_DUPLEX ?
1191                             "Full Duplex" : "Half Duplex");
1192                 }
1193                 sc->link_active = 1;
1194
1195                 ifp->if_baudrate = sc->link_speed * 1000000;
1196                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1197                     (thstat & E1000_THSTAT_LINK_THROTTLE))
1198                         if_printf(ifp, "Link: thermal downshift\n");
1199                 /* This can sleep */
1200                 ifp->if_link_state = LINK_STATE_UP;
1201                 if_link_state_change(ifp);
1202         } else if (!link_check && sc->link_active == 1) {
1203                 ifp->if_baudrate = sc->link_speed = 0;
1204                 sc->link_duplex = 0;
1205                 if (bootverbose)
1206                         if_printf(ifp, "Link is Down\n");
1207                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1208                     (thstat & E1000_THSTAT_PWR_DOWN))
1209                         if_printf(ifp, "Link: thermal shutdown\n");
1210                 sc->link_active = 0;
1211                 /* This can sleep */
1212                 ifp->if_link_state = LINK_STATE_DOWN;
1213                 if_link_state_change(ifp);
1214         }
1215 }
1216
1217 static void
1218 igb_stop(struct igb_softc *sc)
1219 {
1220         struct ifnet *ifp = &sc->arpcom.ac_if;
1221         int i;
1222
1223         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1224
1225         igb_disable_intr(sc);
1226
1227         callout_stop(&sc->timer);
1228
1229         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1230         ifp->if_timer = 0;
1231
1232         e1000_reset_hw(&sc->hw);
1233         E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1234
1235         e1000_led_off(&sc->hw);
1236         e1000_cleanup_led(&sc->hw);
1237
1238         for (i = 0; i < sc->tx_ring_cnt; ++i)
1239                 igb_free_tx_ring(&sc->tx_rings[i]);
1240         for (i = 0; i < sc->rx_ring_cnt; ++i)
1241                 igb_free_rx_ring(&sc->rx_rings[i]);
1242 }
1243
1244 static void
1245 igb_reset(struct igb_softc *sc)
1246 {
1247         struct ifnet *ifp = &sc->arpcom.ac_if;
1248         struct e1000_hw *hw = &sc->hw;
1249         struct e1000_fc_info *fc = &hw->fc;
1250         uint32_t pba = 0;
1251         uint16_t hwm;
1252
1253         /* Let the firmware know the OS is in control */
1254         igb_get_hw_control(sc);
1255
1256         /*
1257          * Packet Buffer Allocation (PBA)
1258          * Writing PBA sets the receive portion of the buffer
1259          * the remainder is used for the transmit buffer.
1260          */
1261         switch (hw->mac.type) {
1262         case e1000_82575:
1263                 pba = E1000_PBA_32K;
1264                 break;
1265
1266         case e1000_82576:
1267         case e1000_vfadapt:
1268                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1269                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1270                 break;
1271
1272         case e1000_82580:
1273         case e1000_i350:
1274         case e1000_vfadapt_i350:
1275                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1276                 pba = e1000_rxpbs_adjust_82580(pba);
1277                 break;
1278                 /* XXX pba = E1000_PBA_35K; */
1279
1280         default:
1281                 break;
1282         }
1283
1284         /* Special needs in case of Jumbo frames */
1285         if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1286                 uint32_t tx_space, min_tx, min_rx;
1287
1288                 pba = E1000_READ_REG(hw, E1000_PBA);
1289                 tx_space = pba >> 16;
1290                 pba &= 0xffff;
1291
1292                 min_tx = (sc->max_frame_size +
1293                     sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1294                 min_tx = roundup2(min_tx, 1024);
1295                 min_tx >>= 10;
1296                 min_rx = sc->max_frame_size;
1297                 min_rx = roundup2(min_rx, 1024);
1298                 min_rx >>= 10;
1299                 if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1300                         pba = pba - (min_tx - tx_space);
1301                         /*
1302                          * if short on rx space, rx wins
1303                          * and must trump tx adjustment
1304                          */
1305                         if (pba < min_rx)
1306                                 pba = min_rx;
1307                 }
1308                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1309         }
1310
1311         /*
1312          * These parameters control the automatic generation (Tx) and
1313          * response (Rx) to Ethernet PAUSE frames.
1314          * - High water mark should allow for at least two frames to be
1315          *   received after sending an XOFF.
1316          * - Low water mark works best when it is very near the high water mark.
1317          *   This allows the receiver to restart by sending XON when it has
1318          *   drained a bit.
1319          */
1320         hwm = min(((pba << 10) * 9 / 10),
1321             ((pba << 10) - 2 * sc->max_frame_size));
1322
1323         if (hw->mac.type < e1000_82576) {
1324                 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1325                 fc->low_water = fc->high_water - 8;
1326         } else {
1327                 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1328                 fc->low_water = fc->high_water - 16;
1329         }
1330         fc->pause_time = IGB_FC_PAUSE_TIME;
1331         fc->send_xon = TRUE;
1332
1333         /* Issue a global reset */
1334         e1000_reset_hw(hw);
1335         E1000_WRITE_REG(hw, E1000_WUC, 0);
1336
1337         if (e1000_init_hw(hw) < 0)
1338                 if_printf(ifp, "Hardware Initialization Failed\n");
1339
1340         /* Setup DMA Coalescing */
1341         if (hw->mac.type == e1000_i350 && sc->dma_coalesce) {
1342                 uint32_t reg;
1343
1344                 hwm = (pba - 4) << 10;
1345                 reg = ((pba - 6) << E1000_DMACR_DMACTHR_SHIFT)
1346                     & E1000_DMACR_DMACTHR_MASK;
1347
1348                 /* transition to L0x or L1 if available..*/
1349                 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1350
1351                 /* timer = +-1000 usec in 32usec intervals */
1352                 reg |= (1000 >> 5);
1353                 E1000_WRITE_REG(hw, E1000_DMACR, reg);
1354
1355                 /* No lower threshold */
1356                 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
1357
1358                 /* set hwm to PBA -  2 * max frame size */
1359                 E1000_WRITE_REG(hw, E1000_FCRTC, hwm);
1360
1361                 /* Set the interval before transition */
1362                 reg = E1000_READ_REG(hw, E1000_DMCTLX);
1363                 reg |= 0x800000FF; /* 255 usec */
1364                 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
1365
1366                 /* free space in tx packet buffer to wake from DMA coal */
1367                 E1000_WRITE_REG(hw, E1000_DMCTXTH,
1368                     (20480 - (2 * sc->max_frame_size)) >> 6);
1369
1370                 /* make low power state decision controlled by DMA coal */
1371                 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1372                 E1000_WRITE_REG(hw, E1000_PCIEMISC,
1373                     reg | E1000_PCIEMISC_LX_DECISION);
1374                 if_printf(ifp, "DMA Coalescing enabled\n");
1375         }
1376
1377         E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1378         e1000_get_phy_info(hw);
1379         e1000_check_for_link(hw);
1380 }
1381
1382 static void
1383 igb_setup_ifp(struct igb_softc *sc)
1384 {
1385         struct ifnet *ifp = &sc->arpcom.ac_if;
1386
1387         if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
1388         ifp->if_softc = sc;
1389         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1390         ifp->if_init = igb_init;
1391         ifp->if_ioctl = igb_ioctl;
1392         ifp->if_start = igb_start;
1393         ifp->if_serialize = igb_serialize;
1394         ifp->if_deserialize = igb_deserialize;
1395         ifp->if_tryserialize = igb_tryserialize;
1396 #ifdef INVARIANTS
1397         ifp->if_serialize_assert = igb_serialize_assert;
1398 #endif
1399 #ifdef DEVICE_POLLING
1400         ifp->if_poll = igb_poll;
1401 #endif
1402         ifp->if_watchdog = igb_watchdog;
1403
1404         ifq_set_maxlen(&ifp->if_snd, sc->tx_rings[0].num_tx_desc - 1);
1405         ifq_set_ready(&ifp->if_snd);
1406
1407         ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1408
1409         ifp->if_capabilities =
1410             IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_TSO;
1411         if (IGB_ENABLE_HWRSS(sc))
1412                 ifp->if_capabilities |= IFCAP_RSS;
1413         ifp->if_capenable = ifp->if_capabilities;
1414         ifp->if_hwassist = IGB_CSUM_FEATURES | CSUM_TSO;
1415
1416         /*
1417          * Tell the upper layer(s) we support long frames
1418          */
1419         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1420
1421         /*
1422          * Specify the media types supported by this adapter and register
1423          * callbacks to update media and link information
1424          */
1425         ifmedia_init(&sc->media, IFM_IMASK, igb_media_change, igb_media_status);
1426         if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1427             sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1428                 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1429                     0, NULL);
1430                 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1431         } else {
1432                 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1433                 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1434                     0, NULL);
1435                 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1436                 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1437                     0, NULL);
1438                 if (sc->hw.phy.type != e1000_phy_ife) {
1439                         ifmedia_add(&sc->media,
1440                             IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1441                         ifmedia_add(&sc->media,
1442                             IFM_ETHER | IFM_1000_T, 0, NULL);
1443                 }
1444         }
1445         ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1446         ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1447 }
1448
1449 static void
1450 igb_add_sysctl(struct igb_softc *sc)
1451 {
1452         char node[32];
1453         int i;
1454
1455         sysctl_ctx_init(&sc->sysctl_ctx);
1456         sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1457             SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
1458             device_get_nameunit(sc->dev), CTLFLAG_RD, 0, "");
1459         if (sc->sysctl_tree == NULL) {
1460                 device_printf(sc->dev, "can't add sysctl node\n");
1461                 return;
1462         }
1463
1464         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1465             OID_AUTO, "rxr", CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
1466         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1467             OID_AUTO, "rxr_inuse", CTLFLAG_RD, &sc->rx_ring_inuse, 0,
1468             "# of RX rings used");
1469         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1470             OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_rings[0].num_rx_desc, 0,
1471             "# of RX descs");
1472         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1473             OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_rings[0].num_tx_desc, 0,
1474             "# of TX descs");
1475
1476         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
1477                 SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1478                     SYSCTL_CHILDREN(sc->sysctl_tree),
1479                     OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1480                     sc, 0, igb_sysctl_intr_rate, "I", "interrupt rate");
1481         } else {
1482                 for (i = 0; i < sc->msix_cnt; ++i) {
1483                         struct igb_msix_data *msix = &sc->msix_data[i];
1484
1485                         ksnprintf(node, sizeof(node), "msix%d_rate", i);
1486                         SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1487                             SYSCTL_CHILDREN(sc->sysctl_tree),
1488                             OID_AUTO, node, CTLTYPE_INT | CTLFLAG_RW,
1489                             msix, 0, igb_sysctl_msix_rate, "I",
1490                             msix->msix_rate_desc);
1491                 }
1492         }
1493
1494         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1495             OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1496             sc, 0, igb_sysctl_tx_intr_nsegs, "I",
1497             "# of segments per TX interrupt");
1498
1499 #ifdef IGB_RSS_DEBUG
1500         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1501             OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug, 0,
1502             "RSS debug level");
1503         for (i = 0; i < sc->rx_ring_cnt; ++i) {
1504                 ksnprintf(node, sizeof(node), "rx%d_pkt", i);
1505                 SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
1506                     SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1507                     CTLFLAG_RW, &sc->rx_rings[i].rx_packets, "RXed packets");
1508         }
1509 #endif
1510 }
1511
1512 static int
1513 igb_alloc_rings(struct igb_softc *sc)
1514 {
1515         int error, i;
1516
1517         /*
1518          * Create top level busdma tag
1519          */
1520         error = bus_dma_tag_create(NULL, 1, 0,
1521             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1522             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1523             &sc->parent_tag);
1524         if (error) {
1525                 device_printf(sc->dev, "could not create top level DMA tag\n");
1526                 return error;
1527         }
1528
1529         /*
1530          * Allocate TX descriptor rings and buffers
1531          */
1532         sc->tx_rings = kmalloc(sizeof(struct igb_tx_ring) * sc->tx_ring_cnt,
1533             M_DEVBUF, M_WAITOK | M_ZERO);
1534         for (i = 0; i < sc->tx_ring_cnt; ++i) {
1535                 struct igb_tx_ring *txr = &sc->tx_rings[i];
1536
1537                 /* Set up some basics */
1538                 txr->sc = sc;
1539                 txr->me = i;
1540                 lwkt_serialize_init(&txr->tx_serialize);
1541
1542                 error = igb_create_tx_ring(txr);
1543                 if (error)
1544                         return error;
1545         }
1546
1547         /*
1548          * Allocate RX descriptor rings and buffers
1549          */ 
1550         sc->rx_rings = kmalloc(sizeof(struct igb_rx_ring) * sc->rx_ring_cnt,
1551             M_DEVBUF, M_WAITOK | M_ZERO);
1552         for (i = 0; i < sc->rx_ring_cnt; ++i) {
1553                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
1554
1555                 /* Set up some basics */
1556                 rxr->sc = sc;
1557                 rxr->me = i;
1558                 lwkt_serialize_init(&rxr->rx_serialize);
1559
1560                 error = igb_create_rx_ring(rxr);
1561                 if (error)
1562                         return error;
1563         }
1564
1565         return 0;
1566 }
1567
1568 static void
1569 igb_free_rings(struct igb_softc *sc)
1570 {
1571         int i;
1572
1573         if (sc->tx_rings != NULL) {
1574                 for (i = 0; i < sc->tx_ring_cnt; ++i) {
1575                         struct igb_tx_ring *txr = &sc->tx_rings[i];
1576
1577                         igb_destroy_tx_ring(txr, txr->num_tx_desc);
1578                 }
1579                 kfree(sc->tx_rings, M_DEVBUF);
1580         }
1581
1582         if (sc->rx_rings != NULL) {
1583                 for (i = 0; i < sc->rx_ring_cnt; ++i) {
1584                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
1585
1586                         igb_destroy_rx_ring(rxr, rxr->num_rx_desc);
1587                 }
1588                 kfree(sc->rx_rings, M_DEVBUF);
1589         }
1590 }
1591
1592 static int
1593 igb_create_tx_ring(struct igb_tx_ring *txr)
1594 {
1595         int tsize, error, i;
1596
1597         /*
1598          * Validate number of transmit descriptors. It must not exceed
1599          * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1600          */
1601         if (((igb_txd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN) != 0 ||
1602             (igb_txd > IGB_MAX_TXD) || (igb_txd < IGB_MIN_TXD)) {
1603                 device_printf(txr->sc->dev,
1604                     "Using %d TX descriptors instead of %d!\n",
1605                     IGB_DEFAULT_TXD, igb_txd);
1606                 txr->num_tx_desc = IGB_DEFAULT_TXD;
1607         } else {
1608                 txr->num_tx_desc = igb_txd;
1609         }
1610
1611         /*
1612          * Allocate TX descriptor ring
1613          */
1614         tsize = roundup2(txr->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1615             IGB_DBA_ALIGN);
1616         txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1617             IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1618             &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1619         if (txr->txdma.dma_vaddr == NULL) {
1620                 device_printf(txr->sc->dev,
1621                     "Unable to allocate TX Descriptor memory\n");
1622                 return ENOMEM;
1623         }
1624         txr->tx_base = txr->txdma.dma_vaddr;
1625         bzero(txr->tx_base, tsize);
1626
1627         txr->tx_buf = kmalloc(sizeof(struct igb_tx_buf) * txr->num_tx_desc,
1628             M_DEVBUF, M_WAITOK | M_ZERO);
1629
1630         /*
1631          * Allocate TX head write-back buffer
1632          */
1633         txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1634             __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1635             &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1636         if (txr->tx_hdr == NULL) {
1637                 device_printf(txr->sc->dev,
1638                     "Unable to allocate TX head write-back buffer\n");
1639                 return ENOMEM;
1640         }
1641
1642         /*
1643          * Create DMA tag for TX buffers
1644          */
1645         error = bus_dma_tag_create(txr->sc->parent_tag,
1646             1, 0,               /* alignment, bounds */
1647             BUS_SPACE_MAXADDR,  /* lowaddr */
1648             BUS_SPACE_MAXADDR,  /* highaddr */
1649             NULL, NULL,         /* filter, filterarg */
1650             IGB_TSO_SIZE,       /* maxsize */
1651             IGB_MAX_SCATTER,    /* nsegments */
1652             PAGE_SIZE,          /* maxsegsize */
1653             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1654             BUS_DMA_ONEBPAGE,   /* flags */
1655             &txr->tx_tag);
1656         if (error) {
1657                 device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1658                 kfree(txr->tx_buf, M_DEVBUF);
1659                 txr->tx_buf = NULL;
1660                 return error;
1661         }
1662
1663         /*
1664          * Create DMA maps for TX buffers
1665          */
1666         for (i = 0; i < txr->num_tx_desc; ++i) {
1667                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1668
1669                 error = bus_dmamap_create(txr->tx_tag,
1670                     BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1671                 if (error) {
1672                         device_printf(txr->sc->dev,
1673                             "Unable to create TX DMA map\n");
1674                         igb_destroy_tx_ring(txr, i);
1675                         return error;
1676                 }
1677         }
1678
1679         /*
1680          * Initialize various watermark
1681          */
1682         txr->spare_desc = IGB_TX_SPARE;
1683         txr->intr_nsegs = txr->num_tx_desc / 16;
1684         txr->oact_hi_desc = txr->num_tx_desc / 2;
1685         txr->oact_lo_desc = txr->num_tx_desc / 8;
1686         if (txr->oact_lo_desc > IGB_TX_OACTIVE_MAX)
1687                 txr->oact_lo_desc = IGB_TX_OACTIVE_MAX;
1688         if (txr->oact_lo_desc < txr->spare_desc + IGB_TX_RESERVED)
1689                 txr->oact_lo_desc = txr->spare_desc + IGB_TX_RESERVED;
1690
1691         return 0;
1692 }
1693
1694 static void
1695 igb_free_tx_ring(struct igb_tx_ring *txr)
1696 {
1697         int i;
1698
1699         for (i = 0; i < txr->num_tx_desc; ++i) {
1700                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1701
1702                 if (txbuf->m_head != NULL) {
1703                         bus_dmamap_unload(txr->tx_tag, txbuf->map);
1704                         m_freem(txbuf->m_head);
1705                         txbuf->m_head = NULL;
1706                 }
1707         }
1708 }
1709
1710 static void
1711 igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1712 {
1713         int i;
1714
1715         if (txr->txdma.dma_vaddr != NULL) {
1716                 bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1717                 bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1718                     txr->txdma.dma_map);
1719                 bus_dma_tag_destroy(txr->txdma.dma_tag);
1720                 txr->txdma.dma_vaddr = NULL;
1721         }
1722
1723         if (txr->tx_hdr != NULL) {
1724                 bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1725                 bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1726                     txr->tx_hdr_dmap);
1727                 bus_dma_tag_destroy(txr->tx_hdr_dtag);
1728                 txr->tx_hdr = NULL;
1729         }
1730
1731         if (txr->tx_buf == NULL)
1732                 return;
1733
1734         for (i = 0; i < ndesc; ++i) {
1735                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1736
1737                 KKASSERT(txbuf->m_head == NULL);
1738                 bus_dmamap_destroy(txr->tx_tag, txbuf->map);
1739         }
1740         bus_dma_tag_destroy(txr->tx_tag);
1741
1742         kfree(txr->tx_buf, M_DEVBUF);
1743         txr->tx_buf = NULL;
1744 }
1745
1746 static void
1747 igb_init_tx_ring(struct igb_tx_ring *txr)
1748 {
1749         /* Clear the old descriptor contents */
1750         bzero(txr->tx_base,
1751             sizeof(union e1000_adv_tx_desc) * txr->num_tx_desc);
1752
1753         /* Clear TX head write-back buffer */
1754         *(txr->tx_hdr) = 0;
1755
1756         /* Reset indices */
1757         txr->next_avail_desc = 0;
1758         txr->next_to_clean = 0;
1759         txr->tx_nsegs = 0;
1760
1761         /* Set number of descriptors available */
1762         txr->tx_avail = txr->num_tx_desc;
1763 }
1764
1765 static void
1766 igb_init_tx_unit(struct igb_softc *sc)
1767 {
1768         struct e1000_hw *hw = &sc->hw;
1769         uint32_t tctl;
1770         int i;
1771
1772         /* Setup the Tx Descriptor Rings */
1773         for (i = 0; i < sc->tx_ring_cnt; ++i) {
1774                 struct igb_tx_ring *txr = &sc->tx_rings[i];
1775                 uint64_t bus_addr = txr->txdma.dma_paddr;
1776                 uint64_t hdr_paddr = txr->tx_hdr_paddr;
1777                 uint32_t txdctl = 0;
1778                 uint32_t dca_txctrl;
1779
1780                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
1781                     txr->num_tx_desc * sizeof(struct e1000_tx_desc));
1782                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
1783                     (uint32_t)(bus_addr >> 32));
1784                 E1000_WRITE_REG(hw, E1000_TDBAL(i),
1785                     (uint32_t)bus_addr);
1786
1787                 /* Setup the HW Tx Head and Tail descriptor pointers */
1788                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1789                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1790
1791                 /*
1792                  * WTHRESH is ignored by the hardware, since header
1793                  * write back mode is used.
1794                  */
1795                 txdctl |= IGB_TX_PTHRESH;
1796                 txdctl |= IGB_TX_HTHRESH << 8;
1797                 txdctl |= IGB_TX_WTHRESH << 16;
1798                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1799                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
1800
1801                 dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
1802                 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1803                 E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
1804
1805                 /*
1806                  * Don't set WB_on_EITR:
1807                  * - 82575 does not have it
1808                  * - It almost has no effect on 82576, see:
1809                  *   82576 specification update errata #26
1810                  * - It causes unnecessary bus traffic
1811                  */
1812                 E1000_WRITE_REG(hw, E1000_TDWBAH(i),
1813                     (uint32_t)(hdr_paddr >> 32));
1814                 E1000_WRITE_REG(hw, E1000_TDWBAL(i),
1815                     ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
1816         }
1817
1818         if (sc->vf_ifp)
1819                 return;
1820
1821         e1000_config_collision_dist(hw);
1822
1823         /* Program the Transmit Control Register */
1824         tctl = E1000_READ_REG(hw, E1000_TCTL);
1825         tctl &= ~E1000_TCTL_CT;
1826         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
1827             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
1828
1829         /* This write will effectively turn on the transmit unit. */
1830         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1831 }
1832
1833 static boolean_t
1834 igb_txcsum_ctx(struct igb_tx_ring *txr, struct mbuf *mp)
1835 {
1836         struct e1000_adv_tx_context_desc *TXD;
1837         uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
1838         int ehdrlen, ctxd, ip_hlen = 0;
1839         boolean_t offload = TRUE;
1840
1841         if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
1842                 offload = FALSE;
1843
1844         vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
1845
1846         ctxd = txr->next_avail_desc;
1847         TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
1848
1849         /*
1850          * In advanced descriptors the vlan tag must 
1851          * be placed into the context descriptor, thus
1852          * we need to be here just for that setup.
1853          */
1854         if (mp->m_flags & M_VLANTAG) {
1855                 uint16_t vlantag;
1856
1857                 vlantag = htole16(mp->m_pkthdr.ether_vlantag);
1858                 vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
1859         } else if (!offload) {
1860                 return FALSE;
1861         }
1862
1863         ehdrlen = mp->m_pkthdr.csum_lhlen;
1864         KASSERT(ehdrlen > 0, ("invalid ether hlen"));
1865
1866         /* Set the ether header length */
1867         vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
1868         if (mp->m_pkthdr.csum_flags & CSUM_IP) {
1869                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
1870                 ip_hlen = mp->m_pkthdr.csum_iphlen;
1871                 KASSERT(ip_hlen > 0, ("invalid ip hlen"));
1872         }
1873         vlan_macip_lens |= ip_hlen;
1874
1875         type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1876         if (mp->m_pkthdr.csum_flags & CSUM_TCP)
1877                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
1878         else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
1879                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
1880
1881         /* 82575 needs the queue index added */
1882         if (txr->sc->hw.mac.type == e1000_82575)
1883                 mss_l4len_idx = txr->me << 4;
1884
1885         /* Now copy bits into descriptor */
1886         TXD->vlan_macip_lens = htole32(vlan_macip_lens);
1887         TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
1888         TXD->seqnum_seed = htole32(0);
1889         TXD->mss_l4len_idx = htole32(mss_l4len_idx);
1890
1891         /* We've consumed the first desc, adjust counters */
1892         if (++ctxd == txr->num_tx_desc)
1893                 ctxd = 0;
1894         txr->next_avail_desc = ctxd;
1895         --txr->tx_avail;
1896
1897         return offload;
1898 }
1899
1900 static void
1901 igb_txeof(struct igb_tx_ring *txr)
1902 {
1903         struct ifnet *ifp = &txr->sc->arpcom.ac_if;
1904         int first, hdr, avail;
1905
1906         if (txr->tx_avail == txr->num_tx_desc)
1907                 return;
1908
1909         first = txr->next_to_clean;
1910         hdr = *(txr->tx_hdr);
1911
1912         if (first == hdr)
1913                 return;
1914
1915         avail = txr->tx_avail;
1916         while (first != hdr) {
1917                 struct igb_tx_buf *txbuf = &txr->tx_buf[first];
1918
1919                 ++avail;
1920                 if (txbuf->m_head) {
1921                         bus_dmamap_unload(txr->tx_tag, txbuf->map);
1922                         m_freem(txbuf->m_head);
1923                         txbuf->m_head = NULL;
1924                         ++ifp->if_opackets;
1925                 }
1926                 if (++first == txr->num_tx_desc)
1927                         first = 0;
1928         }
1929         txr->next_to_clean = first;
1930         txr->tx_avail = avail;
1931
1932         /*
1933          * If we have a minimum free, clear IFF_OACTIVE
1934          * to tell the stack that it is OK to send packets.
1935          */
1936         if (IGB_IS_NOT_OACTIVE(txr)) {
1937                 ifp->if_flags &= ~IFF_OACTIVE;
1938
1939                 /*
1940                  * We have enough TX descriptors, turn off
1941                  * the watchdog.  We allow small amount of
1942                  * packets (roughly intr_nsegs) pending on
1943                  * the transmit ring.
1944                  */
1945                 ifp->if_timer = 0;
1946         }
1947 }
1948
1949 static int
1950 igb_create_rx_ring(struct igb_rx_ring *rxr)
1951 {
1952         int rsize, i, error;
1953
1954         /*
1955          * Validate number of receive descriptors. It must not exceed
1956          * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1957          */
1958         if (((igb_rxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN) != 0 ||
1959             (igb_rxd > IGB_MAX_RXD) || (igb_rxd < IGB_MIN_RXD)) {
1960                 device_printf(rxr->sc->dev,
1961                     "Using %d RX descriptors instead of %d!\n",
1962                     IGB_DEFAULT_RXD, igb_rxd);
1963                 rxr->num_rx_desc = IGB_DEFAULT_RXD;
1964         } else {
1965                 rxr->num_rx_desc = igb_rxd;
1966         }
1967
1968         /*
1969          * Allocate RX descriptor ring
1970          */
1971         rsize = roundup2(rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc),
1972             IGB_DBA_ALIGN);
1973         rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
1974             IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
1975             &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
1976             &rxr->rxdma.dma_paddr);
1977         if (rxr->rxdma.dma_vaddr == NULL) {
1978                 device_printf(rxr->sc->dev,
1979                     "Unable to allocate RxDescriptor memory\n");
1980                 return ENOMEM;
1981         }
1982         rxr->rx_base = rxr->rxdma.dma_vaddr;
1983         bzero(rxr->rx_base, rsize);
1984
1985         rxr->rx_buf = kmalloc(sizeof(struct igb_rx_buf) * rxr->num_rx_desc,
1986             M_DEVBUF, M_WAITOK | M_ZERO);
1987
1988         /*
1989          * Create DMA tag for RX buffers
1990          */
1991         error = bus_dma_tag_create(rxr->sc->parent_tag,
1992             1, 0,               /* alignment, bounds */
1993             BUS_SPACE_MAXADDR,  /* lowaddr */
1994             BUS_SPACE_MAXADDR,  /* highaddr */
1995             NULL, NULL,         /* filter, filterarg */
1996             MCLBYTES,           /* maxsize */
1997             1,                  /* nsegments */
1998             MCLBYTES,           /* maxsegsize */
1999             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2000             &rxr->rx_tag);
2001         if (error) {
2002                 device_printf(rxr->sc->dev,
2003                     "Unable to create RX payload DMA tag\n");
2004                 kfree(rxr->rx_buf, M_DEVBUF);
2005                 rxr->rx_buf = NULL;
2006                 return error;
2007         }
2008
2009         /*
2010          * Create spare DMA map for RX buffers
2011          */
2012         error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
2013             &rxr->rx_sparemap);
2014         if (error) {
2015                 device_printf(rxr->sc->dev,
2016                     "Unable to create spare RX DMA maps\n");
2017                 bus_dma_tag_destroy(rxr->rx_tag);
2018                 kfree(rxr->rx_buf, M_DEVBUF);
2019                 rxr->rx_buf = NULL;
2020                 return error;
2021         }
2022
2023         /*
2024          * Create DMA maps for RX buffers
2025          */
2026         for (i = 0; i < rxr->num_rx_desc; i++) {
2027                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2028
2029                 error = bus_dmamap_create(rxr->rx_tag,
2030                     BUS_DMA_WAITOK, &rxbuf->map);
2031                 if (error) {
2032                         device_printf(rxr->sc->dev,
2033                             "Unable to create RX DMA maps\n");
2034                         igb_destroy_rx_ring(rxr, i);
2035                         return error;
2036                 }
2037         }
2038         return 0;
2039 }
2040
2041 static void
2042 igb_free_rx_ring(struct igb_rx_ring *rxr)
2043 {
2044         int i;
2045
2046         for (i = 0; i < rxr->num_rx_desc; ++i) {
2047                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2048
2049                 if (rxbuf->m_head != NULL) {
2050                         bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2051                         m_freem(rxbuf->m_head);
2052                         rxbuf->m_head = NULL;
2053                 }
2054         }
2055
2056         if (rxr->fmp != NULL)
2057                 m_freem(rxr->fmp);
2058         rxr->fmp = NULL;
2059         rxr->lmp = NULL;
2060 }
2061
2062 static void
2063 igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
2064 {
2065         int i;
2066
2067         if (rxr->rxdma.dma_vaddr != NULL) {
2068                 bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
2069                 bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
2070                     rxr->rxdma.dma_map);
2071                 bus_dma_tag_destroy(rxr->rxdma.dma_tag);
2072                 rxr->rxdma.dma_vaddr = NULL;
2073         }
2074
2075         if (rxr->rx_buf == NULL)
2076                 return;
2077
2078         for (i = 0; i < ndesc; ++i) {
2079                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2080
2081                 KKASSERT(rxbuf->m_head == NULL);
2082                 bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
2083         }
2084         bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
2085         bus_dma_tag_destroy(rxr->rx_tag);
2086
2087         kfree(rxr->rx_buf, M_DEVBUF);
2088         rxr->rx_buf = NULL;
2089 }
2090
2091 static void
2092 igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
2093 {
2094         rxd->read.pkt_addr = htole64(rxbuf->paddr);
2095         rxd->wb.upper.status_error = 0;
2096 }
2097
2098 static int
2099 igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
2100 {
2101         struct mbuf *m;
2102         bus_dma_segment_t seg;
2103         bus_dmamap_t map;
2104         struct igb_rx_buf *rxbuf;
2105         int error, nseg;
2106
2107         m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2108         if (m == NULL) {
2109                 if (wait) {
2110                         if_printf(&rxr->sc->arpcom.ac_if,
2111                             "Unable to allocate RX mbuf\n");
2112                 }
2113                 return ENOBUFS;
2114         }
2115         m->m_len = m->m_pkthdr.len = MCLBYTES;
2116
2117         if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2118                 m_adj(m, ETHER_ALIGN);
2119
2120         error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2121             rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2122         if (error) {
2123                 m_freem(m);
2124                 if (wait) {
2125                         if_printf(&rxr->sc->arpcom.ac_if,
2126                             "Unable to load RX mbuf\n");
2127                 }
2128                 return error;
2129         }
2130
2131         rxbuf = &rxr->rx_buf[i];
2132         if (rxbuf->m_head != NULL)
2133                 bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2134
2135         map = rxbuf->map;
2136         rxbuf->map = rxr->rx_sparemap;
2137         rxr->rx_sparemap = map;
2138
2139         rxbuf->m_head = m;
2140         rxbuf->paddr = seg.ds_addr;
2141
2142         igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2143         return 0;
2144 }
2145
2146 static int
2147 igb_init_rx_ring(struct igb_rx_ring *rxr)
2148 {
2149         int i;
2150
2151         /* Clear the ring contents */
2152         bzero(rxr->rx_base,
2153             rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc));
2154
2155         /* Now replenish the ring mbufs */
2156         for (i = 0; i < rxr->num_rx_desc; ++i) {
2157                 int error;
2158
2159                 error = igb_newbuf(rxr, i, TRUE);
2160                 if (error)
2161                         return error;
2162         }
2163
2164         /* Setup our descriptor indices */
2165         rxr->next_to_check = 0;
2166
2167         rxr->fmp = NULL;
2168         rxr->lmp = NULL;
2169         rxr->discard = FALSE;
2170
2171         return 0;
2172 }
2173
2174 static void
2175 igb_init_rx_unit(struct igb_softc *sc)
2176 {
2177         struct ifnet *ifp = &sc->arpcom.ac_if;
2178         struct e1000_hw *hw = &sc->hw;
2179         uint32_t rctl, rxcsum, srrctl = 0;
2180         int i;
2181
2182         /*
2183          * Make sure receives are disabled while setting
2184          * up the descriptor ring
2185          */
2186         rctl = E1000_READ_REG(hw, E1000_RCTL);
2187         E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2188
2189 #if 0
2190         /*
2191         ** Set up for header split
2192         */
2193         if (igb_header_split) {
2194                 /* Use a standard mbuf for the header */
2195                 srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2196                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2197         } else
2198 #endif
2199                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2200
2201         /*
2202         ** Set up for jumbo frames
2203         */
2204         if (ifp->if_mtu > ETHERMTU) {
2205                 rctl |= E1000_RCTL_LPE;
2206 #if 0
2207                 if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2208                         srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2209                         rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2210                 } else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2211                         srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2212                         rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2213                 }
2214                 /* Set maximum packet len */
2215                 psize = adapter->max_frame_size;
2216                 /* are we on a vlan? */
2217                 if (adapter->ifp->if_vlantrunk != NULL)
2218                         psize += VLAN_TAG_SIZE;
2219                 E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2220 #else
2221                 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2222                 rctl |= E1000_RCTL_SZ_2048;
2223 #endif
2224         } else {
2225                 rctl &= ~E1000_RCTL_LPE;
2226                 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2227                 rctl |= E1000_RCTL_SZ_2048;
2228         }
2229
2230         /* Setup the Base and Length of the Rx Descriptor Rings */
2231         for (i = 0; i < sc->rx_ring_inuse; ++i) {
2232                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2233                 uint64_t bus_addr = rxr->rxdma.dma_paddr;
2234                 uint32_t rxdctl;
2235
2236                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
2237                     rxr->num_rx_desc * sizeof(struct e1000_rx_desc));
2238                 E1000_WRITE_REG(hw, E1000_RDBAH(i),
2239                     (uint32_t)(bus_addr >> 32));
2240                 E1000_WRITE_REG(hw, E1000_RDBAL(i),
2241                     (uint32_t)bus_addr);
2242                 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2243                 /* Enable this Queue */
2244                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2245                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2246                 rxdctl &= 0xFFF00000;
2247                 rxdctl |= IGB_RX_PTHRESH;
2248                 rxdctl |= IGB_RX_HTHRESH << 8;
2249                 /*
2250                  * Don't set WTHRESH to a value above 1 on 82576, see:
2251                  * 82576 specification update errata #26
2252                  */
2253                 rxdctl |= IGB_RX_WTHRESH << 16;
2254                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2255         }
2256
2257         rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2258         rxcsum &= ~(E1000_RXCSUM_PCSS_MASK | E1000_RXCSUM_IPPCSE);
2259
2260         /*
2261          * Receive Checksum Offload for TCP and UDP
2262          *
2263          * Checksum offloading is also enabled if multiple receive
2264          * queue is to be supported, since we need it to figure out
2265          * fragments.
2266          */
2267         if ((ifp->if_capenable & IFCAP_RXCSUM) || IGB_ENABLE_HWRSS(sc)) {
2268                 /*
2269                  * NOTE:
2270                  * PCSD must be enabled to enable multiple
2271                  * receive queues.
2272                  */
2273                 rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2274                     E1000_RXCSUM_PCSD;
2275         } else {
2276                 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2277                     E1000_RXCSUM_PCSD);
2278         }
2279         E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2280
2281         if (IGB_ENABLE_HWRSS(sc)) {
2282                 uint8_t key[IGB_NRSSRK * IGB_RSSRK_SIZE];
2283                 uint32_t reta_shift;
2284                 int j, r;
2285
2286                 /*
2287                  * NOTE:
2288                  * When we reach here, RSS has already been disabled
2289                  * in igb_stop(), so we could safely configure RSS key
2290                  * and redirect table.
2291                  */
2292
2293                 /*
2294                  * Configure RSS key
2295                  */
2296                 toeplitz_get_key(key, sizeof(key));
2297                 for (i = 0; i < IGB_NRSSRK; ++i) {
2298                         uint32_t rssrk;
2299
2300                         rssrk = IGB_RSSRK_VAL(key, i);
2301                         IGB_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2302
2303                         E1000_WRITE_REG(hw, E1000_RSSRK(i), rssrk);
2304                 }
2305
2306                 /*
2307                  * Configure RSS redirect table in following fashion:
2308                  * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2309                  */
2310                 reta_shift = IGB_RETA_SHIFT;
2311                 if (hw->mac.type == e1000_82575)
2312                         reta_shift = IGB_RETA_SHIFT_82575;
2313
2314                 r = 0;
2315                 for (j = 0; j < IGB_NRETA; ++j) {
2316                         uint32_t reta = 0;
2317
2318                         for (i = 0; i < IGB_RETA_SIZE; ++i) {
2319                                 uint32_t q;
2320
2321                                 q = (r % sc->rx_ring_inuse) << reta_shift;
2322                                 reta |= q << (8 * i);
2323                                 ++r;
2324                         }
2325                         IGB_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2326                         E1000_WRITE_REG(hw, E1000_RETA(j), reta);
2327                 }
2328
2329                 /*
2330                  * Enable multiple receive queues.
2331                  * Enable IPv4 RSS standard hash functions.
2332                  * Disable RSS interrupt on 82575
2333                  */
2334                 E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2335                                 E1000_MRQC_ENABLE_RSS_4Q |
2336                                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2337                                 E1000_MRQC_RSS_FIELD_IPV4);
2338         }
2339
2340         /* Setup the Receive Control Register */
2341         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2342         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2343             E1000_RCTL_RDMTS_HALF |
2344             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2345         /* Strip CRC bytes. */
2346         rctl |= E1000_RCTL_SECRC;
2347         /* Make sure VLAN Filters are off */
2348         rctl &= ~E1000_RCTL_VFE;
2349         /* Don't store bad packets */
2350         rctl &= ~E1000_RCTL_SBP;
2351
2352         /* Enable Receives */
2353         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2354
2355         /*
2356          * Setup the HW Rx Head and Tail Descriptor Pointers
2357          *   - needs to be after enable
2358          */
2359         for (i = 0; i < sc->rx_ring_inuse; ++i) {
2360                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2361
2362                 E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
2363                 E1000_WRITE_REG(hw, E1000_RDT(i), rxr->num_rx_desc - 1);
2364         }
2365 }
2366
2367 static void
2368 igb_rxeof(struct igb_rx_ring *rxr, int count)
2369 {
2370         struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2371         union e1000_adv_rx_desc *cur;
2372         uint32_t staterr;
2373         int i;
2374
2375         i = rxr->next_to_check;
2376         cur = &rxr->rx_base[i];
2377         staterr = le32toh(cur->wb.upper.status_error);
2378
2379         if ((staterr & E1000_RXD_STAT_DD) == 0)
2380                 return;
2381
2382         while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2383                 struct pktinfo *pi = NULL, pi0;
2384                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2385                 struct mbuf *m = NULL;
2386                 boolean_t eop;
2387
2388                 eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2389                 if (eop)
2390                         --count;
2391
2392                 if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2393                     !rxr->discard) {
2394                         struct mbuf *mp = rxbuf->m_head;
2395                         uint32_t hash, hashtype;
2396                         uint16_t vlan;
2397                         int len;
2398
2399                         len = le16toh(cur->wb.upper.length);
2400                         if (rxr->sc->hw.mac.type == e1000_i350 &&
2401                             (staterr & E1000_RXDEXT_STATERR_LB))
2402                                 vlan = be16toh(cur->wb.upper.vlan);
2403                         else
2404                                 vlan = le16toh(cur->wb.upper.vlan);
2405
2406                         hash = le32toh(cur->wb.lower.hi_dword.rss);
2407                         hashtype = le32toh(cur->wb.lower.lo_dword.data) &
2408                             E1000_RXDADV_RSSTYPE_MASK;
2409
2410                         IGB_RSS_DPRINTF(rxr->sc, 10,
2411                             "ring%d, hash 0x%08x, hashtype %u\n",
2412                             rxr->me, hash, hashtype);
2413
2414                         bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2415                             BUS_DMASYNC_POSTREAD);
2416
2417                         if (igb_newbuf(rxr, i, FALSE) != 0) {
2418                                 ifp->if_iqdrops++;
2419                                 goto discard;
2420                         }
2421
2422                         mp->m_len = len;
2423                         if (rxr->fmp == NULL) {
2424                                 mp->m_pkthdr.len = len;
2425                                 rxr->fmp = mp;
2426                                 rxr->lmp = mp;
2427                         } else {
2428                                 rxr->lmp->m_next = mp;
2429                                 rxr->lmp = rxr->lmp->m_next;
2430                                 rxr->fmp->m_pkthdr.len += len;
2431                         }
2432
2433                         if (eop) {
2434                                 m = rxr->fmp;
2435                                 rxr->fmp = NULL;
2436                                 rxr->lmp = NULL;
2437
2438                                 m->m_pkthdr.rcvif = ifp;
2439                                 ifp->if_ipackets++;
2440
2441                                 if (ifp->if_capenable & IFCAP_RXCSUM)
2442                                         igb_rxcsum(staterr, m);
2443
2444                                 if (staterr & E1000_RXD_STAT_VP) {
2445                                         m->m_pkthdr.ether_vlantag = vlan;
2446                                         m->m_flags |= M_VLANTAG;
2447                                 }
2448
2449                                 if (ifp->if_capenable & IFCAP_RSS) {
2450                                         pi = igb_rssinfo(m, &pi0,
2451                                             hash, hashtype, staterr);
2452                                 }
2453 #ifdef IGB_RSS_DEBUG
2454                                 rxr->rx_packets++;
2455 #endif
2456                         }
2457                 } else {
2458                         ifp->if_ierrors++;
2459 discard:
2460                         igb_setup_rxdesc(cur, rxbuf);
2461                         if (!eop)
2462                                 rxr->discard = TRUE;
2463                         else
2464                                 rxr->discard = FALSE;
2465                         if (rxr->fmp != NULL) {
2466                                 m_freem(rxr->fmp);
2467                                 rxr->fmp = NULL;
2468                                 rxr->lmp = NULL;
2469                         }
2470                         m = NULL;
2471                 }
2472
2473                 if (m != NULL)
2474                         ether_input_pkt(ifp, m, pi);
2475
2476                 /* Advance our pointers to the next descriptor. */
2477                 if (++i == rxr->num_rx_desc)
2478                         i = 0;
2479
2480                 cur = &rxr->rx_base[i];
2481                 staterr = le32toh(cur->wb.upper.status_error);
2482         }
2483         rxr->next_to_check = i;
2484
2485         if (--i < 0)
2486                 i = rxr->num_rx_desc - 1;
2487         E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2488 }
2489
2490
2491 static void
2492 igb_set_vlan(struct igb_softc *sc)
2493 {
2494         struct e1000_hw *hw = &sc->hw;
2495         uint32_t reg;
2496 #if 0
2497         struct ifnet *ifp = sc->arpcom.ac_if;
2498 #endif
2499
2500         if (sc->vf_ifp) {
2501                 e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2502                 return;
2503         }
2504
2505         reg = E1000_READ_REG(hw, E1000_CTRL);
2506         reg |= E1000_CTRL_VME;
2507         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2508
2509 #if 0
2510         /* Enable the Filter Table */
2511         if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2512                 reg = E1000_READ_REG(hw, E1000_RCTL);
2513                 reg &= ~E1000_RCTL_CFIEN;
2514                 reg |= E1000_RCTL_VFE;
2515                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
2516         }
2517 #endif
2518
2519         /* Update the frame size */
2520         E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2521             sc->max_frame_size + VLAN_TAG_SIZE);
2522
2523 #if 0
2524         /* Don't bother with table if no vlans */
2525         if ((adapter->num_vlans == 0) ||
2526             ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2527                 return;
2528         /*
2529         ** A soft reset zero's out the VFTA, so
2530         ** we need to repopulate it now.
2531         */
2532         for (int i = 0; i < IGB_VFTA_SIZE; i++)
2533                 if (adapter->shadow_vfta[i] != 0) {
2534                         if (adapter->vf_ifp)
2535                                 e1000_vfta_set_vf(hw,
2536                                     adapter->shadow_vfta[i], TRUE);
2537                         else
2538                                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2539                                  i, adapter->shadow_vfta[i]);
2540                 }
2541 #endif
2542 }
2543
2544 static void
2545 igb_enable_intr(struct igb_softc *sc)
2546 {
2547         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2548                 lwkt_serialize_handler_enable(&sc->main_serialize);
2549         } else {
2550                 int i;
2551
2552                 for (i = 0; i < sc->msix_cnt; ++i) {
2553                         lwkt_serialize_handler_enable(
2554                             sc->msix_data[i].msix_serialize);
2555                 }
2556         }
2557
2558         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2559                 if (sc->intr_type == PCI_INTR_TYPE_MSIX)
2560                         E1000_WRITE_REG(&sc->hw, E1000_EIAC, sc->intr_mask);
2561                 else
2562                         E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2563                 E1000_WRITE_REG(&sc->hw, E1000_EIAM, sc->intr_mask);
2564                 E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2565                 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2566         } else {
2567                 E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2568         }
2569         E1000_WRITE_FLUSH(&sc->hw);
2570 }
2571
2572 static void
2573 igb_disable_intr(struct igb_softc *sc)
2574 {
2575         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2576                 E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2577                 E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2578         }
2579         E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2580         E1000_WRITE_FLUSH(&sc->hw);
2581
2582         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2583                 lwkt_serialize_handler_disable(&sc->main_serialize);
2584         } else {
2585                 int i;
2586
2587                 for (i = 0; i < sc->msix_cnt; ++i) {
2588                         lwkt_serialize_handler_disable(
2589                             sc->msix_data[i].msix_serialize);
2590                 }
2591         }
2592 }
2593
2594 /*
2595  * Bit of a misnomer, what this really means is
2596  * to enable OS management of the system... aka
2597  * to disable special hardware management features 
2598  */
2599 static void
2600 igb_get_mgmt(struct igb_softc *sc)
2601 {
2602         if (sc->flags & IGB_FLAG_HAS_MGMT) {
2603                 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2604                 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2605
2606                 /* disable hardware interception of ARP */
2607                 manc &= ~E1000_MANC_ARP_EN;
2608
2609                 /* enable receiving management packets to the host */
2610                 manc |= E1000_MANC_EN_MNG2HOST;
2611                 manc2h |= 1 << 5; /* Mng Port 623 */
2612                 manc2h |= 1 << 6; /* Mng Port 664 */
2613                 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2614                 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2615         }
2616 }
2617
2618 /*
2619  * Give control back to hardware management controller
2620  * if there is one.
2621  */
2622 static void
2623 igb_rel_mgmt(struct igb_softc *sc)
2624 {
2625         if (sc->flags & IGB_FLAG_HAS_MGMT) {
2626                 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2627
2628                 /* Re-enable hardware interception of ARP */
2629                 manc |= E1000_MANC_ARP_EN;
2630                 manc &= ~E1000_MANC_EN_MNG2HOST;
2631
2632                 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2633         }
2634 }
2635
2636 /*
2637  * Sets CTRL_EXT:DRV_LOAD bit.
2638  *
2639  * For ASF and Pass Through versions of f/w this means that
2640  * the driver is loaded. 
2641  */
2642 static void
2643 igb_get_hw_control(struct igb_softc *sc)
2644 {
2645         uint32_t ctrl_ext;
2646
2647         if (sc->vf_ifp)
2648                 return;
2649
2650         /* Let firmware know the driver has taken over */
2651         ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2652         E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2653             ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2654 }
2655
2656 /*
2657  * Resets CTRL_EXT:DRV_LOAD bit.
2658  *
2659  * For ASF and Pass Through versions of f/w this means that the
2660  * driver is no longer loaded.
2661  */
2662 static void
2663 igb_rel_hw_control(struct igb_softc *sc)
2664 {
2665         uint32_t ctrl_ext;
2666
2667         if (sc->vf_ifp)
2668                 return;
2669
2670         /* Let firmware taken over control of h/w */
2671         ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2672         E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2673             ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2674 }
2675
2676 static int
2677 igb_is_valid_ether_addr(const uint8_t *addr)
2678 {
2679         uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2680
2681         if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
2682                 return FALSE;
2683         return TRUE;
2684 }
2685
2686 /*
2687  * Enable PCI Wake On Lan capability
2688  */
2689 static void
2690 igb_enable_wol(device_t dev)
2691 {
2692         uint16_t cap, status;
2693         uint8_t id;
2694
2695         /* First find the capabilities pointer*/
2696         cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
2697
2698         /* Read the PM Capabilities */
2699         id = pci_read_config(dev, cap, 1);
2700         if (id != PCIY_PMG)     /* Something wrong */
2701                 return;
2702
2703         /*
2704          * OK, we have the power capabilities,
2705          * so now get the status register
2706          */
2707         cap += PCIR_POWER_STATUS;
2708         status = pci_read_config(dev, cap, 2);
2709         status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2710         pci_write_config(dev, cap, status, 2);
2711 }
2712
2713 static void
2714 igb_update_stats_counters(struct igb_softc *sc)
2715 {
2716         struct e1000_hw *hw = &sc->hw;
2717         struct e1000_hw_stats *stats;
2718         struct ifnet *ifp = &sc->arpcom.ac_if;
2719
2720         /* 
2721          * The virtual function adapter has only a
2722          * small controlled set of stats, do only 
2723          * those and return.
2724          */
2725         if (sc->vf_ifp) {
2726                 igb_update_vf_stats_counters(sc);
2727                 return;
2728         }
2729         stats = sc->stats;
2730
2731         if (sc->hw.phy.media_type == e1000_media_type_copper ||
2732             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
2733                 stats->symerrs +=
2734                     E1000_READ_REG(hw,E1000_SYMERRS);
2735                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
2736         }
2737
2738         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
2739         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
2740         stats->scc += E1000_READ_REG(hw, E1000_SCC);
2741         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
2742
2743         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
2744         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
2745         stats->colc += E1000_READ_REG(hw, E1000_COLC);
2746         stats->dc += E1000_READ_REG(hw, E1000_DC);
2747         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
2748         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
2749         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
2750
2751         /*
2752          * For watchdog management we need to know if we have been
2753          * paused during the last interval, so capture that here.
2754          */ 
2755         sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
2756         stats->xoffrxc += sc->pause_frames;
2757         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
2758         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
2759         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
2760         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
2761         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
2762         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
2763         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
2764         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
2765         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
2766         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
2767         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
2768         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
2769
2770         /* For the 64-bit byte counters the low dword must be read first. */
2771         /* Both registers clear on the read of the high dword */
2772
2773         stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
2774             ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
2775         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
2776             ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
2777
2778         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
2779         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
2780         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
2781         stats->roc += E1000_READ_REG(hw, E1000_ROC);
2782         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
2783
2784         stats->tor += E1000_READ_REG(hw, E1000_TORH);
2785         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
2786
2787         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
2788         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
2789         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
2790         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
2791         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
2792         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
2793         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
2794         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
2795         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
2796         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
2797
2798         /* Interrupt Counts */
2799
2800         stats->iac += E1000_READ_REG(hw, E1000_IAC);
2801         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
2802         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
2803         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
2804         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
2805         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
2806         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
2807         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
2808         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
2809
2810         /* Host to Card Statistics */
2811
2812         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
2813         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
2814         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
2815         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
2816         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
2817         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
2818         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
2819         stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
2820             ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
2821         stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
2822             ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
2823         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
2824         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
2825         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
2826
2827         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
2828         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
2829         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
2830         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
2831         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
2832         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
2833
2834         ifp->if_collisions = stats->colc;
2835
2836         /* Rx Errors */
2837         ifp->if_ierrors = stats->rxerrc + stats->crcerrs + stats->algnerrc +
2838             stats->ruc + stats->roc + stats->mpc + stats->cexterr;
2839
2840         /* Tx Errors */
2841         ifp->if_oerrors = stats->ecol + stats->latecol + sc->watchdog_events;
2842
2843         /* Driver specific counters */
2844         sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
2845         sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
2846         sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
2847         sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
2848         sc->packet_buf_alloc_tx =
2849             ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
2850         sc->packet_buf_alloc_rx =
2851             (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
2852 }
2853
2854 static void
2855 igb_vf_init_stats(struct igb_softc *sc)
2856 {
2857         struct e1000_hw *hw = &sc->hw;
2858         struct e1000_vf_stats *stats;
2859
2860         stats = sc->stats;
2861         stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
2862         stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
2863         stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
2864         stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
2865         stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
2866 }
2867  
2868 static void
2869 igb_update_vf_stats_counters(struct igb_softc *sc)
2870 {
2871         struct e1000_hw *hw = &sc->hw;
2872         struct e1000_vf_stats *stats;
2873
2874         if (sc->link_speed == 0)
2875                 return;
2876
2877         stats = sc->stats;
2878         UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
2879         UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
2880         UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
2881         UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
2882         UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
2883 }
2884
2885 #ifdef DEVICE_POLLING
2886
2887 static void
2888 igb_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2889 {
2890         struct igb_softc *sc = ifp->if_softc;
2891         uint32_t reg_icr;
2892
2893         switch (cmd) {
2894         case POLL_REGISTER:
2895         case POLL_DEREGISTER:
2896                 ASSERT_IFNET_SERIALIZED_ALL(ifp);
2897                 igb_init(sc);
2898                 break;
2899
2900         case POLL_AND_CHECK_STATUS:
2901                 ASSERT_SERIALIZED(&sc->main_serialize);
2902                 reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
2903                 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
2904                         sc->hw.mac.get_link_status = 1;
2905                         igb_update_link_status(sc);
2906                 }
2907                 /* FALL THROUGH */
2908         case POLL_ONLY:
2909                 ASSERT_SERIALIZED(&sc->main_serialize);
2910                 if (ifp->if_flags & IFF_RUNNING) {
2911                         struct igb_tx_ring *txr;
2912                         int i;
2913
2914                         for (i = 0; i < sc->rx_ring_inuse; ++i) {
2915                                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2916
2917                                 lwkt_serialize_enter(&rxr->rx_serialize);
2918                                 igb_rxeof(rxr, count);
2919                                 lwkt_serialize_exit(&rxr->rx_serialize);
2920                         }
2921
2922                         txr = &sc->tx_rings[0];
2923                         lwkt_serialize_enter(&txr->tx_serialize);
2924                         igb_txeof(txr);
2925                         if (!ifq_is_empty(&ifp->if_snd))
2926                                 if_devstart(ifp);
2927                         lwkt_serialize_exit(&txr->tx_serialize);
2928                 }
2929                 break;
2930         }
2931 }
2932
2933 #endif /* DEVICE_POLLING */
2934
2935 static void
2936 igb_intr(void *xsc)
2937 {
2938         struct igb_softc *sc = xsc;
2939         struct ifnet *ifp = &sc->arpcom.ac_if;
2940         uint32_t eicr;
2941
2942         ASSERT_SERIALIZED(&sc->main_serialize);
2943
2944         eicr = E1000_READ_REG(&sc->hw, E1000_EICR);
2945
2946         if (eicr == 0)
2947                 return;
2948
2949         if (ifp->if_flags & IFF_RUNNING) {
2950                 struct igb_tx_ring *txr;
2951                 int i;
2952
2953                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
2954                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
2955
2956                         if (eicr & rxr->rx_intr_mask) {
2957                                 lwkt_serialize_enter(&rxr->rx_serialize);
2958                                 igb_rxeof(rxr, -1);
2959                                 lwkt_serialize_exit(&rxr->rx_serialize);
2960                         }
2961                 }
2962
2963                 txr = &sc->tx_rings[0];
2964                 if (eicr & txr->tx_intr_mask) {
2965                         lwkt_serialize_enter(&txr->tx_serialize);
2966                         igb_txeof(txr);
2967                         if (!ifq_is_empty(&ifp->if_snd))
2968                                 if_devstart(ifp);
2969                         lwkt_serialize_exit(&txr->tx_serialize);
2970                 }
2971         }
2972
2973         if (eicr & E1000_EICR_OTHER) {
2974                 uint32_t icr = E1000_READ_REG(&sc->hw, E1000_ICR);
2975
2976                 /* Link status change */
2977                 if (icr & E1000_ICR_LSC) {
2978                         sc->hw.mac.get_link_status = 1;
2979                         igb_update_link_status(sc);
2980                 }
2981         }
2982
2983         /*
2984          * Reading EICR has the side effect to clear interrupt mask,
2985          * so all interrupts need to be enabled here.
2986          */
2987         E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2988 }
2989
2990 static void
2991 igb_intr_shared(void *xsc)
2992 {
2993         struct igb_softc *sc = xsc;
2994         struct ifnet *ifp = &sc->arpcom.ac_if;
2995         uint32_t reg_icr;
2996
2997         ASSERT_SERIALIZED(&sc->main_serialize);
2998
2999         reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3000
3001         /* Hot eject?  */
3002         if (reg_icr == 0xffffffff)
3003                 return;
3004
3005         /* Definitely not our interrupt.  */
3006         if (reg_icr == 0x0)
3007                 return;
3008
3009         if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
3010                 return;
3011
3012         if (ifp->if_flags & IFF_RUNNING) {
3013                 if (reg_icr &
3014                     (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
3015                         int i;
3016
3017                         for (i = 0; i < sc->rx_ring_inuse; ++i) {
3018                                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
3019
3020                                 lwkt_serialize_enter(&rxr->rx_serialize);
3021                                 igb_rxeof(rxr, -1);
3022                                 lwkt_serialize_exit(&rxr->rx_serialize);
3023                         }
3024                 }
3025
3026                 if (reg_icr & E1000_ICR_TXDW) {
3027                         struct igb_tx_ring *txr = &sc->tx_rings[0];
3028
3029                         lwkt_serialize_enter(&txr->tx_serialize);
3030                         igb_txeof(txr);
3031                         if (!ifq_is_empty(&ifp->if_snd))
3032                                 if_devstart(ifp);
3033                         lwkt_serialize_exit(&txr->tx_serialize);
3034                 }
3035         }
3036
3037         /* Link status change */
3038         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3039                 sc->hw.mac.get_link_status = 1;
3040                 igb_update_link_status(sc);
3041         }
3042
3043         if (reg_icr & E1000_ICR_RXO)
3044                 sc->rx_overruns++;
3045 }
3046
3047 static int
3048 igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp)
3049 {
3050         bus_dma_segment_t segs[IGB_MAX_SCATTER];
3051         bus_dmamap_t map;
3052         struct igb_tx_buf *tx_buf, *tx_buf_mapped;
3053         union e1000_adv_tx_desc *txd = NULL;
3054         struct mbuf *m_head = *m_headp;
3055         uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
3056         int maxsegs, nsegs, i, j, error, last = 0;
3057         uint32_t hdrlen = 0;
3058
3059         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3060                 error = igb_tso_pullup(txr, m_headp);
3061                 if (error)
3062                         return error;
3063                 m_head = *m_headp;
3064         }
3065
3066         /* Set basic descriptor constants */
3067         cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
3068         cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
3069         if (m_head->m_flags & M_VLANTAG)
3070                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3071
3072         /*
3073          * Map the packet for DMA.
3074          */
3075         tx_buf = &txr->tx_buf[txr->next_avail_desc];
3076         tx_buf_mapped = tx_buf;
3077         map = tx_buf->map;
3078
3079         maxsegs = txr->tx_avail - IGB_TX_RESERVED;
3080         KASSERT(maxsegs >= txr->spare_desc, ("not enough spare TX desc\n"));
3081         if (maxsegs > IGB_MAX_SCATTER)
3082                 maxsegs = IGB_MAX_SCATTER;
3083
3084         error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
3085             segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3086         if (error) {
3087                 if (error == ENOBUFS)
3088                         txr->sc->mbuf_defrag_failed++;
3089                 else
3090                         txr->sc->no_tx_dma_setup++;
3091
3092                 m_freem(*m_headp);
3093                 *m_headp = NULL;
3094                 return error;
3095         }
3096         bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
3097
3098         m_head = *m_headp;
3099
3100         /*
3101          * Set up the TX context descriptor, if any hardware offloading is
3102          * needed.  This includes CSUM, VLAN, and TSO.  It will consume one
3103          * TX descriptor.
3104          *
3105          * Unlike these chips' predecessors (em/emx), TX context descriptor
3106          * will _not_ interfere TX data fetching pipelining.
3107          */
3108         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3109                 igb_tso_ctx(txr, m_head, &hdrlen);
3110                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3111                 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3112                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3113                 txr->tx_nsegs++;
3114         } else if (igb_txcsum_ctx(txr, m_head)) {
3115                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3116                         olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
3117                 if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
3118                         olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
3119                 txr->tx_nsegs++;
3120         }
3121
3122         txr->tx_nsegs += nsegs;
3123         if (txr->tx_nsegs >= txr->intr_nsegs) {
3124                 /*
3125                  * Report Status (RS) is turned on every intr_nsegs
3126                  * descriptors (roughly).
3127                  */
3128                 txr->tx_nsegs = 0;
3129                 cmd_rs = E1000_ADVTXD_DCMD_RS;
3130         }
3131
3132         /* Calculate payload length */
3133         olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
3134             << E1000_ADVTXD_PAYLEN_SHIFT);
3135
3136         /* 82575 needs the queue index added */
3137         if (txr->sc->hw.mac.type == e1000_82575)
3138                 olinfo_status |= txr->me << 4;
3139
3140         /* Set up our transmit descriptors */
3141         i = txr->next_avail_desc;
3142         for (j = 0; j < nsegs; j++) {
3143                 bus_size_t seg_len;
3144                 bus_addr_t seg_addr;
3145
3146                 tx_buf = &txr->tx_buf[i];
3147                 txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
3148                 seg_addr = segs[j].ds_addr;
3149                 seg_len = segs[j].ds_len;
3150
3151                 txd->read.buffer_addr = htole64(seg_addr);
3152                 txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
3153                 txd->read.olinfo_status = htole32(olinfo_status);
3154                 last = i;
3155                 if (++i == txr->num_tx_desc)
3156                         i = 0;
3157                 tx_buf->m_head = NULL;
3158         }
3159
3160         KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
3161         txr->next_avail_desc = i;
3162         txr->tx_avail -= nsegs;
3163
3164         tx_buf->m_head = m_head;
3165         tx_buf_mapped->map = tx_buf->map;
3166         tx_buf->map = map;
3167
3168         /*
3169          * Last Descriptor of Packet needs End Of Packet (EOP)
3170          */
3171         txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
3172
3173         /*
3174          * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
3175          * that this frame is available to transmit.
3176          */
3177         E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), i);
3178         ++txr->tx_packets;
3179
3180         return 0;
3181 }
3182
3183 static void
3184 igb_start(struct ifnet *ifp)
3185 {
3186         struct igb_softc *sc = ifp->if_softc;
3187         struct igb_tx_ring *txr = &sc->tx_rings[0];
3188         struct mbuf *m_head;
3189
3190         ASSERT_SERIALIZED(&txr->tx_serialize);
3191
3192         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3193                 return;
3194
3195         if (!sc->link_active) {
3196                 ifq_purge(&ifp->if_snd);
3197                 return;
3198         }
3199
3200         if (!IGB_IS_NOT_OACTIVE(txr))
3201                 igb_txeof(txr);
3202
3203         while (!ifq_is_empty(&ifp->if_snd)) {
3204                 if (IGB_IS_OACTIVE(txr)) {
3205                         ifp->if_flags |= IFF_OACTIVE;
3206                         /* Set watchdog on */
3207                         ifp->if_timer = 5;
3208                         break;
3209                 }
3210
3211                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
3212                 if (m_head == NULL)
3213                         break;
3214
3215                 if (igb_encap(txr, &m_head)) {
3216                         ifp->if_oerrors++;
3217                         continue;
3218                 }
3219
3220                 /* Send a copy of the frame to the BPF listener */
3221                 ETHER_BPF_MTAP(ifp, m_head);
3222         }
3223 }
3224
3225 static void
3226 igb_watchdog(struct ifnet *ifp)
3227 {
3228         struct igb_softc *sc = ifp->if_softc;
3229         struct igb_tx_ring *txr = &sc->tx_rings[0];
3230
3231         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3232
3233         /* 
3234          * If flow control has paused us since last checking
3235          * it invalidates the watchdog timing, so dont run it.
3236          */
3237         if (sc->pause_frames) {
3238                 sc->pause_frames = 0;
3239                 ifp->if_timer = 5;
3240                 return;
3241         }
3242
3243         if_printf(ifp, "Watchdog timeout -- resetting\n");
3244         if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3245             E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3246             E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3247         if_printf(ifp, "TX(%d) desc avail = %d, "
3248             "Next TX to Clean = %d\n",
3249             txr->me, txr->tx_avail, txr->next_to_clean);
3250
3251         ifp->if_oerrors++;
3252         sc->watchdog_events++;
3253
3254         igb_init(sc);
3255         if (!ifq_is_empty(&ifp->if_snd))
3256                 if_devstart(ifp);
3257 }
3258
3259 static void
3260 igb_set_eitr(struct igb_softc *sc, int idx, int rate)
3261 {
3262         uint32_t eitr = 0;
3263
3264         if (rate > 0) {
3265                 if (sc->hw.mac.type == e1000_82575) {
3266                         eitr = 1000000000 / 256 / rate;
3267                         /*
3268                          * NOTE:
3269                          * Document is wrong on the 2 bits left shift
3270                          */
3271                 } else {
3272                         eitr = 1000000 / rate;
3273                         eitr <<= IGB_EITR_INTVL_SHIFT;
3274                 }
3275
3276                 if (eitr == 0) {
3277                         /* Don't disable it */
3278                         eitr = 1 << IGB_EITR_INTVL_SHIFT;
3279                 } else if (eitr > IGB_EITR_INTVL_MASK) {
3280                         /* Don't allow it to be too large */
3281                         eitr = IGB_EITR_INTVL_MASK;
3282                 }
3283         }
3284         if (sc->hw.mac.type == e1000_82575)
3285                 eitr |= eitr << 16;
3286         else
3287                 eitr |= E1000_EITR_CNT_IGNR;
3288         E1000_WRITE_REG(&sc->hw, E1000_EITR(idx), eitr);
3289 }
3290
3291 static int
3292 igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3293 {
3294         struct igb_softc *sc = (void *)arg1;
3295         struct ifnet *ifp = &sc->arpcom.ac_if;
3296         int error, intr_rate;
3297
3298         intr_rate = sc->intr_rate;
3299         error = sysctl_handle_int(oidp, &intr_rate, 0, req);
3300         if (error || req->newptr == NULL)
3301                 return error;
3302         if (intr_rate < 0)
3303                 return EINVAL;
3304
3305         ifnet_serialize_all(ifp);
3306
3307         sc->intr_rate = intr_rate;
3308         if (ifp->if_flags & IFF_RUNNING)
3309                 igb_set_eitr(sc, 0, sc->intr_rate);
3310
3311         if (bootverbose)
3312                 if_printf(ifp, "interrupt rate set to %d/sec\n", sc->intr_rate);
3313
3314         ifnet_deserialize_all(ifp);
3315
3316         return 0;
3317 }
3318
3319 static int
3320 igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS)
3321 {
3322         struct igb_msix_data *msix = (void *)arg1;
3323         struct igb_softc *sc = msix->msix_sc;
3324         struct ifnet *ifp = &sc->arpcom.ac_if;
3325         int error, msix_rate;
3326
3327         msix_rate = msix->msix_rate;
3328         error = sysctl_handle_int(oidp, &msix_rate, 0, req);
3329         if (error || req->newptr == NULL)
3330                 return error;
3331         if (msix_rate < 0)
3332                 return EINVAL;
3333
3334         lwkt_serialize_enter(msix->msix_serialize);
3335
3336         msix->msix_rate = msix_rate;
3337         if (ifp->if_flags & IFF_RUNNING)
3338                 igb_set_eitr(sc, msix->msix_vector, msix->msix_rate);
3339
3340         if (bootverbose) {
3341                 if_printf(ifp, "%s set to %d/sec\n", msix->msix_rate_desc,
3342                     msix->msix_rate);
3343         }
3344
3345         lwkt_serialize_exit(msix->msix_serialize);
3346
3347         return 0;
3348 }
3349
3350 static int
3351 igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3352 {
3353         struct igb_softc *sc = (void *)arg1;
3354         struct ifnet *ifp = &sc->arpcom.ac_if;
3355         struct igb_tx_ring *txr = &sc->tx_rings[0];
3356         int error, nsegs;
3357
3358         nsegs = txr->intr_nsegs;
3359         error = sysctl_handle_int(oidp, &nsegs, 0, req);
3360         if (error || req->newptr == NULL)
3361                 return error;
3362         if (nsegs <= 0)
3363                 return EINVAL;
3364
3365         ifnet_serialize_all(ifp);
3366
3367         if (nsegs >= txr->num_tx_desc - txr->oact_lo_desc ||
3368             nsegs >= txr->oact_hi_desc - IGB_MAX_SCATTER) {
3369                 error = EINVAL;
3370         } else {
3371                 error = 0;
3372                 txr->intr_nsegs = nsegs;
3373         }
3374
3375         ifnet_deserialize_all(ifp);
3376
3377         return error;
3378 }
3379
3380 static void
3381 igb_init_intr(struct igb_softc *sc)
3382 {
3383         igb_set_intr_mask(sc);
3384
3385         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0)
3386                 igb_init_unshared_intr(sc);
3387
3388         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3389                 igb_set_eitr(sc, 0, sc->intr_rate);
3390         } else {
3391                 int i;
3392
3393                 for (i = 0; i < sc->msix_cnt; ++i)
3394                         igb_set_eitr(sc, i, sc->msix_data[i].msix_rate);
3395         }
3396 }
3397
3398 static void
3399 igb_init_unshared_intr(struct igb_softc *sc)
3400 {
3401         struct e1000_hw *hw = &sc->hw;
3402         const struct igb_rx_ring *rxr;
3403         const struct igb_tx_ring *txr;
3404         uint32_t ivar, index;
3405         int i;
3406
3407         /*
3408          * Enable extended mode
3409          */
3410         if (sc->hw.mac.type != e1000_82575) {
3411                 uint32_t gpie;
3412                 int ivar_max;
3413
3414                 gpie = E1000_GPIE_NSICR;
3415                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3416                         gpie |= E1000_GPIE_MSIX_MODE |
3417                             E1000_GPIE_EIAME |
3418                             E1000_GPIE_PBA;
3419                 }
3420                 E1000_WRITE_REG(hw, E1000_GPIE, gpie);
3421
3422                 /*
3423                  * Clear IVARs
3424                  */
3425                 switch (sc->hw.mac.type) {
3426                 case e1000_82580:
3427                         ivar_max = IGB_MAX_IVAR_82580;
3428                         break;
3429
3430                 case e1000_i350:
3431                         ivar_max = IGB_MAX_IVAR_I350;
3432                         break;
3433
3434                 case e1000_vfadapt:
3435                 case e1000_vfadapt_i350:
3436                         ivar_max = IGB_MAX_IVAR_VF;
3437                         break;
3438
3439                 case e1000_82576:
3440                         ivar_max = IGB_MAX_IVAR_82576;
3441                         break;
3442
3443                 default:
3444                         panic("unknown mac type %d\n", sc->hw.mac.type);
3445                 }
3446                 for (i = 0; i < ivar_max; ++i)
3447                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, 0);
3448                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
3449         } else {
3450                 uint32_t tmp;
3451
3452                 KASSERT(sc->intr_type != PCI_INTR_TYPE_MSIX,
3453                     ("82575 w/ MSI-X"));
3454                 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
3455                 tmp |= E1000_CTRL_EXT_IRCA;
3456                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
3457         }
3458
3459         /*
3460          * Map TX/RX interrupts to EICR
3461          */
3462         switch (sc->hw.mac.type) {
3463         case e1000_82580:
3464         case e1000_i350:
3465         case e1000_vfadapt:
3466         case e1000_vfadapt_i350:
3467                 /* RX entries */
3468                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3469                         rxr = &sc->rx_rings[i];
3470
3471                         index = i >> 1;
3472                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3473
3474                         if (i & 1) {
3475                                 ivar &= 0xff00ffff;
3476                                 ivar |=
3477                                 (rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3478                         } else {
3479                                 ivar &= 0xffffff00;
3480                                 ivar |=
3481                                 (rxr->rx_intr_bit | E1000_IVAR_VALID);
3482                         }
3483                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3484                 }
3485                 /* TX entries */
3486                 for (i = 0; i < sc->tx_ring_cnt; ++i) {
3487                         txr = &sc->tx_rings[i];
3488
3489                         index = i >> 1;
3490                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3491
3492                         if (i & 1) {
3493                                 ivar &= 0x00ffffff;
3494                                 ivar |=
3495                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3496                         } else {
3497                                 ivar &= 0xffff00ff;
3498                                 ivar |=
3499                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3500                         }
3501                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3502                 }
3503                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3504                         ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3505                         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3506                 }
3507                 break;
3508
3509         case e1000_82576:
3510                 /* RX entries */
3511                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3512                         rxr = &sc->rx_rings[i];
3513
3514                         index = i & 0x7; /* Each IVAR has two entries */
3515                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3516
3517                         if (i < 8) {
3518                                 ivar &= 0xffffff00;
3519                                 ivar |=
3520                                 (rxr->rx_intr_bit | E1000_IVAR_VALID);
3521                         } else {
3522                                 ivar &= 0xff00ffff;
3523                                 ivar |=
3524                                 (rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3525                         }
3526                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3527                 }
3528                 /* TX entries */
3529                 for (i = 0; i < sc->tx_ring_cnt; ++i) {
3530                         txr = &sc->tx_rings[i];
3531
3532                         index = i & 0x7; /* Each IVAR has two entries */
3533                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3534
3535                         if (i < 8) {
3536                                 ivar &= 0xffff00ff;
3537                                 ivar |=
3538                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3539                         } else {
3540                                 ivar &= 0x00ffffff;
3541                                 ivar |=
3542                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3543                         }
3544                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3545                 }
3546                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3547                         ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3548                         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3549                 }
3550                 break;
3551
3552         case e1000_82575:
3553                 /*
3554                  * Enable necessary interrupt bits.
3555                  *
3556                  * The name of the register is confusing; in addition to
3557                  * configuring the first vector of MSI-X, it also configures
3558                  * which bits of EICR could be set by the hardware even when
3559                  * MSI or line interrupt is used; it thus controls interrupt
3560                  * generation.  It MUST be configured explicitly; the default
3561                  * value mentioned in the datasheet is wrong: RX queue0 and
3562                  * TX queue0 are NOT enabled by default.
3563                  */
3564                 E1000_WRITE_REG(&sc->hw, E1000_MSIXBM(0), sc->intr_mask);
3565                 break;
3566
3567         default:
3568                 panic("unknown mac type %d\n", sc->hw.mac.type);
3569         }
3570 }
3571
3572 static int
3573 igb_setup_intr(struct igb_softc *sc)
3574 {
3575         struct ifnet *ifp = &sc->arpcom.ac_if;
3576         int error;
3577
3578         if (sc->intr_type == PCI_INTR_TYPE_MSIX)
3579                 return igb_msix_setup(sc);
3580
3581         error = bus_setup_intr(sc->dev, sc->intr_res, INTR_MPSAFE,
3582             (sc->flags & IGB_FLAG_SHARED_INTR) ? igb_intr_shared : igb_intr,
3583             sc, &sc->intr_tag, &sc->main_serialize);
3584         if (error) {
3585                 device_printf(sc->dev, "Failed to register interrupt handler");
3586                 return error;
3587         }
3588
3589         ifp->if_cpuid = rman_get_cpuid(sc->intr_res);
3590         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
3591
3592         return 0;
3593 }
3594
3595 static void
3596 igb_set_txintr_mask(struct igb_tx_ring *txr, int *intr_bit0, int intr_bitmax)
3597 {
3598         if (txr->sc->hw.mac.type == e1000_82575) {
3599                 txr->tx_intr_bit = 0;   /* unused */
3600                 switch (txr->me) {
3601                 case 0:
3602                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE0;
3603                         break;
3604                 case 1:
3605                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE1;
3606                         break;
3607                 case 2:
3608                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE2;
3609                         break;
3610                 case 3:
3611                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE3;
3612                         break;
3613                 default:
3614                         panic("unsupported # of TX ring, %d\n", txr->me);
3615                 }
3616         } else {
3617                 int intr_bit = *intr_bit0;
3618
3619                 txr->tx_intr_bit = intr_bit % intr_bitmax;
3620                 txr->tx_intr_mask = 1 << txr->tx_intr_bit;
3621
3622                 *intr_bit0 = intr_bit + 1;
3623         }
3624 }
3625
3626 static void
3627 igb_set_rxintr_mask(struct igb_rx_ring *rxr, int *intr_bit0, int intr_bitmax)
3628 {
3629         if (rxr->sc->hw.mac.type == e1000_82575) {
3630                 rxr->rx_intr_bit = 0;   /* unused */
3631                 switch (rxr->me) {
3632                 case 0:
3633                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE0;
3634                         break;
3635                 case 1:
3636                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE1;
3637                         break;
3638                 case 2:
3639                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE2;
3640                         break;
3641                 case 3:
3642                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE3;
3643                         break;
3644                 default:
3645                         panic("unsupported # of RX ring, %d\n", rxr->me);
3646                 }
3647         } else {
3648                 int intr_bit = *intr_bit0;
3649
3650                 rxr->rx_intr_bit = intr_bit % intr_bitmax;
3651                 rxr->rx_intr_mask = 1 << rxr->rx_intr_bit;
3652
3653                 *intr_bit0 = intr_bit + 1;
3654         }
3655 }
3656
3657 static void
3658 igb_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3659 {
3660         struct igb_softc *sc = ifp->if_softc;
3661
3662         ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt,
3663             sc->tx_serialize, sc->rx_serialize, slz);
3664 }
3665
3666 static void
3667 igb_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3668 {
3669         struct igb_softc *sc = ifp->if_softc;
3670
3671         ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt,
3672             sc->tx_serialize, sc->rx_serialize, slz);
3673 }
3674
3675 static int
3676 igb_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3677 {
3678         struct igb_softc *sc = ifp->if_softc;
3679
3680         return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt,
3681             sc->tx_serialize, sc->rx_serialize, slz);
3682 }
3683
3684 #ifdef INVARIANTS
3685
3686 static void
3687 igb_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3688     boolean_t serialized)
3689 {
3690         struct igb_softc *sc = ifp->if_softc;
3691
3692         ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt,
3693             sc->tx_serialize, sc->rx_serialize, slz, serialized);
3694 }
3695
3696 #endif  /* INVARIANTS */
3697
3698 static void
3699 igb_set_intr_mask(struct igb_softc *sc)
3700 {
3701         int i;
3702
3703         sc->intr_mask = sc->sts_intr_mask;
3704         for (i = 0; i < sc->rx_ring_inuse; ++i)
3705                 sc->intr_mask |= sc->rx_rings[i].rx_intr_mask;
3706         for (i = 0; i < sc->tx_ring_cnt; ++i)
3707                 sc->intr_mask |= sc->tx_rings[i].tx_intr_mask;
3708         if (bootverbose)
3709                 device_printf(sc->dev, "intr mask 0x%08x\n", sc->intr_mask);
3710 }
3711
3712 static int
3713 igb_alloc_intr(struct igb_softc *sc)
3714 {
3715         int i, intr_bit, intr_bitmax;
3716         u_int intr_flags;
3717
3718         igb_msix_try_alloc(sc);
3719         if (sc->intr_type == PCI_INTR_TYPE_MSIX)
3720                 goto done;
3721
3722         /*
3723          * Allocate MSI/legacy interrupt resource
3724          */
3725         sc->intr_type = pci_alloc_1intr(sc->dev, igb_msi_enable,
3726             &sc->intr_rid, &intr_flags);
3727
3728         if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
3729                 int unshared;
3730
3731                 unshared = device_getenv_int(sc->dev, "irq.unshared", 0);
3732                 if (!unshared) {
3733                         sc->flags |= IGB_FLAG_SHARED_INTR;
3734                         if (bootverbose)
3735                                 device_printf(sc->dev, "IRQ shared\n");
3736                 } else {
3737                         intr_flags &= ~RF_SHAREABLE;
3738                         if (bootverbose)
3739                                 device_printf(sc->dev, "IRQ unshared\n");
3740                 }
3741         }
3742
3743         sc->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
3744             &sc->intr_rid, intr_flags);
3745         if (sc->intr_res == NULL) {
3746                 device_printf(sc->dev, "Unable to allocate bus resource: "
3747                     "interrupt\n");
3748                 return ENXIO;
3749         }
3750
3751         /*
3752          * Setup MSI/legacy interrupt mask
3753          */
3754         switch (sc->hw.mac.type) {
3755         case e1000_82575:
3756                 intr_bitmax = IGB_MAX_TXRXINT_82575;
3757                 break;
3758         case e1000_82580:
3759                 intr_bitmax = IGB_MAX_TXRXINT_82580;
3760                 break;
3761         case e1000_i350:
3762                 intr_bitmax = IGB_MAX_TXRXINT_I350;
3763                 break;
3764         case e1000_82576:
3765                 intr_bitmax = IGB_MAX_TXRXINT_82576;
3766                 break;
3767         default:
3768                 intr_bitmax = IGB_MIN_TXRXINT;
3769                 break;
3770         }
3771         intr_bit = 0;
3772         for (i = 0; i < sc->tx_ring_cnt; ++i)
3773                 igb_set_txintr_mask(&sc->tx_rings[i], &intr_bit, intr_bitmax);
3774         for (i = 0; i < sc->rx_ring_cnt; ++i)
3775                 igb_set_rxintr_mask(&sc->rx_rings[i], &intr_bit, intr_bitmax);
3776         sc->sts_intr_bit = 0;
3777         sc->sts_intr_mask = E1000_EICR_OTHER;
3778
3779         /* Initialize interrupt rate */
3780         sc->intr_rate = IGB_INTR_RATE;
3781 done:
3782         igb_set_ring_inuse(sc, FALSE);
3783         igb_set_intr_mask(sc);
3784         return 0;
3785 }
3786
3787 static void
3788 igb_free_intr(struct igb_softc *sc)
3789 {
3790         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3791                 if (sc->intr_res != NULL) {
3792                         bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr_rid,
3793                             sc->intr_res);
3794                 }
3795                 if (sc->intr_type == PCI_INTR_TYPE_MSI)
3796                         pci_release_msi(sc->dev);
3797         } else {
3798                 igb_msix_free(sc, TRUE);
3799         }
3800 }
3801
3802 static void
3803 igb_teardown_intr(struct igb_softc *sc)
3804 {
3805         if (sc->intr_type != PCI_INTR_TYPE_MSIX)
3806                 bus_teardown_intr(sc->dev, sc->intr_res, sc->intr_tag);
3807         else
3808                 igb_msix_teardown(sc, sc->msix_cnt);
3809 }
3810
3811 static void
3812 igb_msix_try_alloc(struct igb_softc *sc)
3813 {
3814         int msix_enable, msix_cnt, msix_cnt2, alloc_cnt;
3815         int i, x, error;
3816         struct igb_msix_data *msix;
3817         boolean_t aggregate, setup = FALSE;
3818
3819         /*
3820          * Don't enable MSI-X on 82575, see:
3821          * 82575 specification update errata #25
3822          */
3823         if (sc->hw.mac.type == e1000_82575)
3824                 return;
3825
3826         /* Don't enable MSI-X on VF */
3827         if (sc->vf_ifp)
3828                 return;
3829
3830         msix_enable = device_getenv_int(sc->dev, "msix.enable",
3831             igb_msix_enable);
3832         if (!msix_enable)
3833                 return;
3834
3835         msix_cnt = pci_msix_count(sc->dev);
3836 #ifdef IGB_MSIX_DEBUG
3837         msix_cnt = device_getenv_int(sc->dev, "msix.count", msix_cnt);
3838 #endif
3839         if (msix_cnt <= 1) {
3840                 /* One MSI-X model does not make sense */
3841                 return;
3842         }
3843
3844         i = 0;
3845         while ((1 << (i + 1)) <= msix_cnt)
3846                 ++i;
3847         msix_cnt2 = 1 << i;
3848
3849         if (bootverbose) {
3850                 device_printf(sc->dev, "MSI-X count %d/%d\n",
3851                     msix_cnt2, msix_cnt);
3852         }
3853
3854         KKASSERT(msix_cnt2 <= msix_cnt);
3855         if (msix_cnt == msix_cnt2) {
3856                 /* We need at least one MSI-X for link status */
3857                 msix_cnt2 >>= 1;
3858                 if (msix_cnt2 <= 1) {
3859                         /* One MSI-X for RX/TX does not make sense */
3860                         device_printf(sc->dev, "not enough MSI-X for TX/RX, "
3861                             "MSI-X count %d/%d\n", msix_cnt2, msix_cnt);
3862                         return;
3863                 }
3864                 KKASSERT(msix_cnt > msix_cnt2);
3865
3866                 if (bootverbose) {
3867                         device_printf(sc->dev, "MSI-X count fixup %d/%d\n",
3868                             msix_cnt2, msix_cnt);
3869                 }
3870         }
3871
3872         sc->rx_ring_msix = sc->rx_ring_cnt;
3873         if (sc->rx_ring_msix > msix_cnt2)
3874                 sc->rx_ring_msix = msix_cnt2;
3875
3876         if (msix_cnt >= sc->tx_ring_cnt + sc->rx_ring_msix + 1) {
3877                 /*
3878                  * Independent TX/RX MSI-X
3879                  */
3880                 aggregate = FALSE;
3881                 if (bootverbose)
3882                         device_printf(sc->dev, "independent TX/RX MSI-X\n");
3883                 alloc_cnt = sc->tx_ring_cnt + sc->rx_ring_msix;
3884         } else {
3885                 /*
3886                  * Aggregate TX/RX MSI-X
3887                  */
3888                 aggregate = TRUE;
3889                 if (bootverbose)
3890                         device_printf(sc->dev, "aggregate TX/RX MSI-X\n");
3891                 alloc_cnt = msix_cnt2;
3892                 if (alloc_cnt > ncpus2)
3893                         alloc_cnt = ncpus2;
3894                 if (sc->rx_ring_msix > alloc_cnt)
3895                         sc->rx_ring_msix = alloc_cnt;
3896         }
3897         ++alloc_cnt;    /* For link status */
3898
3899         if (bootverbose) {
3900                 device_printf(sc->dev, "MSI-X alloc %d, RX ring %d\n",
3901                     alloc_cnt, sc->rx_ring_msix);
3902         }
3903
3904         sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR);
3905         sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3906             &sc->msix_mem_rid, RF_ACTIVE);
3907         if (sc->msix_mem_res == NULL) {
3908                 device_printf(sc->dev, "Unable to map MSI-X table\n");
3909                 return;
3910         }
3911
3912         sc->msix_cnt = alloc_cnt;
3913         sc->msix_data = kmalloc(sizeof(struct igb_msix_data) * sc->msix_cnt,
3914             M_DEVBUF, M_WAITOK | M_ZERO);
3915         for (x = 0; x < sc->msix_cnt; ++x) {
3916                 msix = &sc->msix_data[x];
3917
3918                 lwkt_serialize_init(&msix->msix_serialize0);
3919                 msix->msix_sc = sc;
3920                 msix->msix_rid = -1;
3921                 msix->msix_vector = x;
3922                 msix->msix_mask = 1 << msix->msix_vector;
3923                 msix->msix_rate = IGB_INTR_RATE;
3924         }
3925
3926         x = 0;
3927         if (!aggregate) {
3928                 int offset, offset_def;
3929
3930                 if (sc->rx_ring_msix == ncpus2) {
3931                         offset = 0;
3932                 } else {
3933                         offset_def = (sc->rx_ring_msix *
3934                             device_get_unit(sc->dev)) % ncpus2;
3935
3936                         offset = device_getenv_int(sc->dev,
3937                             "msix.rxoff", offset_def);
3938                         if (offset >= ncpus2 ||
3939                             offset % sc->rx_ring_msix != 0) {
3940                                 device_printf(sc->dev,
3941                                     "invalid msix.rxoff %d, use %d\n",
3942                                     offset, offset_def);
3943                                 offset = offset_def;
3944                         }
3945                 }
3946
3947                 /* RX rings */
3948                 for (i = 0; i < sc->rx_ring_msix; ++i) {
3949                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
3950
3951                         KKASSERT(x < sc->msix_cnt);
3952                         msix = &sc->msix_data[x++];
3953                         rxr->rx_intr_bit = msix->msix_vector;
3954                         rxr->rx_intr_mask = msix->msix_mask;
3955
3956                         msix->msix_serialize = &rxr->rx_serialize;
3957                         msix->msix_func = igb_msix_rx;
3958                         msix->msix_arg = rxr;
3959                         msix->msix_cpuid = i + offset;
3960                         KKASSERT(msix->msix_cpuid < ncpus2);
3961                         ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
3962                             "%s rx%d", device_get_nameunit(sc->dev), i);
3963                         msix->msix_rate = IGB_MSIX_RX_RATE;
3964                         ksnprintf(msix->msix_rate_desc,
3965                             sizeof(msix->msix_rate_desc),
3966                             "RX%d interrupt rate", i);
3967                 }
3968
3969                 offset_def = device_get_unit(sc->dev) % ncpus2;
3970                 offset = device_getenv_int(sc->dev, "msix.txoff", offset_def);
3971                 if (offset >= ncpus2) {
3972                         device_printf(sc->dev, "invalid msix.txoff %d, "
3973                             "use %d\n", offset, offset_def);
3974                         offset = offset_def;
3975                 }
3976
3977                 /* TX rings */
3978                 for (i = 0; i < sc->tx_ring_cnt; ++i) {
3979                         struct igb_tx_ring *txr = &sc->tx_rings[i];
3980
3981                         KKASSERT(x < sc->msix_cnt);
3982                         msix = &sc->msix_data[x++];
3983                         txr->tx_intr_bit = msix->msix_vector;
3984                         txr->tx_intr_mask = msix->msix_mask;
3985
3986                         msix->msix_serialize = &txr->tx_serialize;
3987                         msix->msix_func = igb_msix_tx;
3988                         msix->msix_arg = txr;
3989                         msix->msix_cpuid = i + offset;
3990                         sc->msix_tx_cpuid = msix->msix_cpuid; /* XXX */
3991                         KKASSERT(msix->msix_cpuid < ncpus2);
3992                         ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
3993                             "%s tx%d", device_get_nameunit(sc->dev), i);
3994                         msix->msix_rate = IGB_MSIX_TX_RATE;
3995                         ksnprintf(msix->msix_rate_desc,
3996                             sizeof(msix->msix_rate_desc),
3997                             "TX%d interrupt rate", i);
3998                 }
3999         } else {
4000                 /* TODO */
4001                 error = EOPNOTSUPP;
4002                 goto back;
4003         }
4004
4005         /*
4006          * Link status
4007          */
4008         KKASSERT(x < sc->msix_cnt);
4009         msix = &sc->msix_data[x++];
4010         sc->sts_intr_bit = msix->msix_vector;
4011         sc->sts_intr_mask = msix->msix_mask;
4012
4013         msix->msix_serialize = &sc->main_serialize;
4014         msix->msix_func = igb_msix_status;
4015         msix->msix_arg = sc;
4016         msix->msix_cpuid = 0; /* TODO tunable */
4017         ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s sts",
4018             device_get_nameunit(sc->dev));
4019         ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4020             "status interrupt rate");
4021
4022         KKASSERT(x == sc->msix_cnt);
4023
4024         error = pci_setup_msix(sc->dev);
4025         if (error) {
4026                 device_printf(sc->dev, "Setup MSI-X failed\n");
4027                 goto back;
4028         }
4029         setup = TRUE;
4030
4031         for (i = 0; i < sc->msix_cnt; ++i) {
4032                 msix = &sc->msix_data[i];
4033
4034                 error = pci_alloc_msix_vector(sc->dev, msix->msix_vector,
4035                     &msix->msix_rid, msix->msix_cpuid);
4036                 if (error) {
4037                         device_printf(sc->dev,
4038                             "Unable to allocate MSI-X %d on cpu%d\n",
4039                             msix->msix_vector, msix->msix_cpuid);
4040                         goto back;
4041                 }
4042
4043                 msix->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4044                     &msix->msix_rid, RF_ACTIVE);
4045                 if (msix->msix_res == NULL) {
4046                         device_printf(sc->dev,
4047                             "Unable to allocate MSI-X %d resource\n",
4048                             msix->msix_vector);
4049                         error = ENOMEM;
4050                         goto back;
4051                 }
4052         }
4053
4054         pci_enable_msix(sc->dev);
4055         sc->intr_type = PCI_INTR_TYPE_MSIX;
4056 back:
4057         if (error)
4058                 igb_msix_free(sc, setup);
4059 }
4060
4061 static void
4062 igb_msix_free(struct igb_softc *sc, boolean_t setup)
4063 {
4064         int i;
4065
4066         KKASSERT(sc->msix_cnt > 1);
4067
4068         for (i = 0; i < sc->msix_cnt; ++i) {
4069                 struct igb_msix_data *msix = &sc->msix_data[i];
4070
4071                 if (msix->msix_res != NULL) {
4072                         bus_release_resource(sc->dev, SYS_RES_IRQ,
4073                             msix->msix_rid, msix->msix_res);
4074                 }
4075                 if (msix->msix_rid >= 0)
4076                         pci_release_msix_vector(sc->dev, msix->msix_rid);
4077         }
4078         if (setup)
4079                 pci_teardown_msix(sc->dev);
4080
4081         sc->msix_cnt = 0;
4082         kfree(sc->msix_data, M_DEVBUF);
4083         sc->msix_data = NULL;
4084 }
4085
4086 static int
4087 igb_msix_setup(struct igb_softc *sc)
4088 {
4089         struct ifnet *ifp = &sc->arpcom.ac_if;
4090         int i;
4091
4092         for (i = 0; i < sc->msix_cnt; ++i) {
4093                 struct igb_msix_data *msix = &sc->msix_data[i];
4094                 int error;
4095
4096                 error = bus_setup_intr_descr(sc->dev, msix->msix_res,
4097                     INTR_MPSAFE, msix->msix_func, msix->msix_arg,
4098                     &msix->msix_handle, msix->msix_serialize, msix->msix_desc);
4099                 if (error) {
4100                         device_printf(sc->dev, "could not set up %s "
4101                             "interrupt handler.\n", msix->msix_desc);
4102                         igb_msix_teardown(sc, i);
4103                         return error;
4104                 }
4105         }
4106         ifp->if_cpuid = sc->msix_tx_cpuid;
4107
4108         return 0;
4109 }
4110
4111 static void
4112 igb_msix_teardown(struct igb_softc *sc, int msix_cnt)
4113 {
4114         int i;
4115
4116         for (i = 0; i < msix_cnt; ++i) {
4117                 struct igb_msix_data *msix = &sc->msix_data[i];
4118
4119                 bus_teardown_intr(sc->dev, msix->msix_res, msix->msix_handle);
4120         }
4121 }
4122
4123 static void
4124 igb_msix_rx(void *arg)
4125 {
4126         struct igb_rx_ring *rxr = arg;
4127
4128         ASSERT_SERIALIZED(&rxr->rx_serialize);
4129         igb_rxeof(rxr, -1);
4130
4131         E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4132 }
4133
4134 static void
4135 igb_msix_tx(void *arg)
4136 {
4137         struct igb_tx_ring *txr = arg;
4138         struct ifnet *ifp = &txr->sc->arpcom.ac_if;
4139
4140         ASSERT_SERIALIZED(&txr->tx_serialize);
4141
4142         igb_txeof(txr);
4143         if (!ifq_is_empty(&ifp->if_snd))
4144                 if_devstart(ifp);
4145
4146         E1000_WRITE_REG(&txr->sc->hw, E1000_EIMS, txr->tx_intr_mask);
4147 }
4148
4149 static void
4150 igb_msix_status(void *arg)
4151 {
4152         struct igb_softc *sc = arg;
4153         uint32_t icr;
4154
4155         ASSERT_SERIALIZED(&sc->main_serialize);
4156
4157         icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4158         if (icr & E1000_ICR_LSC) {
4159                 sc->hw.mac.get_link_status = 1;
4160                 igb_update_link_status(sc);
4161         }
4162
4163         E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->sts_intr_mask);
4164 }
4165
4166 static void
4167 igb_set_ring_inuse(struct igb_softc *sc, boolean_t polling)
4168 {
4169         if (!IGB_ENABLE_HWRSS(sc))
4170                 return;
4171
4172         if (sc->intr_type != PCI_INTR_TYPE_MSIX || polling)
4173                 sc->rx_ring_inuse = IGB_MIN_RING_RSS;
4174         else
4175                 sc->rx_ring_inuse = sc->rx_ring_msix;
4176         if (bootverbose) {
4177                 device_printf(sc->dev, "RX rings %d/%d\n",
4178                     sc->rx_ring_inuse, sc->rx_ring_cnt);
4179         }
4180 }
4181
4182 static int
4183 igb_tso_pullup(struct igb_tx_ring *txr, struct mbuf **mp)
4184 {
4185         int hoff, iphlen, thoff;
4186         struct mbuf *m;
4187
4188         m = *mp;
4189         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4190
4191         iphlen = m->m_pkthdr.csum_iphlen;
4192         thoff = m->m_pkthdr.csum_thlen;
4193         hoff = m->m_pkthdr.csum_lhlen;
4194
4195         KASSERT(iphlen > 0, ("invalid ip hlen"));
4196         KASSERT(thoff > 0, ("invalid tcp hlen"));
4197         KASSERT(hoff > 0, ("invalid ether hlen"));
4198
4199         if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4200                 m = m_pullup(m, hoff + iphlen + thoff);
4201                 if (m == NULL) {
4202                         *mp = NULL;
4203                         return ENOBUFS;
4204                 }
4205                 *mp = m;
4206         }
4207         if (txr->sc->flags & IGB_FLAG_TSO_IPLEN0) {
4208                 struct ip *ip;
4209
4210                 ip = mtodoff(m, struct ip *, hoff);
4211                 ip->ip_len = 0;
4212         }
4213
4214         return 0;
4215 }
4216
4217 static void
4218 igb_tso_ctx(struct igb_tx_ring *txr, struct mbuf *m, uint32_t *hlen)
4219 {
4220         struct e1000_adv_tx_context_desc *TXD;
4221         uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
4222         int hoff, ctxd, iphlen, thoff;
4223
4224         iphlen = m->m_pkthdr.csum_iphlen;
4225         thoff = m->m_pkthdr.csum_thlen;
4226         hoff = m->m_pkthdr.csum_lhlen;
4227
4228         vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
4229
4230         ctxd = txr->next_avail_desc;
4231         TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
4232
4233         if (m->m_flags & M_VLANTAG) {
4234                 uint16_t vlantag;
4235
4236                 vlantag = htole16(m->m_pkthdr.ether_vlantag);
4237                 vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
4238         }
4239
4240         vlan_macip_lens |= (hoff << E1000_ADVTXD_MACLEN_SHIFT);
4241         vlan_macip_lens |= iphlen;
4242
4243         type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4244         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
4245         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
4246
4247         mss_l4len_idx |= (m->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
4248         mss_l4len_idx |= (thoff << E1000_ADVTXD_L4LEN_SHIFT);
4249         /* 82575 needs the queue index added */
4250         if (txr->sc->hw.mac.type == e1000_82575)
4251                 mss_l4len_idx |= txr->me << 4;
4252
4253         TXD->vlan_macip_lens = htole32(vlan_macip_lens);
4254         TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
4255         TXD->seqnum_seed = htole32(0);
4256         TXD->mss_l4len_idx = htole32(mss_l4len_idx);
4257
4258         /* We've consumed the first desc, adjust counters */
4259         if (++ctxd == txr->num_tx_desc)
4260                 ctxd = 0;
4261         txr->next_avail_desc = ctxd;
4262         --txr->tx_avail;
4263
4264         *hlen = hoff + iphlen + thoff;
4265 }